Test for new metadata at each packet
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/index/index.h>
37 #include <common/kernel-ctl/kernel-ctl.h>
38 #include <common/sessiond-comm/relayd.h>
39 #include <common/sessiond-comm/sessiond-comm.h>
40 #include <common/kernel-consumer/kernel-consumer.h>
41 #include <common/relayd/relayd.h>
42 #include <common/ust-consumer/ust-consumer.h>
43 #include <common/consumer-timer.h>
44
45 #include "consumer.h"
46 #include "consumer-stream.h"
47
48 struct lttng_consumer_global_data consumer_data = {
49 .stream_count = 0,
50 .need_update = 1,
51 .type = LTTNG_CONSUMER_UNKNOWN,
52 };
53
54 enum consumer_channel_action {
55 CONSUMER_CHANNEL_ADD,
56 CONSUMER_CHANNEL_DEL,
57 CONSUMER_CHANNEL_QUIT,
58 };
59
60 struct consumer_channel_msg {
61 enum consumer_channel_action action;
62 struct lttng_consumer_channel *chan; /* add */
63 uint64_t key; /* del */
64 };
65
66 /*
67 * Flag to inform the polling thread to quit when all fd hung up. Updated by
68 * the consumer_thread_receive_fds when it notices that all fds has hung up.
69 * Also updated by the signal handler (consumer_should_exit()). Read by the
70 * polling threads.
71 */
72 volatile int consumer_quit;
73
74 /*
75 * Global hash table containing respectively metadata and data streams. The
76 * stream element in this ht should only be updated by the metadata poll thread
77 * for the metadata and the data poll thread for the data.
78 */
79 static struct lttng_ht *metadata_ht;
80 static struct lttng_ht *data_ht;
81
82 /*
83 * Notify a thread lttng pipe to poll back again. This usually means that some
84 * global state has changed so we just send back the thread in a poll wait
85 * call.
86 */
87 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
88 {
89 struct lttng_consumer_stream *null_stream = NULL;
90
91 assert(pipe);
92
93 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
94 }
95
96 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
97 struct lttng_consumer_channel *chan,
98 uint64_t key,
99 enum consumer_channel_action action)
100 {
101 struct consumer_channel_msg msg;
102 int ret;
103
104 memset(&msg, 0, sizeof(msg));
105
106 msg.action = action;
107 msg.chan = chan;
108 msg.key = key;
109 do {
110 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
111 } while (ret < 0 && errno == EINTR);
112 }
113
114 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
115 uint64_t key)
116 {
117 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
118 }
119
120 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
121 struct lttng_consumer_channel **chan,
122 uint64_t *key,
123 enum consumer_channel_action *action)
124 {
125 struct consumer_channel_msg msg;
126 int ret;
127
128 do {
129 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
130 } while (ret < 0 && errno == EINTR);
131 if (ret > 0) {
132 *action = msg.action;
133 *chan = msg.chan;
134 *key = msg.key;
135 }
136 return ret;
137 }
138
139 /*
140 * Find a stream. The consumer_data.lock must be locked during this
141 * call.
142 */
143 static struct lttng_consumer_stream *find_stream(uint64_t key,
144 struct lttng_ht *ht)
145 {
146 struct lttng_ht_iter iter;
147 struct lttng_ht_node_u64 *node;
148 struct lttng_consumer_stream *stream = NULL;
149
150 assert(ht);
151
152 /* -1ULL keys are lookup failures */
153 if (key == (uint64_t) -1ULL) {
154 return NULL;
155 }
156
157 rcu_read_lock();
158
159 lttng_ht_lookup(ht, &key, &iter);
160 node = lttng_ht_iter_get_node_u64(&iter);
161 if (node != NULL) {
162 stream = caa_container_of(node, struct lttng_consumer_stream, node);
163 }
164
165 rcu_read_unlock();
166
167 return stream;
168 }
169
170 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
171 {
172 struct lttng_consumer_stream *stream;
173
174 rcu_read_lock();
175 stream = find_stream(key, ht);
176 if (stream) {
177 stream->key = (uint64_t) -1ULL;
178 /*
179 * We don't want the lookup to match, but we still need
180 * to iterate on this stream when iterating over the hash table. Just
181 * change the node key.
182 */
183 stream->node.key = (uint64_t) -1ULL;
184 }
185 rcu_read_unlock();
186 }
187
188 /*
189 * Return a channel object for the given key.
190 *
191 * RCU read side lock MUST be acquired before calling this function and
192 * protects the channel ptr.
193 */
194 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
195 {
196 struct lttng_ht_iter iter;
197 struct lttng_ht_node_u64 *node;
198 struct lttng_consumer_channel *channel = NULL;
199
200 /* -1ULL keys are lookup failures */
201 if (key == (uint64_t) -1ULL) {
202 return NULL;
203 }
204
205 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
206 node = lttng_ht_iter_get_node_u64(&iter);
207 if (node != NULL) {
208 channel = caa_container_of(node, struct lttng_consumer_channel, node);
209 }
210
211 return channel;
212 }
213
214 static void free_stream_rcu(struct rcu_head *head)
215 {
216 struct lttng_ht_node_u64 *node =
217 caa_container_of(head, struct lttng_ht_node_u64, head);
218 struct lttng_consumer_stream *stream =
219 caa_container_of(node, struct lttng_consumer_stream, node);
220
221 free(stream);
222 }
223
224 static void free_channel_rcu(struct rcu_head *head)
225 {
226 struct lttng_ht_node_u64 *node =
227 caa_container_of(head, struct lttng_ht_node_u64, head);
228 struct lttng_consumer_channel *channel =
229 caa_container_of(node, struct lttng_consumer_channel, node);
230
231 free(channel);
232 }
233
234 /*
235 * RCU protected relayd socket pair free.
236 */
237 static void free_relayd_rcu(struct rcu_head *head)
238 {
239 struct lttng_ht_node_u64 *node =
240 caa_container_of(head, struct lttng_ht_node_u64, head);
241 struct consumer_relayd_sock_pair *relayd =
242 caa_container_of(node, struct consumer_relayd_sock_pair, node);
243
244 /*
245 * Close all sockets. This is done in the call RCU since we don't want the
246 * socket fds to be reassigned thus potentially creating bad state of the
247 * relayd object.
248 *
249 * We do not have to lock the control socket mutex here since at this stage
250 * there is no one referencing to this relayd object.
251 */
252 (void) relayd_close(&relayd->control_sock);
253 (void) relayd_close(&relayd->data_sock);
254
255 free(relayd);
256 }
257
258 /*
259 * Destroy and free relayd socket pair object.
260 */
261 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
262 {
263 int ret;
264 struct lttng_ht_iter iter;
265
266 if (relayd == NULL) {
267 return;
268 }
269
270 DBG("Consumer destroy and close relayd socket pair");
271
272 iter.iter.node = &relayd->node.node;
273 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
274 if (ret != 0) {
275 /* We assume the relayd is being or is destroyed */
276 return;
277 }
278
279 /* RCU free() call */
280 call_rcu(&relayd->node.head, free_relayd_rcu);
281 }
282
283 /*
284 * Remove a channel from the global list protected by a mutex. This function is
285 * also responsible for freeing its data structures.
286 */
287 void consumer_del_channel(struct lttng_consumer_channel *channel)
288 {
289 int ret;
290 struct lttng_ht_iter iter;
291 struct lttng_consumer_stream *stream, *stmp;
292
293 DBG("Consumer delete channel key %" PRIu64, channel->key);
294
295 pthread_mutex_lock(&consumer_data.lock);
296 pthread_mutex_lock(&channel->lock);
297
298 /* Delete streams that might have been left in the stream list. */
299 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
300 send_node) {
301 cds_list_del(&stream->send_node);
302 /*
303 * Once a stream is added to this list, the buffers were created so
304 * we have a guarantee that this call will succeed.
305 */
306 consumer_stream_destroy(stream, NULL);
307 }
308
309 if (channel->live_timer_enabled == 1) {
310 consumer_timer_live_stop(channel);
311 }
312
313 switch (consumer_data.type) {
314 case LTTNG_CONSUMER_KERNEL:
315 break;
316 case LTTNG_CONSUMER32_UST:
317 case LTTNG_CONSUMER64_UST:
318 lttng_ustconsumer_del_channel(channel);
319 break;
320 default:
321 ERR("Unknown consumer_data type");
322 assert(0);
323 goto end;
324 }
325
326 rcu_read_lock();
327 iter.iter.node = &channel->node.node;
328 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
329 assert(!ret);
330 rcu_read_unlock();
331
332 call_rcu(&channel->node.head, free_channel_rcu);
333 end:
334 pthread_mutex_unlock(&channel->lock);
335 pthread_mutex_unlock(&consumer_data.lock);
336 }
337
338 /*
339 * Iterate over the relayd hash table and destroy each element. Finally,
340 * destroy the whole hash table.
341 */
342 static void cleanup_relayd_ht(void)
343 {
344 struct lttng_ht_iter iter;
345 struct consumer_relayd_sock_pair *relayd;
346
347 rcu_read_lock();
348
349 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
350 node.node) {
351 consumer_destroy_relayd(relayd);
352 }
353
354 rcu_read_unlock();
355
356 lttng_ht_destroy(consumer_data.relayd_ht);
357 }
358
359 /*
360 * Update the end point status of all streams having the given network sequence
361 * index (relayd index).
362 *
363 * It's atomically set without having the stream mutex locked which is fine
364 * because we handle the write/read race with a pipe wakeup for each thread.
365 */
366 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
367 enum consumer_endpoint_status status)
368 {
369 struct lttng_ht_iter iter;
370 struct lttng_consumer_stream *stream;
371
372 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
373
374 rcu_read_lock();
375
376 /* Let's begin with metadata */
377 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
378 if (stream->net_seq_idx == net_seq_idx) {
379 uatomic_set(&stream->endpoint_status, status);
380 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
381 }
382 }
383
384 /* Follow up by the data streams */
385 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
386 if (stream->net_seq_idx == net_seq_idx) {
387 uatomic_set(&stream->endpoint_status, status);
388 DBG("Delete flag set to data stream %d", stream->wait_fd);
389 }
390 }
391 rcu_read_unlock();
392 }
393
394 /*
395 * Cleanup a relayd object by flagging every associated streams for deletion,
396 * destroying the object meaning removing it from the relayd hash table,
397 * closing the sockets and freeing the memory in a RCU call.
398 *
399 * If a local data context is available, notify the threads that the streams'
400 * state have changed.
401 */
402 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
403 struct lttng_consumer_local_data *ctx)
404 {
405 uint64_t netidx;
406
407 assert(relayd);
408
409 DBG("Cleaning up relayd sockets");
410
411 /* Save the net sequence index before destroying the object */
412 netidx = relayd->net_seq_idx;
413
414 /*
415 * Delete the relayd from the relayd hash table, close the sockets and free
416 * the object in a RCU call.
