Fix: consumerd channel destroy race
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread pipe to poll back again. This usually means that some global
81 * state has changed so we just send back the thread in a poll wait call.
82 */
83 static void notify_thread_pipe(int wpipe)
84 {
85 int ret;
86
87 do {
88 struct lttng_consumer_stream *null_stream = NULL;
89
90 ret = write(wpipe, &null_stream, sizeof(null_stream));
91 } while (ret < 0 && errno == EINTR);
92 }
93
94 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
95 struct lttng_consumer_channel *chan,
96 uint64_t key,
97 enum consumer_channel_action action)
98 {
99 struct consumer_channel_msg msg;
100 int ret;
101
102 msg.action = action;
103 msg.chan = chan;
104 do {
105 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
106 } while (ret < 0 && errno == EINTR);
107 }
108
109 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
110 uint64_t key)
111 {
112 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
113 }
114
115 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
116 struct lttng_consumer_channel **chan,
117 uint64_t *key,
118 enum consumer_channel_action *action)
119 {
120 struct consumer_channel_msg msg;
121 int ret;
122
123 do {
124 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
125 } while (ret < 0 && errno == EINTR);
126 if (ret > 0) {
127 *action = msg.action;
128 *chan = msg.chan;
129 *key = msg.key;
130 }
131 return ret;
132 }
133
134 /*
135 * Find a stream. The consumer_data.lock must be locked during this
136 * call.
137 */
138 static struct lttng_consumer_stream *find_stream(uint64_t key,
139 struct lttng_ht *ht)
140 {
141 struct lttng_ht_iter iter;
142 struct lttng_ht_node_u64 *node;
143 struct lttng_consumer_stream *stream = NULL;
144
145 assert(ht);
146
147 /* -1ULL keys are lookup failures */
148 if (key == (uint64_t) -1ULL) {
149 return NULL;
150 }
151
152 rcu_read_lock();
153
154 lttng_ht_lookup(ht, &key, &iter);
155 node = lttng_ht_iter_get_node_u64(&iter);
156 if (node != NULL) {
157 stream = caa_container_of(node, struct lttng_consumer_stream, node);
158 }
159
160 rcu_read_unlock();
161
162 return stream;
163 }
164
165 static void steal_stream_key(int key, struct lttng_ht *ht)
166 {
167 struct lttng_consumer_stream *stream;
168
169 rcu_read_lock();
170 stream = find_stream(key, ht);
171 if (stream) {
172 stream->key = -1ULL;
173 /*
174 * We don't want the lookup to match, but we still need
175 * to iterate on this stream when iterating over the hash table. Just
176 * change the node key.
177 */
178 stream->node.key = -1ULL;
179 }
180 rcu_read_unlock();
181 }
182
183 /*
184 * Return a channel object for the given key.
185 *
186 * RCU read side lock MUST be acquired before calling this function and
187 * protects the channel ptr.
188 */
189 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
190 {
191 struct lttng_ht_iter iter;
192 struct lttng_ht_node_u64 *node;
193 struct lttng_consumer_channel *channel = NULL;
194
195 /* -1ULL keys are lookup failures */
196 if (key == (uint64_t) -1ULL) {
197 return NULL;
198 }
199
200 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
201 node = lttng_ht_iter_get_node_u64(&iter);
202 if (node != NULL) {
203 channel = caa_container_of(node, struct lttng_consumer_channel, node);
204 }
205
206 return channel;
207 }
208
209 static void free_stream_rcu(struct rcu_head *head)
210 {
211 struct lttng_ht_node_u64 *node =
212 caa_container_of(head, struct lttng_ht_node_u64, head);
213 struct lttng_consumer_stream *stream =
214 caa_container_of(node, struct lttng_consumer_stream, node);
215
216 free(stream);
217 }
218
219 static void free_channel_rcu(struct rcu_head *head)
220 {
221 struct lttng_ht_node_u64 *node =
222 caa_container_of(head, struct lttng_ht_node_u64, head);
223 struct lttng_consumer_channel *channel =
224 caa_container_of(node, struct lttng_consumer_channel, node);
225
226 free(channel);
227 }
228
229 /*
230 * RCU protected relayd socket pair free.
231 */
232 static void free_relayd_rcu(struct rcu_head *head)
233 {
234 struct lttng_ht_node_u64 *node =
235 caa_container_of(head, struct lttng_ht_node_u64, head);
236 struct consumer_relayd_sock_pair *relayd =
237 caa_container_of(node, struct consumer_relayd_sock_pair, node);
238
239 /*
240 * Close all sockets. This is done in the call RCU since we don't want the
241 * socket fds to be reassigned thus potentially creating bad state of the
242 * relayd object.
243 *
244 * We do not have to lock the control socket mutex here since at this stage
245 * there is no one referencing to this relayd object.
246 */
247 (void) relayd_close(&relayd->control_sock);
248 (void) relayd_close(&relayd->data_sock);
249
250 free(relayd);
251 }
252
253 /*
254 * Destroy and free relayd socket pair object.
255 *
256 * This function MUST be called with the consumer_data lock acquired.
257 */
258 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
259 {
260 int ret;
261 struct lttng_ht_iter iter;
262
263 if (relayd == NULL) {
264 return;
265 }
266
267 DBG("Consumer destroy and close relayd socket pair");
268
269 iter.iter.node = &relayd->node.node;
270 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
271 if (ret != 0) {
272 /* We assume the relayd is being or is destroyed */
273 return;
274 }
275
276 /* RCU free() call */
277 call_rcu(&relayd->node.head, free_relayd_rcu);
278 }
279
280 /*
281 * Remove a channel from the global list protected by a mutex. This function is
282 * also responsible for freeing its data structures.
283 */
284 void consumer_del_channel(struct lttng_consumer_channel *channel)
285 {
286 int ret;
287 struct lttng_ht_iter iter;
288
289 DBG("Consumer delete channel key %" PRIu64, channel->key);
290
291 pthread_mutex_lock(&consumer_data.lock);
292
293 switch (consumer_data.type) {
294 case LTTNG_CONSUMER_KERNEL:
295 break;
296 case LTTNG_CONSUMER32_UST:
297 case LTTNG_CONSUMER64_UST:
298 lttng_ustconsumer_del_channel(channel);
299 break;
300 default:
301 ERR("Unknown consumer_data type");
302 assert(0);
303 goto end;
304 }
305
306 rcu_read_lock();
307 iter.iter.node = &channel->node.node;
308 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
309 assert(!ret);
310 rcu_read_unlock();
311
312 call_rcu(&channel->node.head, free_channel_rcu);
313 end:
314 pthread_mutex_unlock(&consumer_data.lock);
315 }
316
317 /*
318 * Iterate over the relayd hash table and destroy each element. Finally,
319 * destroy the whole hash table.
320 */
321 static void cleanup_relayd_ht(void)
322 {
323 struct lttng_ht_iter iter;
324 struct consumer_relayd_sock_pair *relayd;
325
326 rcu_read_lock();
327
328 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
329 node.node) {
330 destroy_relayd(relayd);
331 }
332
333 rcu_read_unlock();
334
335 lttng_ht_destroy(consumer_data.relayd_ht);
336 }
337
338 /*
339 * Update the end point status of all streams having the given network sequence
340 * index (relayd index).
341 *
342 * It's atomically set without having the stream mutex locked which is fine
343 * because we handle the write/read race with a pipe wakeup for each thread.
344 */
345 static void update_endpoint_status_by_netidx(int net_seq_idx,
346 enum consumer_endpoint_status status)
347 {
348 struct lttng_ht_iter iter;
349 struct lttng_consumer_stream *stream;
350
351 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
352
353 rcu_read_lock();
354
355 /* Let's begin with metadata */
356 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
357 if (stream->net_seq_idx == net_seq_idx) {
358 uatomic_set(&stream->endpoint_status, status);
359 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
360 }
361 }
362
363 /* Follow up by the data streams */
364 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
365 if (stream->net_seq_idx == net_seq_idx) {
366 uatomic_set(&stream->endpoint_status, status);
367 DBG("Delete flag set to data stream %d", stream->wait_fd);
368 }
369 }
370 rcu_read_unlock();
371 }
372
373 /*
374 * Cleanup a relayd object by flagging every associated streams for deletion,
375 * destroying the object meaning removing it from the relayd hash table,
376 * closing the sockets and freeing the memory in a RCU call.
377 *
378 * If a local data context is available, notify the threads that the streams'
379 * state have changed.
380 */
381 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
382 struct lttng_consumer_local_data *ctx)
383 {
384 int netidx;
385
386 assert(relayd);
387
388 DBG("Cleaning up relayd sockets");
389
390 /* Save the net sequence index before destroying the object */
391 netidx = relayd->net_seq_idx;
392
393 /*
394 * Delete the relayd from the relayd hash table, close the sockets and free
395 * the object in a RCU call.
396 */
397 destroy_relayd(relayd);
398
399 /* Set inactive endpoint to all streams */
400 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
401
402 /*
403 * With a local data context, notify the threads that the streams' state
404 * have changed. The write() action on the pipe acts as an "implicit"
405 * memory barrier ordering the updates of the end point status from the
406 * read of this status which happens AFTER receiving this notify.
407 */
408 if (ctx) {
409 notify_thread_pipe(ctx->consumer_data_pipe[1]);
410 notify_thread_pipe(ctx->consumer_metadata_pipe[1]);
411 }
412 }
413
414 /*
415 * Flag a relayd socket pair for destruction. Destroy it if the refcount
416 * reaches zero.
417 *
418 * RCU read side lock MUST be aquired before calling this function.
419 */
420 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
421 {
422 assert(relayd);
423
424 /* Set destroy flag for this object */
425 uatomic_set(&relayd->destroy_flag, 1);
426
427 /* Destroy the relayd if refcount is 0 */
428 if (uatomic_read(&relayd->refcount) == 0) {
429 destroy_relayd(relayd);
430 }
431 }
432
433 /*
434 * Remove a stream from the global list protected by a mutex. This
435 * function is also responsible for freeing its data structures.
436 */
437 void consumer_del_stream(struct lttng_consumer_stream *stream,
438 struct lttng_ht *ht)
439 {
440 int ret;
441 struct lttng_ht_iter iter;
442 struct lttng_consumer_channel *free_chan = NULL;
443 struct consumer_relayd_sock_pair *relayd;
444
445 assert(stream);
446
447 DBG("Consumer del stream %d", stream->wait_fd);
448
449 if (ht == NULL) {
450 /* Means the stream was allocated but not successfully added */
451 goto free_stream_rcu;
452 }
453
454 pthread_mutex_lock(&consumer_data.lock);
455 pthread_mutex_lock(&stream->lock);
456
457 switch (consumer_data.type) {
458 case LTTNG_CONSUMER_KERNEL:
459 if (stream->mmap_base != NULL) {
460 ret = munmap(stream->mmap_base, stream->mmap_len);
461 if (ret != 0) {
462 PERROR("munmap");
463 }
464 }
465 break;
466 case LTTNG_CONSUMER32_UST:
467 case LTTNG_CONSUMER64_UST:
468 lttng_ustconsumer_del_stream(stream);
469 break;
470 default:
471 ERR("Unknown consumer_data type");
472 assert(0);
473 goto end;
474 }
475
476 rcu_read_lock();
477 iter.iter.node = &stream->node.node;
478 ret = lttng_ht_del(ht, &iter);
479 assert(!ret);
480
481 iter.iter.node = &stream->node_channel_id.node;
482 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
483 assert(!ret);
484
485 iter.iter.node = &stream->node_session_id.node;
486 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
487 assert(!ret);
488 rcu_read_unlock();
489
490 assert(consumer_data.stream_count > 0);
491 consumer_data.stream_count--;
492
493 if (stream->out_fd >= 0) {
494 ret = close(stream->out_fd);
495 if (ret) {
496 PERROR("close");
497 }
498 }
499
500 /* Check and cleanup relayd */
501 rcu_read_lock();
502 relayd = consumer_find_relayd(stream->net_seq_idx);
503 if (relayd != NULL) {
504 uatomic_dec(&relayd->refcount);
505 assert(uatomic_read(&relayd->refcount) >= 0);
506
507 /* Closing streams requires to lock the control socket. */
508 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
509 ret = relayd_send_close_stream(&relayd->control_sock,
510 stream->relayd_stream_id,
511 stream->next_net_seq_num - 1);
512 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
513 if (ret < 0) {
514 DBG("Unable to close stream on the relayd. Continuing");
515 /*
516 * Continue here. There is nothing we can do for the relayd.
