Fix: increment UST channel refcount at stream creation
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread pipe to poll back again. This usually means that some global
81 * state has changed so we just send back the thread in a poll wait call.
82 */
83 static void notify_thread_pipe(int wpipe)
84 {
85 int ret;
86
87 do {
88 struct lttng_consumer_stream *null_stream = NULL;
89
90 ret = write(wpipe, &null_stream, sizeof(null_stream));
91 } while (ret < 0 && errno == EINTR);
92 }
93
94 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
95 struct lttng_consumer_channel *chan,
96 uint64_t key,
97 enum consumer_channel_action action)
98 {
99 struct consumer_channel_msg msg;
100 int ret;
101
102 memset(&msg, 0, sizeof(msg));
103
104 msg.action = action;
105 msg.chan = chan;
106 do {
107 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
108 } while (ret < 0 && errno == EINTR);
109 }
110
111 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
112 uint64_t key)
113 {
114 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
115 }
116
117 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel **chan,
119 uint64_t *key,
120 enum consumer_channel_action *action)
121 {
122 struct consumer_channel_msg msg;
123 int ret;
124
125 do {
126 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
127 } while (ret < 0 && errno == EINTR);
128 if (ret > 0) {
129 *action = msg.action;
130 *chan = msg.chan;
131 *key = msg.key;
132 }
133 return ret;
134 }
135
136 /*
137 * Find a stream. The consumer_data.lock must be locked during this
138 * call.
139 */
140 static struct lttng_consumer_stream *find_stream(uint64_t key,
141 struct lttng_ht *ht)
142 {
143 struct lttng_ht_iter iter;
144 struct lttng_ht_node_u64 *node;
145 struct lttng_consumer_stream *stream = NULL;
146
147 assert(ht);
148
149 /* -1ULL keys are lookup failures */
150 if (key == (uint64_t) -1ULL) {
151 return NULL;
152 }
153
154 rcu_read_lock();
155
156 lttng_ht_lookup(ht, &key, &iter);
157 node = lttng_ht_iter_get_node_u64(&iter);
158 if (node != NULL) {
159 stream = caa_container_of(node, struct lttng_consumer_stream, node);
160 }
161
162 rcu_read_unlock();
163
164 return stream;
165 }
166
167 static void steal_stream_key(int key, struct lttng_ht *ht)
168 {
169 struct lttng_consumer_stream *stream;
170
171 rcu_read_lock();
172 stream = find_stream(key, ht);
173 if (stream) {
174 stream->key = -1ULL;
175 /*
176 * We don't want the lookup to match, but we still need
177 * to iterate on this stream when iterating over the hash table. Just
178 * change the node key.
179 */
180 stream->node.key = -1ULL;
181 }
182 rcu_read_unlock();
183 }
184
185 /*
186 * Return a channel object for the given key.
187 *
188 * RCU read side lock MUST be acquired before calling this function and
189 * protects the channel ptr.
190 */
191 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
192 {
193 struct lttng_ht_iter iter;
194 struct lttng_ht_node_u64 *node;
195 struct lttng_consumer_channel *channel = NULL;
196
197 /* -1ULL keys are lookup failures */
198 if (key == (uint64_t) -1ULL) {
199 return NULL;
200 }
201
202 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
203 node = lttng_ht_iter_get_node_u64(&iter);
204 if (node != NULL) {
205 channel = caa_container_of(node, struct lttng_consumer_channel, node);
206 }
207
208 return channel;
209 }
210
211 static void free_stream_rcu(struct rcu_head *head)
212 {
213 struct lttng_ht_node_u64 *node =
214 caa_container_of(head, struct lttng_ht_node_u64, head);
215 struct lttng_consumer_stream *stream =
216 caa_container_of(node, struct lttng_consumer_stream, node);
217
218 free(stream);
219 }
220
221 static void free_channel_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct lttng_consumer_channel *channel =
226 caa_container_of(node, struct lttng_consumer_channel, node);
227
228 free(channel);
229 }
230
231 /*
232 * RCU protected relayd socket pair free.
233 */
234 static void free_relayd_rcu(struct rcu_head *head)
235 {
236 struct lttng_ht_node_u64 *node =
237 caa_container_of(head, struct lttng_ht_node_u64, head);
238 struct consumer_relayd_sock_pair *relayd =
239 caa_container_of(node, struct consumer_relayd_sock_pair, node);
240
241 /*
242 * Close all sockets. This is done in the call RCU since we don't want the
243 * socket fds to be reassigned thus potentially creating bad state of the
244 * relayd object.
245 *
246 * We do not have to lock the control socket mutex here since at this stage
247 * there is no one referencing to this relayd object.
248 */
249 (void) relayd_close(&relayd->control_sock);
250 (void) relayd_close(&relayd->data_sock);
251
252 free(relayd);
253 }
254
255 /*
256 * Destroy and free relayd socket pair object.
257 *
258 * This function MUST be called with the consumer_data lock acquired.
259 */
260 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
261 {
262 int ret;
263 struct lttng_ht_iter iter;
264
265 if (relayd == NULL) {
266 return;
267 }
268
269 DBG("Consumer destroy and close relayd socket pair");
270
271 iter.iter.node = &relayd->node.node;
272 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
273 if (ret != 0) {
274 /* We assume the relayd is being or is destroyed */
275 return;
276 }
277
278 /* RCU free() call */
279 call_rcu(&relayd->node.head, free_relayd_rcu);
280 }
281
282 /*
283 * Remove a channel from the global list protected by a mutex. This function is
284 * also responsible for freeing its data structures.
285 */
286 void consumer_del_channel(struct lttng_consumer_channel *channel)
287 {
288 int ret;
289 struct lttng_ht_iter iter;
290
291 DBG("Consumer delete channel key %" PRIu64, channel->key);
292
293 pthread_mutex_lock(&consumer_data.lock);
294
295 switch (consumer_data.type) {
296 case LTTNG_CONSUMER_KERNEL:
297 break;
298 case LTTNG_CONSUMER32_UST:
299 case LTTNG_CONSUMER64_UST:
300 lttng_ustconsumer_del_channel(channel);
301 break;
302 default:
303 ERR("Unknown consumer_data type");
304 assert(0);
305 goto end;
306 }
307
308 rcu_read_lock();
309 iter.iter.node = &channel->node.node;
310 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
311 assert(!ret);
312 rcu_read_unlock();
313
314 call_rcu(&channel->node.head, free_channel_rcu);
315 end:
316 pthread_mutex_unlock(&consumer_data.lock);
317 }
318
319 /*
320 * Iterate over the relayd hash table and destroy each element. Finally,
321 * destroy the whole hash table.
322 */
323 static void cleanup_relayd_ht(void)
324 {
325 struct lttng_ht_iter iter;
326 struct consumer_relayd_sock_pair *relayd;
327
328 rcu_read_lock();
329
330 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
331 node.node) {
332 destroy_relayd(relayd);
333 }
334
335 rcu_read_unlock();
336
337 lttng_ht_destroy(consumer_data.relayd_ht);
338 }
339
340 /*
341 * Update the end point status of all streams having the given network sequence
342 * index (relayd index).
343 *
344 * It's atomically set without having the stream mutex locked which is fine
345 * because we handle the write/read race with a pipe wakeup for each thread.
346 */
347 static void update_endpoint_status_by_netidx(int net_seq_idx,
348 enum consumer_endpoint_status status)
349 {
350 struct lttng_ht_iter iter;
351 struct lttng_consumer_stream *stream;
352
353 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
354
355 rcu_read_lock();
356
357 /* Let's begin with metadata */
358 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
359 if (stream->net_seq_idx == net_seq_idx) {
360 uatomic_set(&stream->endpoint_status, status);
361 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
362 }
363 }
364
365 /* Follow up by the data streams */
366 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
367 if (stream->net_seq_idx == net_seq_idx) {
368 uatomic_set(&stream->endpoint_status, status);
369 DBG("Delete flag set to data stream %d", stream->wait_fd);
370 }
371 }
372 rcu_read_unlock();
373 }
374
375 /*
376 * Cleanup a relayd object by flagging every associated streams for deletion,
377 * destroying the object meaning removing it from the relayd hash table,
378 * closing the sockets and freeing the memory in a RCU call.
379 *
380 * If a local data context is available, notify the threads that the streams'
381 * state have changed.
382 */
383 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
384 struct lttng_consumer_local_data *ctx)
385 {
386 int netidx;
387
388 assert(relayd);
389
390 DBG("Cleaning up relayd sockets");
391
392 /* Save the net sequence index before destroying the object */
393 netidx = relayd->net_seq_idx;
394
395 /*
396 * Delete the relayd from the relayd hash table, close the sockets and free
397 * the object in a RCU call.
398 */
399 destroy_relayd(relayd);
400
401 /* Set inactive endpoint to all streams */
402 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
403
404 /*
405 * With a local data context, notify the threads that the streams' state
406 * have changed. The write() action on the pipe acts as an "implicit"
407 * memory barrier ordering the updates of the end point status from the
408 * read of this status which happens AFTER receiving this notify.
409 */
410 if (ctx) {
411 notify_thread_pipe(ctx->consumer_data_pipe[1]);
412 notify_thread_pipe(ctx->consumer_metadata_pipe[1]);
413 }
414 }
415
416 /*
417 * Flag a relayd socket pair for destruction. Destroy it if the refcount
418 * reaches zero.
419 *
420 * RCU read side lock MUST be aquired before calling this function.
421 */
422 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
423 {
424 assert(relayd);
425
426 /* Set destroy flag for this object */
427 uatomic_set(&relayd->destroy_flag, 1);
428
429 /* Destroy the relayd if refcount is 0 */
430 if (uatomic_read(&relayd->refcount) == 0) {
431 destroy_relayd(relayd);
432 }
433 }
434
435 /*
436 * Remove a stream from the global list protected by a mutex. This
437 * function is also responsible for freeing its data structures.
438 */
439 void consumer_del_stream(struct lttng_consumer_stream *stream,
440 struct lttng_ht *ht)
441 {
442 int ret;
443 struct lttng_ht_iter iter;
444 struct lttng_consumer_channel *free_chan = NULL;
445 struct consumer_relayd_sock_pair *relayd;
446
447 assert(stream);
448
449 DBG("Consumer del stream %d", stream->wait_fd);
450
451 if (ht == NULL) {
452 /* Means the stream was allocated but not successfully added */
453 goto free_stream_rcu;
454 }
455
456 pthread_mutex_lock(&consumer_data.lock);
457 pthread_mutex_lock(&stream->lock);
458
459 switch (consumer_data.type) {
460 case LTTNG_CONSUMER_KERNEL:
461 if (stream->mmap_base != NULL) {
462 ret = munmap(stream->mmap_base, stream->mmap_len);
463 if (ret != 0) {
464 PERROR("munmap");
465 }
466 }
467 break;
468 case LTTNG_CONSUMER32_UST:
469 case LTTNG_CONSUMER64_UST:
470 lttng_ustconsumer_del_stream(stream);
471 break;
472 default:
473 ERR("Unknown consumer_data type");
474 assert(0);
475 goto end;
476 }
477
478 rcu_read_lock();
479 iter.iter.node = &stream->node.node;
480 ret = lttng_ht_del(ht, &iter);
481 assert(!ret);
482
483 iter.iter.node = &stream->node_channel_id.node;
484 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
485 assert(!ret);
486
487 iter.iter.node = &stream->node_session_id.node;
488 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
489 assert(!ret);
490 rcu_read_unlock();
491
492 assert(consumer_data.stream_count > 0);
493 consumer_data.stream_count--;
494
495 if (stream->out_fd >= 0) {
496 ret = close(stream->out_fd);
497 if (ret) {
498 PERROR("close");
499 }
500 }
501
502 /* Check and cleanup relayd */
503 rcu_read_lock();
504 relayd = consumer_find_relayd(stream->net_seq_idx);
505 if (relayd != NULL) {
506 uatomic_dec(&relayd->refcount);
507 assert(uatomic_read(&relayd->refcount) >= 0);
508
509 /* Closing streams requires to lock the control socket. */
510 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
511 ret = relayd_send_close_stream(&relayd->control_sock,
512 stream->relayd_stream_id,
513 stream->next_net_seq_num - 1);
514 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
515 if (ret < 0) {
516 DBG("Unable to close stream on the relayd. Continuing");
517 /*
518 * Continue here. There is nothing we can do for the relayd.
519 * Chances are that the relayd has closed the socket so we just
520 * continue cleaning up.