417 */
418 consumer_destroy_relayd(relayd);
419
420 /* Set inactive endpoint to all streams */
421 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
422
423 /*
424 * With a local data context, notify the threads that the streams' state
425 * have changed. The write() action on the pipe acts as an "implicit"
426 * memory barrier ordering the updates of the end point status from the
427 * read of this status which happens AFTER receiving this notify.
428 */
429 if (ctx) {
430 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
431 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
432 }
433 }
434
435 /*
436 * Flag a relayd socket pair for destruction. Destroy it if the refcount
437 * reaches zero.
438 *
439 * RCU read side lock MUST be aquired before calling this function.
440 */
441 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
442 {
443 assert(relayd);
444
445 /* Set destroy flag for this object */
446 uatomic_set(&relayd->destroy_flag, 1);
447
448 /* Destroy the relayd if refcount is 0 */
449 if (uatomic_read(&relayd->refcount) == 0) {
450 consumer_destroy_relayd(relayd);
451 }
452 }
453
454 /*
455 * Completly destroy stream from every visiable data structure and the given
456 * hash table if one.
457 *
458 * One this call returns, the stream object is not longer usable nor visible.
459 */
460 void consumer_del_stream(struct lttng_consumer_stream *stream,
461 struct lttng_ht *ht)
462 {
463 consumer_stream_destroy(stream, ht);
464 }
465
466 /*
467 * XXX naming of del vs destroy is all mixed up.
468 */
469 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
470 {
471 consumer_stream_destroy(stream, data_ht);
472 }
473
474 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
475 {
476 consumer_stream_destroy(stream, metadata_ht);
477 }
478
479 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
480 uint64_t stream_key,
481 enum lttng_consumer_stream_state state,
482 const char *channel_name,
483 uid_t uid,
484 gid_t gid,
485 uint64_t relayd_id,
486 uint64_t session_id,
487 int cpu,
488 int *alloc_ret,
489 enum consumer_channel_type type,
490 unsigned int monitor)
491 {
492 int ret;
493 struct lttng_consumer_stream *stream;
494
495 stream = zmalloc(sizeof(*stream));
496 if (stream == NULL) {
497 PERROR("malloc struct lttng_consumer_stream");
498 ret = -ENOMEM;
499 goto end;
500 }
501
502 rcu_read_lock();
503
504 stream->key = stream_key;
505 stream->out_fd = -1;
506 stream->out_fd_offset = 0;
507 stream->output_written = 0;
508 stream->state = state;
509 stream->uid = uid;
510 stream->gid = gid;
511 stream->net_seq_idx = relayd_id;
512 stream->session_id = session_id;
513 stream->monitor = monitor;
514 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
515 stream->index_fd = -1;
516 pthread_mutex_init(&stream->lock, NULL);
517
518 /* If channel is the metadata, flag this stream as metadata. */
519 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
520 stream->metadata_flag = 1;
521 /* Metadata is flat out. */
522 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
523 /* Live rendez-vous point. */
524 pthread_cond_init(&stream->metadata_rdv, NULL);
525 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
526 } else {
527 /* Format stream name to <channel_name>_<cpu_number> */
528 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
529 channel_name, cpu);
530 if (ret < 0) {
531 PERROR("snprintf stream name");
532 goto error;
533 }
534 }
535
536 /* Key is always the wait_fd for streams. */
537 lttng_ht_node_init_u64(&stream->node, stream->key);
538
539 /* Init node per channel id key */
540 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
541
542 /* Init session id node with the stream session id */
543 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
544
545 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
546 " relayd_id %" PRIu64 ", session_id %" PRIu64,
547 stream->name, stream->key, channel_key,
548 stream->net_seq_idx, stream->session_id);
549
550 rcu_read_unlock();
551 return stream;
552
553 error:
554 rcu_read_unlock();
555 free(stream);
556 end:
557 if (alloc_ret) {
558 *alloc_ret = ret;
559 }
560 return NULL;
561 }
562
563 /*
564 * Add a stream to the global list protected by a mutex.
565 */
566 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
567 {
568 struct lttng_ht *ht = data_ht;
569 int ret = 0;
570
571 assert(stream);
572 assert(ht);
573
574 DBG3("Adding consumer stream %" PRIu64, stream->key);
575
576 pthread_mutex_lock(&consumer_data.lock);
577 pthread_mutex_lock(&stream->chan->lock);
578 pthread_mutex_lock(&stream->chan->timer_lock);
579 pthread_mutex_lock(&stream->lock);
580 rcu_read_lock();
581
582 /* Steal stream identifier to avoid having streams with the same key */
583 steal_stream_key(stream->key, ht);
584
585 lttng_ht_add_unique_u64(ht, &stream->node);
586
587 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
588 &stream->node_channel_id);
589
590 /*
591 * Add stream to the stream_list_ht of the consumer data. No need to steal
592 * the key since the HT does not use it and we allow to add redundant keys
593 * into this table.
594 */
595 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
596
597 /*
598 * When nb_init_stream_left reaches 0, we don't need to trigger any action
599 * in terms of destroying the associated channel, because the action that
600 * causes the count to become 0 also causes a stream to be added. The
601 * channel deletion will thus be triggered by the following removal of this
602 * stream.
603 */
604 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
605 /* Increment refcount before decrementing nb_init_stream_left */
606 cmm_smp_wmb();
607 uatomic_dec(&stream->chan->nb_init_stream_left);
608 }
609
610 /* Update consumer data once the node is inserted. */
611 consumer_data.stream_count++;
612 consumer_data.need_update = 1;
613
614 rcu_read_unlock();
615 pthread_mutex_unlock(&stream->lock);
616 pthread_mutex_unlock(&stream->chan->timer_lock);
617 pthread_mutex_unlock(&stream->chan->lock);
618 pthread_mutex_unlock(&consumer_data.lock);
619
620 return ret;
621 }
622
623 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
624 {
625 consumer_del_stream(stream, data_ht);
626 }
627
628 /*
629 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
630 * be acquired before calling this.
631 */
632 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
633 {
634 int ret = 0;
635 struct lttng_ht_node_u64 *node;
636 struct lttng_ht_iter iter;
637
638 assert(relayd);
639
640 lttng_ht_lookup(consumer_data.relayd_ht,
641 &relayd->net_seq_idx, &iter);
642 node = lttng_ht_iter_get_node_u64(&iter);
643 if (node != NULL) {
644 goto end;
645 }
646 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
647
648 end:
649 return ret;
650 }
651
652 /*
653 * Allocate and return a consumer relayd socket.
654 */
655 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
656 uint64_t net_seq_idx)
657 {
658 struct consumer_relayd_sock_pair *obj = NULL;
659
660 /* net sequence index of -1 is a failure */
661 if (net_seq_idx == (uint64_t) -1ULL) {
662 goto error;
663 }
664
665 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
666 if (obj == NULL) {
667 PERROR("zmalloc relayd sock");
668 goto error;
669 }
670
671 obj->net_seq_idx = net_seq_idx;
672 obj->refcount = 0;
673 obj->destroy_flag = 0;
674 obj->control_sock.sock.fd = -1;
675 obj->data_sock.sock.fd = -1;
676 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
677 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
678
679 error:
680 return obj;
681 }
682
683 /*
684 * Find a relayd socket pair in the global consumer data.
685 *
686 * Return the object if found else NULL.
687 * RCU read-side lock must be held across this call and while using the
688 * returned object.
689 */
690 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
691 {
692 struct lttng_ht_iter iter;
693 struct lttng_ht_node_u64 *node;
694 struct consumer_relayd_sock_pair *relayd = NULL;
695
696 /* Negative keys are lookup failures */
697 if (key == (uint64_t) -1ULL) {
698 goto error;
699 }
700
701 lttng_ht_lookup(consumer_data.relayd_ht, &key,
702 &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
706 }
707
708 error:
709 return relayd;
710 }
711
712 /*
713 * Find a relayd and send the stream
714 *
715 * Returns 0 on success, < 0 on error
716 */
717 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
718 char *path)
719 {
720 int ret = 0;
721 struct consumer_relayd_sock_pair *relayd;
722
723 assert(stream);
724 assert(stream->net_seq_idx != -1ULL);
725 assert(path);
726
727 /* The stream is not metadata. Get relayd reference if exists. */
728 rcu_read_lock();
729 relayd = consumer_find_relayd(stream->net_seq_idx);
730 if (relayd != NULL) {
731 /* Add stream on the relayd */
732 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
733 ret = relayd_add_stream(&relayd->control_sock, stream->name,
734 path, &stream->relayd_stream_id,
735 stream->chan->tracefile_size, stream->chan->tracefile_count);
736 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
737 if (ret < 0) {
738 goto end;
739 }
740
741 uatomic_inc(&relayd->refcount);
742 stream->sent_to_relayd = 1;
743 } else {
744 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
745 stream->key, stream->net_seq_idx);
746 ret = -1;
747 goto end;
748 }
749
750 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
751 stream->name, stream->key, stream->net_seq_idx);
752
753 end:
754 rcu_read_unlock();
755 return ret;
756 }
757
758 /*
759 * Find a relayd and close the stream
760 */
761 void close_relayd_stream(struct lttng_consumer_stream *stream)
762 {
763 struct consumer_relayd_sock_pair *relayd;
764
765 /* The stream is not metadata. Get relayd reference if exists. */
766 rcu_read_lock();
767 relayd = consumer_find_relayd(stream->net_seq_idx);
768 if (relayd) {
769 consumer_stream_relayd_close(stream, relayd);
770 }
771 rcu_read_unlock();
772 }
773
774 /*
775 * Handle stream for relayd transmission if the stream applies for network
776 * streaming where the net sequence index is set.
777 *
778 * Return destination file descriptor or negative value on error.
779 */
780 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
781 size_t data_size, unsigned long padding,
782 struct consumer_relayd_sock_pair *relayd)
783 {
784 int outfd = -1, ret;
785 struct lttcomm_relayd_data_hdr data_hdr;
786
787 /* Safety net */
788 assert(stream);
789 assert(relayd);
790
791 /* Reset data header */
792 memset(&data_hdr, 0, sizeof(data_hdr));
793
794 if (stream->metadata_flag) {
795 /* Caller MUST acquire the relayd control socket lock */
796 ret = relayd_send_metadata(&relayd->control_sock, data_size);
797 if (ret < 0) {
798 goto error;
799 }
800
801 /* Metadata are always sent on the control socket. */
802 outfd = relayd->control_sock.sock.fd;
803 } else {
804 /* Set header with stream information */
805 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
806 data_hdr.data_size = htobe32(data_size);
807 data_hdr.padding_size = htobe32(padding);
808 /*
809 * Note that net_seq_num below is assigned with the *current* value of
810 * next_net_seq_num and only after that the next_net_seq_num will be
811 * increment. This is why when issuing a command on the relayd using
812 * this next value, 1 should always be substracted in order to compare
813 * the last seen sequence number on the relayd side to the last sent.