517 * Chances are that the relayd has closed the socket so we just
518 * continue cleaning up.
519 */
520 }
521
522 /* Both conditions are met, we destroy the relayd. */
523 if (uatomic_read(&relayd->refcount) == 0 &&
524 uatomic_read(&relayd->destroy_flag)) {
525 destroy_relayd(relayd);
526 }
527 }
528 rcu_read_unlock();
529
530 if (!uatomic_sub_return(&stream->chan->refcount, 1)
531 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
532 free_chan = stream->chan;
533 }
534
535 end:
536 consumer_data.need_update = 1;
537 pthread_mutex_unlock(&stream->lock);
538 pthread_mutex_unlock(&consumer_data.lock);
539
540 if (free_chan) {
541 consumer_del_channel(free_chan);
542 }
543
544 free_stream_rcu:
545 call_rcu(&stream->node.head, free_stream_rcu);
546 }
547
548 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
549 uint64_t stream_key,
550 enum lttng_consumer_stream_state state,
551 const char *channel_name,
552 uid_t uid,
553 gid_t gid,
554 int relayd_id,
555 uint64_t session_id,
556 int cpu,
557 int *alloc_ret,
558 enum consumer_channel_type type)
559 {
560 int ret;
561 struct lttng_consumer_stream *stream;
562
563 stream = zmalloc(sizeof(*stream));
564 if (stream == NULL) {
565 PERROR("malloc struct lttng_consumer_stream");
566 ret = -ENOMEM;
567 goto end;
568 }
569
570 rcu_read_lock();
571
572 stream->key = stream_key;
573 stream->out_fd = -1;
574 stream->out_fd_offset = 0;
575 stream->state = state;
576 stream->uid = uid;
577 stream->gid = gid;
578 stream->net_seq_idx = relayd_id;
579 stream->session_id = session_id;
580 pthread_mutex_init(&stream->lock, NULL);
581
582 /* If channel is the metadata, flag this stream as metadata. */
583 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
584 stream->metadata_flag = 1;
585 /* Metadata is flat out. */
586 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
607 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
608
609 rcu_read_unlock();
610 return stream;
611
612 error:
613 rcu_read_unlock();
614 free(stream);
615 end:
616 if (alloc_ret) {
617 *alloc_ret = ret;
618 }
619 return NULL;
620 }
621
622 /*
623 * Add a stream to the global list protected by a mutex.
624 */
625 static int add_stream(struct lttng_consumer_stream *stream,
626 struct lttng_ht *ht)
627 {
628 int ret = 0;
629 struct consumer_relayd_sock_pair *relayd;
630
631 assert(stream);
632 assert(ht);
633
634 DBG3("Adding consumer stream %" PRIu64, stream->key);
635
636 pthread_mutex_lock(&consumer_data.lock);
637 pthread_mutex_lock(&stream->lock);
638 rcu_read_lock();
639
640 /* Steal stream identifier to avoid having streams with the same key */
641 steal_stream_key(stream->key, ht);
642
643 lttng_ht_add_unique_u64(ht, &stream->node);
644
645 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
646 &stream->node_channel_id);
647
648 /*
649 * Add stream to the stream_list_ht of the consumer data. No need to steal
650 * the key since the HT does not use it and we allow to add redundant keys
651 * into this table.
652 */
653 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
654
655 /* Check and cleanup relayd */
656 relayd = consumer_find_relayd(stream->net_seq_idx);
657 if (relayd != NULL) {
658 uatomic_inc(&relayd->refcount);
659 }
660
661 /* Update channel refcount once added without error(s). */
662 uatomic_inc(&stream->chan->refcount);
663
664 /*
665 * When nb_init_stream_left reaches 0, we don't need to trigger any action
666 * in terms of destroying the associated channel, because the action that
667 * causes the count to become 0 also causes a stream to be added. The
668 * channel deletion will thus be triggered by the following removal of this
669 * stream.
670 */
671 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
672 /* Increment refcount before decrementing nb_init_stream_left */
673 cmm_smp_wmb();
674 uatomic_dec(&stream->chan->nb_init_stream_left);
675 }
676
677 /* Update consumer data once the node is inserted. */
678 consumer_data.stream_count++;
679 consumer_data.need_update = 1;
680
681 rcu_read_unlock();
682 pthread_mutex_unlock(&stream->lock);
683 pthread_mutex_unlock(&consumer_data.lock);
684
685 return ret;
686 }
687
688 /*
689 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
690 * be acquired before calling this.
691 */
692 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
693 {
694 int ret = 0;
695 struct lttng_ht_node_u64 *node;
696 struct lttng_ht_iter iter;
697
698 assert(relayd);
699
700 lttng_ht_lookup(consumer_data.relayd_ht,
701 &relayd->net_seq_idx, &iter);
702 node = lttng_ht_iter_get_node_u64(&iter);
703 if (node != NULL) {
704 goto end;
705 }
706 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
707
708 end:
709 return ret;
710 }
711
712 /*
713 * Allocate and return a consumer relayd socket.
714 */
715 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
716 int net_seq_idx)
717 {
718 struct consumer_relayd_sock_pair *obj = NULL;
719
720 /* Negative net sequence index is a failure */
721 if (net_seq_idx < 0) {
722 goto error;
723 }
724
725 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
726 if (obj == NULL) {
727 PERROR("zmalloc relayd sock");
728 goto error;
729 }
730
731 obj->net_seq_idx = net_seq_idx;
732 obj->refcount = 0;
733 obj->destroy_flag = 0;
734 obj->control_sock.sock.fd = -1;
735 obj->data_sock.sock.fd = -1;
736 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
737 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
738
739 error:
740 return obj;
741 }
742
743 /*
744 * Find a relayd socket pair in the global consumer data.
745 *
746 * Return the object if found else NULL.
747 * RCU read-side lock must be held across this call and while using the
748 * returned object.
749 */
750 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
751 {
752 struct lttng_ht_iter iter;
753 struct lttng_ht_node_u64 *node;
754 struct consumer_relayd_sock_pair *relayd = NULL;
755
756 /* Negative keys are lookup failures */
757 if (key == (uint64_t) -1ULL) {
758 goto error;
759 }
760
761 lttng_ht_lookup(consumer_data.relayd_ht, &key,
762 &iter);
763 node = lttng_ht_iter_get_node_u64(&iter);
764 if (node != NULL) {
765 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
766 }
767
768 error:
769 return relayd;
770 }
771
772 /*
773 * Handle stream for relayd transmission if the stream applies for network
774 * streaming where the net sequence index is set.
775 *
776 * Return destination file descriptor or negative value on error.
777 */
778 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
779 size_t data_size, unsigned long padding,
780 struct consumer_relayd_sock_pair *relayd)
781 {
782 int outfd = -1, ret;
783 struct lttcomm_relayd_data_hdr data_hdr;
784
785 /* Safety net */
786 assert(stream);
787 assert(relayd);
788
789 /* Reset data header */
790 memset(&data_hdr, 0, sizeof(data_hdr));
791
792 if (stream->metadata_flag) {
793 /* Caller MUST acquire the relayd control socket lock */
794 ret = relayd_send_metadata(&relayd->control_sock, data_size);
795 if (ret < 0) {
796 goto error;
797 }
798
799 /* Metadata are always sent on the control socket. */
800 outfd = relayd->control_sock.sock.fd;
801 } else {
802 /* Set header with stream information */
803 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
804 data_hdr.data_size = htobe32(data_size);
805 data_hdr.padding_size = htobe32(padding);
806 /*
807 * Note that net_seq_num below is assigned with the *current* value of
808 * next_net_seq_num and only after that the next_net_seq_num will be
809 * increment. This is why when issuing a command on the relayd using
810 * this next value, 1 should always be substracted in order to compare
811 * the last seen sequence number on the relayd side to the last sent.
812 */
813 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
814 /* Other fields are zeroed previously */
815
816 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
817 sizeof(data_hdr));
818 if (ret < 0) {
819 goto error;
820 }
821
822 ++stream->next_net_seq_num;
823
824 /* Set to go on data socket */
825 outfd = relayd->data_sock.sock.fd;
826 }
827
828 error:
829 return outfd;
830 }
831
832 /*
833 * Allocate and return a new lttng_consumer_channel object using the given key
834 * to initialize the hash table node.
835 *
836 * On error, return NULL.
837 */
838 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
839 uint64_t session_id,
840 const char *pathname,
841 const char *name,
842 uid_t uid,
843 gid_t gid,
844 int relayd_id,
845 enum lttng_event_output output,
846 uint64_t tracefile_size,
847 uint64_t tracefile_count)
848 {
849 struct lttng_consumer_channel *channel;
850
851 channel = zmalloc(sizeof(*channel));
852 if (channel == NULL) {
853 PERROR("malloc struct lttng_consumer_channel");
854 goto end;
855 }
856
857 channel->key = key;
858 channel->refcount = 0;
859 channel->session_id = session_id;
860 channel->uid = uid;
861 channel->gid = gid;
862 channel->relayd_id = relayd_id;
863 channel->output = output;
864 channel->tracefile_size = tracefile_size;
865 channel->tracefile_count = tracefile_count;
866
867 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
868 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
869
870 strncpy(channel->name, name, sizeof(channel->name));
871 channel->name[sizeof(channel->name) - 1] = '\0';
872
873 lttng_ht_node_init_u64(&channel->node, channel->key);
874
875 channel->wait_fd = -1;
876
877 CDS_INIT_LIST_HEAD(&channel->streams.head);
878
879 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
880
881 end:
882 return channel;
883 }
884
885 /*
886 * Add a channel to the global list protected by a mutex.
887 */
888 int consumer_add_channel(struct lttng_consumer_channel *channel,
889 struct lttng_consumer_local_data *ctx)
890 {
891 int ret = 0;
892 struct lttng_ht_node_u64 *node;
893 struct lttng_ht_iter iter;
894
895 pthread_mutex_lock(&consumer_data.lock);
896 rcu_read_lock();
897
898 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
899 node = lttng_ht_iter_get_node_u64(&iter);
900 if (node != NULL) {
901 /* Channel already exist. Ignore the insertion */
902 ERR("Consumer add channel key %" PRIu64 " already exists!",
903 channel->key);
904 ret = -1;
905 goto end;
906 }
907
908 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
909
910 end:
911 rcu_read_unlock();
912 pthread_mutex_unlock(&consumer_data.lock);
913
914 if (!ret && channel->wait_fd != -1 &&
915 channel->metadata_stream == NULL) {
916 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
917 }
918 return ret;
919 }
920
921 /*
922 * Allocate the pollfd structure and the local view of the out fds to avoid
923 * doing a lookup in the linked list and concurrency issues when writing is
924 * needed. Called with consumer_data.lock held.
925 *
926 * Returns the number of fds in the structures.
927 */
928 static int update_poll_array(struct lttng_consumer_local_data *ctx,
929 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
930 struct lttng_ht *ht)
931 {
932 int i = 0;
933 struct lttng_ht_iter iter;
934 struct lttng_consumer_stream *stream;
935
936 assert(ctx);
937 assert(ht);
938 assert(pollfd);
939 assert(local_stream);
940
941 DBG("Updating poll fd array");
942 rcu_read_lock();
943 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
944 /*
945 * Only active streams with an active end point can be added to the
946 * poll set and local stream storage of the thread.
947 *
948 * There is a potential race here for endpoint_status to be updated
949 * just after the check. However, this is OK since the stream(s) will
950 * be deleted once the thread is notified that the end point state has
951 * changed where this function will be called back again.
952 */
953 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
954 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
955 continue;
956 }
957 /*
958 * This clobbers way too much the debug output. Uncomment that if you
959 * need it for debugging purposes.
960 *
961 * DBG("Active FD %d", stream->wait_fd);
962 */
963 (*pollfd)[i].fd = stream->wait_fd;
964 (*pollfd)[i].events = POLLIN | POLLPRI;
965 local_stream[i] = stream;
966 i++;
967 }
968 rcu_read_unlock();
969
970 /*
971 * Insert the consumer_data_pipe at the end of the array and don't
972 * increment i so nb_fd is the number of real FD.
973 */
974 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
975 (*pollfd)[i].events = POLLIN | POLLPRI;
976 return i;
977 }
978
979 /*
980 * Poll on the should_quit pipe and the command socket return -1 on error and
981 * should exit, 0 if data is available on the command socket
982 */
983 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
984 {
985 int num_rdy;
986
987 restart:
988 num_rdy = poll(consumer_sockpoll, 2, -1);
989 if (num_rdy == -1) {
990 /*
991 * Restart interrupted system call.