521 */
522 }
523
524 /* Both conditions are met, we destroy the relayd. */
525 if (uatomic_read(&relayd->refcount) == 0 &&
526 uatomic_read(&relayd->destroy_flag)) {
527 destroy_relayd(relayd);
528 }
529 }
530 rcu_read_unlock();
531
532 if (!uatomic_sub_return(&stream->chan->refcount, 1)
533 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
534 free_chan = stream->chan;
535 }
536
537 end:
538 consumer_data.need_update = 1;
539 pthread_mutex_unlock(&stream->lock);
540 pthread_mutex_unlock(&consumer_data.lock);
541
542 if (free_chan) {
543 consumer_del_channel(free_chan);
544 }
545
546 free_stream_rcu:
547 call_rcu(&stream->node.head, free_stream_rcu);
548 }
549
550 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
551 uint64_t stream_key,
552 enum lttng_consumer_stream_state state,
553 const char *channel_name,
554 uid_t uid,
555 gid_t gid,
556 int relayd_id,
557 uint64_t session_id,
558 int cpu,
559 int *alloc_ret,
560 enum consumer_channel_type type)
561 {
562 int ret;
563 struct lttng_consumer_stream *stream;
564
565 stream = zmalloc(sizeof(*stream));
566 if (stream == NULL) {
567 PERROR("malloc struct lttng_consumer_stream");
568 ret = -ENOMEM;
569 goto end;
570 }
571
572 rcu_read_lock();
573
574 stream->key = stream_key;
575 stream->out_fd = -1;
576 stream->out_fd_offset = 0;
577 stream->state = state;
578 stream->uid = uid;
579 stream->gid = gid;
580 stream->net_seq_idx = relayd_id;
581 stream->session_id = session_id;
582 pthread_mutex_init(&stream->lock, NULL);
583
584 /* If channel is the metadata, flag this stream as metadata. */
585 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
586 stream->metadata_flag = 1;
587 /* Metadata is flat out. */
588 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
589 } else {
590 /* Format stream name to <channel_name>_<cpu_number> */
591 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
592 channel_name, cpu);
593 if (ret < 0) {
594 PERROR("snprintf stream name");
595 goto error;
596 }
597 }
598
599 /* Key is always the wait_fd for streams. */
600 lttng_ht_node_init_u64(&stream->node, stream->key);
601
602 /* Init node per channel id key */
603 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
604
605 /* Init session id node with the stream session id */
606 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
607
608 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
609 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 static int add_stream(struct lttng_consumer_stream *stream,
628 struct lttng_ht *ht)
629 {
630 int ret = 0;
631 struct consumer_relayd_sock_pair *relayd;
632
633 assert(stream);
634 assert(ht);
635
636 DBG3("Adding consumer stream %" PRIu64, stream->key);
637
638 pthread_mutex_lock(&consumer_data.lock);
639 pthread_mutex_lock(&stream->lock);
640 rcu_read_lock();
641
642 /* Steal stream identifier to avoid having streams with the same key */
643 steal_stream_key(stream->key, ht);
644
645 lttng_ht_add_unique_u64(ht, &stream->node);
646
647 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
648 &stream->node_channel_id);
649
650 /*
651 * Add stream to the stream_list_ht of the consumer data. No need to steal
652 * the key since the HT does not use it and we allow to add redundant keys
653 * into this table.
654 */
655 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
656
657 /* Check and cleanup relayd */
658 relayd = consumer_find_relayd(stream->net_seq_idx);
659 if (relayd != NULL) {
660 uatomic_inc(&relayd->refcount);
661 }
662
663 /*
664 * When nb_init_stream_left reaches 0, we don't need to trigger any action
665 * in terms of destroying the associated channel, because the action that
666 * causes the count to become 0 also causes a stream to be added. The
667 * channel deletion will thus be triggered by the following removal of this
668 * stream.
669 */
670 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
671 /* Increment refcount before decrementing nb_init_stream_left */
672 cmm_smp_wmb();
673 uatomic_dec(&stream->chan->nb_init_stream_left);
674 }
675
676 /* Update consumer data once the node is inserted. */
677 consumer_data.stream_count++;
678 consumer_data.need_update = 1;
679
680 rcu_read_unlock();
681 pthread_mutex_unlock(&stream->lock);
682 pthread_mutex_unlock(&consumer_data.lock);
683
684 return ret;
685 }
686
687 /*
688 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
689 * be acquired before calling this.
690 */
691 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
692 {
693 int ret = 0;
694 struct lttng_ht_node_u64 *node;
695 struct lttng_ht_iter iter;
696
697 assert(relayd);
698
699 lttng_ht_lookup(consumer_data.relayd_ht,
700 &relayd->net_seq_idx, &iter);
701 node = lttng_ht_iter_get_node_u64(&iter);
702 if (node != NULL) {
703 goto end;
704 }
705 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
706
707 end:
708 return ret;
709 }
710
711 /*
712 * Allocate and return a consumer relayd socket.
713 */
714 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
715 int net_seq_idx)
716 {
717 struct consumer_relayd_sock_pair *obj = NULL;
718
719 /* Negative net sequence index is a failure */
720 if (net_seq_idx < 0) {
721 goto error;
722 }
723
724 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
725 if (obj == NULL) {
726 PERROR("zmalloc relayd sock");
727 goto error;
728 }
729
730 obj->net_seq_idx = net_seq_idx;
731 obj->refcount = 0;
732 obj->destroy_flag = 0;
733 obj->control_sock.sock.fd = -1;
734 obj->data_sock.sock.fd = -1;
735 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
736 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
737
738 error:
739 return obj;
740 }
741
742 /*
743 * Find a relayd socket pair in the global consumer data.
744 *
745 * Return the object if found else NULL.
746 * RCU read-side lock must be held across this call and while using the
747 * returned object.
748 */
749 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
750 {
751 struct lttng_ht_iter iter;
752 struct lttng_ht_node_u64 *node;
753 struct consumer_relayd_sock_pair *relayd = NULL;
754
755 /* Negative keys are lookup failures */
756 if (key == (uint64_t) -1ULL) {
757 goto error;
758 }
759
760 lttng_ht_lookup(consumer_data.relayd_ht, &key,
761 &iter);
762 node = lttng_ht_iter_get_node_u64(&iter);
763 if (node != NULL) {
764 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
765 }
766
767 error:
768 return relayd;
769 }
770
771 /*
772 * Handle stream for relayd transmission if the stream applies for network
773 * streaming where the net sequence index is set.
774 *
775 * Return destination file descriptor or negative value on error.
776 */
777 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
778 size_t data_size, unsigned long padding,
779 struct consumer_relayd_sock_pair *relayd)
780 {
781 int outfd = -1, ret;
782 struct lttcomm_relayd_data_hdr data_hdr;
783
784 /* Safety net */
785 assert(stream);
786 assert(relayd);
787
788 /* Reset data header */
789 memset(&data_hdr, 0, sizeof(data_hdr));
790
791 if (stream->metadata_flag) {
792 /* Caller MUST acquire the relayd control socket lock */
793 ret = relayd_send_metadata(&relayd->control_sock, data_size);
794 if (ret < 0) {
795 goto error;
796 }
797
798 /* Metadata are always sent on the control socket. */
799 outfd = relayd->control_sock.sock.fd;
800 } else {
801 /* Set header with stream information */
802 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
803 data_hdr.data_size = htobe32(data_size);
804 data_hdr.padding_size = htobe32(padding);
805 /*
806 * Note that net_seq_num below is assigned with the *current* value of
807 * next_net_seq_num and only after that the next_net_seq_num will be
808 * increment. This is why when issuing a command on the relayd using
809 * this next value, 1 should always be substracted in order to compare
810 * the last seen sequence number on the relayd side to the last sent.
811 */
812 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
813 /* Other fields are zeroed previously */
814
815 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
816 sizeof(data_hdr));
817 if (ret < 0) {
818 goto error;
819 }
820
821 ++stream->next_net_seq_num;
822
823 /* Set to go on data socket */
824 outfd = relayd->data_sock.sock.fd;
825 }
826
827 error:
828 return outfd;
829 }
830
831 /*
832 * Allocate and return a new lttng_consumer_channel object using the given key
833 * to initialize the hash table node.
834 *
835 * On error, return NULL.
836 */
837 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
838 uint64_t session_id,
839 const char *pathname,
840 const char *name,
841 uid_t uid,
842 gid_t gid,
843 int relayd_id,
844 enum lttng_event_output output,
845 uint64_t tracefile_size,
846 uint64_t tracefile_count)
847 {
848 struct lttng_consumer_channel *channel;
849
850 channel = zmalloc(sizeof(*channel));
851 if (channel == NULL) {
852 PERROR("malloc struct lttng_consumer_channel");
853 goto end;
854 }
855
856 channel->key = key;
857 channel->refcount = 0;
858 channel->session_id = session_id;
859 channel->uid = uid;
860 channel->gid = gid;
861 channel->relayd_id = relayd_id;
862 channel->output = output;
863 channel->tracefile_size = tracefile_size;
864 channel->tracefile_count = tracefile_count;
865
866 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
867 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
868
869 strncpy(channel->name, name, sizeof(channel->name));
870 channel->name[sizeof(channel->name) - 1] = '\0';
871
872 lttng_ht_node_init_u64(&channel->node, channel->key);
873
874 channel->wait_fd = -1;
875
876 CDS_INIT_LIST_HEAD(&channel->streams.head);
877
878 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
879
880 end:
881 return channel;
882 }
883
884 /*
885 * Add a channel to the global list protected by a mutex.
886 */
887 int consumer_add_channel(struct lttng_consumer_channel *channel,
888 struct lttng_consumer_local_data *ctx)
889 {
890 int ret = 0;
891 struct lttng_ht_node_u64 *node;
892 struct lttng_ht_iter iter;
893
894 pthread_mutex_lock(&consumer_data.lock);
895 rcu_read_lock();
896
897 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
898 node = lttng_ht_iter_get_node_u64(&iter);
899 if (node != NULL) {
900 /* Channel already exist. Ignore the insertion */
901 ERR("Consumer add channel key %" PRIu64 " already exists!",
902 channel->key);
903 ret = -1;
904 goto end;
905 }
906
907 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
908
909 end:
910 rcu_read_unlock();
911 pthread_mutex_unlock(&consumer_data.lock);
912
913 if (!ret && channel->wait_fd != -1 &&
914 channel->metadata_stream == NULL) {
915 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
916 }
917 return ret;
918 }
919
920 /*
921 * Allocate the pollfd structure and the local view of the out fds to avoid
922 * doing a lookup in the linked list and concurrency issues when writing is
923 * needed. Called with consumer_data.lock held.
924 *
925 * Returns the number of fds in the structures.
926 */
927 static int update_poll_array(struct lttng_consumer_local_data *ctx,
928 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
929 struct lttng_ht *ht)
930 {
931 int i = 0;
932 struct lttng_ht_iter iter;
933 struct lttng_consumer_stream *stream;
934
935 assert(ctx);
936 assert(ht);
937 assert(pollfd);
938 assert(local_stream);
939
940 DBG("Updating poll fd array");
941 rcu_read_lock();
942 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
943 /*
944 * Only active streams with an active end point can be added to the
945 * poll set and local stream storage of the thread.
946 *
947 * There is a potential race here for endpoint_status to be updated
948 * just after the check. However, this is OK since the stream(s) will
949 * be deleted once the thread is notified that the end point state has
950 * changed where this function will be called back again.
951 */
952 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
953 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
954 continue;
955 }
956 /*
957 * This clobbers way too much the debug output. Uncomment that if you
958 * need it for debugging purposes.
959 *
960 * DBG("Active FD %d", stream->wait_fd);
961 */
962 (*pollfd)[i].fd = stream->wait_fd;
963 (*pollfd)[i].events = POLLIN | POLLPRI;
964 local_stream[i] = stream;
965 i++;
966 }
967 rcu_read_unlock();
968
969 /*
970 * Insert the consumer_data_pipe at the end of the array and don't
971 * increment i so nb_fd is the number of real FD.
972 */
973 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
974 (*pollfd)[i].events = POLLIN | POLLPRI;
975 return i;
976 }
977
978 /*
979 * Poll on the should_quit pipe and the command socket return -1 on error and
980 * should exit, 0 if data is available on the command socket
981 */
982 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
983 {
984 int num_rdy;
985
986 restart:
987 num_rdy = poll(consumer_sockpoll, 2, -1);
988 if (num_rdy == -1) {
989 /*
990 * Restart interrupted system call.