814 */
815 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
816 /* Other fields are zeroed previously */
817
818 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
819 sizeof(data_hdr));
820 if (ret < 0) {
821 goto error;
822 }
823
824 ++stream->next_net_seq_num;
825
826 /* Set to go on data socket */
827 outfd = relayd->data_sock.sock.fd;
828 }
829
830 error:
831 return outfd;
832 }
833
834 /*
835 * Allocate and return a new lttng_consumer_channel object using the given key
836 * to initialize the hash table node.
837 *
838 * On error, return NULL.
839 */
840 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
841 uint64_t session_id,
842 const char *pathname,
843 const char *name,
844 uid_t uid,
845 gid_t gid,
846 uint64_t relayd_id,
847 enum lttng_event_output output,
848 uint64_t tracefile_size,
849 uint64_t tracefile_count,
850 uint64_t session_id_per_pid,
851 unsigned int monitor,
852 unsigned int live_timer_interval)
853 {
854 struct lttng_consumer_channel *channel;
855
856 channel = zmalloc(sizeof(*channel));
857 if (channel == NULL) {
858 PERROR("malloc struct lttng_consumer_channel");
859 goto end;
860 }
861
862 channel->key = key;
863 channel->refcount = 0;
864 channel->session_id = session_id;
865 channel->session_id_per_pid = session_id_per_pid;
866 channel->uid = uid;
867 channel->gid = gid;
868 channel->relayd_id = relayd_id;
869 channel->output = output;
870 channel->tracefile_size = tracefile_size;
871 channel->tracefile_count = tracefile_count;
872 channel->monitor = monitor;
873 channel->live_timer_interval = live_timer_interval;
874 pthread_mutex_init(&channel->lock, NULL);
875 pthread_mutex_init(&channel->timer_lock, NULL);
876
877 /*
878 * In monitor mode, the streams associated with the channel will be put in
879 * a special list ONLY owned by this channel. So, the refcount is set to 1
880 * here meaning that the channel itself has streams that are referenced.
881 *
882 * On a channel deletion, once the channel is no longer visible, the
883 * refcount is decremented and checked for a zero value to delete it. With
884 * streams in no monitor mode, it will now be safe to destroy the channel.
885 */
886 if (!channel->monitor) {
887 channel->refcount = 1;
888 }
889
890 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
891 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
892
893 strncpy(channel->name, name, sizeof(channel->name));
894 channel->name[sizeof(channel->name) - 1] = '\0';
895
896 lttng_ht_node_init_u64(&channel->node, channel->key);
897
898 channel->wait_fd = -1;
899
900 CDS_INIT_LIST_HEAD(&channel->streams.head);
901
902 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
903
904 end:
905 return channel;
906 }
907
908 /*
909 * Add a channel to the global list protected by a mutex.
910 *
911 * On success 0 is returned else a negative value.
912 */
913 int consumer_add_channel(struct lttng_consumer_channel *channel,
914 struct lttng_consumer_local_data *ctx)
915 {
916 int ret = 0;
917 struct lttng_ht_node_u64 *node;
918 struct lttng_ht_iter iter;
919
920 pthread_mutex_lock(&consumer_data.lock);
921 pthread_mutex_lock(&channel->lock);
922 pthread_mutex_lock(&channel->timer_lock);
923 rcu_read_lock();
924
925 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
926 node = lttng_ht_iter_get_node_u64(&iter);
927 if (node != NULL) {
928 /* Channel already exist. Ignore the insertion */
929 ERR("Consumer add channel key %" PRIu64 " already exists!",
930 channel->key);
931 ret = -EEXIST;
932 goto end;
933 }
934
935 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
936
937 end:
938 rcu_read_unlock();
939 pthread_mutex_unlock(&channel->timer_lock);
940 pthread_mutex_unlock(&channel->lock);
941 pthread_mutex_unlock(&consumer_data.lock);
942
943 if (!ret && channel->wait_fd != -1 &&
944 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
945 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
946 }
947 return ret;
948 }
949
950 /*
951 * Allocate the pollfd structure and the local view of the out fds to avoid
952 * doing a lookup in the linked list and concurrency issues when writing is
953 * needed. Called with consumer_data.lock held.
954 *
955 * Returns the number of fds in the structures.
956 */
957 static int update_poll_array(struct lttng_consumer_local_data *ctx,
958 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
959 struct lttng_ht *ht)
960 {
961 int i = 0;
962 struct lttng_ht_iter iter;
963 struct lttng_consumer_stream *stream;
964
965 assert(ctx);
966 assert(ht);
967 assert(pollfd);
968 assert(local_stream);
969
970 DBG("Updating poll fd array");
971 rcu_read_lock();
972 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
973 /*
974 * Only active streams with an active end point can be added to the
975 * poll set and local stream storage of the thread.
976 *
977 * There is a potential race here for endpoint_status to be updated
978 * just after the check. However, this is OK since the stream(s) will
979 * be deleted once the thread is notified that the end point state has
980 * changed where this function will be called back again.
981 */
982 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
983 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
984 continue;
985 }
986 /*
987 * This clobbers way too much the debug output. Uncomment that if you
988 * need it for debugging purposes.
989 *
990 * DBG("Active FD %d", stream->wait_fd);
991 */
992 (*pollfd)[i].fd = stream->wait_fd;
993 (*pollfd)[i].events = POLLIN | POLLPRI;
994 local_stream[i] = stream;
995 i++;
996 }
997 rcu_read_unlock();
998
999 /*
1000 * Insert the consumer_data_pipe at the end of the array and don't
1001 * increment i so nb_fd is the number of real FD.
1002 */
1003 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1004 (*pollfd)[i].events = POLLIN | POLLPRI;
1005 return i;
1006 }
1007
1008 /*
1009 * Poll on the should_quit pipe and the command socket return -1 on error and
1010 * should exit, 0 if data is available on the command socket
1011 */
1012 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1013 {
1014 int num_rdy;
1015
1016 restart:
1017 num_rdy = poll(consumer_sockpoll, 2, -1);
1018 if (num_rdy == -1) {
1019 /*
1020 * Restart interrupted system call.
1021 */
1022 if (errno == EINTR) {
1023 goto restart;
1024 }
1025 PERROR("Poll error");
1026 goto exit;
1027 }
1028 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1029 DBG("consumer_should_quit wake up");
1030 goto exit;
1031 }
1032 return 0;
1033
1034 exit:
1035 return -1;
1036 }
1037
1038 /*
1039 * Set the error socket.
1040 */
1041 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1042 int sock)
1043 {
1044 ctx->consumer_error_socket = sock;
1045 }
1046
1047 /*
1048 * Set the command socket path.
1049 */
1050 void lttng_consumer_set_command_sock_path(
1051 struct lttng_consumer_local_data *ctx, char *sock)
1052 {
1053 ctx->consumer_command_sock_path = sock;
1054 }
1055
1056 /*
1057 * Send return code to the session daemon.
1058 * If the socket is not defined, we return 0, it is not a fatal error
1059 */
1060 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1061 {
1062 if (ctx->consumer_error_socket > 0) {
1063 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1064 sizeof(enum lttcomm_sessiond_command));
1065 }
1066
1067 return 0;
1068 }
1069
1070 /*
1071 * Close all the tracefiles and stream fds and MUST be called when all
1072 * instances are destroyed i.e. when all threads were joined and are ended.
1073 */
1074 void lttng_consumer_cleanup(void)
1075 {
1076 struct lttng_ht_iter iter;
1077 struct lttng_consumer_channel *channel;
1078
1079 rcu_read_lock();
1080
1081 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1082 node.node) {
1083 consumer_del_channel(channel);
1084 }
1085
1086 rcu_read_unlock();
1087
1088 lttng_ht_destroy(consumer_data.channel_ht);
1089
1090 cleanup_relayd_ht();
1091
1092 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1093
1094 /*
1095 * This HT contains streams that are freed by either the metadata thread or
1096 * the data thread so we do *nothing* on the hash table and simply destroy
1097 * it.
1098 */
1099 lttng_ht_destroy(consumer_data.stream_list_ht);
1100 }
1101
1102 /*
1103 * Called from signal handler.
1104 */
1105 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1106 {
1107 int ret;
1108 consumer_quit = 1;
1109 do {
1110 ret = write(ctx->consumer_should_quit[1], "4", 1);
1111 } while (ret < 0 && errno == EINTR);
1112 if (ret < 0 || ret != 1) {
1113 PERROR("write consumer quit");
1114 }
1115
1116 DBG("Consumer flag that it should quit");
1117 }
1118
1119 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1120 off_t orig_offset)
1121 {
1122 int outfd = stream->out_fd;
1123
1124 /*
1125 * This does a blocking write-and-wait on any page that belongs to the
1126 * subbuffer prior to the one we just wrote.
1127 * Don't care about error values, as these are just hints and ways to
1128 * limit the amount of page cache used.
1129 */
1130 if (orig_offset < stream->max_sb_size) {
1131 return;
1132 }
1133 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1134 stream->max_sb_size,
1135 SYNC_FILE_RANGE_WAIT_BEFORE
1136 | SYNC_FILE_RANGE_WRITE
1137 | SYNC_FILE_RANGE_WAIT_AFTER);
1138 /*
1139 * Give hints to the kernel about how we access the file:
1140 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1141 * we write it.
1142 *
1143 * We need to call fadvise again after the file grows because the
1144 * kernel does not seem to apply fadvise to non-existing parts of the
1145 * file.
1146 *
1147 * Call fadvise _after_ having waited for the page writeback to
1148 * complete because the dirty page writeback semantic is not well
1149 * defined. So it can be expected to lead to lower throughput in
1150 * streaming.
1151 */
1152 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1153 stream->max_sb_size, POSIX_FADV_DONTNEED);
1154 }
1155
1156 /*
1157 * Initialise the necessary environnement :
1158 * - create a new context
1159 * - create the poll_pipe
1160 * - create the should_quit pipe (for signal handler)
1161 * - create the thread pipe (for splice)
1162 *
1163 * Takes a function pointer as argument, this function is called when data is
1164 * available on a buffer. This function is responsible to do the
1165 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1166 * buffer configuration and then kernctl_put_next_subbuf at the end.
1167 *
1168 * Returns a pointer to the new context or NULL on error.