992 */
993 if (errno == EINTR) {
994 goto restart;
995 }
996 PERROR("Poll error");
997 goto exit;
998 }
999 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1000 DBG("consumer_should_quit wake up");
1001 goto exit;
1002 }
1003 return 0;
1004
1005 exit:
1006 return -1;
1007 }
1008
1009 /*
1010 * Set the error socket.
1011 */
1012 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1013 int sock)
1014 {
1015 ctx->consumer_error_socket = sock;
1016 }
1017
1018 /*
1019 * Set the command socket path.
1020 */
1021 void lttng_consumer_set_command_sock_path(
1022 struct lttng_consumer_local_data *ctx, char *sock)
1023 {
1024 ctx->consumer_command_sock_path = sock;
1025 }
1026
1027 /*
1028 * Send return code to the session daemon.
1029 * If the socket is not defined, we return 0, it is not a fatal error
1030 */
1031 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1032 {
1033 if (ctx->consumer_error_socket > 0) {
1034 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1035 sizeof(enum lttcomm_sessiond_command));
1036 }
1037
1038 return 0;
1039 }
1040
1041 /*
1042 * Close all the tracefiles and stream fds and MUST be called when all
1043 * instances are destroyed i.e. when all threads were joined and are ended.
1044 */
1045 void lttng_consumer_cleanup(void)
1046 {
1047 struct lttng_ht_iter iter;
1048 struct lttng_consumer_channel *channel;
1049
1050 rcu_read_lock();
1051
1052 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1053 node.node) {
1054 consumer_del_channel(channel);
1055 }
1056
1057 rcu_read_unlock();
1058
1059 lttng_ht_destroy(consumer_data.channel_ht);
1060
1061 cleanup_relayd_ht();
1062
1063 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1064
1065 /*
1066 * This HT contains streams that are freed by either the metadata thread or
1067 * the data thread so we do *nothing* on the hash table and simply destroy
1068 * it.
1069 */
1070 lttng_ht_destroy(consumer_data.stream_list_ht);
1071 }
1072
1073 /*
1074 * Called from signal handler.
1075 */
1076 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1077 {
1078 int ret;
1079 consumer_quit = 1;
1080 do {
1081 ret = write(ctx->consumer_should_quit[1], "4", 1);
1082 } while (ret < 0 && errno == EINTR);
1083 if (ret < 0 || ret != 1) {
1084 PERROR("write consumer quit");
1085 }
1086
1087 DBG("Consumer flag that it should quit");
1088 }
1089
1090 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1091 off_t orig_offset)
1092 {
1093 int outfd = stream->out_fd;
1094
1095 /*
1096 * This does a blocking write-and-wait on any page that belongs to the
1097 * subbuffer prior to the one we just wrote.
1098 * Don't care about error values, as these are just hints and ways to
1099 * limit the amount of page cache used.
1100 */
1101 if (orig_offset < stream->max_sb_size) {
1102 return;
1103 }
1104 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1105 stream->max_sb_size,
1106 SYNC_FILE_RANGE_WAIT_BEFORE
1107 | SYNC_FILE_RANGE_WRITE
1108 | SYNC_FILE_RANGE_WAIT_AFTER);
1109 /*
1110 * Give hints to the kernel about how we access the file:
1111 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1112 * we write it.
1113 *
1114 * We need to call fadvise again after the file grows because the
1115 * kernel does not seem to apply fadvise to non-existing parts of the
1116 * file.
1117 *
1118 * Call fadvise _after_ having waited for the page writeback to
1119 * complete because the dirty page writeback semantic is not well
1120 * defined. So it can be expected to lead to lower throughput in
1121 * streaming.
1122 */
1123 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1124 stream->max_sb_size, POSIX_FADV_DONTNEED);
1125 }
1126
1127 /*
1128 * Initialise the necessary environnement :
1129 * - create a new context
1130 * - create the poll_pipe
1131 * - create the should_quit pipe (for signal handler)
1132 * - create the thread pipe (for splice)
1133 *
1134 * Takes a function pointer as argument, this function is called when data is
1135 * available on a buffer. This function is responsible to do the
1136 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1137 * buffer configuration and then kernctl_put_next_subbuf at the end.
1138 *
1139 * Returns a pointer to the new context or NULL on error.
1140 */
1141 struct lttng_consumer_local_data *lttng_consumer_create(
1142 enum lttng_consumer_type type,
1143 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1144 struct lttng_consumer_local_data *ctx),
1145 int (*recv_channel)(struct lttng_consumer_channel *channel),
1146 int (*recv_stream)(struct lttng_consumer_stream *stream),
1147 int (*update_stream)(int stream_key, uint32_t state))
1148 {
1149 int ret;
1150 struct lttng_consumer_local_data *ctx;
1151
1152 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1153 consumer_data.type == type);
1154 consumer_data.type = type;
1155
1156 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1157 if (ctx == NULL) {
1158 PERROR("allocating context");
1159 goto error;
1160 }
1161
1162 ctx->consumer_error_socket = -1;
1163 ctx->consumer_metadata_socket = -1;
1164 /* assign the callbacks */
1165 ctx->on_buffer_ready = buffer_ready;
1166 ctx->on_recv_channel = recv_channel;
1167 ctx->on_recv_stream = recv_stream;
1168 ctx->on_update_stream = update_stream;
1169
1170 ret = pipe(ctx->consumer_data_pipe);
1171 if (ret < 0) {
1172 PERROR("Error creating poll pipe");
1173 goto error_poll_pipe;
1174 }
1175
1176 /* set read end of the pipe to non-blocking */
1177 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1178 if (ret < 0) {
1179 PERROR("fcntl O_NONBLOCK");
1180 goto error_poll_fcntl;
1181 }
1182
1183 /* set write end of the pipe to non-blocking */
1184 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1185 if (ret < 0) {
1186 PERROR("fcntl O_NONBLOCK");
1187 goto error_poll_fcntl;
1188 }
1189
1190 ret = pipe(ctx->consumer_should_quit);
1191 if (ret < 0) {
1192 PERROR("Error creating recv pipe");
1193 goto error_quit_pipe;
1194 }
1195
1196 ret = pipe(ctx->consumer_thread_pipe);
1197 if (ret < 0) {
1198 PERROR("Error creating thread pipe");
1199 goto error_thread_pipe;
1200 }
1201
1202 ret = pipe(ctx->consumer_channel_pipe);
1203 if (ret < 0) {
1204 PERROR("Error creating channel pipe");
1205 goto error_channel_pipe;
1206 }
1207
1208 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1209 if (ret < 0) {
1210 goto error_metadata_pipe;
1211 }
1212
1213 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1214 if (ret < 0) {
1215 goto error_splice_pipe;
1216 }
1217
1218 return ctx;
1219
1220 error_splice_pipe:
1221 utils_close_pipe(ctx->consumer_metadata_pipe);
1222 error_metadata_pipe:
1223 utils_close_pipe(ctx->consumer_channel_pipe);
1224 error_channel_pipe:
1225 utils_close_pipe(ctx->consumer_thread_pipe);
1226 error_thread_pipe:
1227 utils_close_pipe(ctx->consumer_should_quit);
1228 error_poll_fcntl:
1229 error_quit_pipe:
1230 utils_close_pipe(ctx->consumer_data_pipe);
1231 error_poll_pipe:
1232 free(ctx);
1233 error:
1234 return NULL;
1235 }
1236
1237 /*
1238 * Close all fds associated with the instance and free the context.
1239 */
1240 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1241 {
1242 int ret;
1243
1244 DBG("Consumer destroying it. Closing everything.");
1245
1246 ret = close(ctx->consumer_error_socket);
1247 if (ret) {
1248 PERROR("close");
1249 }
1250 ret = close(ctx->consumer_metadata_socket);
1251 if (ret) {
1252 PERROR("close");
1253 }
1254 utils_close_pipe(ctx->consumer_thread_pipe);
1255 utils_close_pipe(ctx->consumer_channel_pipe);
1256 utils_close_pipe(ctx->consumer_data_pipe);
1257 utils_close_pipe(ctx->consumer_should_quit);
1258 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1259
1260 unlink(ctx->consumer_command_sock_path);
1261 free(ctx);
1262 }
1263
1264 /*
1265 * Write the metadata stream id on the specified file descriptor.
1266 */
1267 static int write_relayd_metadata_id(int fd,
1268 struct lttng_consumer_stream *stream,
1269 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1270 {
1271 int ret;
1272 struct lttcomm_relayd_metadata_payload hdr;
1273
1274 hdr.stream_id = htobe64(stream->relayd_stream_id);
1275 hdr.padding_size = htobe32(padding);
1276 do {
1277 ret = write(fd, (void *) &hdr, sizeof(hdr));
1278 } while (ret < 0 && errno == EINTR);
1279 if (ret < 0 || ret != sizeof(hdr)) {
1280 /*
1281 * This error means that the fd's end is closed so ignore the perror
1282 * not to clubber the error output since this can happen in a normal
1283 * code path.
1284 */
1285 if (errno != EPIPE) {
1286 PERROR("write metadata stream id");
1287 }
1288 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1289 /*
1290 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1291 * handle writting the missing part so report that as an error and
1292 * don't lie to the caller.
1293 */
1294 ret = -1;
1295 goto end;
1296 }
1297 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1298 stream->relayd_stream_id, padding);
1299
1300 end:
1301 return ret;
1302 }
1303
1304 /*
1305 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1306 * core function for writing trace buffers to either the local filesystem or
1307 * the network.
1308 *
1309 * It must be called with the stream lock held.
1310 *
1311 * Careful review MUST be put if any changes occur!
1312 *
1313 * Returns the number of bytes written
1314 */
1315 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1316 struct lttng_consumer_local_data *ctx,
1317 struct lttng_consumer_stream *stream, unsigned long len,
1318 unsigned long padding)
1319 {
1320 unsigned long mmap_offset;
1321 void *mmap_base;
1322 ssize_t ret = 0, written = 0;
1323 off_t orig_offset = stream->out_fd_offset;
1324 /* Default is on the disk */
1325 int outfd = stream->out_fd;
1326 struct consumer_relayd_sock_pair *relayd = NULL;
1327 unsigned int relayd_hang_up = 0;
1328
1329 /* RCU lock for the relayd pointer */
1330 rcu_read_lock();
1331
1332 /* Flag that the current stream if set for network streaming. */
1333 if (stream->net_seq_idx != -1) {
1334 relayd = consumer_find_relayd(stream->net_seq_idx);
1335 if (relayd == NULL) {
1336 goto end;
1337 }
1338 }
1339
1340 /* get the offset inside the fd to mmap */
1341 switch (consumer_data.type) {
1342 case LTTNG_CONSUMER_KERNEL:
1343 mmap_base = stream->mmap_base;
1344 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1345 break;
1346 case LTTNG_CONSUMER32_UST:
1347 case LTTNG_CONSUMER64_UST:
1348 mmap_base = lttng_ustctl_get_mmap_base(stream);
1349 if (!mmap_base) {
1350 ERR("read mmap get mmap base for stream %s", stream->name);
1351 written = -1;
1352 goto end;
1353 }
1354 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1355
1356 break;
1357 default:
1358 ERR("Unknown consumer_data type");
1359 assert(0);
1360 }
1361 if (ret != 0) {
1362 errno = -ret;
1363 PERROR("tracer ctl get_mmap_read_offset");
1364 written = ret;
1365 goto end;
1366 }
1367
1368 /* Handle stream on the relayd if the output is on the network */
1369 if (relayd) {
1370 unsigned long netlen = len;
1371
1372 /*
1373 * Lock the control socket for the complete duration of the function
1374 * since from this point on we will use the socket.
1375 */
1376 if (stream->metadata_flag) {
1377 /* Metadata requires the control socket. */
1378 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1379 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1380 }
1381
1382 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1383 if (ret >= 0) {
1384 /* Use the returned socket. */
1385 outfd = ret;
1386
1387 /* Write metadata stream id before payload */
1388 if (stream->metadata_flag) {
1389 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1390 if (ret < 0) {
1391 written = ret;
1392 /* Socket operation failed. We consider the relayd dead */
1393 if (ret == -EPIPE || ret == -EINVAL) {
1394 relayd_hang_up = 1;
1395 goto write_error;
1396 }
1397 goto end;
1398 }
1399 }
1400 } else {
1401 /* Socket operation failed. We consider the relayd dead */
1402 if (ret == -EPIPE || ret == -EINVAL) {
1403 relayd_hang_up = 1;
1404 goto write_error;
1405 }
1406 /* Else, use the default set before which is the filesystem. */
1407 }
1408 } else {
1409 /* No streaming, we have to set the len with the full padding */
1410 len += padding;
1411
1412 /*
1413 * Check if we need to change the tracefile before writing the packet.