991 */
992 if (errno == EINTR) {
993 goto restart;
994 }
995 PERROR("Poll error");
996 goto exit;
997 }
998 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
999 DBG("consumer_should_quit wake up");
1000 goto exit;
1001 }
1002 return 0;
1003
1004 exit:
1005 return -1;
1006 }
1007
1008 /*
1009 * Set the error socket.
1010 */
1011 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1012 int sock)
1013 {
1014 ctx->consumer_error_socket = sock;
1015 }
1016
1017 /*
1018 * Set the command socket path.
1019 */
1020 void lttng_consumer_set_command_sock_path(
1021 struct lttng_consumer_local_data *ctx, char *sock)
1022 {
1023 ctx->consumer_command_sock_path = sock;
1024 }
1025
1026 /*
1027 * Send return code to the session daemon.
1028 * If the socket is not defined, we return 0, it is not a fatal error
1029 */
1030 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1031 {
1032 if (ctx->consumer_error_socket > 0) {
1033 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1034 sizeof(enum lttcomm_sessiond_command));
1035 }
1036
1037 return 0;
1038 }
1039
1040 /*
1041 * Close all the tracefiles and stream fds and MUST be called when all
1042 * instances are destroyed i.e. when all threads were joined and are ended.
1043 */
1044 void lttng_consumer_cleanup(void)
1045 {
1046 struct lttng_ht_iter iter;
1047 struct lttng_consumer_channel *channel;
1048
1049 rcu_read_lock();
1050
1051 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1052 node.node) {
1053 consumer_del_channel(channel);
1054 }
1055
1056 rcu_read_unlock();
1057
1058 lttng_ht_destroy(consumer_data.channel_ht);
1059
1060 cleanup_relayd_ht();
1061
1062 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1063
1064 /*
1065 * This HT contains streams that are freed by either the metadata thread or
1066 * the data thread so we do *nothing* on the hash table and simply destroy
1067 * it.
1068 */
1069 lttng_ht_destroy(consumer_data.stream_list_ht);
1070 }
1071
1072 /*
1073 * Called from signal handler.
1074 */
1075 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1076 {
1077 int ret;
1078 consumer_quit = 1;
1079 do {
1080 ret = write(ctx->consumer_should_quit[1], "4", 1);
1081 } while (ret < 0 && errno == EINTR);
1082 if (ret < 0 || ret != 1) {
1083 PERROR("write consumer quit");
1084 }
1085
1086 DBG("Consumer flag that it should quit");
1087 }
1088
1089 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1090 off_t orig_offset)
1091 {
1092 int outfd = stream->out_fd;
1093
1094 /*
1095 * This does a blocking write-and-wait on any page that belongs to the
1096 * subbuffer prior to the one we just wrote.
1097 * Don't care about error values, as these are just hints and ways to
1098 * limit the amount of page cache used.
1099 */
1100 if (orig_offset < stream->max_sb_size) {
1101 return;
1102 }
1103 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1104 stream->max_sb_size,
1105 SYNC_FILE_RANGE_WAIT_BEFORE
1106 | SYNC_FILE_RANGE_WRITE
1107 | SYNC_FILE_RANGE_WAIT_AFTER);
1108 /*
1109 * Give hints to the kernel about how we access the file:
1110 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1111 * we write it.
1112 *
1113 * We need to call fadvise again after the file grows because the
1114 * kernel does not seem to apply fadvise to non-existing parts of the
1115 * file.
1116 *
1117 * Call fadvise _after_ having waited for the page writeback to
1118 * complete because the dirty page writeback semantic is not well
1119 * defined. So it can be expected to lead to lower throughput in
1120 * streaming.
1121 */
1122 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1123 stream->max_sb_size, POSIX_FADV_DONTNEED);
1124 }
1125
1126 /*
1127 * Initialise the necessary environnement :
1128 * - create a new context
1129 * - create the poll_pipe
1130 * - create the should_quit pipe (for signal handler)
1131 * - create the thread pipe (for splice)
1132 *
1133 * Takes a function pointer as argument, this function is called when data is
1134 * available on a buffer. This function is responsible to do the
1135 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1136 * buffer configuration and then kernctl_put_next_subbuf at the end.
1137 *
1138 * Returns a pointer to the new context or NULL on error.
1139 */
1140 struct lttng_consumer_local_data *lttng_consumer_create(
1141 enum lttng_consumer_type type,
1142 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1143 struct lttng_consumer_local_data *ctx),
1144 int (*recv_channel)(struct lttng_consumer_channel *channel),
1145 int (*recv_stream)(struct lttng_consumer_stream *stream),
1146 int (*update_stream)(int stream_key, uint32_t state))
1147 {
1148 int ret;
1149 struct lttng_consumer_local_data *ctx;
1150
1151 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1152 consumer_data.type == type);
1153 consumer_data.type = type;
1154
1155 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1156 if (ctx == NULL) {
1157 PERROR("allocating context");
1158 goto error;
1159 }
1160
1161 ctx->consumer_error_socket = -1;
1162 ctx->consumer_metadata_socket = -1;
1163 /* assign the callbacks */
1164 ctx->on_buffer_ready = buffer_ready;
1165 ctx->on_recv_channel = recv_channel;
1166 ctx->on_recv_stream = recv_stream;
1167 ctx->on_update_stream = update_stream;
1168
1169 ret = pipe(ctx->consumer_data_pipe);
1170 if (ret < 0) {
1171 PERROR("Error creating poll pipe");
1172 goto error_poll_pipe;
1173 }
1174
1175 /* set read end of the pipe to non-blocking */
1176 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1177 if (ret < 0) {
1178 PERROR("fcntl O_NONBLOCK");
1179 goto error_poll_fcntl;
1180 }
1181
1182 /* set write end of the pipe to non-blocking */
1183 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1184 if (ret < 0) {
1185 PERROR("fcntl O_NONBLOCK");
1186 goto error_poll_fcntl;
1187 }
1188
1189 ret = pipe(ctx->consumer_should_quit);
1190 if (ret < 0) {
1191 PERROR("Error creating recv pipe");
1192 goto error_quit_pipe;
1193 }
1194
1195 ret = pipe(ctx->consumer_thread_pipe);
1196 if (ret < 0) {
1197 PERROR("Error creating thread pipe");
1198 goto error_thread_pipe;
1199 }
1200
1201 ret = pipe(ctx->consumer_channel_pipe);
1202 if (ret < 0) {
1203 PERROR("Error creating channel pipe");
1204 goto error_channel_pipe;
1205 }
1206
1207 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1208 if (ret < 0) {
1209 goto error_metadata_pipe;
1210 }
1211
1212 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1213 if (ret < 0) {
1214 goto error_splice_pipe;
1215 }
1216
1217 return ctx;
1218
1219 error_splice_pipe:
1220 utils_close_pipe(ctx->consumer_metadata_pipe);
1221 error_metadata_pipe:
1222 utils_close_pipe(ctx->consumer_channel_pipe);
1223 error_channel_pipe:
1224 utils_close_pipe(ctx->consumer_thread_pipe);
1225 error_thread_pipe:
1226 utils_close_pipe(ctx->consumer_should_quit);
1227 error_poll_fcntl:
1228 error_quit_pipe:
1229 utils_close_pipe(ctx->consumer_data_pipe);
1230 error_poll_pipe:
1231 free(ctx);
1232 error:
1233 return NULL;
1234 }
1235
1236 /*
1237 * Close all fds associated with the instance and free the context.
1238 */
1239 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1240 {
1241 int ret;
1242
1243 DBG("Consumer destroying it. Closing everything.");
1244
1245 ret = close(ctx->consumer_error_socket);
1246 if (ret) {
1247 PERROR("close");
1248 }
1249 ret = close(ctx->consumer_metadata_socket);
1250 if (ret) {
1251 PERROR("close");
1252 }
1253 utils_close_pipe(ctx->consumer_thread_pipe);
1254 utils_close_pipe(ctx->consumer_channel_pipe);
1255 utils_close_pipe(ctx->consumer_data_pipe);
1256 utils_close_pipe(ctx->consumer_should_quit);
1257 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1258
1259 unlink(ctx->consumer_command_sock_path);
1260 free(ctx);
1261 }
1262
1263 /*
1264 * Write the metadata stream id on the specified file descriptor.
1265 */
1266 static int write_relayd_metadata_id(int fd,
1267 struct lttng_consumer_stream *stream,
1268 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1269 {
1270 int ret;
1271 struct lttcomm_relayd_metadata_payload hdr;
1272
1273 hdr.stream_id = htobe64(stream->relayd_stream_id);
1274 hdr.padding_size = htobe32(padding);
1275 do {
1276 ret = write(fd, (void *) &hdr, sizeof(hdr));
1277 } while (ret < 0 && errno == EINTR);
1278 if (ret < 0 || ret != sizeof(hdr)) {
1279 /*
1280 * This error means that the fd's end is closed so ignore the perror
1281 * not to clubber the error output since this can happen in a normal
1282 * code path.
1283 */
1284 if (errno != EPIPE) {
1285 PERROR("write metadata stream id");
1286 }
1287 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1288 /*
1289 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1290 * handle writting the missing part so report that as an error and
1291 * don't lie to the caller.
1292 */
1293 ret = -1;
1294 goto end;
1295 }
1296 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1297 stream->relayd_stream_id, padding);
1298
1299 end:
1300 return ret;
1301 }
1302
1303 /*
1304 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1305 * core function for writing trace buffers to either the local filesystem or
1306 * the network.
1307 *
1308 * It must be called with the stream lock held.
1309 *
1310 * Careful review MUST be put if any changes occur!
1311 *
1312 * Returns the number of bytes written
1313 */
1314 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1315 struct lttng_consumer_local_data *ctx,
1316 struct lttng_consumer_stream *stream, unsigned long len,
1317 unsigned long padding)
1318 {
1319 unsigned long mmap_offset;
1320 void *mmap_base;
1321 ssize_t ret = 0, written = 0;
1322 off_t orig_offset = stream->out_fd_offset;
1323 /* Default is on the disk */
1324 int outfd = stream->out_fd;
1325 struct consumer_relayd_sock_pair *relayd = NULL;
1326 unsigned int relayd_hang_up = 0;
1327
1328 /* RCU lock for the relayd pointer */
1329 rcu_read_lock();
1330
1331 /* Flag that the current stream if set for network streaming. */
1332 if (stream->net_seq_idx != -1) {
1333 relayd = consumer_find_relayd(stream->net_seq_idx);
1334 if (relayd == NULL) {
1335 goto end;
1336 }
1337 }
1338
1339 /* get the offset inside the fd to mmap */
1340 switch (consumer_data.type) {
1341 case LTTNG_CONSUMER_KERNEL:
1342 mmap_base = stream->mmap_base;
1343 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1344 break;
1345 case LTTNG_CONSUMER32_UST:
1346 case LTTNG_CONSUMER64_UST:
1347 mmap_base = lttng_ustctl_get_mmap_base(stream);
1348 if (!mmap_base) {
1349 ERR("read mmap get mmap base for stream %s", stream->name);
1350 written = -1;
1351 goto end;
1352 }
1353 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1354
1355 break;
1356 default:
1357 ERR("Unknown consumer_data type");
1358 assert(0);
1359 }
1360 if (ret != 0) {
1361 errno = -ret;
1362 PERROR("tracer ctl get_mmap_read_offset");
1363 written = ret;
1364 goto end;
1365 }
1366
1367 /* Handle stream on the relayd if the output is on the network */
1368 if (relayd) {
1369 unsigned long netlen = len;
1370
1371 /*
1372 * Lock the control socket for the complete duration of the function
1373 * since from this point on we will use the socket.
1374 */
1375 if (stream->metadata_flag) {
1376 /* Metadata requires the control socket. */
1377 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1378 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1379 }
1380
1381 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1382 if (ret >= 0) {
1383 /* Use the returned socket. */
1384 outfd = ret;
1385
1386 /* Write metadata stream id before payload */
1387 if (stream->metadata_flag) {
1388 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1389 if (ret < 0) {
1390 written = ret;
1391 /* Socket operation failed. We consider the relayd dead */
1392 if (ret == -EPIPE || ret == -EINVAL) {
1393 relayd_hang_up = 1;
1394 goto write_error;
1395 }
1396 goto end;
1397 }
1398 }
1399 } else {
1400 /* Socket operation failed. We consider the relayd dead */
1401 if (ret == -EPIPE || ret == -EINVAL) {
1402 relayd_hang_up = 1;
1403 goto write_error;
1404 }
1405 /* Else, use the default set before which is the filesystem. */
1406 }
1407 } else {
1408 /* No streaming, we have to set the len with the full padding */
1409 len += padding;
1410
1411 /*
1412 * Check if we need to change the tracefile before writing the packet.