1169 */
1170 struct lttng_consumer_local_data *lttng_consumer_create(
1171 enum lttng_consumer_type type,
1172 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1173 struct lttng_consumer_local_data *ctx),
1174 int (*recv_channel)(struct lttng_consumer_channel *channel),
1175 int (*recv_stream)(struct lttng_consumer_stream *stream),
1176 int (*update_stream)(uint64_t stream_key, uint32_t state))
1177 {
1178 int ret;
1179 struct lttng_consumer_local_data *ctx;
1180
1181 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1182 consumer_data.type == type);
1183 consumer_data.type = type;
1184
1185 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1186 if (ctx == NULL) {
1187 PERROR("allocating context");
1188 goto error;
1189 }
1190
1191 ctx->consumer_error_socket = -1;
1192 ctx->consumer_metadata_socket = -1;
1193 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1194 /* assign the callbacks */
1195 ctx->on_buffer_ready = buffer_ready;
1196 ctx->on_recv_channel = recv_channel;
1197 ctx->on_recv_stream = recv_stream;
1198 ctx->on_update_stream = update_stream;
1199
1200 ctx->consumer_data_pipe = lttng_pipe_open(0);
1201 if (!ctx->consumer_data_pipe) {
1202 goto error_poll_pipe;
1203 }
1204
1205 ret = pipe(ctx->consumer_should_quit);
1206 if (ret < 0) {
1207 PERROR("Error creating recv pipe");
1208 goto error_quit_pipe;
1209 }
1210
1211 ret = pipe(ctx->consumer_thread_pipe);
1212 if (ret < 0) {
1213 PERROR("Error creating thread pipe");
1214 goto error_thread_pipe;
1215 }
1216
1217 ret = pipe(ctx->consumer_channel_pipe);
1218 if (ret < 0) {
1219 PERROR("Error creating channel pipe");
1220 goto error_channel_pipe;
1221 }
1222
1223 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1224 if (!ctx->consumer_metadata_pipe) {
1225 goto error_metadata_pipe;
1226 }
1227
1228 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1229 if (ret < 0) {
1230 goto error_splice_pipe;
1231 }
1232
1233 return ctx;
1234
1235 error_splice_pipe:
1236 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1237 error_metadata_pipe:
1238 utils_close_pipe(ctx->consumer_channel_pipe);
1239 error_channel_pipe:
1240 utils_close_pipe(ctx->consumer_thread_pipe);
1241 error_thread_pipe:
1242 utils_close_pipe(ctx->consumer_should_quit);
1243 error_quit_pipe:
1244 lttng_pipe_destroy(ctx->consumer_data_pipe);
1245 error_poll_pipe:
1246 free(ctx);
1247 error:
1248 return NULL;
1249 }
1250
1251 /*
1252 * Close all fds associated with the instance and free the context.
1253 */
1254 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1255 {
1256 int ret;
1257
1258 DBG("Consumer destroying it. Closing everything.");
1259
1260 ret = close(ctx->consumer_error_socket);
1261 if (ret) {
1262 PERROR("close");
1263 }
1264 ret = close(ctx->consumer_metadata_socket);
1265 if (ret) {
1266 PERROR("close");
1267 }
1268 utils_close_pipe(ctx->consumer_thread_pipe);
1269 utils_close_pipe(ctx->consumer_channel_pipe);
1270 lttng_pipe_destroy(ctx->consumer_data_pipe);
1271 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1272 utils_close_pipe(ctx->consumer_should_quit);
1273 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1274
1275 unlink(ctx->consumer_command_sock_path);
1276 free(ctx);
1277 }
1278
1279 /*
1280 * Write the metadata stream id on the specified file descriptor.
1281 */
1282 static int write_relayd_metadata_id(int fd,
1283 struct lttng_consumer_stream *stream,
1284 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1285 {
1286 int ret;
1287 struct lttcomm_relayd_metadata_payload hdr;
1288
1289 hdr.stream_id = htobe64(stream->relayd_stream_id);
1290 hdr.padding_size = htobe32(padding);
1291 do {
1292 ret = write(fd, (void *) &hdr, sizeof(hdr));
1293 } while (ret < 0 && errno == EINTR);
1294 if (ret < 0 || ret != sizeof(hdr)) {
1295 /*
1296 * This error means that the fd's end is closed so ignore the perror
1297 * not to clubber the error output since this can happen in a normal
1298 * code path.
1299 */
1300 if (errno != EPIPE) {
1301 PERROR("write metadata stream id");
1302 }
1303 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1304 /*
1305 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1306 * handle writting the missing part so report that as an error and
1307 * don't lie to the caller.
1308 */
1309 ret = -1;
1310 goto end;
1311 }
1312 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1313 stream->relayd_stream_id, padding);
1314
1315 end:
1316 return ret;
1317 }
1318
1319 /*
1320 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1321 * core function for writing trace buffers to either the local filesystem or
1322 * the network.
1323 *
1324 * It must be called with the stream lock held.
1325 *
1326 * Careful review MUST be put if any changes occur!
1327 *
1328 * Returns the number of bytes written
1329 */
1330 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1331 struct lttng_consumer_local_data *ctx,
1332 struct lttng_consumer_stream *stream, unsigned long len,
1333 unsigned long padding,
1334 struct lttng_packet_index *index)
1335 {
1336 unsigned long mmap_offset;
1337 void *mmap_base;
1338 ssize_t ret = 0, written = 0;
1339 off_t orig_offset = stream->out_fd_offset;
1340 /* Default is on the disk */
1341 int outfd = stream->out_fd;
1342 struct consumer_relayd_sock_pair *relayd = NULL;
1343 unsigned int relayd_hang_up = 0;
1344
1345 /* RCU lock for the relayd pointer */
1346 rcu_read_lock();
1347
1348 /* Flag that the current stream if set for network streaming. */
1349 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1350 relayd = consumer_find_relayd(stream->net_seq_idx);
1351 if (relayd == NULL) {
1352 ret = -EPIPE;
1353 goto end;
1354 }
1355 }
1356
1357 /* get the offset inside the fd to mmap */
1358 switch (consumer_data.type) {
1359 case LTTNG_CONSUMER_KERNEL:
1360 mmap_base = stream->mmap_base;
1361 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1362 if (ret != 0) {
1363 PERROR("tracer ctl get_mmap_read_offset");
1364 written = -errno;
1365 goto end;
1366 }
1367 break;
1368 case LTTNG_CONSUMER32_UST:
1369 case LTTNG_CONSUMER64_UST:
1370 mmap_base = lttng_ustctl_get_mmap_base(stream);
1371 if (!mmap_base) {
1372 ERR("read mmap get mmap base for stream %s", stream->name);
1373 written = -EPERM;
1374 goto end;
1375 }
1376 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1377 if (ret != 0) {
1378 PERROR("tracer ctl get_mmap_read_offset");
1379 written = ret;
1380 goto end;
1381 }
1382 break;
1383 default:
1384 ERR("Unknown consumer_data type");
1385 assert(0);
1386 }
1387
1388 /* Handle stream on the relayd if the output is on the network */
1389 if (relayd) {
1390 unsigned long netlen = len;
1391
1392 /*
1393 * Lock the control socket for the complete duration of the function
1394 * since from this point on we will use the socket.
1395 */
1396 if (stream->metadata_flag) {
1397 /* Metadata requires the control socket. */
1398 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1399 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1400 }
1401
1402 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1403 if (ret >= 0) {
1404 /* Use the returned socket. */
1405 outfd = ret;
1406
1407 /* Write metadata stream id before payload */
1408 if (stream->metadata_flag) {
1409 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1410 if (ret < 0) {
1411 written = ret;
1412 /* Socket operation failed. We consider the relayd dead */
1413 if (ret == -EPIPE || ret == -EINVAL) {
1414 relayd_hang_up = 1;
1415 goto write_error;
1416 }
1417 goto end;
1418 }
1419 }
1420 } else {
1421 /* Socket operation failed. We consider the relayd dead */
1422 if (ret == -EPIPE || ret == -EINVAL) {
1423 relayd_hang_up = 1;
1424 goto write_error;
1425 }
1426 /* Else, use the default set before which is the filesystem. */
1427 }
1428 } else {
1429 /* No streaming, we have to set the len with the full padding */
1430 len += padding;
1431
1432 /*
1433 * Check if we need to change the tracefile before writing the packet.
1434 */
1435 if (stream->chan->tracefile_size > 0 &&
1436 (stream->tracefile_size_current + len) >
1437 stream->chan->tracefile_size) {
1438 ret = utils_rotate_stream_file(stream->chan->pathname,
1439 stream->name, stream->chan->tracefile_size,
1440 stream->chan->tracefile_count, stream->uid, stream->gid,
1441 stream->out_fd, &(stream->tracefile_count_current),
1442 &stream->out_fd);
1443 if (ret < 0) {
1444 ERR("Rotating output file");
1445 goto end;
1446 }
1447 outfd = stream->out_fd;
1448
1449 if (stream->index_fd >= 0) {
1450 ret = index_create_file(stream->chan->pathname,
1451 stream->name, stream->uid, stream->gid,
1452 stream->chan->tracefile_size,
1453 stream->tracefile_count_current);
1454 if (ret < 0) {
1455 goto end;
1456 }
1457 stream->index_fd = ret;
1458 }
1459
1460 /* Reset current size because we just perform a rotation. */
1461 stream->tracefile_size_current = 0;
1462 stream->out_fd_offset = 0;
1463 orig_offset = 0;
1464 }
1465 stream->tracefile_size_current += len;
1466 if (index) {
1467 index->offset = htobe64(stream->out_fd_offset);
1468 }
1469 }
1470
1471 while (len > 0) {
1472 do {
1473 ret = write(outfd, mmap_base + mmap_offset, len);
1474 } while (ret < 0 && errno == EINTR);
1475 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1476 if (ret < 0) {
1477 /*
1478 * This is possible if the fd is closed on the other side (outfd)
1479 * or any write problem. It can be verbose a bit for a normal
1480 * execution if for instance the relayd is stopped abruptly. This
1481 * can happen so set this to a DBG statement.
1482 */
1483 DBG("Error in file write mmap");
1484 if (written == 0) {
1485 written = -errno;
1486 }
1487 /* Socket operation failed. We consider the relayd dead */
1488 if (errno == EPIPE || errno == EINVAL) {
1489 relayd_hang_up = 1;
1490 goto write_error;
1491 }
1492 goto end;
1493 } else if (ret > len) {
1494 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1495 written += ret;
1496 goto end;
1497 } else {
1498 len -= ret;
1499 mmap_offset += ret;
1500 }
1501
1502 /* This call is useless on a socket so better save a syscall. */
1503 if (!relayd) {
1504 /* This won't block, but will start writeout asynchronously */
1505 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1506 SYNC_FILE_RANGE_WRITE);
1507 stream->out_fd_offset += ret;
1508 }
1509 stream->output_written += ret;
1510 written += ret;
1511 }
1512 lttng_consumer_sync_trace_file(stream, orig_offset);
1513
1514 write_error:
1515 /*
1516 * This is a special case that the relayd has closed its socket. Let's
1517 * cleanup the relayd object and all associated streams.