1414 */
1415 if (stream->chan->tracefile_size > 0 &&
1416 (stream->tracefile_size_current + len) >
1417 stream->chan->tracefile_size) {
1418 ret = utils_rotate_stream_file(stream->chan->pathname,
1419 stream->name, stream->chan->tracefile_size,
1420 stream->chan->tracefile_count, stream->uid, stream->gid,
1421 stream->out_fd, &(stream->tracefile_count_current));
1422 if (ret < 0) {
1423 ERR("Rotating output file");
1424 goto end;
1425 }
1426 outfd = stream->out_fd = ret;
1427 }
1428 stream->tracefile_size_current += len;
1429 }
1430
1431 while (len > 0) {
1432 do {
1433 ret = write(outfd, mmap_base + mmap_offset, len);
1434 } while (ret < 0 && errno == EINTR);
1435 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1436 if (ret < 0) {
1437 /*
1438 * This is possible if the fd is closed on the other side (outfd)
1439 * or any write problem. It can be verbose a bit for a normal
1440 * execution if for instance the relayd is stopped abruptly. This
1441 * can happen so set this to a DBG statement.
1442 */
1443 DBG("Error in file write mmap");
1444 if (written == 0) {
1445 written = ret;
1446 }
1447 /* Socket operation failed. We consider the relayd dead */
1448 if (errno == EPIPE || errno == EINVAL) {
1449 relayd_hang_up = 1;
1450 goto write_error;
1451 }
1452 goto end;
1453 } else if (ret > len) {
1454 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1455 written += ret;
1456 goto end;
1457 } else {
1458 len -= ret;
1459 mmap_offset += ret;
1460 }
1461
1462 /* This call is useless on a socket so better save a syscall. */
1463 if (!relayd) {
1464 /* This won't block, but will start writeout asynchronously */
1465 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1466 SYNC_FILE_RANGE_WRITE);
1467 stream->out_fd_offset += ret;
1468 }
1469 written += ret;
1470 }
1471 lttng_consumer_sync_trace_file(stream, orig_offset);
1472
1473 write_error:
1474 /*
1475 * This is a special case that the relayd has closed its socket. Let's
1476 * cleanup the relayd object and all associated streams.
1477 */
1478 if (relayd && relayd_hang_up) {
1479 cleanup_relayd(relayd, ctx);
1480 }
1481
1482 end:
1483 /* Unlock only if ctrl socket used */
1484 if (relayd && stream->metadata_flag) {
1485 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1486 }
1487
1488 rcu_read_unlock();
1489 return written;
1490 }
1491
1492 /*
1493 * Splice the data from the ring buffer to the tracefile.
1494 *
1495 * It must be called with the stream lock held.
1496 *
1497 * Returns the number of bytes spliced.
1498 */
1499 ssize_t lttng_consumer_on_read_subbuffer_splice(
1500 struct lttng_consumer_local_data *ctx,
1501 struct lttng_consumer_stream *stream, unsigned long len,
1502 unsigned long padding)
1503 {
1504 ssize_t ret = 0, written = 0, ret_splice = 0;
1505 loff_t offset = 0;
1506 off_t orig_offset = stream->out_fd_offset;
1507 int fd = stream->wait_fd;
1508 /* Default is on the disk */
1509 int outfd = stream->out_fd;
1510 struct consumer_relayd_sock_pair *relayd = NULL;
1511 int *splice_pipe;
1512 unsigned int relayd_hang_up = 0;
1513
1514 switch (consumer_data.type) {
1515 case LTTNG_CONSUMER_KERNEL:
1516 break;
1517 case LTTNG_CONSUMER32_UST:
1518 case LTTNG_CONSUMER64_UST:
1519 /* Not supported for user space tracing */
1520 return -ENOSYS;
1521 default:
1522 ERR("Unknown consumer_data type");
1523 assert(0);
1524 }
1525
1526 /* RCU lock for the relayd pointer */
1527 rcu_read_lock();
1528
1529 /* Flag that the current stream if set for network streaming. */
1530 if (stream->net_seq_idx != -1) {
1531 relayd = consumer_find_relayd(stream->net_seq_idx);
1532 if (relayd == NULL) {
1533 goto end;
1534 }
1535 }
1536
1537 /*
1538 * Choose right pipe for splice. Metadata and trace data are handled by
1539 * different threads hence the use of two pipes in order not to race or
1540 * corrupt the written data.
1541 */
1542 if (stream->metadata_flag) {
1543 splice_pipe = ctx->consumer_splice_metadata_pipe;
1544 } else {
1545 splice_pipe = ctx->consumer_thread_pipe;
1546 }
1547
1548 /* Write metadata stream id before payload */
1549 if (relayd) {
1550 int total_len = len;
1551
1552 if (stream->metadata_flag) {
1553 /*
1554 * Lock the control socket for the complete duration of the function
1555 * since from this point on we will use the socket.
1556 */
1557 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1558
1559 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1560 padding);
1561 if (ret < 0) {
1562 written = ret;
1563 /* Socket operation failed. We consider the relayd dead */
1564 if (ret == -EBADF) {
1565 WARN("Remote relayd disconnected. Stopping");
1566 relayd_hang_up = 1;
1567 goto write_error;
1568 }
1569 goto end;
1570 }
1571
1572 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1573 }
1574
1575 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1576 if (ret >= 0) {
1577 /* Use the returned socket. */
1578 outfd = ret;
1579 } else {
1580 /* Socket operation failed. We consider the relayd dead */
1581 if (ret == -EBADF) {
1582 WARN("Remote relayd disconnected. Stopping");
1583 relayd_hang_up = 1;
1584 goto write_error;
1585 }
1586 goto end;
1587 }
1588 } else {
1589 /* No streaming, we have to set the len with the full padding */
1590 len += padding;
1591
1592 /*
1593 * Check if we need to change the tracefile before writing the packet.
1594 */
1595 if (stream->chan->tracefile_size > 0 &&
1596 (stream->tracefile_size_current + len) >
1597 stream->chan->tracefile_size) {
1598 ret = utils_rotate_stream_file(stream->chan->pathname,
1599 stream->name, stream->chan->tracefile_size,
1600 stream->chan->tracefile_count, stream->uid, stream->gid,
1601 stream->out_fd, &(stream->tracefile_count_current));
1602 if (ret < 0) {
1603 ERR("Rotating output file");
1604 goto end;
1605 }
1606 outfd = stream->out_fd = ret;
1607 }
1608 stream->tracefile_size_current += len;
1609 }
1610
1611 while (len > 0) {
1612 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1613 (unsigned long)offset, len, fd, splice_pipe[1]);
1614 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1615 SPLICE_F_MOVE | SPLICE_F_MORE);
1616 DBG("splice chan to pipe, ret %zd", ret_splice);
1617 if (ret_splice < 0) {
1618 PERROR("Error in relay splice");
1619 if (written == 0) {
1620 written = ret_splice;
1621 }
1622 ret = errno;
1623 goto splice_error;
1624 }
1625
1626 /* Handle stream on the relayd if the output is on the network */
1627 if (relayd) {
1628 if (stream->metadata_flag) {
1629 size_t metadata_payload_size =
1630 sizeof(struct lttcomm_relayd_metadata_payload);
1631
1632 /* Update counter to fit the spliced data */
1633 ret_splice += metadata_payload_size;
1634 len += metadata_payload_size;
1635 /*
1636 * We do this so the return value can match the len passed as
1637 * argument to this function.
1638 */
1639 written -= metadata_payload_size;
1640 }
1641 }
1642
1643 /* Splice data out */
1644 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1645 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1646 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1647 if (ret_splice < 0) {
1648 PERROR("Error in file splice");
1649 if (written == 0) {
1650 written = ret_splice;
1651 }
1652 /* Socket operation failed. We consider the relayd dead */
1653 if (errno == EBADF || errno == EPIPE) {
1654 WARN("Remote relayd disconnected. Stopping");
1655 relayd_hang_up = 1;
1656 goto write_error;
1657 }
1658 ret = errno;
1659 goto splice_error;
1660 } else if (ret_splice > len) {
1661 errno = EINVAL;
1662 PERROR("Wrote more data than requested %zd (len: %lu)",
1663 ret_splice, len);
1664 written += ret_splice;
1665 ret = errno;
1666 goto splice_error;
1667 }
1668 len -= ret_splice;
1669
1670 /* This call is useless on a socket so better save a syscall. */
1671 if (!relayd) {
1672 /* This won't block, but will start writeout asynchronously */
1673 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1674 SYNC_FILE_RANGE_WRITE);
1675 stream->out_fd_offset += ret_splice;
1676 }
1677 written += ret_splice;
1678 }
1679 lttng_consumer_sync_trace_file(stream, orig_offset);
1680
1681 ret = ret_splice;
1682
1683 goto end;
1684
1685 write_error:
1686 /*
1687 * This is a special case that the relayd has closed its socket. Let's
1688 * cleanup the relayd object and all associated streams.
1689 */
1690 if (relayd && relayd_hang_up) {
1691 cleanup_relayd(relayd, ctx);
1692 /* Skip splice error so the consumer does not fail */
1693 goto end;
1694 }
1695
1696 splice_error:
1697 /* send the appropriate error description to sessiond */
1698 switch (ret) {
1699 case EINVAL:
1700 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1701 break;
1702 case ENOMEM:
1703 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1704 break;
1705 case ESPIPE:
1706 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1707 break;
1708 }
1709
1710 end:
1711 if (relayd && stream->metadata_flag) {
1712 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1713 }
1714
1715 rcu_read_unlock();
1716 return written;
1717 }
1718
1719 /*
1720 * Take a snapshot for a specific fd
1721 *
1722 * Returns 0 on success, < 0 on error
1723 */
1724 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1725 {
1726 switch (consumer_data.type) {
1727 case LTTNG_CONSUMER_KERNEL:
1728 return lttng_kconsumer_take_snapshot(stream);
1729 case LTTNG_CONSUMER32_UST:
1730 case LTTNG_CONSUMER64_UST:
1731 return lttng_ustconsumer_take_snapshot(stream);
1732 default:
1733 ERR("Unknown consumer_data type");
1734 assert(0);
1735 return -ENOSYS;
1736 }
1737 }
1738
1739 /*
1740 * Get the produced position
1741 *
1742 * Returns 0 on success, < 0 on error
1743 */
1744 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1745 unsigned long *pos)
1746 {
1747 switch (consumer_data.type) {
1748 case LTTNG_CONSUMER_KERNEL:
1749 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1750 case LTTNG_CONSUMER32_UST:
1751 case LTTNG_CONSUMER64_UST:
1752 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1753 default:
1754 ERR("Unknown consumer_data type");
1755 assert(0);
1756 return -ENOSYS;
1757 }
1758 }
1759
1760 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1761 int sock, struct pollfd *consumer_sockpoll)
1762 {
1763 switch (consumer_data.type) {
1764 case LTTNG_CONSUMER_KERNEL:
1765 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1766 case LTTNG_CONSUMER32_UST:
1767 case LTTNG_CONSUMER64_UST:
1768 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1769 default:
1770 ERR("Unknown consumer_data type");
1771 assert(0);
1772 return -ENOSYS;
1773 }
1774 }
1775
1776 /*
1777 * Iterate over all streams of the hashtable and free them properly.
1778 *
1779 * WARNING: *MUST* be used with data stream only.
1780 */
1781 static void destroy_data_stream_ht(struct lttng_ht *ht)
1782 {
1783 struct lttng_ht_iter iter;
1784 struct lttng_consumer_stream *stream;
1785
1786 if (ht == NULL) {
1787 return;
1788 }
1789
1790 rcu_read_lock();
1791 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1792 /*
1793 * Ignore return value since we are currently cleaning up so any error
1794 * can't be handled.
1795 */
1796 (void) consumer_del_stream(stream, ht);
1797 }
1798 rcu_read_unlock();
1799
1800 lttng_ht_destroy(ht);
1801 }
1802
1803 /*
1804 * Iterate over all streams of the hashtable and free them properly.