1413 */
1414 if (stream->chan->tracefile_size > 0 &&
1415 (stream->tracefile_size_current + len) >
1416 stream->chan->tracefile_size) {
1417 ret = utils_rotate_stream_file(stream->chan->pathname,
1418 stream->name, stream->chan->tracefile_size,
1419 stream->chan->tracefile_count, stream->uid, stream->gid,
1420 stream->out_fd, &(stream->tracefile_count_current));
1421 if (ret < 0) {
1422 ERR("Rotating output file");
1423 goto end;
1424 }
1425 outfd = stream->out_fd = ret;
1426 /* Reset current size because we just perform a rotation. */
1427 stream->tracefile_size_current = 0;
1428 }
1429 stream->tracefile_size_current += len;
1430 }
1431
1432 while (len > 0) {
1433 do {
1434 ret = write(outfd, mmap_base + mmap_offset, len);
1435 } while (ret < 0 && errno == EINTR);
1436 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1437 if (ret < 0) {
1438 /*
1439 * This is possible if the fd is closed on the other side (outfd)
1440 * or any write problem. It can be verbose a bit for a normal
1441 * execution if for instance the relayd is stopped abruptly. This
1442 * can happen so set this to a DBG statement.
1443 */
1444 DBG("Error in file write mmap");
1445 if (written == 0) {
1446 written = ret;
1447 }
1448 /* Socket operation failed. We consider the relayd dead */
1449 if (errno == EPIPE || errno == EINVAL) {
1450 relayd_hang_up = 1;
1451 goto write_error;
1452 }
1453 goto end;
1454 } else if (ret > len) {
1455 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1456 written += ret;
1457 goto end;
1458 } else {
1459 len -= ret;
1460 mmap_offset += ret;
1461 }
1462
1463 /* This call is useless on a socket so better save a syscall. */
1464 if (!relayd) {
1465 /* This won't block, but will start writeout asynchronously */
1466 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1467 SYNC_FILE_RANGE_WRITE);
1468 stream->out_fd_offset += ret;
1469 }
1470 written += ret;
1471 }
1472 lttng_consumer_sync_trace_file(stream, orig_offset);
1473
1474 write_error:
1475 /*
1476 * This is a special case that the relayd has closed its socket. Let's
1477 * cleanup the relayd object and all associated streams.
1478 */
1479 if (relayd && relayd_hang_up) {
1480 cleanup_relayd(relayd, ctx);
1481 }
1482
1483 end:
1484 /* Unlock only if ctrl socket used */
1485 if (relayd && stream->metadata_flag) {
1486 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1487 }
1488
1489 rcu_read_unlock();
1490 return written;
1491 }
1492
1493 /*
1494 * Splice the data from the ring buffer to the tracefile.
1495 *
1496 * It must be called with the stream lock held.
1497 *
1498 * Returns the number of bytes spliced.
1499 */
1500 ssize_t lttng_consumer_on_read_subbuffer_splice(
1501 struct lttng_consumer_local_data *ctx,
1502 struct lttng_consumer_stream *stream, unsigned long len,
1503 unsigned long padding)
1504 {
1505 ssize_t ret = 0, written = 0, ret_splice = 0;
1506 loff_t offset = 0;
1507 off_t orig_offset = stream->out_fd_offset;
1508 int fd = stream->wait_fd;
1509 /* Default is on the disk */
1510 int outfd = stream->out_fd;
1511 struct consumer_relayd_sock_pair *relayd = NULL;
1512 int *splice_pipe;
1513 unsigned int relayd_hang_up = 0;
1514
1515 switch (consumer_data.type) {
1516 case LTTNG_CONSUMER_KERNEL:
1517 break;
1518 case LTTNG_CONSUMER32_UST:
1519 case LTTNG_CONSUMER64_UST:
1520 /* Not supported for user space tracing */
1521 return -ENOSYS;
1522 default:
1523 ERR("Unknown consumer_data type");
1524 assert(0);
1525 }
1526
1527 /* RCU lock for the relayd pointer */
1528 rcu_read_lock();
1529
1530 /* Flag that the current stream if set for network streaming. */
1531 if (stream->net_seq_idx != -1) {
1532 relayd = consumer_find_relayd(stream->net_seq_idx);
1533 if (relayd == NULL) {
1534 goto end;
1535 }
1536 }
1537
1538 /*
1539 * Choose right pipe for splice. Metadata and trace data are handled by
1540 * different threads hence the use of two pipes in order not to race or
1541 * corrupt the written data.
1542 */
1543 if (stream->metadata_flag) {
1544 splice_pipe = ctx->consumer_splice_metadata_pipe;
1545 } else {
1546 splice_pipe = ctx->consumer_thread_pipe;
1547 }
1548
1549 /* Write metadata stream id before payload */
1550 if (relayd) {
1551 int total_len = len;
1552
1553 if (stream->metadata_flag) {
1554 /*
1555 * Lock the control socket for the complete duration of the function
1556 * since from this point on we will use the socket.
1557 */
1558 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1559
1560 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1561 padding);
1562 if (ret < 0) {
1563 written = ret;
1564 /* Socket operation failed. We consider the relayd dead */
1565 if (ret == -EBADF) {
1566 WARN("Remote relayd disconnected. Stopping");
1567 relayd_hang_up = 1;
1568 goto write_error;
1569 }
1570 goto end;
1571 }
1572
1573 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1574 }
1575
1576 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1577 if (ret >= 0) {
1578 /* Use the returned socket. */
1579 outfd = ret;
1580 } else {
1581 /* Socket operation failed. We consider the relayd dead */
1582 if (ret == -EBADF) {
1583 WARN("Remote relayd disconnected. Stopping");
1584 relayd_hang_up = 1;
1585 goto write_error;
1586 }
1587 goto end;
1588 }
1589 } else {
1590 /* No streaming, we have to set the len with the full padding */
1591 len += padding;
1592
1593 /*
1594 * Check if we need to change the tracefile before writing the packet.
1595 */
1596 if (stream->chan->tracefile_size > 0 &&
1597 (stream->tracefile_size_current + len) >
1598 stream->chan->tracefile_size) {
1599 ret = utils_rotate_stream_file(stream->chan->pathname,
1600 stream->name, stream->chan->tracefile_size,
1601 stream->chan->tracefile_count, stream->uid, stream->gid,
1602 stream->out_fd, &(stream->tracefile_count_current));
1603 if (ret < 0) {
1604 ERR("Rotating output file");
1605 goto end;
1606 }
1607 outfd = stream->out_fd = ret;
1608 /* Reset current size because we just perform a rotation. */
1609 stream->tracefile_size_current = 0;
1610 }
1611 stream->tracefile_size_current += len;
1612 }
1613
1614 while (len > 0) {
1615 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1616 (unsigned long)offset, len, fd, splice_pipe[1]);
1617 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1618 SPLICE_F_MOVE | SPLICE_F_MORE);
1619 DBG("splice chan to pipe, ret %zd", ret_splice);
1620 if (ret_splice < 0) {
1621 PERROR("Error in relay splice");
1622 if (written == 0) {
1623 written = ret_splice;
1624 }
1625 ret = errno;
1626 goto splice_error;
1627 }
1628
1629 /* Handle stream on the relayd if the output is on the network */
1630 if (relayd) {
1631 if (stream->metadata_flag) {
1632 size_t metadata_payload_size =
1633 sizeof(struct lttcomm_relayd_metadata_payload);
1634
1635 /* Update counter to fit the spliced data */
1636 ret_splice += metadata_payload_size;
1637 len += metadata_payload_size;
1638 /*
1639 * We do this so the return value can match the len passed as
1640 * argument to this function.
1641 */
1642 written -= metadata_payload_size;
1643 }
1644 }
1645
1646 /* Splice data out */
1647 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1648 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1649 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1650 if (ret_splice < 0) {
1651 PERROR("Error in file splice");
1652 if (written == 0) {
1653 written = ret_splice;
1654 }
1655 /* Socket operation failed. We consider the relayd dead */
1656 if (errno == EBADF || errno == EPIPE) {
1657 WARN("Remote relayd disconnected. Stopping");
1658 relayd_hang_up = 1;
1659 goto write_error;
1660 }
1661 ret = errno;
1662 goto splice_error;
1663 } else if (ret_splice > len) {
1664 errno = EINVAL;
1665 PERROR("Wrote more data than requested %zd (len: %lu)",
1666 ret_splice, len);
1667 written += ret_splice;
1668 ret = errno;
1669 goto splice_error;
1670 }
1671 len -= ret_splice;
1672
1673 /* This call is useless on a socket so better save a syscall. */
1674 if (!relayd) {
1675 /* This won't block, but will start writeout asynchronously */
1676 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1677 SYNC_FILE_RANGE_WRITE);
1678 stream->out_fd_offset += ret_splice;
1679 }
1680 written += ret_splice;
1681 }
1682 lttng_consumer_sync_trace_file(stream, orig_offset);
1683
1684 ret = ret_splice;
1685
1686 goto end;
1687
1688 write_error:
1689 /*
1690 * This is a special case that the relayd has closed its socket. Let's
1691 * cleanup the relayd object and all associated streams.
1692 */
1693 if (relayd && relayd_hang_up) {
1694 cleanup_relayd(relayd, ctx);
1695 /* Skip splice error so the consumer does not fail */
1696 goto end;
1697 }
1698
1699 splice_error:
1700 /* send the appropriate error description to sessiond */
1701 switch (ret) {
1702 case EINVAL:
1703 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1704 break;
1705 case ENOMEM:
1706 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1707 break;
1708 case ESPIPE:
1709 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1710 break;
1711 }
1712
1713 end:
1714 if (relayd && stream->metadata_flag) {
1715 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1716 }
1717
1718 rcu_read_unlock();
1719 return written;
1720 }
1721
1722 /*
1723 * Take a snapshot for a specific fd
1724 *
1725 * Returns 0 on success, < 0 on error
1726 */
1727 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1728 {
1729 switch (consumer_data.type) {
1730 case LTTNG_CONSUMER_KERNEL:
1731 return lttng_kconsumer_take_snapshot(stream);
1732 case LTTNG_CONSUMER32_UST:
1733 case LTTNG_CONSUMER64_UST:
1734 return lttng_ustconsumer_take_snapshot(stream);
1735 default:
1736 ERR("Unknown consumer_data type");
1737 assert(0);
1738 return -ENOSYS;
1739 }
1740 }
1741
1742 /*
1743 * Get the produced position
1744 *
1745 * Returns 0 on success, < 0 on error
1746 */
1747 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1748 unsigned long *pos)
1749 {
1750 switch (consumer_data.type) {
1751 case LTTNG_CONSUMER_KERNEL:
1752 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1753 case LTTNG_CONSUMER32_UST:
1754 case LTTNG_CONSUMER64_UST:
1755 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1756 default:
1757 ERR("Unknown consumer_data type");
1758 assert(0);
1759 return -ENOSYS;
1760 }
1761 }
1762
1763 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1764 int sock, struct pollfd *consumer_sockpoll)
1765 {
1766 switch (consumer_data.type) {
1767 case LTTNG_CONSUMER_KERNEL:
1768 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1769 case LTTNG_CONSUMER32_UST:
1770 case LTTNG_CONSUMER64_UST:
1771 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1772 default:
1773 ERR("Unknown consumer_data type");
1774 assert(0);
1775 return -ENOSYS;
1776 }
1777 }
1778
1779 /*
1780 * Iterate over all streams of the hashtable and free them properly.
1781 *
1782 * WARNING: *MUST* be used with data stream only.
1783 */
1784 static void destroy_data_stream_ht(struct lttng_ht *ht)
1785 {
1786 struct lttng_ht_iter iter;
1787 struct lttng_consumer_stream *stream;
1788
1789 if (ht == NULL) {
1790 return;
1791 }
1792
1793 rcu_read_lock();
1794 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1795 /*
1796 * Ignore return value since we are currently cleaning up so any error
1797 * can't be handled.