1518 */
1519 if (relayd && relayd_hang_up) {
1520 cleanup_relayd(relayd, ctx);
1521 }
1522
1523 end:
1524 /* Unlock only if ctrl socket used */
1525 if (relayd && stream->metadata_flag) {
1526 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1527 }
1528
1529 rcu_read_unlock();
1530 return written;
1531 }
1532
1533 /*
1534 * Splice the data from the ring buffer to the tracefile.
1535 *
1536 * It must be called with the stream lock held.
1537 *
1538 * Returns the number of bytes spliced.
1539 */
1540 ssize_t lttng_consumer_on_read_subbuffer_splice(
1541 struct lttng_consumer_local_data *ctx,
1542 struct lttng_consumer_stream *stream, unsigned long len,
1543 unsigned long padding,
1544 struct lttng_packet_index *index)
1545 {
1546 ssize_t ret = 0, written = 0, ret_splice = 0;
1547 loff_t offset = 0;
1548 off_t orig_offset = stream->out_fd_offset;
1549 int fd = stream->wait_fd;
1550 /* Default is on the disk */
1551 int outfd = stream->out_fd;
1552 struct consumer_relayd_sock_pair *relayd = NULL;
1553 int *splice_pipe;
1554 unsigned int relayd_hang_up = 0;
1555
1556 switch (consumer_data.type) {
1557 case LTTNG_CONSUMER_KERNEL:
1558 break;
1559 case LTTNG_CONSUMER32_UST:
1560 case LTTNG_CONSUMER64_UST:
1561 /* Not supported for user space tracing */
1562 return -ENOSYS;
1563 default:
1564 ERR("Unknown consumer_data type");
1565 assert(0);
1566 }
1567
1568 /* RCU lock for the relayd pointer */
1569 rcu_read_lock();
1570
1571 /* Flag that the current stream if set for network streaming. */
1572 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1573 relayd = consumer_find_relayd(stream->net_seq_idx);
1574 if (relayd == NULL) {
1575 ret = -EPIPE;
1576 goto end;
1577 }
1578 }
1579
1580 /*
1581 * Choose right pipe for splice. Metadata and trace data are handled by
1582 * different threads hence the use of two pipes in order not to race or
1583 * corrupt the written data.
1584 */
1585 if (stream->metadata_flag) {
1586 splice_pipe = ctx->consumer_splice_metadata_pipe;
1587 } else {
1588 splice_pipe = ctx->consumer_thread_pipe;
1589 }
1590
1591 /* Write metadata stream id before payload */
1592 if (relayd) {
1593 int total_len = len;
1594
1595 if (stream->metadata_flag) {
1596 /*
1597 * Lock the control socket for the complete duration of the function
1598 * since from this point on we will use the socket.
1599 */
1600 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1601
1602 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1603 padding);
1604 if (ret < 0) {
1605 written = ret;
1606 /* Socket operation failed. We consider the relayd dead */
1607 if (ret == -EBADF) {
1608 WARN("Remote relayd disconnected. Stopping");
1609 relayd_hang_up = 1;
1610 goto write_error;
1611 }
1612 goto end;
1613 }
1614
1615 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1616 }
1617
1618 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1619 if (ret >= 0) {
1620 /* Use the returned socket. */
1621 outfd = ret;
1622 } else {
1623 /* Socket operation failed. We consider the relayd dead */
1624 if (ret == -EBADF) {
1625 WARN("Remote relayd disconnected. Stopping");
1626 relayd_hang_up = 1;
1627 goto write_error;
1628 }
1629 goto end;
1630 }
1631 } else {
1632 /* No streaming, we have to set the len with the full padding */
1633 len += padding;
1634
1635 /*
1636 * Check if we need to change the tracefile before writing the packet.
1637 */
1638 if (stream->chan->tracefile_size > 0 &&
1639 (stream->tracefile_size_current + len) >
1640 stream->chan->tracefile_size) {
1641 ret = utils_rotate_stream_file(stream->chan->pathname,
1642 stream->name, stream->chan->tracefile_size,
1643 stream->chan->tracefile_count, stream->uid, stream->gid,
1644 stream->out_fd, &(stream->tracefile_count_current),
1645 &stream->out_fd);
1646 if (ret < 0) {
1647 ERR("Rotating output file");
1648 goto end;
1649 }
1650 outfd = stream->out_fd;
1651
1652 if (stream->index_fd >= 0) {
1653 ret = index_create_file(stream->chan->pathname,
1654 stream->name, stream->uid, stream->gid,
1655 stream->chan->tracefile_size,
1656 stream->tracefile_count_current);
1657 if (ret < 0) {
1658 goto end;
1659 }
1660 stream->index_fd = ret;
1661 }
1662
1663 /* Reset current size because we just perform a rotation. */
1664 stream->tracefile_size_current = 0;
1665 stream->out_fd_offset = 0;
1666 orig_offset = 0;
1667 }
1668 stream->tracefile_size_current += len;
1669 index->offset = htobe64(stream->out_fd_offset);
1670 }
1671
1672 while (len > 0) {
1673 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1674 (unsigned long)offset, len, fd, splice_pipe[1]);
1675 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1676 SPLICE_F_MOVE | SPLICE_F_MORE);
1677 DBG("splice chan to pipe, ret %zd", ret_splice);
1678 if (ret_splice < 0) {
1679 PERROR("Error in relay splice");
1680 if (written == 0) {
1681 written = ret_splice;
1682 }
1683 ret = errno;
1684 goto splice_error;
1685 }
1686
1687 /* Handle stream on the relayd if the output is on the network */
1688 if (relayd) {
1689 if (stream->metadata_flag) {
1690 size_t metadata_payload_size =
1691 sizeof(struct lttcomm_relayd_metadata_payload);
1692
1693 /* Update counter to fit the spliced data */
1694 ret_splice += metadata_payload_size;
1695 len += metadata_payload_size;
1696 /*
1697 * We do this so the return value can match the len passed as
1698 * argument to this function.
1699 */
1700 written -= metadata_payload_size;
1701 }
1702 }
1703
1704 /* Splice data out */
1705 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1706 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1707 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1708 if (ret_splice < 0) {
1709 PERROR("Error in file splice");
1710 if (written == 0) {
1711 written = ret_splice;
1712 }
1713 /* Socket operation failed. We consider the relayd dead */
1714 if (errno == EBADF || errno == EPIPE) {
1715 WARN("Remote relayd disconnected. Stopping");
1716 relayd_hang_up = 1;
1717 goto write_error;
1718 }
1719 ret = errno;
1720 goto splice_error;
1721 } else if (ret_splice > len) {
1722 errno = EINVAL;
1723 PERROR("Wrote more data than requested %zd (len: %lu)",
1724 ret_splice, len);
1725 written += ret_splice;
1726 ret = errno;
1727 goto splice_error;
1728 }
1729 len -= ret_splice;
1730
1731 /* This call is useless on a socket so better save a syscall. */
1732 if (!relayd) {
1733 /* This won't block, but will start writeout asynchronously */
1734 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1735 SYNC_FILE_RANGE_WRITE);
1736 stream->out_fd_offset += ret_splice;
1737 }
1738 stream->output_written += ret_splice;
1739 written += ret_splice;
1740 }
1741 lttng_consumer_sync_trace_file(stream, orig_offset);
1742
1743 ret = ret_splice;
1744
1745 goto end;
1746
1747 write_error:
1748 /*
1749 * This is a special case that the relayd has closed its socket. Let's
1750 * cleanup the relayd object and all associated streams.
1751 */
1752 if (relayd && relayd_hang_up) {
1753 cleanup_relayd(relayd, ctx);
1754 /* Skip splice error so the consumer does not fail */
1755 goto end;
1756 }
1757
1758 splice_error:
1759 /* send the appropriate error description to sessiond */
1760 switch (ret) {
1761 case EINVAL:
1762 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1763 break;
1764 case ENOMEM:
1765 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1766 break;
1767 case ESPIPE:
1768 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1769 break;
1770 }
1771
1772 end:
1773 if (relayd && stream->metadata_flag) {
1774 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1775 }
1776
1777 rcu_read_unlock();
1778 return written;
1779 }
1780
1781 /*
1782 * Take a snapshot for a specific fd
1783 *
1784 * Returns 0 on success, < 0 on error
1785 */
1786 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1787 {
1788 switch (consumer_data.type) {
1789 case LTTNG_CONSUMER_KERNEL:
1790 return lttng_kconsumer_take_snapshot(stream);
1791 case LTTNG_CONSUMER32_UST:
1792 case LTTNG_CONSUMER64_UST:
1793 return lttng_ustconsumer_take_snapshot(stream);
1794 default:
1795 ERR("Unknown consumer_data type");
1796 assert(0);
1797 return -ENOSYS;
1798 }
1799 }
1800
1801 /*
1802 * Get the produced position
1803 *
1804 * Returns 0 on success, < 0 on error
1805 */
1806 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1807 unsigned long *pos)
1808 {
1809 switch (consumer_data.type) {
1810 case LTTNG_CONSUMER_KERNEL:
1811 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1812 case LTTNG_CONSUMER32_UST:
1813 case LTTNG_CONSUMER64_UST:
1814 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1815 default:
1816 ERR("Unknown consumer_data type");
1817 assert(0);
1818 return -ENOSYS;
1819 }
1820 }
1821
1822 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1823 int sock, struct pollfd *consumer_sockpoll)
1824 {
1825 switch (consumer_data.type) {
1826 case LTTNG_CONSUMER_KERNEL:
1827 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1828 case LTTNG_CONSUMER32_UST:
1829 case LTTNG_CONSUMER64_UST:
1830 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1831 default:
1832 ERR("Unknown consumer_data type");
1833 assert(0);
1834 return -ENOSYS;
1835 }
1836 }
1837
1838 /*
1839 * Iterate over all streams of the hashtable and free them properly.
1840 *
1841 * WARNING: *MUST* be used with data stream only.
1842 */
1843 static void destroy_data_stream_ht(struct lttng_ht *ht)
1844 {
1845 struct lttng_ht_iter iter;
1846 struct lttng_consumer_stream *stream;
1847
1848 if (ht == NULL) {
1849 return;
1850 }
1851
1852 rcu_read_lock();
1853 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1854 /*
1855 * Ignore return value since we are currently cleaning up so any error
1856 * can't be handled.
1857 */
1858 (void) consumer_del_stream(stream, ht);
1859 }
1860 rcu_read_unlock();
1861
1862 lttng_ht_destroy(ht);
1863 }
1864
1865 /*
1866 * Iterate over all streams of the hashtable and free them properly.
1867 *
1868 * XXX: Should not be only for metadata stream or else use an other name.