1805 *
1806 * XXX: Should not be only for metadata stream or else use an other name.
1807 */
1808 static void destroy_stream_ht(struct lttng_ht *ht)
1809 {
1810 struct lttng_ht_iter iter;
1811 struct lttng_consumer_stream *stream;
1812
1813 if (ht == NULL) {
1814 return;
1815 }
1816
1817 rcu_read_lock();
1818 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1819 /*
1820 * Ignore return value since we are currently cleaning up so any error
1821 * can't be handled.
1822 */
1823 (void) consumer_del_metadata_stream(stream, ht);
1824 }
1825 rcu_read_unlock();
1826
1827 lttng_ht_destroy(ht);
1828 }
1829
1830 void lttng_consumer_close_metadata(void)
1831 {
1832 switch (consumer_data.type) {
1833 case LTTNG_CONSUMER_KERNEL:
1834 /*
1835 * The Kernel consumer has a different metadata scheme so we don't
1836 * close anything because the stream will be closed by the session
1837 * daemon.
1838 */
1839 break;
1840 case LTTNG_CONSUMER32_UST:
1841 case LTTNG_CONSUMER64_UST:
1842 /*
1843 * Close all metadata streams. The metadata hash table is passed and
1844 * this call iterates over it by closing all wakeup fd. This is safe
1845 * because at this point we are sure that the metadata producer is
1846 * either dead or blocked.
1847 */
1848 lttng_ustconsumer_close_metadata(metadata_ht);
1849 break;
1850 default:
1851 ERR("Unknown consumer_data type");
1852 assert(0);
1853 }
1854 }
1855
1856 /*
1857 * Clean up a metadata stream and free its memory.
1858 */
1859 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1860 struct lttng_ht *ht)
1861 {
1862 int ret;
1863 struct lttng_ht_iter iter;
1864 struct lttng_consumer_channel *free_chan = NULL;
1865 struct consumer_relayd_sock_pair *relayd;
1866
1867 assert(stream);
1868 /*
1869 * This call should NEVER receive regular stream. It must always be
1870 * metadata stream and this is crucial for data structure synchronization.
1871 */
1872 assert(stream->metadata_flag);
1873
1874 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1875
1876 if (ht == NULL) {
1877 /* Means the stream was allocated but not successfully added */
1878 goto free_stream_rcu;
1879 }
1880
1881 pthread_mutex_lock(&consumer_data.lock);
1882 pthread_mutex_lock(&stream->lock);
1883
1884 switch (consumer_data.type) {
1885 case LTTNG_CONSUMER_KERNEL:
1886 if (stream->mmap_base != NULL) {
1887 ret = munmap(stream->mmap_base, stream->mmap_len);
1888 if (ret != 0) {
1889 PERROR("munmap metadata stream");
1890 }
1891 }
1892 break;
1893 case LTTNG_CONSUMER32_UST:
1894 case LTTNG_CONSUMER64_UST:
1895 lttng_ustconsumer_del_stream(stream);
1896 break;
1897 default:
1898 ERR("Unknown consumer_data type");
1899 assert(0);
1900 goto end;
1901 }
1902
1903 rcu_read_lock();
1904 iter.iter.node = &stream->node.node;
1905 ret = lttng_ht_del(ht, &iter);
1906 assert(!ret);
1907
1908 iter.iter.node = &stream->node_channel_id.node;
1909 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1910 assert(!ret);
1911
1912 iter.iter.node = &stream->node_session_id.node;
1913 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1914 assert(!ret);
1915 rcu_read_unlock();
1916
1917 if (stream->out_fd >= 0) {
1918 ret = close(stream->out_fd);
1919 if (ret) {
1920 PERROR("close");
1921 }
1922 }
1923
1924 /* Check and cleanup relayd */
1925 rcu_read_lock();
1926 relayd = consumer_find_relayd(stream->net_seq_idx);
1927 if (relayd != NULL) {
1928 uatomic_dec(&relayd->refcount);
1929 assert(uatomic_read(&relayd->refcount) >= 0);
1930
1931 /* Closing streams requires to lock the control socket. */
1932 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1933 ret = relayd_send_close_stream(&relayd->control_sock,
1934 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1935 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1936 if (ret < 0) {
1937 DBG("Unable to close stream on the relayd. Continuing");
1938 /*
1939 * Continue here. There is nothing we can do for the relayd.
1940 * Chances are that the relayd has closed the socket so we just
1941 * continue cleaning up.
1942 */
1943 }
1944
1945 /* Both conditions are met, we destroy the relayd. */
1946 if (uatomic_read(&relayd->refcount) == 0 &&
1947 uatomic_read(&relayd->destroy_flag)) {
1948 destroy_relayd(relayd);
1949 }
1950 }
1951 rcu_read_unlock();
1952
1953 /* Atomically decrement channel refcount since other threads can use it. */
1954 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1955 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1956 /* Go for channel deletion! */
1957 free_chan = stream->chan;
1958 }
1959
1960 end:
1961 pthread_mutex_unlock(&stream->lock);
1962 pthread_mutex_unlock(&consumer_data.lock);
1963
1964 if (free_chan) {
1965 consumer_del_channel(free_chan);
1966 }
1967
1968 free_stream_rcu:
1969 call_rcu(&stream->node.head, free_stream_rcu);
1970 }
1971
1972 /*
1973 * Action done with the metadata stream when adding it to the consumer internal
1974 * data structures to handle it.
1975 */
1976 static int add_metadata_stream(struct lttng_consumer_stream *stream,
1977 struct lttng_ht *ht)
1978 {
1979 int ret = 0;
1980 struct consumer_relayd_sock_pair *relayd;
1981 struct lttng_ht_iter iter;
1982 struct lttng_ht_node_u64 *node;
1983
1984 assert(stream);
1985 assert(ht);
1986
1987 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
1988
1989 pthread_mutex_lock(&consumer_data.lock);
1990 pthread_mutex_lock(&stream->lock);
1991
1992 /*
1993 * From here, refcounts are updated so be _careful_ when returning an error
1994 * after this point.
1995 */
1996
1997 rcu_read_lock();
1998
1999 /*
2000 * Lookup the stream just to make sure it does not exist in our internal
2001 * state. This should NEVER happen.
2002 */
2003 lttng_ht_lookup(ht, &stream->key, &iter);
2004 node = lttng_ht_iter_get_node_u64(&iter);
2005 assert(!node);
2006
2007 /* Find relayd and, if one is found, increment refcount. */
2008 relayd = consumer_find_relayd(stream->net_seq_idx);
2009 if (relayd != NULL) {
2010 uatomic_inc(&relayd->refcount);
2011 }
2012
2013 /* Update channel refcount once added without error(s). */
2014 uatomic_inc(&stream->chan->refcount);
2015
2016 /*
2017 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2018 * in terms of destroying the associated channel, because the action that
2019 * causes the count to become 0 also causes a stream to be added. The
2020 * channel deletion will thus be triggered by the following removal of this
2021 * stream.
2022 */
2023 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2024 /* Increment refcount before decrementing nb_init_stream_left */
2025 cmm_smp_wmb();
2026 uatomic_dec(&stream->chan->nb_init_stream_left);
2027 }
2028
2029 lttng_ht_add_unique_u64(ht, &stream->node);
2030
2031 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2032 &stream->node_channel_id);
2033
2034 /*
2035 * Add stream to the stream_list_ht of the consumer data. No need to steal
2036 * the key since the HT does not use it and we allow to add redundant keys
2037 * into this table.
2038 */
2039 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2040
2041 rcu_read_unlock();
2042
2043 pthread_mutex_unlock(&stream->lock);
2044 pthread_mutex_unlock(&consumer_data.lock);
2045 return ret;
2046 }
2047
2048 /*
2049 * Delete data stream that are flagged for deletion (endpoint_status).
2050 */
2051 static void validate_endpoint_status_data_stream(void)
2052 {
2053 struct lttng_ht_iter iter;
2054 struct lttng_consumer_stream *stream;
2055
2056 DBG("Consumer delete flagged data stream");
2057
2058 rcu_read_lock();
2059 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2060 /* Validate delete flag of the stream */
2061 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2062 continue;
2063 }
2064 /* Delete it right now */
2065 consumer_del_stream(stream, data_ht);
2066 }
2067 rcu_read_unlock();
2068 }
2069
2070 /*
2071 * Delete metadata stream that are flagged for deletion (endpoint_status).
2072 */
2073 static void validate_endpoint_status_metadata_stream(
2074 struct lttng_poll_event *pollset)
2075 {
2076 struct lttng_ht_iter iter;
2077 struct lttng_consumer_stream *stream;
2078
2079 DBG("Consumer delete flagged metadata stream");
2080
2081 assert(pollset);
2082
2083 rcu_read_lock();
2084 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2085 /* Validate delete flag of the stream */
2086 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2087 continue;
2088 }
2089 /*
2090 * Remove from pollset so the metadata thread can continue without
2091 * blocking on a deleted stream.
2092 */
2093 lttng_poll_del(pollset, stream->wait_fd);
2094
2095 /* Delete it right now */
2096 consumer_del_metadata_stream(stream, metadata_ht);
2097 }
2098 rcu_read_unlock();
2099 }
2100
2101 /*
2102 * Thread polls on metadata file descriptor and write them on disk or on the
2103 * network.
2104 */
2105 void *consumer_thread_metadata_poll(void *data)
2106 {
2107 int ret, i, pollfd;
2108 uint32_t revents, nb_fd;
2109 struct lttng_consumer_stream *stream = NULL;
2110 struct lttng_ht_iter iter;
2111 struct lttng_ht_node_u64 *node;
2112 struct lttng_poll_event events;
2113 struct lttng_consumer_local_data *ctx = data;
2114 ssize_t len;
2115
2116 rcu_register_thread();
2117
2118 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2119 if (!metadata_ht) {
2120 /* ENOMEM at this point. Better to bail out. */
2121 goto end_ht;
2122 }
2123
2124 DBG("Thread metadata poll started");
2125
2126 /* Size is set to 1 for the consumer_metadata pipe */
2127 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2128 if (ret < 0) {
2129 ERR("Poll set creation failed");
2130 goto end_poll;
2131 }
2132
2133 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
2134 if (ret < 0) {
2135 goto end;
2136 }
2137
2138 /* Main loop */
2139 DBG("Metadata main loop started");
2140
2141 while (1) {
2142 /* Only the metadata pipe is set */
2143 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2144 goto end;
2145 }
2146
2147 restart:
2148 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2149 ret = lttng_poll_wait(&events, -1);
2150 DBG("Metadata event catched in thread");
2151 if (ret < 0) {
2152 if (errno == EINTR) {
2153 ERR("Poll EINTR catched");
2154 goto restart;
2155 }
2156 goto error;
2157 }
2158
2159 nb_fd = ret;
2160
2161 /* From here, the event is a metadata wait fd */
2162 for (i = 0; i < nb_fd; i++) {
2163 revents = LTTNG_POLL_GETEV(&events, i);
2164 pollfd = LTTNG_POLL_GETFD(&events, i);
2165
2166 /* Just don't waste time if no returned events for the fd */
2167 if (!revents) {
2168 continue;
2169 }
2170
2171 if (pollfd == ctx->consumer_metadata_pipe[0]) {
2172 if (revents & (LPOLLERR | LPOLLHUP )) {
2173 DBG("Metadata thread pipe hung up");
2174 /*
2175 * Remove the pipe from the poll set and continue the loop
2176 * since their might be data to consume.
2177 */
2178 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
2179 ret = close(ctx->consumer_metadata_pipe[0]);
2180 if (ret < 0) {
2181 PERROR("close metadata pipe");
2182 }
2183 continue;
2184 } else if (revents & LPOLLIN) {
2185 do {
2186 /* Get the stream pointer received */
2187 ret = read(pollfd, &stream, sizeof(stream));
2188 } while (ret < 0 && errno == EINTR);
2189 if (ret < 0 ||
2190 ret < sizeof(struct lttng_consumer_stream *)) {
2191 PERROR("read metadata stream");
2192 /*
2193 * Let's continue here and hope we can still work
2194 * without stopping the consumer. XXX: Should we?