1798 */
1799 (void) consumer_del_stream(stream, ht);
1800 }
1801 rcu_read_unlock();
1802
1803 lttng_ht_destroy(ht);
1804 }
1805
1806 /*
1807 * Iterate over all streams of the hashtable and free them properly.
1808 *
1809 * XXX: Should not be only for metadata stream or else use an other name.
1810 */
1811 static void destroy_stream_ht(struct lttng_ht *ht)
1812 {
1813 struct lttng_ht_iter iter;
1814 struct lttng_consumer_stream *stream;
1815
1816 if (ht == NULL) {
1817 return;
1818 }
1819
1820 rcu_read_lock();
1821 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1822 /*
1823 * Ignore return value since we are currently cleaning up so any error
1824 * can't be handled.
1825 */
1826 (void) consumer_del_metadata_stream(stream, ht);
1827 }
1828 rcu_read_unlock();
1829
1830 lttng_ht_destroy(ht);
1831 }
1832
1833 void lttng_consumer_close_metadata(void)
1834 {
1835 switch (consumer_data.type) {
1836 case LTTNG_CONSUMER_KERNEL:
1837 /*
1838 * The Kernel consumer has a different metadata scheme so we don't
1839 * close anything because the stream will be closed by the session
1840 * daemon.
1841 */
1842 break;
1843 case LTTNG_CONSUMER32_UST:
1844 case LTTNG_CONSUMER64_UST:
1845 /*
1846 * Close all metadata streams. The metadata hash table is passed and
1847 * this call iterates over it by closing all wakeup fd. This is safe
1848 * because at this point we are sure that the metadata producer is
1849 * either dead or blocked.
1850 */
1851 lttng_ustconsumer_close_metadata(metadata_ht);
1852 break;
1853 default:
1854 ERR("Unknown consumer_data type");
1855 assert(0);
1856 }
1857 }
1858
1859 /*
1860 * Clean up a metadata stream and free its memory.
1861 */
1862 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1863 struct lttng_ht *ht)
1864 {
1865 int ret;
1866 struct lttng_ht_iter iter;
1867 struct lttng_consumer_channel *free_chan = NULL;
1868 struct consumer_relayd_sock_pair *relayd;
1869
1870 assert(stream);
1871 /*
1872 * This call should NEVER receive regular stream. It must always be
1873 * metadata stream and this is crucial for data structure synchronization.
1874 */
1875 assert(stream->metadata_flag);
1876
1877 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1878
1879 if (ht == NULL) {
1880 /* Means the stream was allocated but not successfully added */
1881 goto free_stream_rcu;
1882 }
1883
1884 pthread_mutex_lock(&consumer_data.lock);
1885 pthread_mutex_lock(&stream->lock);
1886
1887 switch (consumer_data.type) {
1888 case LTTNG_CONSUMER_KERNEL:
1889 if (stream->mmap_base != NULL) {
1890 ret = munmap(stream->mmap_base, stream->mmap_len);
1891 if (ret != 0) {
1892 PERROR("munmap metadata stream");
1893 }
1894 }
1895 break;
1896 case LTTNG_CONSUMER32_UST:
1897 case LTTNG_CONSUMER64_UST:
1898 lttng_ustconsumer_del_stream(stream);
1899 break;
1900 default:
1901 ERR("Unknown consumer_data type");
1902 assert(0);
1903 goto end;
1904 }
1905
1906 rcu_read_lock();
1907 iter.iter.node = &stream->node.node;
1908 ret = lttng_ht_del(ht, &iter);
1909 assert(!ret);
1910
1911 iter.iter.node = &stream->node_channel_id.node;
1912 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1913 assert(!ret);
1914
1915 iter.iter.node = &stream->node_session_id.node;
1916 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1917 assert(!ret);
1918 rcu_read_unlock();
1919
1920 if (stream->out_fd >= 0) {
1921 ret = close(stream->out_fd);
1922 if (ret) {
1923 PERROR("close");
1924 }
1925 }
1926
1927 /* Check and cleanup relayd */
1928 rcu_read_lock();
1929 relayd = consumer_find_relayd(stream->net_seq_idx);
1930 if (relayd != NULL) {
1931 uatomic_dec(&relayd->refcount);
1932 assert(uatomic_read(&relayd->refcount) >= 0);
1933
1934 /* Closing streams requires to lock the control socket. */
1935 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1936 ret = relayd_send_close_stream(&relayd->control_sock,
1937 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1938 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1939 if (ret < 0) {
1940 DBG("Unable to close stream on the relayd. Continuing");
1941 /*
1942 * Continue here. There is nothing we can do for the relayd.
1943 * Chances are that the relayd has closed the socket so we just
1944 * continue cleaning up.
1945 */
1946 }
1947
1948 /* Both conditions are met, we destroy the relayd. */
1949 if (uatomic_read(&relayd->refcount) == 0 &&
1950 uatomic_read(&relayd->destroy_flag)) {
1951 destroy_relayd(relayd);
1952 }
1953 }
1954 rcu_read_unlock();
1955
1956 /* Atomically decrement channel refcount since other threads can use it. */
1957 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1958 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1959 /* Go for channel deletion! */
1960 free_chan = stream->chan;
1961 }
1962
1963 end:
1964 pthread_mutex_unlock(&stream->lock);
1965 pthread_mutex_unlock(&consumer_data.lock);
1966
1967 if (free_chan) {
1968 consumer_del_channel(free_chan);
1969 }
1970
1971 free_stream_rcu:
1972 call_rcu(&stream->node.head, free_stream_rcu);
1973 }
1974
1975 /*
1976 * Action done with the metadata stream when adding it to the consumer internal
1977 * data structures to handle it.
1978 */
1979 static int add_metadata_stream(struct lttng_consumer_stream *stream,
1980 struct lttng_ht *ht)
1981 {
1982 int ret = 0;
1983 struct consumer_relayd_sock_pair *relayd;
1984 struct lttng_ht_iter iter;
1985 struct lttng_ht_node_u64 *node;
1986
1987 assert(stream);
1988 assert(ht);
1989
1990 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
1991
1992 pthread_mutex_lock(&consumer_data.lock);
1993 pthread_mutex_lock(&stream->lock);
1994
1995 /*
1996 * From here, refcounts are updated so be _careful_ when returning an error
1997 * after this point.
1998 */
1999
2000 rcu_read_lock();
2001
2002 /*
2003 * Lookup the stream just to make sure it does not exist in our internal
2004 * state. This should NEVER happen.
2005 */
2006 lttng_ht_lookup(ht, &stream->key, &iter);
2007 node = lttng_ht_iter_get_node_u64(&iter);
2008 assert(!node);
2009
2010 /* Find relayd and, if one is found, increment refcount. */
2011 relayd = consumer_find_relayd(stream->net_seq_idx);
2012 if (relayd != NULL) {
2013 uatomic_inc(&relayd->refcount);
2014 }
2015
2016 /* Update channel refcount once added without error(s). */
2017 uatomic_inc(&stream->chan->refcount);
2018
2019 /*
2020 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2021 * in terms of destroying the associated channel, because the action that
2022 * causes the count to become 0 also causes a stream to be added. The
2023 * channel deletion will thus be triggered by the following removal of this
2024 * stream.
2025 */
2026 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2027 /* Increment refcount before decrementing nb_init_stream_left */
2028 cmm_smp_wmb();
2029 uatomic_dec(&stream->chan->nb_init_stream_left);
2030 }
2031
2032 lttng_ht_add_unique_u64(ht, &stream->node);
2033
2034 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2035 &stream->node_channel_id);
2036
2037 /*
2038 * Add stream to the stream_list_ht of the consumer data. No need to steal
2039 * the key since the HT does not use it and we allow to add redundant keys
2040 * into this table.
2041 */
2042 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2043
2044 rcu_read_unlock();
2045
2046 pthread_mutex_unlock(&stream->lock);
2047 pthread_mutex_unlock(&consumer_data.lock);
2048 return ret;
2049 }
2050
2051 /*
2052 * Delete data stream that are flagged for deletion (endpoint_status).
2053 */
2054 static void validate_endpoint_status_data_stream(void)
2055 {
2056 struct lttng_ht_iter iter;
2057 struct lttng_consumer_stream *stream;
2058
2059 DBG("Consumer delete flagged data stream");
2060
2061 rcu_read_lock();
2062 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2063 /* Validate delete flag of the stream */
2064 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2065 continue;
2066 }
2067 /* Delete it right now */
2068 consumer_del_stream(stream, data_ht);
2069 }
2070 rcu_read_unlock();
2071 }
2072
2073 /*
2074 * Delete metadata stream that are flagged for deletion (endpoint_status).
2075 */
2076 static void validate_endpoint_status_metadata_stream(
2077 struct lttng_poll_event *pollset)
2078 {
2079 struct lttng_ht_iter iter;
2080 struct lttng_consumer_stream *stream;
2081
2082 DBG("Consumer delete flagged metadata stream");
2083
2084 assert(pollset);
2085
2086 rcu_read_lock();
2087 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2088 /* Validate delete flag of the stream */
2089 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2090 continue;
2091 }
2092 /*
2093 * Remove from pollset so the metadata thread can continue without
2094 * blocking on a deleted stream.
2095 */
2096 lttng_poll_del(pollset, stream->wait_fd);
2097
2098 /* Delete it right now */
2099 consumer_del_metadata_stream(stream, metadata_ht);
2100 }
2101 rcu_read_unlock();
2102 }
2103
2104 /*
2105 * Thread polls on metadata file descriptor and write them on disk or on the
2106 * network.
2107 */
2108 void *consumer_thread_metadata_poll(void *data)
2109 {
2110 int ret, i, pollfd;
2111 uint32_t revents, nb_fd;
2112 struct lttng_consumer_stream *stream = NULL;
2113 struct lttng_ht_iter iter;
2114 struct lttng_ht_node_u64 *node;
2115 struct lttng_poll_event events;
2116 struct lttng_consumer_local_data *ctx = data;
2117 ssize_t len;
2118
2119 rcu_register_thread();
2120
2121 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2122 if (!metadata_ht) {
2123 /* ENOMEM at this point. Better to bail out. */
2124 goto end_ht;
2125 }
2126
2127 DBG("Thread metadata poll started");
2128
2129 /* Size is set to 1 for the consumer_metadata pipe */
2130 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2131 if (ret < 0) {
2132 ERR("Poll set creation failed");
2133 goto end_poll;
2134 }
2135
2136 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
2137 if (ret < 0) {
2138 goto end;
2139 }
2140
2141 /* Main loop */
2142 DBG("Metadata main loop started");
2143
2144 while (1) {
2145 /* Only the metadata pipe is set */
2146 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2147 goto end;
2148 }
2149
2150 restart:
2151 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2152 ret = lttng_poll_wait(&events, -1);
2153 DBG("Metadata event catched in thread");
2154 if (ret < 0) {
2155 if (errno == EINTR) {
2156 ERR("Poll EINTR catched");
2157 goto restart;
2158 }
2159 goto error;
2160 }
2161
2162 nb_fd = ret;
2163
2164 /* From here, the event is a metadata wait fd */
2165 for (i = 0; i < nb_fd; i++) {
2166 revents = LTTNG_POLL_GETEV(&events, i);
2167 pollfd = LTTNG_POLL_GETFD(&events, i);
2168
2169 /* Just don't waste time if no returned events for the fd */
2170 if (!revents) {
2171 continue;
2172 }
2173
2174 if (pollfd == ctx->consumer_metadata_pipe[0]) {
2175 if (revents & (LPOLLERR | LPOLLHUP )) {
2176 DBG("Metadata thread pipe hung up");
2177 /*
2178 * Remove the pipe from the poll set and continue the loop
2179 * since their might be data to consume.
2180 */
2181 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
2182 ret = close(ctx->consumer_metadata_pipe[0]);
2183 if (ret < 0) {
2184 PERROR("close metadata pipe");
2185 }
2186 continue;
2187 } else if (revents & LPOLLIN) {
2188 do {
2189 /* Get the stream pointer received */
2190 ret = read(pollfd, &stream, sizeof(stream));
2191 } while (ret < 0 && errno == EINTR);
2192 if (ret < 0 ||
2193 ret < sizeof(struct lttng_consumer_stream *)) {
2194 PERROR("read metadata stream");
2195 /*
2196 * Let's continue here and hope we can still work
2197 * without stopping the consumer. XXX: Should we?