1869 */
1870 static void destroy_stream_ht(struct lttng_ht *ht)
1871 {
1872 struct lttng_ht_iter iter;
1873 struct lttng_consumer_stream *stream;
1874
1875 if (ht == NULL) {
1876 return;
1877 }
1878
1879 rcu_read_lock();
1880 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1881 /*
1882 * Ignore return value since we are currently cleaning up so any error
1883 * can't be handled.
1884 */
1885 (void) consumer_del_metadata_stream(stream, ht);
1886 }
1887 rcu_read_unlock();
1888
1889 lttng_ht_destroy(ht);
1890 }
1891
1892 void lttng_consumer_close_metadata(void)
1893 {
1894 switch (consumer_data.type) {
1895 case LTTNG_CONSUMER_KERNEL:
1896 /*
1897 * The Kernel consumer has a different metadata scheme so we don't
1898 * close anything because the stream will be closed by the session
1899 * daemon.
1900 */
1901 break;
1902 case LTTNG_CONSUMER32_UST:
1903 case LTTNG_CONSUMER64_UST:
1904 /*
1905 * Close all metadata streams. The metadata hash table is passed and
1906 * this call iterates over it by closing all wakeup fd. This is safe
1907 * because at this point we are sure that the metadata producer is
1908 * either dead or blocked.
1909 */
1910 lttng_ustconsumer_close_metadata(metadata_ht);
1911 break;
1912 default:
1913 ERR("Unknown consumer_data type");
1914 assert(0);
1915 }
1916 }
1917
1918 /*
1919 * Clean up a metadata stream and free its memory.
1920 */
1921 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1922 struct lttng_ht *ht)
1923 {
1924 int ret;
1925 struct lttng_ht_iter iter;
1926 struct lttng_consumer_channel *free_chan = NULL;
1927 struct consumer_relayd_sock_pair *relayd;
1928
1929 assert(stream);
1930 /*
1931 * This call should NEVER receive regular stream. It must always be
1932 * metadata stream and this is crucial for data structure synchronization.
1933 */
1934 assert(stream->metadata_flag);
1935
1936 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1937
1938 if (ht == NULL) {
1939 /* Means the stream was allocated but not successfully added */
1940 goto free_stream_rcu;
1941 }
1942
1943 pthread_mutex_lock(&consumer_data.lock);
1944 pthread_mutex_lock(&stream->chan->lock);
1945 pthread_mutex_lock(&stream->lock);
1946
1947 switch (consumer_data.type) {
1948 case LTTNG_CONSUMER_KERNEL:
1949 if (stream->mmap_base != NULL) {
1950 ret = munmap(stream->mmap_base, stream->mmap_len);
1951 if (ret != 0) {
1952 PERROR("munmap metadata stream");
1953 }
1954 }
1955 if (stream->wait_fd >= 0) {
1956 ret = close(stream->wait_fd);
1957 if (ret < 0) {
1958 PERROR("close kernel metadata wait_fd");
1959 }
1960 }
1961 break;
1962 case LTTNG_CONSUMER32_UST:
1963 case LTTNG_CONSUMER64_UST:
1964 if (stream->monitor) {
1965 /* close the write-side in close_metadata */
1966 ret = close(stream->ust_metadata_poll_pipe[0]);
1967 if (ret < 0) {
1968 PERROR("Close UST metadata read-side poll pipe");
1969 }
1970 }
1971 lttng_ustconsumer_del_stream(stream);
1972 break;
1973 default:
1974 ERR("Unknown consumer_data type");
1975 assert(0);
1976 goto end;
1977 }
1978
1979 rcu_read_lock();
1980 iter.iter.node = &stream->node.node;
1981 ret = lttng_ht_del(ht, &iter);
1982 assert(!ret);
1983
1984 iter.iter.node = &stream->node_channel_id.node;
1985 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1986 assert(!ret);
1987
1988 iter.iter.node = &stream->node_session_id.node;
1989 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1990 assert(!ret);
1991 rcu_read_unlock();
1992
1993 if (stream->out_fd >= 0) {
1994 ret = close(stream->out_fd);
1995 if (ret) {
1996 PERROR("close");
1997 }
1998 }
1999
2000 /* Check and cleanup relayd */
2001 rcu_read_lock();
2002 relayd = consumer_find_relayd(stream->net_seq_idx);
2003 if (relayd != NULL) {
2004 uatomic_dec(&relayd->refcount);
2005 assert(uatomic_read(&relayd->refcount) >= 0);
2006
2007 /* Closing streams requires to lock the control socket. */
2008 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2009 ret = relayd_send_close_stream(&relayd->control_sock,
2010 stream->relayd_stream_id, stream->next_net_seq_num - 1);
2011 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2012 if (ret < 0) {
2013 DBG("Unable to close stream on the relayd. Continuing");
2014 /*
2015 * Continue here. There is nothing we can do for the relayd.
2016 * Chances are that the relayd has closed the socket so we just
2017 * continue cleaning up.
2018 */
2019 }
2020
2021 /* Both conditions are met, we destroy the relayd. */
2022 if (uatomic_read(&relayd->refcount) == 0 &&
2023 uatomic_read(&relayd->destroy_flag)) {
2024 consumer_destroy_relayd(relayd);
2025 }
2026 }
2027 rcu_read_unlock();
2028
2029 /* Atomically decrement channel refcount since other threads can use it. */
2030 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2031 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2032 /* Go for channel deletion! */
2033 free_chan = stream->chan;
2034 }
2035
2036 end:
2037 /*
2038 * Nullify the stream reference so it is not used after deletion. The
2039 * channel lock MUST be acquired before being able to check for
2040 * a NULL pointer value.
2041 */
2042 stream->chan->metadata_stream = NULL;
2043
2044 pthread_mutex_unlock(&stream->lock);
2045 pthread_mutex_unlock(&stream->chan->lock);
2046 pthread_mutex_unlock(&consumer_data.lock);
2047
2048 if (free_chan) {
2049 consumer_del_channel(free_chan);
2050 }
2051
2052 free_stream_rcu:
2053 call_rcu(&stream->node.head, free_stream_rcu);
2054 }
2055
2056 /*
2057 * Action done with the metadata stream when adding it to the consumer internal
2058 * data structures to handle it.
2059 */
2060 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2061 {
2062 struct lttng_ht *ht = metadata_ht;
2063 int ret = 0;
2064 struct lttng_ht_iter iter;
2065 struct lttng_ht_node_u64 *node;
2066
2067 assert(stream);
2068 assert(ht);
2069
2070 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2071
2072 pthread_mutex_lock(&consumer_data.lock);
2073 pthread_mutex_lock(&stream->chan->lock);
2074 pthread_mutex_lock(&stream->chan->timer_lock);
2075 pthread_mutex_lock(&stream->lock);
2076
2077 /*
2078 * From here, refcounts are updated so be _careful_ when returning an error
2079 * after this point.
2080 */
2081
2082 rcu_read_lock();
2083
2084 /*
2085 * Lookup the stream just to make sure it does not exist in our internal
2086 * state. This should NEVER happen.
2087 */
2088 lttng_ht_lookup(ht, &stream->key, &iter);
2089 node = lttng_ht_iter_get_node_u64(&iter);
2090 assert(!node);
2091
2092 /*
2093 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2094 * in terms of destroying the associated channel, because the action that
2095 * causes the count to become 0 also causes a stream to be added. The
2096 * channel deletion will thus be triggered by the following removal of this
2097 * stream.
2098 */
2099 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2100 /* Increment refcount before decrementing nb_init_stream_left */
2101 cmm_smp_wmb();
2102 uatomic_dec(&stream->chan->nb_init_stream_left);
2103 }
2104
2105 lttng_ht_add_unique_u64(ht, &stream->node);
2106
2107 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2108 &stream->node_channel_id);
2109
2110 /*
2111 * Add stream to the stream_list_ht of the consumer data. No need to steal
2112 * the key since the HT does not use it and we allow to add redundant keys
2113 * into this table.
2114 */
2115 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2116
2117 rcu_read_unlock();
2118
2119 pthread_mutex_unlock(&stream->lock);
2120 pthread_mutex_unlock(&stream->chan->lock);
2121 pthread_mutex_unlock(&stream->chan->timer_lock);
2122 pthread_mutex_unlock(&consumer_data.lock);
2123 return ret;
2124 }
2125
2126 /*
2127 * Delete data stream that are flagged for deletion (endpoint_status).
2128 */
2129 static void validate_endpoint_status_data_stream(void)
2130 {
2131 struct lttng_ht_iter iter;
2132 struct lttng_consumer_stream *stream;
2133
2134 DBG("Consumer delete flagged data stream");
2135
2136 rcu_read_lock();
2137 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2138 /* Validate delete flag of the stream */
2139 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2140 continue;
2141 }
2142 /* Delete it right now */
2143 consumer_del_stream(stream, data_ht);
2144 }
2145 rcu_read_unlock();
2146 }
2147
2148 /*
2149 * Delete metadata stream that are flagged for deletion (endpoint_status).
2150 */
2151 static void validate_endpoint_status_metadata_stream(
2152 struct lttng_poll_event *pollset)
2153 {
2154 struct lttng_ht_iter iter;
2155 struct lttng_consumer_stream *stream;
2156
2157 DBG("Consumer delete flagged metadata stream");
2158
2159 assert(pollset);
2160
2161 rcu_read_lock();
2162 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2163 /* Validate delete flag of the stream */
2164 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2165 continue;
2166 }
2167 /*
2168 * Remove from pollset so the metadata thread can continue without
2169 * blocking on a deleted stream.
2170 */
2171 lttng_poll_del(pollset, stream->wait_fd);
2172
2173 /* Delete it right now */
2174 consumer_del_metadata_stream(stream, metadata_ht);
2175 }
2176 rcu_read_unlock();
2177 }
2178
2179 /*
2180 * Thread polls on metadata file descriptor and write them on disk or on the
2181 * network.
2182 */
2183 void *consumer_thread_metadata_poll(void *data)
2184 {
2185 int ret, i, pollfd;
2186 uint32_t revents, nb_fd;
2187 struct lttng_consumer_stream *stream = NULL;
2188 struct lttng_ht_iter iter;
2189 struct lttng_ht_node_u64 *node;
2190 struct lttng_poll_event events;
2191 struct lttng_consumer_local_data *ctx = data;
2192 ssize_t len;
2193
2194 rcu_register_thread();
2195
2196 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2197 if (!metadata_ht) {
2198 /* ENOMEM at this point. Better to bail out. */
2199 goto end_ht;
2200 }
2201
2202 DBG("Thread metadata poll started");
2203
2204 /* Size is set to 1 for the consumer_metadata pipe */
2205 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2206 if (ret < 0) {
2207 ERR("Poll set creation failed");
2208 goto end_poll;
2209 }
2210
2211 ret = lttng_poll_add(&events,
2212 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2213 if (ret < 0) {
2214 goto end;
2215 }
2216
2217 /* Main loop */
2218 DBG("Metadata main loop started");
2219
2220 while (1) {
2221 /* Only the metadata pipe is set */
2222 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2223 goto end;
2224 }
2225
2226 restart:
2227 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2228 ret = lttng_poll_wait(&events, -1);
2229 DBG("Metadata event catched in thread");
2230 if (ret < 0) {
2231 if (errno == EINTR) {
2232 ERR("Poll EINTR catched");
2233 goto restart;
2234 }
2235 goto error;
2236 }
2237
2238 nb_fd = ret;
2239
2240 /* From here, the event is a metadata wait fd */
2241 for (i = 0; i < nb_fd; i++) {
2242 revents = LTTNG_POLL_GETEV(&events, i);
2243 pollfd = LTTNG_POLL_GETFD(&events, i);
2244
2245 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2246 if (revents & (LPOLLERR | LPOLLHUP )) {
2247 DBG("Metadata thread pipe hung up");
2248 /*
2249 * Remove the pipe from the poll set and continue the loop
2250 * since their might be data to consume.