2195 */
2196 continue;
2197 }
2198
2199 /* A NULL stream means that the state has changed. */
2200 if (stream == NULL) {
2201 /* Check for deleted streams. */
2202 validate_endpoint_status_metadata_stream(&events);
2203 goto restart;
2204 }
2205
2206 DBG("Adding metadata stream %d to poll set",
2207 stream->wait_fd);
2208
2209 ret = add_metadata_stream(stream, metadata_ht);
2210 if (ret) {
2211 ERR("Unable to add metadata stream");
2212 /* Stream was not setup properly. Continuing. */
2213 consumer_del_metadata_stream(stream, NULL);
2214 continue;
2215 }
2216
2217 /* Add metadata stream to the global poll events list */
2218 lttng_poll_add(&events, stream->wait_fd,
2219 LPOLLIN | LPOLLPRI);
2220 }
2221
2222 /* Handle other stream */
2223 continue;
2224 }
2225
2226 rcu_read_lock();
2227 {
2228 uint64_t tmp_id = (uint64_t) pollfd;
2229
2230 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2231 }
2232 node = lttng_ht_iter_get_node_u64(&iter);
2233 assert(node);
2234
2235 stream = caa_container_of(node, struct lttng_consumer_stream,
2236 node);
2237
2238 /* Check for error event */
2239 if (revents & (LPOLLERR | LPOLLHUP)) {
2240 DBG("Metadata fd %d is hup|err.", pollfd);
2241 if (!stream->hangup_flush_done
2242 && (consumer_data.type == LTTNG_CONSUMER32_UST
2243 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2244 DBG("Attempting to flush and consume the UST buffers");
2245 lttng_ustconsumer_on_stream_hangup(stream);
2246
2247 /* We just flushed the stream now read it. */
2248 do {
2249 len = ctx->on_buffer_ready(stream, ctx);
2250 /*
2251 * We don't check the return value here since if we get
2252 * a negative len, it means an error occured thus we
2253 * simply remove it from the poll set and free the
2254 * stream.
2255 */
2256 } while (len > 0);
2257 }
2258
2259 lttng_poll_del(&events, stream->wait_fd);
2260 /*
2261 * This call update the channel states, closes file descriptors
2262 * and securely free the stream.
2263 */
2264 consumer_del_metadata_stream(stream, metadata_ht);
2265 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2266 /* Get the data out of the metadata file descriptor */
2267 DBG("Metadata available on fd %d", pollfd);
2268 assert(stream->wait_fd == pollfd);
2269
2270 len = ctx->on_buffer_ready(stream, ctx);
2271 /* It's ok to have an unavailable sub-buffer */
2272 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2273 /* Clean up stream from consumer and free it. */
2274 lttng_poll_del(&events, stream->wait_fd);
2275 consumer_del_metadata_stream(stream, metadata_ht);
2276 } else if (len > 0) {
2277 stream->data_read = 1;
2278 }
2279 }
2280
2281 /* Release RCU lock for the stream looked up */
2282 rcu_read_unlock();
2283 }
2284 }
2285
2286 error:
2287 end:
2288 DBG("Metadata poll thread exiting");
2289
2290 lttng_poll_clean(&events);
2291 end_poll:
2292 destroy_stream_ht(metadata_ht);
2293 end_ht:
2294 rcu_unregister_thread();
2295 return NULL;
2296 }
2297
2298 /*
2299 * This thread polls the fds in the set to consume the data and write
2300 * it to tracefile if necessary.
2301 */
2302 void *consumer_thread_data_poll(void *data)
2303 {
2304 int num_rdy, num_hup, high_prio, ret, i;
2305 struct pollfd *pollfd = NULL;
2306 /* local view of the streams */
2307 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2308 /* local view of consumer_data.fds_count */
2309 int nb_fd = 0;
2310 struct lttng_consumer_local_data *ctx = data;
2311 ssize_t len;
2312
2313 rcu_register_thread();
2314
2315 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2316 if (data_ht == NULL) {
2317 /* ENOMEM at this point. Better to bail out. */
2318 goto end;
2319 }
2320
2321 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2322
2323 while (1) {
2324 high_prio = 0;
2325 num_hup = 0;
2326
2327 /*
2328 * the fds set has been updated, we need to update our
2329 * local array as well
2330 */
2331 pthread_mutex_lock(&consumer_data.lock);
2332 if (consumer_data.need_update) {
2333 free(pollfd);
2334 pollfd = NULL;
2335
2336 free(local_stream);
2337 local_stream = NULL;
2338
2339 /* allocate for all fds + 1 for the consumer_data_pipe */
2340 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2341 if (pollfd == NULL) {
2342 PERROR("pollfd malloc");
2343 pthread_mutex_unlock(&consumer_data.lock);
2344 goto end;
2345 }
2346
2347 /* allocate for all fds + 1 for the consumer_data_pipe */
2348 local_stream = zmalloc((consumer_data.stream_count + 1) *
2349 sizeof(struct lttng_consumer_stream));
2350 if (local_stream == NULL) {
2351 PERROR("local_stream malloc");
2352 pthread_mutex_unlock(&consumer_data.lock);
2353 goto end;
2354 }
2355 ret = update_poll_array(ctx, &pollfd, local_stream,
2356 data_ht);
2357 if (ret < 0) {
2358 ERR("Error in allocating pollfd or local_outfds");
2359 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2360 pthread_mutex_unlock(&consumer_data.lock);
2361 goto end;
2362 }
2363 nb_fd = ret;
2364 consumer_data.need_update = 0;
2365 }
2366 pthread_mutex_unlock(&consumer_data.lock);
2367
2368 /* No FDs and consumer_quit, consumer_cleanup the thread */
2369 if (nb_fd == 0 && consumer_quit == 1) {
2370 goto end;
2371 }
2372 /* poll on the array of fds */
2373 restart:
2374 DBG("polling on %d fd", nb_fd + 1);
2375 num_rdy = poll(pollfd, nb_fd + 1, -1);
2376 DBG("poll num_rdy : %d", num_rdy);
2377 if (num_rdy == -1) {
2378 /*
2379 * Restart interrupted system call.
2380 */
2381 if (errno == EINTR) {
2382 goto restart;
2383 }
2384 PERROR("Poll error");
2385 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2386 goto end;
2387 } else if (num_rdy == 0) {
2388 DBG("Polling thread timed out");
2389 goto end;
2390 }
2391
2392 /*
2393 * If the consumer_data_pipe triggered poll go directly to the
2394 * beginning of the loop to update the array. We want to prioritize
2395 * array update over low-priority reads.
2396 */
2397 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2398 ssize_t pipe_readlen;
2399
2400 DBG("consumer_data_pipe wake up");
2401 /* Consume 1 byte of pipe data */
2402 do {
2403 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2404 sizeof(new_stream));
2405 } while (pipe_readlen == -1 && errno == EINTR);
2406 if (pipe_readlen < 0) {
2407 PERROR("read consumer data pipe");
2408 /* Continue so we can at least handle the current stream(s). */
2409 continue;
2410 }
2411
2412 /*
2413 * If the stream is NULL, just ignore it. It's also possible that
2414 * the sessiond poll thread changed the consumer_quit state and is
2415 * waking us up to test it.
2416 */
2417 if (new_stream == NULL) {
2418 validate_endpoint_status_data_stream();
2419 continue;
2420 }
2421
2422 ret = add_stream(new_stream, data_ht);
2423 if (ret) {
2424 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2425 new_stream->key);
2426 /*
2427 * At this point, if the add_stream fails, it is not in the
2428 * hash table thus passing the NULL value here.
2429 */
2430 consumer_del_stream(new_stream, NULL);
2431 }
2432
2433 /* Continue to update the local streams and handle prio ones */
2434 continue;
2435 }
2436
2437 /* Take care of high priority channels first. */
2438 for (i = 0; i < nb_fd; i++) {
2439 if (local_stream[i] == NULL) {
2440 continue;
2441 }
2442 if (pollfd[i].revents & POLLPRI) {
2443 DBG("Urgent read on fd %d", pollfd[i].fd);
2444 high_prio = 1;
2445 len = ctx->on_buffer_ready(local_stream[i], ctx);
2446 /* it's ok to have an unavailable sub-buffer */
2447 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2448 /* Clean the stream and free it. */
2449 consumer_del_stream(local_stream[i], data_ht);
2450 local_stream[i] = NULL;
2451 } else if (len > 0) {
2452 local_stream[i]->data_read = 1;
2453 }
2454 }
2455 }
2456
2457 /*
2458 * If we read high prio channel in this loop, try again
2459 * for more high prio data.
2460 */
2461 if (high_prio) {
2462 continue;
2463 }
2464
2465 /* Take care of low priority channels. */
2466 for (i = 0; i < nb_fd; i++) {
2467 if (local_stream[i] == NULL) {
2468 continue;
2469 }
2470 if ((pollfd[i].revents & POLLIN) ||
2471 local_stream[i]->hangup_flush_done) {
2472 DBG("Normal read on fd %d", pollfd[i].fd);
2473 len = ctx->on_buffer_ready(local_stream[i], ctx);
2474 /* it's ok to have an unavailable sub-buffer */
2475 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2476 /* Clean the stream and free it. */
2477 consumer_del_stream(local_stream[i], data_ht);
2478 local_stream[i] = NULL;
2479 } else if (len > 0) {
2480 local_stream[i]->data_read = 1;
2481 }
2482 }
2483 }
2484
2485 /* Handle hangup and errors */
2486 for (i = 0; i < nb_fd; i++) {
2487 if (local_stream[i] == NULL) {
2488 continue;
2489 }
2490 if (!local_stream[i]->hangup_flush_done
2491 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2492 && (consumer_data.type == LTTNG_CONSUMER32_UST
2493 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2494 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2495 pollfd[i].fd);
2496 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2497 /* Attempt read again, for the data we just flushed. */
2498 local_stream[i]->data_read = 1;
2499 }
2500 /*
2501 * If the poll flag is HUP/ERR/NVAL and we have
2502 * read no data in this pass, we can remove the
2503 * stream from its hash table.
2504 */
2505 if ((pollfd[i].revents & POLLHUP)) {
2506 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2507 if (!local_stream[i]->data_read) {
2508 consumer_del_stream(local_stream[i], data_ht);
2509 local_stream[i] = NULL;
2510 num_hup++;
2511 }
2512 } else if (pollfd[i].revents & POLLERR) {
2513 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2514 if (!local_stream[i]->data_read) {
2515 consumer_del_stream(local_stream[i], data_ht);
2516 local_stream[i] = NULL;
2517 num_hup++;
2518 }
2519 } else if (pollfd[i].revents & POLLNVAL) {
2520 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2521 if (!local_stream[i]->data_read) {
2522 consumer_del_stream(local_stream[i], data_ht);
2523 local_stream[i] = NULL;
2524 num_hup++;
2525 }
2526 }
2527 if (local_stream[i] != NULL) {
2528 local_stream[i]->data_read = 0;
2529 }
2530 }
2531 }
2532 end:
2533 DBG("polling thread exiting");
2534 free(pollfd);
2535 free(local_stream);
2536
2537 /*
2538 * Close the write side of the pipe so epoll_wait() in
2539 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2540 * read side of the pipe. If we close them both, epoll_wait strangely does
2541 * not return and could create a endless wait period if the pipe is the
2542 * only tracked fd in the poll set. The thread will take care of closing
2543 * the read side.
2544 */
2545 ret = close(ctx->consumer_metadata_pipe[1]);
2546 if (ret < 0) {
2547 PERROR("close data pipe");
2548 }
2549
2550 destroy_data_stream_ht(data_ht);
2551
2552 rcu_unregister_thread();
2553 return NULL;
2554 }
2555
2556 /*
2557 * Close wake-up end of each stream belonging to the channel. This will
2558 * allow the poll() on the stream read-side to detect when the
2559 * write-side (application) finally closes them.
2560 */
2561 static
2562 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2563 {
2564 struct lttng_ht *ht;
2565 struct lttng_consumer_stream *stream;
2566 struct lttng_ht_iter iter;
2567
2568 ht = consumer_data.stream_per_chan_id_ht;
2569
2570 rcu_read_lock();
2571 cds_lfht_for_each_entry_duplicate(ht->ht,
2572 ht->hash_fct(&channel->key, lttng_ht_seed),
2573 ht->match_fct, &channel->key,
2574 &iter.iter, stream, node_channel_id.node) {
2575 /*
2576 * Protect against teardown with mutex.