2198 */
2199 continue;
2200 }
2201
2202 /* A NULL stream means that the state has changed. */
2203 if (stream == NULL) {
2204 /* Check for deleted streams. */
2205 validate_endpoint_status_metadata_stream(&events);
2206 goto restart;
2207 }
2208
2209 DBG("Adding metadata stream %d to poll set",
2210 stream->wait_fd);
2211
2212 ret = add_metadata_stream(stream, metadata_ht);
2213 if (ret) {
2214 ERR("Unable to add metadata stream");
2215 /* Stream was not setup properly. Continuing. */
2216 consumer_del_metadata_stream(stream, NULL);
2217 continue;
2218 }
2219
2220 /* Add metadata stream to the global poll events list */
2221 lttng_poll_add(&events, stream->wait_fd,
2222 LPOLLIN | LPOLLPRI);
2223 }
2224
2225 /* Handle other stream */
2226 continue;
2227 }
2228
2229 rcu_read_lock();
2230 {
2231 uint64_t tmp_id = (uint64_t) pollfd;
2232
2233 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2234 }
2235 node = lttng_ht_iter_get_node_u64(&iter);
2236 assert(node);
2237
2238 stream = caa_container_of(node, struct lttng_consumer_stream,
2239 node);
2240
2241 /* Check for error event */
2242 if (revents & (LPOLLERR | LPOLLHUP)) {
2243 DBG("Metadata fd %d is hup|err.", pollfd);
2244 if (!stream->hangup_flush_done
2245 && (consumer_data.type == LTTNG_CONSUMER32_UST
2246 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2247 DBG("Attempting to flush and consume the UST buffers");
2248 lttng_ustconsumer_on_stream_hangup(stream);
2249
2250 /* We just flushed the stream now read it. */
2251 do {
2252 len = ctx->on_buffer_ready(stream, ctx);
2253 /*
2254 * We don't check the return value here since if we get
2255 * a negative len, it means an error occured thus we
2256 * simply remove it from the poll set and free the
2257 * stream.
2258 */
2259 } while (len > 0);
2260 }
2261
2262 lttng_poll_del(&events, stream->wait_fd);
2263 /*
2264 * This call update the channel states, closes file descriptors
2265 * and securely free the stream.
2266 */
2267 consumer_del_metadata_stream(stream, metadata_ht);
2268 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2269 /* Get the data out of the metadata file descriptor */
2270 DBG("Metadata available on fd %d", pollfd);
2271 assert(stream->wait_fd == pollfd);
2272
2273 len = ctx->on_buffer_ready(stream, ctx);
2274 /* It's ok to have an unavailable sub-buffer */
2275 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2276 /* Clean up stream from consumer and free it. */
2277 lttng_poll_del(&events, stream->wait_fd);
2278 consumer_del_metadata_stream(stream, metadata_ht);
2279 } else if (len > 0) {
2280 stream->data_read = 1;
2281 }
2282 }
2283
2284 /* Release RCU lock for the stream looked up */
2285 rcu_read_unlock();
2286 }
2287 }
2288
2289 error:
2290 end:
2291 DBG("Metadata poll thread exiting");
2292
2293 lttng_poll_clean(&events);
2294 end_poll:
2295 destroy_stream_ht(metadata_ht);
2296 end_ht:
2297 rcu_unregister_thread();
2298 return NULL;
2299 }
2300
2301 /*
2302 * This thread polls the fds in the set to consume the data and write
2303 * it to tracefile if necessary.
2304 */
2305 void *consumer_thread_data_poll(void *data)
2306 {
2307 int num_rdy, num_hup, high_prio, ret, i;
2308 struct pollfd *pollfd = NULL;
2309 /* local view of the streams */
2310 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2311 /* local view of consumer_data.fds_count */
2312 int nb_fd = 0;
2313 struct lttng_consumer_local_data *ctx = data;
2314 ssize_t len;
2315
2316 rcu_register_thread();
2317
2318 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2319 if (data_ht == NULL) {
2320 /* ENOMEM at this point. Better to bail out. */
2321 goto end;
2322 }
2323
2324 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2325
2326 while (1) {
2327 high_prio = 0;
2328 num_hup = 0;
2329
2330 /*
2331 * the fds set has been updated, we need to update our
2332 * local array as well
2333 */
2334 pthread_mutex_lock(&consumer_data.lock);
2335 if (consumer_data.need_update) {
2336 free(pollfd);
2337 pollfd = NULL;
2338
2339 free(local_stream);
2340 local_stream = NULL;
2341
2342 /* allocate for all fds + 1 for the consumer_data_pipe */
2343 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2344 if (pollfd == NULL) {
2345 PERROR("pollfd malloc");
2346 pthread_mutex_unlock(&consumer_data.lock);
2347 goto end;
2348 }
2349
2350 /* allocate for all fds + 1 for the consumer_data_pipe */
2351 local_stream = zmalloc((consumer_data.stream_count + 1) *
2352 sizeof(struct lttng_consumer_stream));
2353 if (local_stream == NULL) {
2354 PERROR("local_stream malloc");
2355 pthread_mutex_unlock(&consumer_data.lock);
2356 goto end;
2357 }
2358 ret = update_poll_array(ctx, &pollfd, local_stream,
2359 data_ht);
2360 if (ret < 0) {
2361 ERR("Error in allocating pollfd or local_outfds");
2362 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2363 pthread_mutex_unlock(&consumer_data.lock);
2364 goto end;
2365 }
2366 nb_fd = ret;
2367 consumer_data.need_update = 0;
2368 }
2369 pthread_mutex_unlock(&consumer_data.lock);
2370
2371 /* No FDs and consumer_quit, consumer_cleanup the thread */
2372 if (nb_fd == 0 && consumer_quit == 1) {
2373 goto end;
2374 }
2375 /* poll on the array of fds */
2376 restart:
2377 DBG("polling on %d fd", nb_fd + 1);
2378 num_rdy = poll(pollfd, nb_fd + 1, -1);
2379 DBG("poll num_rdy : %d", num_rdy);
2380 if (num_rdy == -1) {
2381 /*
2382 * Restart interrupted system call.
2383 */
2384 if (errno == EINTR) {
2385 goto restart;
2386 }
2387 PERROR("Poll error");
2388 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2389 goto end;
2390 } else if (num_rdy == 0) {
2391 DBG("Polling thread timed out");
2392 goto end;
2393 }
2394
2395 /*
2396 * If the consumer_data_pipe triggered poll go directly to the
2397 * beginning of the loop to update the array. We want to prioritize
2398 * array update over low-priority reads.
2399 */
2400 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2401 ssize_t pipe_readlen;
2402
2403 DBG("consumer_data_pipe wake up");
2404 /* Consume 1 byte of pipe data */
2405 do {
2406 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2407 sizeof(new_stream));
2408 } while (pipe_readlen == -1 && errno == EINTR);
2409 if (pipe_readlen < 0) {
2410 PERROR("read consumer data pipe");
2411 /* Continue so we can at least handle the current stream(s). */
2412 continue;
2413 }
2414
2415 /*
2416 * If the stream is NULL, just ignore it. It's also possible that
2417 * the sessiond poll thread changed the consumer_quit state and is
2418 * waking us up to test it.
2419 */
2420 if (new_stream == NULL) {
2421 validate_endpoint_status_data_stream();
2422 continue;
2423 }
2424
2425 ret = add_stream(new_stream, data_ht);
2426 if (ret) {
2427 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2428 new_stream->key);
2429 /*
2430 * At this point, if the add_stream fails, it is not in the
2431 * hash table thus passing the NULL value here.
2432 */
2433 consumer_del_stream(new_stream, NULL);
2434 }
2435
2436 /* Continue to update the local streams and handle prio ones */
2437 continue;
2438 }
2439
2440 /* Take care of high priority channels first. */
2441 for (i = 0; i < nb_fd; i++) {
2442 if (local_stream[i] == NULL) {
2443 continue;
2444 }
2445 if (pollfd[i].revents & POLLPRI) {
2446 DBG("Urgent read on fd %d", pollfd[i].fd);
2447 high_prio = 1;
2448 len = ctx->on_buffer_ready(local_stream[i], ctx);
2449 /* it's ok to have an unavailable sub-buffer */
2450 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2451 /* Clean the stream and free it. */
2452 consumer_del_stream(local_stream[i], data_ht);
2453 local_stream[i] = NULL;
2454 } else if (len > 0) {
2455 local_stream[i]->data_read = 1;
2456 }
2457 }
2458 }
2459
2460 /*
2461 * If we read high prio channel in this loop, try again
2462 * for more high prio data.
2463 */
2464 if (high_prio) {
2465 continue;
2466 }
2467
2468 /* Take care of low priority channels. */
2469 for (i = 0; i < nb_fd; i++) {
2470 if (local_stream[i] == NULL) {
2471 continue;
2472 }
2473 if ((pollfd[i].revents & POLLIN) ||
2474 local_stream[i]->hangup_flush_done) {
2475 DBG("Normal read on fd %d", pollfd[i].fd);
2476 len = ctx->on_buffer_ready(local_stream[i], ctx);
2477 /* it's ok to have an unavailable sub-buffer */
2478 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2479 /* Clean the stream and free it. */
2480 consumer_del_stream(local_stream[i], data_ht);
2481 local_stream[i] = NULL;
2482 } else if (len > 0) {
2483 local_stream[i]->data_read = 1;
2484 }
2485 }
2486 }
2487
2488 /* Handle hangup and errors */
2489 for (i = 0; i < nb_fd; i++) {
2490 if (local_stream[i] == NULL) {
2491 continue;
2492 }
2493 if (!local_stream[i]->hangup_flush_done
2494 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2495 && (consumer_data.type == LTTNG_CONSUMER32_UST
2496 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2497 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2498 pollfd[i].fd);
2499 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2500 /* Attempt read again, for the data we just flushed. */
2501 local_stream[i]->data_read = 1;
2502 }
2503 /*
2504 * If the poll flag is HUP/ERR/NVAL and we have
2505 * read no data in this pass, we can remove the
2506 * stream from its hash table.
2507 */
2508 if ((pollfd[i].revents & POLLHUP)) {
2509 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2510 if (!local_stream[i]->data_read) {
2511 consumer_del_stream(local_stream[i], data_ht);
2512 local_stream[i] = NULL;
2513 num_hup++;
2514 }
2515 } else if (pollfd[i].revents & POLLERR) {
2516 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2517 if (!local_stream[i]->data_read) {
2518 consumer_del_stream(local_stream[i], data_ht);
2519 local_stream[i] = NULL;
2520 num_hup++;
2521 }
2522 } else if (pollfd[i].revents & POLLNVAL) {
2523 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2524 if (!local_stream[i]->data_read) {
2525 consumer_del_stream(local_stream[i], data_ht);
2526 local_stream[i] = NULL;
2527 num_hup++;
2528 }
2529 }
2530 if (local_stream[i] != NULL) {
2531 local_stream[i]->data_read = 0;
2532 }
2533 }
2534 }
2535 end:
2536 DBG("polling thread exiting");
2537 free(pollfd);
2538 free(local_stream);
2539
2540 /*
2541 * Close the write side of the pipe so epoll_wait() in
2542 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2543 * read side of the pipe. If we close them both, epoll_wait strangely does
2544 * not return and could create a endless wait period if the pipe is the
2545 * only tracked fd in the poll set. The thread will take care of closing
2546 * the read side.
2547 */
2548 ret = close(ctx->consumer_metadata_pipe[1]);
2549 if (ret < 0) {
2550 PERROR("close data pipe");
2551 }
2552
2553 destroy_data_stream_ht(data_ht);
2554
2555 rcu_unregister_thread();
2556 return NULL;
2557 }
2558
2559 /*
2560 * Close wake-up end of each stream belonging to the channel. This will
2561 * allow the poll() on the stream read-side to detect when the
2562 * write-side (application) finally closes them.
2563 */
2564 static
2565 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2566 {
2567 struct lttng_ht *ht;
2568 struct lttng_consumer_stream *stream;
2569 struct lttng_ht_iter iter;
2570
2571 ht = consumer_data.stream_per_chan_id_ht;
2572
2573 rcu_read_lock();
2574 cds_lfht_for_each_entry_duplicate(ht->ht,
2575 ht->hash_fct(&channel->key, lttng_ht_seed),
2576 ht->match_fct, &channel->key,
2577 &iter.iter, stream, node_channel_id.node) {
2578 /*
2579 * Protect against teardown with mutex.