2251 */
2252 lttng_poll_del(&events,
2253 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2254 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2255 continue;
2256 } else if (revents & LPOLLIN) {
2257 ssize_t pipe_len;
2258
2259 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2260 &stream, sizeof(stream));
2261 if (pipe_len < 0) {
2262 ERR("read metadata stream, ret: %zd", pipe_len);
2263 /*
2264 * Continue here to handle the rest of the streams.
2265 */
2266 continue;
2267 }
2268
2269 /* A NULL stream means that the state has changed. */
2270 if (stream == NULL) {
2271 /* Check for deleted streams. */
2272 validate_endpoint_status_metadata_stream(&events);
2273 goto restart;
2274 }
2275
2276 DBG("Adding metadata stream %d to poll set",
2277 stream->wait_fd);
2278
2279 /* Add metadata stream to the global poll events list */
2280 lttng_poll_add(&events, stream->wait_fd,
2281 LPOLLIN | LPOLLPRI);
2282 }
2283
2284 /* Handle other stream */
2285 continue;
2286 }
2287
2288 rcu_read_lock();
2289 {
2290 uint64_t tmp_id = (uint64_t) pollfd;
2291
2292 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2293 }
2294 node = lttng_ht_iter_get_node_u64(&iter);
2295 assert(node);
2296
2297 stream = caa_container_of(node, struct lttng_consumer_stream,
2298 node);
2299
2300 /* Check for error event */
2301 if (revents & (LPOLLERR | LPOLLHUP)) {
2302 DBG("Metadata fd %d is hup|err.", pollfd);
2303 if (!stream->hangup_flush_done
2304 && (consumer_data.type == LTTNG_CONSUMER32_UST
2305 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2306 DBG("Attempting to flush and consume the UST buffers");
2307 lttng_ustconsumer_on_stream_hangup(stream);
2308
2309 /* We just flushed the stream now read it. */
2310 do {
2311 len = ctx->on_buffer_ready(stream, ctx);
2312 /*
2313 * We don't check the return value here since if we get
2314 * a negative len, it means an error occured thus we
2315 * simply remove it from the poll set and free the
2316 * stream.
2317 */
2318 } while (len > 0);
2319 }
2320
2321 lttng_poll_del(&events, stream->wait_fd);
2322 /*
2323 * This call update the channel states, closes file descriptors
2324 * and securely free the stream.
2325 */
2326 consumer_del_metadata_stream(stream, metadata_ht);
2327 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2328 /* Get the data out of the metadata file descriptor */
2329 DBG("Metadata available on fd %d", pollfd);
2330 assert(stream->wait_fd == pollfd);
2331
2332 do {
2333 len = ctx->on_buffer_ready(stream, ctx);
2334 /*
2335 * We don't check the return value here since if we get
2336 * a negative len, it means an error occured thus we
2337 * simply remove it from the poll set and free the
2338 * stream.
2339 */
2340 } while (len > 0);
2341
2342 /* It's ok to have an unavailable sub-buffer */
2343 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2344 /* Clean up stream from consumer and free it. */
2345 lttng_poll_del(&events, stream->wait_fd);
2346 consumer_del_metadata_stream(stream, metadata_ht);
2347 }
2348 }
2349
2350 /* Release RCU lock for the stream looked up */
2351 rcu_read_unlock();
2352 }
2353 }
2354
2355 error:
2356 end:
2357 DBG("Metadata poll thread exiting");
2358
2359 lttng_poll_clean(&events);
2360 end_poll:
2361 destroy_stream_ht(metadata_ht);
2362 end_ht:
2363 rcu_unregister_thread();
2364 return NULL;
2365 }
2366
2367 /*
2368 * This thread polls the fds in the set to consume the data and write
2369 * it to tracefile if necessary.
2370 */
2371 void *consumer_thread_data_poll(void *data)
2372 {
2373 int num_rdy, num_hup, high_prio, ret, i;
2374 struct pollfd *pollfd = NULL;
2375 /* local view of the streams */
2376 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2377 /* local view of consumer_data.fds_count */
2378 int nb_fd = 0;
2379 struct lttng_consumer_local_data *ctx = data;
2380 ssize_t len;
2381
2382 rcu_register_thread();
2383
2384 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2385 if (data_ht == NULL) {
2386 /* ENOMEM at this point. Better to bail out. */
2387 goto end;
2388 }
2389
2390 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2391 if (local_stream == NULL) {
2392 PERROR("local_stream malloc");
2393 goto end;
2394 }
2395
2396 while (1) {
2397 high_prio = 0;
2398 num_hup = 0;
2399
2400 /*
2401 * the fds set has been updated, we need to update our
2402 * local array as well
2403 */
2404 pthread_mutex_lock(&consumer_data.lock);
2405 if (consumer_data.need_update) {
2406 free(pollfd);
2407 pollfd = NULL;
2408
2409 free(local_stream);
2410 local_stream = NULL;
2411
2412 /* allocate for all fds + 1 for the consumer_data_pipe */
2413 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2414 if (pollfd == NULL) {
2415 PERROR("pollfd malloc");
2416 pthread_mutex_unlock(&consumer_data.lock);
2417 goto end;
2418 }
2419
2420 /* allocate for all fds + 1 for the consumer_data_pipe */
2421 local_stream = zmalloc((consumer_data.stream_count + 1) *
2422 sizeof(struct lttng_consumer_stream *));
2423 if (local_stream == NULL) {
2424 PERROR("local_stream malloc");
2425 pthread_mutex_unlock(&consumer_data.lock);
2426 goto end;
2427 }
2428 ret = update_poll_array(ctx, &pollfd, local_stream,
2429 data_ht);
2430 if (ret < 0) {
2431 ERR("Error in allocating pollfd or local_outfds");
2432 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2433 pthread_mutex_unlock(&consumer_data.lock);
2434 goto end;
2435 }
2436 nb_fd = ret;
2437 consumer_data.need_update = 0;
2438 }
2439 pthread_mutex_unlock(&consumer_data.lock);
2440
2441 /* No FDs and consumer_quit, consumer_cleanup the thread */
2442 if (nb_fd == 0 && consumer_quit == 1) {
2443 goto end;
2444 }
2445 /* poll on the array of fds */
2446 restart:
2447 DBG("polling on %d fd", nb_fd + 1);
2448 num_rdy = poll(pollfd, nb_fd + 1, -1);
2449 DBG("poll num_rdy : %d", num_rdy);
2450 if (num_rdy == -1) {
2451 /*
2452 * Restart interrupted system call.
2453 */
2454 if (errno == EINTR) {
2455 goto restart;
2456 }
2457 PERROR("Poll error");
2458 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2459 goto end;
2460 } else if (num_rdy == 0) {
2461 DBG("Polling thread timed out");
2462 goto end;
2463 }
2464
2465 /*
2466 * If the consumer_data_pipe triggered poll go directly to the
2467 * beginning of the loop to update the array. We want to prioritize
2468 * array update over low-priority reads.
2469 */
2470 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2471 ssize_t pipe_readlen;
2472
2473 DBG("consumer_data_pipe wake up");
2474 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2475 &new_stream, sizeof(new_stream));
2476 if (pipe_readlen < 0) {
2477 ERR("Consumer data pipe ret %zd", pipe_readlen);
2478 /* Continue so we can at least handle the current stream(s). */
2479 continue;
2480 }
2481
2482 /*
2483 * If the stream is NULL, just ignore it. It's also possible that
2484 * the sessiond poll thread changed the consumer_quit state and is
2485 * waking us up to test it.
2486 */
2487 if (new_stream == NULL) {
2488 validate_endpoint_status_data_stream();
2489 continue;
2490 }
2491
2492 /* Continue to update the local streams and handle prio ones */
2493 continue;
2494 }
2495
2496 /* Take care of high priority channels first. */
2497 for (i = 0; i < nb_fd; i++) {
2498 if (local_stream[i] == NULL) {
2499 continue;
2500 }
2501 if (pollfd[i].revents & POLLPRI) {
2502 DBG("Urgent read on fd %d", pollfd[i].fd);
2503 high_prio = 1;
2504 len = ctx->on_buffer_ready(local_stream[i], ctx);
2505 /* it's ok to have an unavailable sub-buffer */
2506 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2507 /* Clean the stream and free it. */
2508 consumer_del_stream(local_stream[i], data_ht);
2509 local_stream[i] = NULL;
2510 } else if (len > 0) {
2511 local_stream[i]->data_read = 1;
2512 }
2513 }
2514 }
2515
2516 /*
2517 * If we read high prio channel in this loop, try again
2518 * for more high prio data.
2519 */
2520 if (high_prio) {
2521 continue;
2522 }
2523
2524 /* Take care of low priority channels. */
2525 for (i = 0; i < nb_fd; i++) {
2526 if (local_stream[i] == NULL) {
2527 continue;
2528 }
2529 if ((pollfd[i].revents & POLLIN) ||
2530 local_stream[i]->hangup_flush_done) {
2531 DBG("Normal read on fd %d", pollfd[i].fd);
2532 len = ctx->on_buffer_ready(local_stream[i], ctx);
2533 /* it's ok to have an unavailable sub-buffer */
2534 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2535 /* Clean the stream and free it. */
2536 consumer_del_stream(local_stream[i], data_ht);
2537 local_stream[i] = NULL;
2538 } else if (len > 0) {
2539 local_stream[i]->data_read = 1;
2540 }
2541 }
2542 }
2543
2544 /* Handle hangup and errors */
2545 for (i = 0; i < nb_fd; i++) {
2546 if (local_stream[i] == NULL) {
2547 continue;
2548 }
2549 if (!local_stream[i]->hangup_flush_done
2550 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2551 && (consumer_data.type == LTTNG_CONSUMER32_UST
2552 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2553 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2554 pollfd[i].fd);
2555 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2556 /* Attempt read again, for the data we just flushed. */
2557 local_stream[i]->data_read = 1;
2558 }
2559 /*
2560 * If the poll flag is HUP/ERR/NVAL and we have
2561 * read no data in this pass, we can remove the
2562 * stream from its hash table.