2577 */
2578 pthread_mutex_lock(&stream->lock);
2579 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2580 goto next;
2581 }
2582 switch (consumer_data.type) {
2583 case LTTNG_CONSUMER_KERNEL:
2584 break;
2585 case LTTNG_CONSUMER32_UST:
2586 case LTTNG_CONSUMER64_UST:
2587 /*
2588 * Note: a mutex is taken internally within
2589 * liblttng-ust-ctl to protect timer wakeup_fd
2590 * use from concurrent close.
2591 */
2592 lttng_ustconsumer_close_stream_wakeup(stream);
2593 break;
2594 default:
2595 ERR("Unknown consumer_data type");
2596 assert(0);
2597 }
2598 next:
2599 pthread_mutex_unlock(&stream->lock);
2600 }
2601 rcu_read_unlock();
2602 }
2603
2604 static void destroy_channel_ht(struct lttng_ht *ht)
2605 {
2606 struct lttng_ht_iter iter;
2607 struct lttng_consumer_channel *channel;
2608 int ret;
2609
2610 if (ht == NULL) {
2611 return;
2612 }
2613
2614 rcu_read_lock();
2615 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2616 ret = lttng_ht_del(ht, &iter);
2617 assert(ret != 0);
2618 }
2619 rcu_read_unlock();
2620
2621 lttng_ht_destroy(ht);
2622 }
2623
2624 /*
2625 * This thread polls the channel fds to detect when they are being
2626 * closed. It closes all related streams if the channel is detected as
2627 * closed. It is currently only used as a shim layer for UST because the
2628 * consumerd needs to keep the per-stream wakeup end of pipes open for
2629 * periodical flush.
2630 */
2631 void *consumer_thread_channel_poll(void *data)
2632 {
2633 int ret, i, pollfd;
2634 uint32_t revents, nb_fd;
2635 struct lttng_consumer_channel *chan = NULL;
2636 struct lttng_ht_iter iter;
2637 struct lttng_ht_node_u64 *node;
2638 struct lttng_poll_event events;
2639 struct lttng_consumer_local_data *ctx = data;
2640 struct lttng_ht *channel_ht;
2641
2642 rcu_register_thread();
2643
2644 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2645 if (!channel_ht) {
2646 /* ENOMEM at this point. Better to bail out. */
2647 goto end_ht;
2648 }
2649
2650 DBG("Thread channel poll started");
2651
2652 /* Size is set to 1 for the consumer_channel pipe */
2653 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2654 if (ret < 0) {
2655 ERR("Poll set creation failed");
2656 goto end_poll;
2657 }
2658
2659 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2660 if (ret < 0) {
2661 goto end;
2662 }
2663
2664 /* Main loop */
2665 DBG("Channel main loop started");
2666
2667 while (1) {
2668 /* Only the channel pipe is set */
2669 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2670 goto end;
2671 }
2672
2673 restart:
2674 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2675 ret = lttng_poll_wait(&events, -1);
2676 DBG("Channel event catched in thread");
2677 if (ret < 0) {
2678 if (errno == EINTR) {
2679 ERR("Poll EINTR catched");
2680 goto restart;
2681 }
2682 goto end;
2683 }
2684
2685 nb_fd = ret;
2686
2687 /* From here, the event is a channel wait fd */
2688 for (i = 0; i < nb_fd; i++) {
2689 revents = LTTNG_POLL_GETEV(&events, i);
2690 pollfd = LTTNG_POLL_GETFD(&events, i);
2691
2692 /* Just don't waste time if no returned events for the fd */
2693 if (!revents) {
2694 continue;
2695 }
2696 if (pollfd == ctx->consumer_channel_pipe[0]) {
2697 if (revents & (LPOLLERR | LPOLLHUP)) {
2698 DBG("Channel thread pipe hung up");
2699 /*
2700 * Remove the pipe from the poll set and continue the loop
2701 * since their might be data to consume.
2702 */
2703 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2704 continue;
2705 } else if (revents & LPOLLIN) {
2706 enum consumer_channel_action action;
2707 uint64_t key;
2708
2709 ret = read_channel_pipe(ctx, &chan, &key, &action);
2710 if (ret <= 0) {
2711 ERR("Error reading channel pipe");
2712 continue;
2713 }
2714
2715 switch (action) {
2716 case CONSUMER_CHANNEL_ADD:
2717 DBG("Adding channel %d to poll set",
2718 chan->wait_fd);
2719
2720 lttng_ht_node_init_u64(&chan->wait_fd_node,
2721 chan->wait_fd);
2722 lttng_ht_add_unique_u64(channel_ht,
2723 &chan->wait_fd_node);
2724 /* Add channel to the global poll events list */
2725 lttng_poll_add(&events, chan->wait_fd,
2726 LPOLLIN | LPOLLPRI);
2727 break;
2728 case CONSUMER_CHANNEL_DEL:
2729 {
2730 chan = consumer_find_channel(key);
2731 if (!chan) {
2732 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2733 break;
2734 }
2735 lttng_poll_del(&events, chan->wait_fd);
2736 ret = lttng_ht_del(channel_ht, &iter);
2737 assert(ret == 0);
2738 consumer_close_channel_streams(chan);
2739
2740 /*
2741 * Release our own refcount. Force channel deletion even if
2742 * streams were not initialized.
2743 */
2744 if (!uatomic_sub_return(&chan->refcount, 1)) {
2745 consumer_del_channel(chan);
2746 }
2747 goto restart;
2748 }
2749 case CONSUMER_CHANNEL_QUIT:
2750 /*
2751 * Remove the pipe from the poll set and continue the loop
2752 * since their might be data to consume.
2753 */
2754 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2755 continue;
2756 default:
2757 ERR("Unknown action");
2758 break;
2759 }
2760 }
2761
2762 /* Handle other stream */
2763 continue;
2764 }
2765
2766 rcu_read_lock();
2767 {
2768 uint64_t tmp_id = (uint64_t) pollfd;
2769
2770 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2771 }
2772 node = lttng_ht_iter_get_node_u64(&iter);
2773 assert(node);
2774
2775 chan = caa_container_of(node, struct lttng_consumer_channel,
2776 wait_fd_node);
2777
2778 /* Check for error event */
2779 if (revents & (LPOLLERR | LPOLLHUP)) {
2780 DBG("Channel fd %d is hup|err.", pollfd);
2781
2782 lttng_poll_del(&events, chan->wait_fd);
2783 ret = lttng_ht_del(channel_ht, &iter);
2784 assert(ret == 0);
2785 consumer_close_channel_streams(chan);
2786
2787 /* Release our own refcount */
2788 if (!uatomic_sub_return(&chan->refcount, 1)
2789 && !uatomic_read(&chan->nb_init_stream_left)) {
2790 consumer_del_channel(chan);
2791 }
2792 }
2793
2794 /* Release RCU lock for the channel looked up */
2795 rcu_read_unlock();
2796 }
2797 }
2798
2799 end:
2800 lttng_poll_clean(&events);
2801 end_poll:
2802 destroy_channel_ht(channel_ht);
2803 end_ht:
2804 DBG("Channel poll thread exiting");
2805 rcu_unregister_thread();
2806 return NULL;
2807 }
2808
2809 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2810 struct pollfd *sockpoll, int client_socket)
2811 {
2812 int ret;
2813
2814 assert(ctx);
2815 assert(sockpoll);
2816
2817 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2818 ret = -1;
2819 goto error;
2820 }
2821 DBG("Metadata connection on client_socket");
2822
2823 /* Blocking call, waiting for transmission */
2824 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2825 if (ctx->consumer_metadata_socket < 0) {
2826 WARN("On accept metadata");
2827 ret = -1;
2828 goto error;
2829 }
2830 ret = 0;
2831
2832 error:
2833 return ret;
2834 }
2835
2836 /*
2837 * This thread listens on the consumerd socket and receives the file
2838 * descriptors from the session daemon.
2839 */
2840 void *consumer_thread_sessiond_poll(void *data)
2841 {
2842 int sock = -1, client_socket, ret;
2843 /*
2844 * structure to poll for incoming data on communication socket avoids
2845 * making blocking sockets.
2846 */
2847 struct pollfd consumer_sockpoll[2];
2848 struct lttng_consumer_local_data *ctx = data;
2849
2850 rcu_register_thread();
2851
2852 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2853 unlink(ctx->consumer_command_sock_path);
2854 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2855 if (client_socket < 0) {
2856 ERR("Cannot create command socket");
2857 goto end;
2858 }
2859
2860 ret = lttcomm_listen_unix_sock(client_socket);
2861 if (ret < 0) {
2862 goto end;
2863 }
2864
2865 DBG("Sending ready command to lttng-sessiond");
2866 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2867 /* return < 0 on error, but == 0 is not fatal */
2868 if (ret < 0) {
2869 ERR("Error sending ready command to lttng-sessiond");
2870 goto end;
2871 }
2872
2873 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2874 if (ret < 0) {
2875 PERROR("fcntl O_NONBLOCK");
2876 goto end;
2877 }
2878
2879 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2880 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2881 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2882 consumer_sockpoll[1].fd = client_socket;
2883 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2884
2885 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2886 goto end;
2887 }
2888 DBG("Connection on client_socket");
2889
2890 /* Blocking call, waiting for transmission */
2891 sock = lttcomm_accept_unix_sock(client_socket);
2892 if (sock < 0) {
2893 WARN("On accept");
2894 goto end;
2895 }
2896 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2897 if (ret < 0) {
2898 PERROR("fcntl O_NONBLOCK");
2899 goto end;
2900 }
2901
2902 /*
2903 * Setup metadata socket which is the second socket connection on the
2904 * command unix socket.
2905 */
2906 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2907 if (ret < 0) {
2908 goto end;
2909 }
2910
2911 /* This socket is not useful anymore. */
2912 ret = close(client_socket);
2913 if (ret < 0) {
2914 PERROR("close client_socket");
2915 }
2916 client_socket = -1;
2917
2918 /* update the polling structure to poll on the established socket */
2919 consumer_sockpoll[1].fd = sock;
2920 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2921
2922 while (1) {
2923 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2924 goto end;
2925 }
2926 DBG("Incoming command on sock");
2927 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2928 if (ret == -ENOENT) {
2929 DBG("Received STOP command");
2930 goto end;
2931 }
2932 if (ret <= 0) {
2933 /*
2934 * This could simply be a session daemon quitting. Don't output
2935 * ERR() here.
2936 */
2937 DBG("Communication interrupted on command socket");
2938 goto end;
2939 }
2940 if (consumer_quit) {
2941 DBG("consumer_thread_receive_fds received quit from signal");
2942 goto end;
2943 }
2944 DBG("received command on sock");
2945 }
2946 end:
2947 DBG("Consumer thread sessiond poll exiting");
2948
2949 /*
2950 * Close metadata streams since the producer is the session daemon which
2951 * just died.
2952 *
2953 * NOTE: for now, this only applies to the UST tracer.
2954 */
2955 lttng_consumer_close_metadata();
2956
2957 /*
2958 * when all fds have hung up, the polling thread
2959 * can exit cleanly
2960 */
2961 consumer_quit = 1;
2962
2963 /*
2964 * Notify the data poll thread to poll back again and test the
2965 * consumer_quit state that we just set so to quit gracefully.
2966 */
2967 notify_thread_pipe(ctx->consumer_data_pipe[1]);
2968
2969 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2970
2971 /* Cleaning up possibly open sockets. */
2972 if (sock >= 0) {
2973 ret = close(sock);
2974 if (ret < 0) {
2975 PERROR("close sock sessiond poll");
2976 }
2977 }
2978 if (client_socket >= 0) {
2979 ret = close(sock);
2980 if (ret < 0) {
2981 PERROR("close client_socket sessiond poll");
2982 }
2983 }
2984
2985 rcu_unregister_thread();
2986 return NULL;
2987 }
2988
2989 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2990 struct lttng_consumer_local_data *ctx)
2991 {
2992 ssize_t ret;
2993
2994 pthread_mutex_lock(&stream->lock);
2995
2996 switch (consumer_data.type) {
2997 case LTTNG_CONSUMER_KERNEL:
2998 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2999 break;
3000 case LTTNG_CONSUMER32_UST:
3001 case LTTNG_CONSUMER64_UST:
3002 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3003 break;
3004 default:
3005 ERR("Unknown consumer_data type");
3006 assert(0);
3007 ret = -ENOSYS;
3008 break;
3009 }
3010
3011 pthread_mutex_unlock(&stream->lock);
3012 return ret;
3013 }
3014
3015 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3016 {
3017 switch (consumer_data.type) {
3018 case LTTNG_CONSUMER_KERNEL:
3019 return lttng_kconsumer_on_recv_stream(stream);
3020 case LTTNG_CONSUMER32_UST:
3021 case LTTNG_CONSUMER64_UST:
3022 return lttng_ustconsumer_on_recv_stream(stream);
3023 default:
3024 ERR("Unknown consumer_data type");
3025 assert(0);
3026 return -ENOSYS;
3027 }
3028 }
3029
3030 /*
3031 * Allocate and set consumer data hash tables.