2580 */
2581 pthread_mutex_lock(&stream->lock);
2582 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2583 goto next;
2584 }
2585 switch (consumer_data.type) {
2586 case LTTNG_CONSUMER_KERNEL:
2587 break;
2588 case LTTNG_CONSUMER32_UST:
2589 case LTTNG_CONSUMER64_UST:
2590 /*
2591 * Note: a mutex is taken internally within
2592 * liblttng-ust-ctl to protect timer wakeup_fd
2593 * use from concurrent close.
2594 */
2595 lttng_ustconsumer_close_stream_wakeup(stream);
2596 break;
2597 default:
2598 ERR("Unknown consumer_data type");
2599 assert(0);
2600 }
2601 next:
2602 pthread_mutex_unlock(&stream->lock);
2603 }
2604 rcu_read_unlock();
2605 }
2606
2607 static void destroy_channel_ht(struct lttng_ht *ht)
2608 {
2609 struct lttng_ht_iter iter;
2610 struct lttng_consumer_channel *channel;
2611 int ret;
2612
2613 if (ht == NULL) {
2614 return;
2615 }
2616
2617 rcu_read_lock();
2618 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2619 ret = lttng_ht_del(ht, &iter);
2620 assert(ret != 0);
2621 }
2622 rcu_read_unlock();
2623
2624 lttng_ht_destroy(ht);
2625 }
2626
2627 /*
2628 * This thread polls the channel fds to detect when they are being
2629 * closed. It closes all related streams if the channel is detected as
2630 * closed. It is currently only used as a shim layer for UST because the
2631 * consumerd needs to keep the per-stream wakeup end of pipes open for
2632 * periodical flush.
2633 */
2634 void *consumer_thread_channel_poll(void *data)
2635 {
2636 int ret, i, pollfd;
2637 uint32_t revents, nb_fd;
2638 struct lttng_consumer_channel *chan = NULL;
2639 struct lttng_ht_iter iter;
2640 struct lttng_ht_node_u64 *node;
2641 struct lttng_poll_event events;
2642 struct lttng_consumer_local_data *ctx = data;
2643 struct lttng_ht *channel_ht;
2644
2645 rcu_register_thread();
2646
2647 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2648 if (!channel_ht) {
2649 /* ENOMEM at this point. Better to bail out. */
2650 goto end_ht;
2651 }
2652
2653 DBG("Thread channel poll started");
2654
2655 /* Size is set to 1 for the consumer_channel pipe */
2656 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2657 if (ret < 0) {
2658 ERR("Poll set creation failed");
2659 goto end_poll;
2660 }
2661
2662 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2663 if (ret < 0) {
2664 goto end;
2665 }
2666
2667 /* Main loop */
2668 DBG("Channel main loop started");
2669
2670 while (1) {
2671 /* Only the channel pipe is set */
2672 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2673 goto end;
2674 }
2675
2676 restart:
2677 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2678 ret = lttng_poll_wait(&events, -1);
2679 DBG("Channel event catched in thread");
2680 if (ret < 0) {
2681 if (errno == EINTR) {
2682 ERR("Poll EINTR catched");
2683 goto restart;
2684 }
2685 goto end;
2686 }
2687
2688 nb_fd = ret;
2689
2690 /* From here, the event is a channel wait fd */
2691 for (i = 0; i < nb_fd; i++) {
2692 revents = LTTNG_POLL_GETEV(&events, i);
2693 pollfd = LTTNG_POLL_GETFD(&events, i);
2694
2695 /* Just don't waste time if no returned events for the fd */
2696 if (!revents) {
2697 continue;
2698 }
2699 if (pollfd == ctx->consumer_channel_pipe[0]) {
2700 if (revents & (LPOLLERR | LPOLLHUP)) {
2701 DBG("Channel thread pipe hung up");
2702 /*
2703 * Remove the pipe from the poll set and continue the loop
2704 * since their might be data to consume.
2705 */
2706 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2707 continue;
2708 } else if (revents & LPOLLIN) {
2709 enum consumer_channel_action action;
2710 uint64_t key;
2711
2712 ret = read_channel_pipe(ctx, &chan, &key, &action);
2713 if (ret <= 0) {
2714 ERR("Error reading channel pipe");
2715 continue;
2716 }
2717
2718 switch (action) {
2719 case CONSUMER_CHANNEL_ADD:
2720 DBG("Adding channel %d to poll set",
2721 chan->wait_fd);
2722
2723 lttng_ht_node_init_u64(&chan->wait_fd_node,
2724 chan->wait_fd);
2725 lttng_ht_add_unique_u64(channel_ht,
2726 &chan->wait_fd_node);
2727 /* Add channel to the global poll events list */
2728 lttng_poll_add(&events, chan->wait_fd,
2729 LPOLLIN | LPOLLPRI);
2730 break;
2731 case CONSUMER_CHANNEL_DEL:
2732 {
2733 chan = consumer_find_channel(key);
2734 if (!chan) {
2735 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2736 break;
2737 }
2738 lttng_poll_del(&events, chan->wait_fd);
2739 ret = lttng_ht_del(channel_ht, &iter);
2740 assert(ret == 0);
2741 consumer_close_channel_streams(chan);
2742
2743 /*
2744 * Release our own refcount. Force channel deletion even if
2745 * streams were not initialized.
2746 */
2747 if (!uatomic_sub_return(&chan->refcount, 1)) {
2748 consumer_del_channel(chan);
2749 }
2750 goto restart;
2751 }
2752 case CONSUMER_CHANNEL_QUIT:
2753 /*
2754 * Remove the pipe from the poll set and continue the loop
2755 * since their might be data to consume.
2756 */
2757 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2758 continue;
2759 default:
2760 ERR("Unknown action");
2761 break;
2762 }
2763 }
2764
2765 /* Handle other stream */
2766 continue;
2767 }
2768
2769 rcu_read_lock();
2770 {
2771 uint64_t tmp_id = (uint64_t) pollfd;
2772
2773 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2774 }
2775 node = lttng_ht_iter_get_node_u64(&iter);
2776 assert(node);
2777
2778 chan = caa_container_of(node, struct lttng_consumer_channel,
2779 wait_fd_node);
2780
2781 /* Check for error event */
2782 if (revents & (LPOLLERR | LPOLLHUP)) {
2783 DBG("Channel fd %d is hup|err.", pollfd);
2784
2785 lttng_poll_del(&events, chan->wait_fd);
2786 ret = lttng_ht_del(channel_ht, &iter);
2787 assert(ret == 0);
2788 consumer_close_channel_streams(chan);
2789
2790 /* Release our own refcount */
2791 if (!uatomic_sub_return(&chan->refcount, 1)
2792 && !uatomic_read(&chan->nb_init_stream_left)) {
2793 consumer_del_channel(chan);
2794 }
2795 }
2796
2797 /* Release RCU lock for the channel looked up */
2798 rcu_read_unlock();
2799 }
2800 }
2801
2802 end:
2803 lttng_poll_clean(&events);
2804 end_poll:
2805 destroy_channel_ht(channel_ht);
2806 end_ht:
2807 DBG("Channel poll thread exiting");
2808 rcu_unregister_thread();
2809 return NULL;
2810 }
2811
2812 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2813 struct pollfd *sockpoll, int client_socket)
2814 {
2815 int ret;
2816
2817 assert(ctx);
2818 assert(sockpoll);
2819
2820 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2821 ret = -1;
2822 goto error;
2823 }
2824 DBG("Metadata connection on client_socket");
2825
2826 /* Blocking call, waiting for transmission */
2827 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2828 if (ctx->consumer_metadata_socket < 0) {
2829 WARN("On accept metadata");
2830 ret = -1;
2831 goto error;
2832 }
2833 ret = 0;
2834
2835 error:
2836 return ret;
2837 }
2838
2839 /*
2840 * This thread listens on the consumerd socket and receives the file
2841 * descriptors from the session daemon.
2842 */
2843 void *consumer_thread_sessiond_poll(void *data)
2844 {
2845 int sock = -1, client_socket, ret;
2846 /*
2847 * structure to poll for incoming data on communication socket avoids
2848 * making blocking sockets.
2849 */
2850 struct pollfd consumer_sockpoll[2];
2851 struct lttng_consumer_local_data *ctx = data;
2852
2853 rcu_register_thread();
2854
2855 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2856 unlink(ctx->consumer_command_sock_path);
2857 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2858 if (client_socket < 0) {
2859 ERR("Cannot create command socket");
2860 goto end;
2861 }
2862
2863 ret = lttcomm_listen_unix_sock(client_socket);
2864 if (ret < 0) {
2865 goto end;
2866 }
2867
2868 DBG("Sending ready command to lttng-sessiond");
2869 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2870 /* return < 0 on error, but == 0 is not fatal */
2871 if (ret < 0) {
2872 ERR("Error sending ready command to lttng-sessiond");
2873 goto end;
2874 }
2875
2876 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2877 if (ret < 0) {
2878 PERROR("fcntl O_NONBLOCK");
2879 goto end;
2880 }
2881
2882 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2883 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2884 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2885 consumer_sockpoll[1].fd = client_socket;
2886 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2887
2888 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2889 goto end;
2890 }
2891 DBG("Connection on client_socket");
2892
2893 /* Blocking call, waiting for transmission */
2894 sock = lttcomm_accept_unix_sock(client_socket);
2895 if (sock < 0) {
2896 WARN("On accept");
2897 goto end;
2898 }
2899 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2900 if (ret < 0) {
2901 PERROR("fcntl O_NONBLOCK");
2902 goto end;
2903 }
2904
2905 /*
2906 * Setup metadata socket which is the second socket connection on the
2907 * command unix socket.
2908 */
2909 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2910 if (ret < 0) {
2911 goto end;
2912 }
2913
2914 /* This socket is not useful anymore. */
2915 ret = close(client_socket);
2916 if (ret < 0) {
2917 PERROR("close client_socket");
2918 }
2919 client_socket = -1;
2920
2921 /* update the polling structure to poll on the established socket */
2922 consumer_sockpoll[1].fd = sock;
2923 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2924
2925 while (1) {
2926 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2927 goto end;
2928 }
2929 DBG("Incoming command on sock");
2930 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2931 if (ret == -ENOENT) {
2932 DBG("Received STOP command");
2933 goto end;
2934 }
2935 if (ret <= 0) {
2936 /*
2937 * This could simply be a session daemon quitting. Don't output
2938 * ERR() here.
2939 */
2940 DBG("Communication interrupted on command socket");
2941 goto end;
2942 }
2943 if (consumer_quit) {
2944 DBG("consumer_thread_receive_fds received quit from signal");
2945 goto end;
2946 }
2947 DBG("received command on sock");
2948 }
2949 end:
2950 DBG("Consumer thread sessiond poll exiting");
2951
2952 /*
2953 * Close metadata streams since the producer is the session daemon which
2954 * just died.
2955 *
2956 * NOTE: for now, this only applies to the UST tracer.
2957 */
2958 lttng_consumer_close_metadata();
2959
2960 /*
2961 * when all fds have hung up, the polling thread
2962 * can exit cleanly
2963 */
2964 consumer_quit = 1;
2965
2966 /*
2967 * Notify the data poll thread to poll back again and test the
2968 * consumer_quit state that we just set so to quit gracefully.
2969 */
2970 notify_thread_pipe(ctx->consumer_data_pipe[1]);
2971
2972 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2973
2974 /* Cleaning up possibly open sockets. */
2975 if (sock >= 0) {
2976 ret = close(sock);
2977 if (ret < 0) {
2978 PERROR("close sock sessiond poll");
2979 }
2980 }
2981 if (client_socket >= 0) {
2982 ret = close(sock);
2983 if (ret < 0) {
2984 PERROR("close client_socket sessiond poll");
2985 }
2986 }
2987
2988 rcu_unregister_thread();
2989 return NULL;
2990 }
2991
2992 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2993 struct lttng_consumer_local_data *ctx)
2994 {
2995 ssize_t ret;
2996
2997 pthread_mutex_lock(&stream->lock);
2998
2999 switch (consumer_data.type) {
3000 case LTTNG_CONSUMER_KERNEL:
3001 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3002 break;
3003 case LTTNG_CONSUMER32_UST:
3004 case LTTNG_CONSUMER64_UST:
3005 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3006 break;
3007 default:
3008 ERR("Unknown consumer_data type");
3009 assert(0);
3010 ret = -ENOSYS;
3011 break;
3012 }
3013
3014 pthread_mutex_unlock(&stream->lock);
3015 return ret;
3016 }
3017
3018 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3019 {
3020 switch (consumer_data.type) {
3021 case LTTNG_CONSUMER_KERNEL:
3022 return lttng_kconsumer_on_recv_stream(stream);
3023 case LTTNG_CONSUMER32_UST:
3024 case LTTNG_CONSUMER64_UST:
3025 return lttng_ustconsumer_on_recv_stream(stream);
3026 default:
3027 ERR("Unknown consumer_data type");
3028 assert(0);
3029 return -ENOSYS;
3030 }
3031 }
3032
3033 /*
3034 * Allocate and set consumer data hash tables.