3032 */
3033 void lttng_consumer_init(void)
3034 {
3035 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3036 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3037 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3038 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3039 }
3040
3041 /*
3042 * Process the ADD_RELAYD command receive by a consumer.
3043 *
3044 * This will create a relayd socket pair and add it to the relayd hash table.
3045 * The caller MUST acquire a RCU read side lock before calling it.
3046 */
3047 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
3048 struct lttng_consumer_local_data *ctx, int sock,
3049 struct pollfd *consumer_sockpoll,
3050 struct lttcomm_relayd_sock *relayd_sock, unsigned int sessiond_id)
3051 {
3052 int fd = -1, ret = -1, relayd_created = 0;
3053 enum lttng_error_code ret_code = LTTNG_OK;
3054 struct consumer_relayd_sock_pair *relayd = NULL;
3055
3056 assert(ctx);
3057 assert(relayd_sock);
3058
3059 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
3060
3061 /* First send a status message before receiving the fds. */
3062 ret = consumer_send_status_msg(sock, ret_code);
3063 if (ret < 0) {
3064 /* Somehow, the session daemon is not responding anymore. */
3065 goto error;
3066 }
3067
3068 /* Get relayd reference if exists. */
3069 relayd = consumer_find_relayd(net_seq_idx);
3070 if (relayd == NULL) {
3071 /* Not found. Allocate one. */
3072 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3073 if (relayd == NULL) {
3074 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
3075 ret = -1;
3076 goto error;
3077 }
3078 relayd->sessiond_session_id = (uint64_t) sessiond_id;
3079 relayd_created = 1;
3080 }
3081
3082 /* Poll on consumer socket. */
3083 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3084 ret = -EINTR;
3085 goto error;
3086 }
3087
3088 /* Get relayd socket from session daemon */
3089 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3090 if (ret != sizeof(fd)) {
3091 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3092 ret = -1;
3093 fd = -1; /* Just in case it gets set with an invalid value. */
3094 goto error_close;
3095 }
3096
3097 /* We have the fds without error. Send status back. */
3098 ret = consumer_send_status_msg(sock, ret_code);
3099 if (ret < 0) {
3100 /* Somehow, the session daemon is not responding anymore. */
3101 goto error;
3102 }
3103
3104 /* Copy socket information and received FD */
3105 switch (sock_type) {
3106 case LTTNG_STREAM_CONTROL:
3107 /* Copy received lttcomm socket */
3108 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3109 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3110 /* Immediately try to close the created socket if valid. */
3111 if (relayd->control_sock.sock.fd >= 0) {
3112 if (close(relayd->control_sock.sock.fd)) {
3113 PERROR("close relayd control socket");
3114 }
3115 }
3116 /* Handle create_sock error. */
3117 if (ret < 0) {
3118 goto error;
3119 }
3120
3121 /* Assign new file descriptor */
3122 relayd->control_sock.sock.fd = fd;
3123 /* Assign version values. */
3124 relayd->control_sock.major = relayd_sock->major;
3125 relayd->control_sock.minor = relayd_sock->minor;
3126
3127 /*
3128 * Create a session on the relayd and store the returned id. Lock the
3129 * control socket mutex if the relayd was NOT created before.
3130 */
3131 if (!relayd_created) {
3132 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3133 }
3134 ret = relayd_create_session(&relayd->control_sock,
3135 &relayd->relayd_session_id);
3136 if (!relayd_created) {
3137 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3138 }
3139 if (ret < 0) {
3140 /*
3141 * Close all sockets of a relayd object. It will be freed if it was
3142 * created at the error code path or else it will be garbage
3143 * collect.
3144 */
3145 (void) relayd_close(&relayd->control_sock);
3146 (void) relayd_close(&relayd->data_sock);
3147 goto error;
3148 }
3149
3150 break;
3151 case LTTNG_STREAM_DATA:
3152 /* Copy received lttcomm socket */
3153 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3154 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3155 /* Immediately try to close the created socket if valid. */
3156 if (relayd->data_sock.sock.fd >= 0) {
3157 if (close(relayd->data_sock.sock.fd)) {
3158 PERROR("close relayd data socket");
3159 }
3160 }
3161 /* Handle create_sock error. */
3162 if (ret < 0) {
3163 goto error;
3164 }
3165
3166 /* Assign new file descriptor */
3167 relayd->data_sock.sock.fd = fd;
3168 /* Assign version values. */
3169 relayd->data_sock.major = relayd_sock->major;
3170 relayd->data_sock.minor = relayd_sock->minor;
3171 break;
3172 default:
3173 ERR("Unknown relayd socket type (%d)", sock_type);
3174 ret = -1;
3175 goto error;
3176 }
3177
3178 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3179 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3180 relayd->net_seq_idx, fd);
3181
3182 /*
3183 * Add relayd socket pair to consumer data hashtable. If object already
3184 * exists or on error, the function gracefully returns.
3185 */
3186 add_relayd(relayd);
3187
3188 /* All good! */
3189 return 0;
3190
3191 error:
3192 /* Close received socket if valid. */
3193 if (fd >= 0) {
3194 if (close(fd)) {
3195 PERROR("close received socket");
3196 }
3197 }
3198
3199 error_close:
3200 if (relayd_created) {
3201 free(relayd);
3202 }
3203
3204 return ret;
3205 }
3206
3207 /*
3208 * Try to lock the stream mutex.
3209 *
3210 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3211 */
3212 static int stream_try_lock(struct lttng_consumer_stream *stream)
3213 {
3214 int ret;
3215
3216 assert(stream);
3217
3218 /*
3219 * Try to lock the stream mutex. On failure, we know that the stream is
3220 * being used else where hence there is data still being extracted.
3221 */
3222 ret = pthread_mutex_trylock(&stream->lock);
3223 if (ret) {
3224 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3225 ret = 0;
3226 goto end;
3227 }
3228
3229 ret = 1;
3230
3231 end:
3232 return ret;
3233 }
3234
3235 /*
3236 * Search for a relayd associated to the session id and return the reference.
3237 *
3238 * A rcu read side lock MUST be acquire before calling this function and locked
3239 * until the relayd object is no longer necessary.
3240 */
3241 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3242 {
3243 struct lttng_ht_iter iter;
3244 struct consumer_relayd_sock_pair *relayd = NULL;
3245
3246 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3247 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3248 node.node) {
3249 /*
3250 * Check by sessiond id which is unique here where the relayd session
3251 * id might not be when having multiple relayd.
3252 */
3253 if (relayd->sessiond_session_id == id) {
3254 /* Found the relayd. There can be only one per id. */
3255 goto found;
3256 }
3257 }
3258
3259 return NULL;
3260
3261 found:
3262 return relayd;
3263 }
3264
3265 /*
3266 * Check if for a given session id there is still data needed to be extract
3267 * from the buffers.
3268 *
3269 * Return 1 if data is pending or else 0 meaning ready to be read.
3270 */
3271 int consumer_data_pending(uint64_t id)
3272 {
3273 int ret;
3274 struct lttng_ht_iter iter;
3275 struct lttng_ht *ht;
3276 struct lttng_consumer_stream *stream;
3277 struct consumer_relayd_sock_pair *relayd = NULL;
3278 int (*data_pending)(struct lttng_consumer_stream *);
3279
3280 DBG("Consumer data pending command on session id %" PRIu64, id);
3281
3282 rcu_read_lock();
3283 pthread_mutex_lock(&consumer_data.lock);
3284
3285 switch (consumer_data.type) {
3286 case LTTNG_CONSUMER_KERNEL:
3287 data_pending = lttng_kconsumer_data_pending;
3288 break;
3289 case LTTNG_CONSUMER32_UST:
3290 case LTTNG_CONSUMER64_UST:
3291 data_pending = lttng_ustconsumer_data_pending;
3292 break;
3293 default:
3294 ERR("Unknown consumer data type");
3295 assert(0);
3296 }
3297
3298 /* Ease our life a bit */
3299 ht = consumer_data.stream_list_ht;
3300
3301 relayd = find_relayd_by_session_id(id);
3302 if (relayd) {
3303 /* Send init command for data pending. */
3304 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3305 ret = relayd_begin_data_pending(&relayd->control_sock,
3306 relayd->relayd_session_id);
3307 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3308 if (ret < 0) {
3309 /* Communication error thus the relayd so no data pending. */
3310 goto data_not_pending;
3311 }
3312 }
3313
3314 cds_lfht_for_each_entry_duplicate(ht->ht,
3315 ht->hash_fct(&id, lttng_ht_seed),
3316 ht->match_fct, &id,
3317 &iter.iter, stream, node_session_id.node) {
3318 /* If this call fails, the stream is being used hence data pending. */
3319 ret = stream_try_lock(stream);
3320 if (!ret) {
3321 goto data_pending;
3322 }
3323
3324 /*
3325 * A removed node from the hash table indicates that the stream has
3326 * been deleted thus having a guarantee that the buffers are closed
3327 * on the consumer side. However, data can still be transmitted
3328 * over the network so don't skip the relayd check.
3329 */
3330 ret = cds_lfht_is_node_deleted(&stream->node.node);
3331 if (!ret) {
3332 /* Check the stream if there is data in the buffers. */
3333 ret = data_pending(stream);
3334 if (ret == 1) {
3335 pthread_mutex_unlock(&stream->lock);
3336 goto data_pending;
3337 }
3338 }
3339
3340 /* Relayd check */
3341 if (relayd) {
3342 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3343 if (stream->metadata_flag) {
3344 ret = relayd_quiescent_control(&relayd->control_sock,
3345 stream->relayd_stream_id);
3346 } else {
3347 ret = relayd_data_pending(&relayd->control_sock,
3348 stream->relayd_stream_id,
3349 stream->next_net_seq_num - 1);
3350 }
3351 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3352 if (ret == 1) {
3353 pthread_mutex_unlock(&stream->lock);
3354 goto data_pending;
3355 }
3356 }
3357 pthread_mutex_unlock(&stream->lock);
3358 }
3359
3360 if (relayd) {
3361 unsigned int is_data_inflight = 0;
3362
3363 /* Send init command for data pending. */
3364 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3365 ret = relayd_end_data_pending(&relayd->control_sock,
3366 relayd->relayd_session_id, &is_data_inflight);
3367 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3368 if (ret < 0) {
3369 goto data_not_pending;
3370 }
3371 if (is_data_inflight) {
3372 goto data_pending;
3373 }
3374 }
3375
3376 /*
3377 * Finding _no_ node in the hash table and no inflight data means that the
3378 * stream(s) have been removed thus data is guaranteed to be available for
3379 * analysis from the trace files.
3380 */
3381
3382 data_not_pending:
3383 /* Data is available to be read by a viewer. */
3384 pthread_mutex_unlock(&consumer_data.lock);
3385 rcu_read_unlock();
3386 return 0;
3387
3388 data_pending:
3389 /* Data is still being extracted from buffers. */
3390 pthread_mutex_unlock(&consumer_data.lock);
3391 rcu_read_unlock();
3392 return 1;
3393 }
3394
3395 /*
3396 * Send a ret code status message to the sessiond daemon.
3397 *
3398 * Return the sendmsg() return value.
3399 */
3400 int consumer_send_status_msg(int sock, int ret_code)
3401 {
3402 struct lttcomm_consumer_status_msg msg;
3403
3404 msg.ret_code = ret_code;
3405
3406 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3407 }
3408
3409 /*
3410 * Send a channel status message to the sessiond daemon.
3411 *
3412 * Return the sendmsg() return value.
3413 */
3414 int consumer_send_status_channel(int sock,
3415 struct lttng_consumer_channel *channel)
3416 {
3417 struct lttcomm_consumer_status_channel msg;
3418
3419 assert(sock >= 0);
3420
3421 if (!channel) {
3422 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3423 } else {
3424 msg.ret_code = LTTNG_OK;
3425 msg.key = channel->key;
3426 msg.stream_count = channel->streams.count;
3427 }
3428
3429 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3430 }
This page took 0.152382 seconds and 5 git commands to generate.