3035 */
3036 void lttng_consumer_init(void)
3037 {
3038 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3039 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3040 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3041 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3042 }
3043
3044 /*
3045 * Process the ADD_RELAYD command receive by a consumer.
3046 *
3047 * This will create a relayd socket pair and add it to the relayd hash table.
3048 * The caller MUST acquire a RCU read side lock before calling it.
3049 */
3050 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
3051 struct lttng_consumer_local_data *ctx, int sock,
3052 struct pollfd *consumer_sockpoll,
3053 struct lttcomm_relayd_sock *relayd_sock, unsigned int sessiond_id)
3054 {
3055 int fd = -1, ret = -1, relayd_created = 0;
3056 enum lttng_error_code ret_code = LTTNG_OK;
3057 struct consumer_relayd_sock_pair *relayd = NULL;
3058
3059 assert(ctx);
3060 assert(relayd_sock);
3061
3062 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
3063
3064 /* First send a status message before receiving the fds. */
3065 ret = consumer_send_status_msg(sock, ret_code);
3066 if (ret < 0) {
3067 /* Somehow, the session daemon is not responding anymore. */
3068 goto error;
3069 }
3070
3071 /* Get relayd reference if exists. */
3072 relayd = consumer_find_relayd(net_seq_idx);
3073 if (relayd == NULL) {
3074 /* Not found. Allocate one. */
3075 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3076 if (relayd == NULL) {
3077 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
3078 ret = -1;
3079 goto error;
3080 }
3081 relayd->sessiond_session_id = (uint64_t) sessiond_id;
3082 relayd_created = 1;
3083 }
3084
3085 /* Poll on consumer socket. */
3086 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3087 ret = -EINTR;
3088 goto error;
3089 }
3090
3091 /* Get relayd socket from session daemon */
3092 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3093 if (ret != sizeof(fd)) {
3094 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3095 ret = -1;
3096 fd = -1; /* Just in case it gets set with an invalid value. */
3097 goto error_close;
3098 }
3099
3100 /* We have the fds without error. Send status back. */
3101 ret = consumer_send_status_msg(sock, ret_code);
3102 if (ret < 0) {
3103 /* Somehow, the session daemon is not responding anymore. */
3104 goto error;
3105 }
3106
3107 /* Copy socket information and received FD */
3108 switch (sock_type) {
3109 case LTTNG_STREAM_CONTROL:
3110 /* Copy received lttcomm socket */
3111 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3112 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3113 /* Immediately try to close the created socket if valid. */
3114 if (relayd->control_sock.sock.fd >= 0) {
3115 if (close(relayd->control_sock.sock.fd)) {
3116 PERROR("close relayd control socket");
3117 }
3118 }
3119 /* Handle create_sock error. */
3120 if (ret < 0) {
3121 goto error;
3122 }
3123
3124 /* Assign new file descriptor */
3125 relayd->control_sock.sock.fd = fd;
3126 /* Assign version values. */
3127 relayd->control_sock.major = relayd_sock->major;
3128 relayd->control_sock.minor = relayd_sock->minor;
3129
3130 /*
3131 * Create a session on the relayd and store the returned id. Lock the
3132 * control socket mutex if the relayd was NOT created before.
3133 */
3134 if (!relayd_created) {
3135 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3136 }
3137 ret = relayd_create_session(&relayd->control_sock,
3138 &relayd->relayd_session_id);
3139 if (!relayd_created) {
3140 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3141 }
3142 if (ret < 0) {
3143 /*
3144 * Close all sockets of a relayd object. It will be freed if it was
3145 * created at the error code path or else it will be garbage
3146 * collect.
3147 */
3148 (void) relayd_close(&relayd->control_sock);
3149 (void) relayd_close(&relayd->data_sock);
3150 goto error;
3151 }
3152
3153 break;
3154 case LTTNG_STREAM_DATA:
3155 /* Copy received lttcomm socket */
3156 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3157 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3158 /* Immediately try to close the created socket if valid. */
3159 if (relayd->data_sock.sock.fd >= 0) {
3160 if (close(relayd->data_sock.sock.fd)) {
3161 PERROR("close relayd data socket");
3162 }
3163 }
3164 /* Handle create_sock error. */
3165 if (ret < 0) {
3166 goto error;
3167 }
3168
3169 /* Assign new file descriptor */
3170 relayd->data_sock.sock.fd = fd;
3171 /* Assign version values. */
3172 relayd->data_sock.major = relayd_sock->major;
3173 relayd->data_sock.minor = relayd_sock->minor;
3174 break;
3175 default:
3176 ERR("Unknown relayd socket type (%d)", sock_type);
3177 ret = -1;
3178 goto error;
3179 }
3180
3181 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3182 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3183 relayd->net_seq_idx, fd);
3184
3185 /*
3186 * Add relayd socket pair to consumer data hashtable. If object already
3187 * exists or on error, the function gracefully returns.
3188 */
3189 add_relayd(relayd);
3190
3191 /* All good! */
3192 return 0;
3193
3194 error:
3195 /* Close received socket if valid. */
3196 if (fd >= 0) {
3197 if (close(fd)) {
3198 PERROR("close received socket");
3199 }
3200 }
3201
3202 error_close:
3203 if (relayd_created) {
3204 free(relayd);
3205 }
3206
3207 return ret;
3208 }
3209
3210 /*
3211 * Try to lock the stream mutex.
3212 *
3213 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3214 */
3215 static int stream_try_lock(struct lttng_consumer_stream *stream)
3216 {
3217 int ret;
3218
3219 assert(stream);
3220
3221 /*
3222 * Try to lock the stream mutex. On failure, we know that the stream is
3223 * being used else where hence there is data still being extracted.
3224 */
3225 ret = pthread_mutex_trylock(&stream->lock);
3226 if (ret) {
3227 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3228 ret = 0;
3229 goto end;
3230 }
3231
3232 ret = 1;
3233
3234 end:
3235 return ret;
3236 }
3237
3238 /*
3239 * Search for a relayd associated to the session id and return the reference.
3240 *
3241 * A rcu read side lock MUST be acquire before calling this function and locked
3242 * until the relayd object is no longer necessary.
3243 */
3244 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3245 {
3246 struct lttng_ht_iter iter;
3247 struct consumer_relayd_sock_pair *relayd = NULL;
3248
3249 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3250 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3251 node.node) {
3252 /*
3253 * Check by sessiond id which is unique here where the relayd session
3254 * id might not be when having multiple relayd.
3255 */
3256 if (relayd->sessiond_session_id == id) {
3257 /* Found the relayd. There can be only one per id. */
3258 goto found;
3259 }
3260 }
3261
3262 return NULL;
3263
3264 found:
3265 return relayd;
3266 }
3267
3268 /*
3269 * Check if for a given session id there is still data needed to be extract
3270 * from the buffers.
3271 *
3272 * Return 1 if data is pending or else 0 meaning ready to be read.
3273 */
3274 int consumer_data_pending(uint64_t id)
3275 {
3276 int ret;
3277 struct lttng_ht_iter iter;
3278 struct lttng_ht *ht;
3279 struct lttng_consumer_stream *stream;
3280 struct consumer_relayd_sock_pair *relayd = NULL;
3281 int (*data_pending)(struct lttng_consumer_stream *);
3282
3283 DBG("Consumer data pending command on session id %" PRIu64, id);
3284
3285 rcu_read_lock();
3286 pthread_mutex_lock(&consumer_data.lock);
3287
3288 switch (consumer_data.type) {
3289 case LTTNG_CONSUMER_KERNEL:
3290 data_pending = lttng_kconsumer_data_pending;
3291 break;
3292 case LTTNG_CONSUMER32_UST:
3293 case LTTNG_CONSUMER64_UST:
3294 data_pending = lttng_ustconsumer_data_pending;
3295 break;
3296 default:
3297 ERR("Unknown consumer data type");
3298 assert(0);
3299 }
3300
3301 /* Ease our life a bit */
3302 ht = consumer_data.stream_list_ht;
3303
3304 relayd = find_relayd_by_session_id(id);
3305 if (relayd) {
3306 /* Send init command for data pending. */
3307 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3308 ret = relayd_begin_data_pending(&relayd->control_sock,
3309 relayd->relayd_session_id);
3310 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3311 if (ret < 0) {
3312 /* Communication error thus the relayd so no data pending. */
3313 goto data_not_pending;
3314 }
3315 }
3316
3317 cds_lfht_for_each_entry_duplicate(ht->ht,
3318 ht->hash_fct(&id, lttng_ht_seed),
3319 ht->match_fct, &id,
3320 &iter.iter, stream, node_session_id.node) {
3321 /* If this call fails, the stream is being used hence data pending. */
3322 ret = stream_try_lock(stream);
3323 if (!ret) {
3324 goto data_pending;
3325 }
3326
3327 /*
3328 * A removed node from the hash table indicates that the stream has
3329 * been deleted thus having a guarantee that the buffers are closed
3330 * on the consumer side. However, data can still be transmitted
3331 * over the network so don't skip the relayd check.
3332 */
3333 ret = cds_lfht_is_node_deleted(&stream->node.node);
3334 if (!ret) {
3335 /* Check the stream if there is data in the buffers. */
3336 ret = data_pending(stream);
3337 if (ret == 1) {
3338 pthread_mutex_unlock(&stream->lock);
3339 goto data_pending;
3340 }
3341 }
3342
3343 /* Relayd check */
3344 if (relayd) {
3345 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3346 if (stream->metadata_flag) {
3347 ret = relayd_quiescent_control(&relayd->control_sock,
3348 stream->relayd_stream_id);
3349 } else {
3350 ret = relayd_data_pending(&relayd->control_sock,
3351 stream->relayd_stream_id,
3352 stream->next_net_seq_num - 1);
3353 }
3354 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3355 if (ret == 1) {
3356 pthread_mutex_unlock(&stream->lock);
3357 goto data_pending;
3358 }
3359 }
3360 pthread_mutex_unlock(&stream->lock);
3361 }
3362
3363 if (relayd) {
3364 unsigned int is_data_inflight = 0;
3365
3366 /* Send init command for data pending. */
3367 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3368 ret = relayd_end_data_pending(&relayd->control_sock,
3369 relayd->relayd_session_id, &is_data_inflight);
3370 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3371 if (ret < 0) {
3372 goto data_not_pending;
3373 }
3374 if (is_data_inflight) {
3375 goto data_pending;
3376 }
3377 }
3378
3379 /*
3380 * Finding _no_ node in the hash table and no inflight data means that the
3381 * stream(s) have been removed thus data is guaranteed to be available for
3382 * analysis from the trace files.
3383 */
3384
3385 data_not_pending:
3386 /* Data is available to be read by a viewer. */
3387 pthread_mutex_unlock(&consumer_data.lock);
3388 rcu_read_unlock();
3389 return 0;
3390
3391 data_pending:
3392 /* Data is still being extracted from buffers. */
3393 pthread_mutex_unlock(&consumer_data.lock);
3394 rcu_read_unlock();
3395 return 1;
3396 }
3397
3398 /*
3399 * Send a ret code status message to the sessiond daemon.
3400 *
3401 * Return the sendmsg() return value.
3402 */
3403 int consumer_send_status_msg(int sock, int ret_code)
3404 {
3405 struct lttcomm_consumer_status_msg msg;
3406
3407 msg.ret_code = ret_code;
3408
3409 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3410 }
3411
3412 /*
3413 * Send a channel status message to the sessiond daemon.
3414 *
3415 * Return the sendmsg() return value.
3416 */
3417 int consumer_send_status_channel(int sock,
3418 struct lttng_consumer_channel *channel)
3419 {
3420 struct lttcomm_consumer_status_channel msg;
3421
3422 assert(sock >= 0);
3423
3424 if (!channel) {
3425 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3426 } else {
3427 msg.ret_code = LTTNG_OK;
3428 msg.key = channel->key;
3429 msg.stream_count = channel->streams.count;
3430 }
3431
3432 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3433 }
This page took 0.132062 seconds and 5 git commands to generate.