2563 */
2564 if ((pollfd[i].revents & POLLHUP)) {
2565 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2566 if (!local_stream[i]->data_read) {
2567 consumer_del_stream(local_stream[i], data_ht);
2568 local_stream[i] = NULL;
2569 num_hup++;
2570 }
2571 } else if (pollfd[i].revents & POLLERR) {
2572 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2573 if (!local_stream[i]->data_read) {
2574 consumer_del_stream(local_stream[i], data_ht);
2575 local_stream[i] = NULL;
2576 num_hup++;
2577 }
2578 } else if (pollfd[i].revents & POLLNVAL) {
2579 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2580 if (!local_stream[i]->data_read) {
2581 consumer_del_stream(local_stream[i], data_ht);
2582 local_stream[i] = NULL;
2583 num_hup++;
2584 }
2585 }
2586 if (local_stream[i] != NULL) {
2587 local_stream[i]->data_read = 0;
2588 }
2589 }
2590 }
2591 end:
2592 DBG("polling thread exiting");
2593 free(pollfd);
2594 free(local_stream);
2595
2596 /*
2597 * Close the write side of the pipe so epoll_wait() in
2598 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2599 * read side of the pipe. If we close them both, epoll_wait strangely does
2600 * not return and could create a endless wait period if the pipe is the
2601 * only tracked fd in the poll set. The thread will take care of closing
2602 * the read side.
2603 */
2604 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2605
2606 destroy_data_stream_ht(data_ht);
2607
2608 rcu_unregister_thread();
2609 return NULL;
2610 }
2611
2612 /*
2613 * Close wake-up end of each stream belonging to the channel. This will
2614 * allow the poll() on the stream read-side to detect when the
2615 * write-side (application) finally closes them.
2616 */
2617 static
2618 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2619 {
2620 struct lttng_ht *ht;
2621 struct lttng_consumer_stream *stream;
2622 struct lttng_ht_iter iter;
2623
2624 ht = consumer_data.stream_per_chan_id_ht;
2625
2626 rcu_read_lock();
2627 cds_lfht_for_each_entry_duplicate(ht->ht,
2628 ht->hash_fct(&channel->key, lttng_ht_seed),
2629 ht->match_fct, &channel->key,
2630 &iter.iter, stream, node_channel_id.node) {
2631 /*
2632 * Protect against teardown with mutex.
2633 */
2634 pthread_mutex_lock(&stream->lock);
2635 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2636 goto next;
2637 }
2638 switch (consumer_data.type) {
2639 case LTTNG_CONSUMER_KERNEL:
2640 break;
2641 case LTTNG_CONSUMER32_UST:
2642 case LTTNG_CONSUMER64_UST:
2643 /*
2644 * Note: a mutex is taken internally within
2645 * liblttng-ust-ctl to protect timer wakeup_fd
2646 * use from concurrent close.
2647 */
2648 lttng_ustconsumer_close_stream_wakeup(stream);
2649 break;
2650 default:
2651 ERR("Unknown consumer_data type");
2652 assert(0);
2653 }
2654 next:
2655 pthread_mutex_unlock(&stream->lock);
2656 }
2657 rcu_read_unlock();
2658 }
2659
2660 static void destroy_channel_ht(struct lttng_ht *ht)
2661 {
2662 struct lttng_ht_iter iter;
2663 struct lttng_consumer_channel *channel;
2664 int ret;
2665
2666 if (ht == NULL) {
2667 return;
2668 }
2669
2670 rcu_read_lock();
2671 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2672 ret = lttng_ht_del(ht, &iter);
2673 assert(ret != 0);
2674 }
2675 rcu_read_unlock();
2676
2677 lttng_ht_destroy(ht);
2678 }
2679
2680 /*
2681 * This thread polls the channel fds to detect when they are being
2682 * closed. It closes all related streams if the channel is detected as
2683 * closed. It is currently only used as a shim layer for UST because the
2684 * consumerd needs to keep the per-stream wakeup end of pipes open for
2685 * periodical flush.
2686 */
2687 void *consumer_thread_channel_poll(void *data)
2688 {
2689 int ret, i, pollfd;
2690 uint32_t revents, nb_fd;
2691 struct lttng_consumer_channel *chan = NULL;
2692 struct lttng_ht_iter iter;
2693 struct lttng_ht_node_u64 *node;
2694 struct lttng_poll_event events;
2695 struct lttng_consumer_local_data *ctx = data;
2696 struct lttng_ht *channel_ht;
2697
2698 rcu_register_thread();
2699
2700 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2701 if (!channel_ht) {
2702 /* ENOMEM at this point. Better to bail out. */
2703 goto end_ht;
2704 }
2705
2706 DBG("Thread channel poll started");
2707
2708 /* Size is set to 1 for the consumer_channel pipe */
2709 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2710 if (ret < 0) {
2711 ERR("Poll set creation failed");
2712 goto end_poll;
2713 }
2714
2715 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2716 if (ret < 0) {
2717 goto end;
2718 }
2719
2720 /* Main loop */
2721 DBG("Channel main loop started");
2722
2723 while (1) {
2724 /* Only the channel pipe is set */
2725 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2726 goto end;
2727 }
2728
2729 restart:
2730 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2731 ret = lttng_poll_wait(&events, -1);
2732 DBG("Channel event catched in thread");
2733 if (ret < 0) {
2734 if (errno == EINTR) {
2735 ERR("Poll EINTR catched");
2736 goto restart;
2737 }
2738 goto end;
2739 }
2740
2741 nb_fd = ret;
2742
2743 /* From here, the event is a channel wait fd */
2744 for (i = 0; i < nb_fd; i++) {
2745 revents = LTTNG_POLL_GETEV(&events, i);
2746 pollfd = LTTNG_POLL_GETFD(&events, i);
2747
2748 /* Just don't waste time if no returned events for the fd */
2749 if (!revents) {
2750 continue;
2751 }
2752 if (pollfd == ctx->consumer_channel_pipe[0]) {
2753 if (revents & (LPOLLERR | LPOLLHUP)) {
2754 DBG("Channel thread pipe hung up");
2755 /*
2756 * Remove the pipe from the poll set and continue the loop
2757 * since their might be data to consume.
2758 */
2759 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2760 continue;
2761 } else if (revents & LPOLLIN) {
2762 enum consumer_channel_action action;
2763 uint64_t key;
2764
2765 ret = read_channel_pipe(ctx, &chan, &key, &action);
2766 if (ret <= 0) {
2767 ERR("Error reading channel pipe");
2768 continue;
2769 }
2770
2771 switch (action) {
2772 case CONSUMER_CHANNEL_ADD:
2773 DBG("Adding channel %d to poll set",
2774 chan->wait_fd);
2775
2776 lttng_ht_node_init_u64(&chan->wait_fd_node,
2777 chan->wait_fd);
2778 rcu_read_lock();
2779 lttng_ht_add_unique_u64(channel_ht,
2780 &chan->wait_fd_node);
2781 rcu_read_unlock();
2782 /* Add channel to the global poll events list */
2783 lttng_poll_add(&events, chan->wait_fd,
2784 LPOLLIN | LPOLLPRI);
2785 break;
2786 case CONSUMER_CHANNEL_DEL:
2787 {
2788 struct lttng_consumer_stream *stream, *stmp;
2789
2790 rcu_read_lock();
2791 chan = consumer_find_channel(key);
2792 if (!chan) {
2793 rcu_read_unlock();
2794 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2795 break;
2796 }
2797 lttng_poll_del(&events, chan->wait_fd);
2798 iter.iter.node = &chan->wait_fd_node.node;
2799 ret = lttng_ht_del(channel_ht, &iter);
2800 assert(ret == 0);
2801 consumer_close_channel_streams(chan);
2802
2803 switch (consumer_data.type) {
2804 case LTTNG_CONSUMER_KERNEL:
2805 break;
2806 case LTTNG_CONSUMER32_UST:
2807 case LTTNG_CONSUMER64_UST:
2808 /* Delete streams that might have been left in the stream list. */
2809 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2810 send_node) {
2811 cds_list_del(&stream->send_node);
2812 lttng_ustconsumer_del_stream(stream);
2813 uatomic_sub(&stream->chan->refcount, 1);
2814 assert(&chan->refcount);
2815 free(stream);
2816 }
2817 break;
2818 default:
2819 ERR("Unknown consumer_data type");
2820 assert(0);
2821 }
2822
2823 /*
2824 * Release our own refcount. Force channel deletion even if
2825 * streams were not initialized.
2826 */
2827 if (!uatomic_sub_return(&chan->refcount, 1)) {
2828 consumer_del_channel(chan);
2829 }
2830 rcu_read_unlock();
2831 goto restart;
2832 }
2833 case CONSUMER_CHANNEL_QUIT:
2834 /*
2835 * Remove the pipe from the poll set and continue the loop
2836 * since their might be data to consume.
2837 */
2838 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2839 continue;
2840 default:
2841 ERR("Unknown action");
2842 break;
2843 }
2844 }
2845
2846 /* Handle other stream */
2847 continue;
2848 }
2849
2850 rcu_read_lock();
2851 {
2852 uint64_t tmp_id = (uint64_t) pollfd;
2853
2854 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2855 }
2856 node = lttng_ht_iter_get_node_u64(&iter);
2857 assert(node);
2858
2859 chan = caa_container_of(node, struct lttng_consumer_channel,
2860 wait_fd_node);
2861
2862 /* Check for error event */
2863 if (revents & (LPOLLERR | LPOLLHUP)) {
2864 DBG("Channel fd %d is hup|err.", pollfd);
2865
2866 lttng_poll_del(&events, chan->wait_fd);
2867 ret = lttng_ht_del(channel_ht, &iter);
2868 assert(ret == 0);
2869 consumer_close_channel_streams(chan);
2870
2871 /* Release our own refcount */
2872 if (!uatomic_sub_return(&chan->refcount, 1)
2873 && !uatomic_read(&chan->nb_init_stream_left)) {
2874 consumer_del_channel(chan);
2875 }
2876 }
2877
2878 /* Release RCU lock for the channel looked up */
2879 rcu_read_unlock();
2880 }
2881 }
2882
2883 end:
2884 lttng_poll_clean(&events);
2885 end_poll:
2886 destroy_channel_ht(channel_ht);
2887 end_ht:
2888 DBG("Channel poll thread exiting");
2889 rcu_unregister_thread();
2890 return NULL;
2891 }
2892
2893 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2894 struct pollfd *sockpoll, int client_socket)
2895 {
2896 int ret;
2897
2898 assert(ctx);
2899 assert(sockpoll);
2900
2901 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2902 ret = -1;
2903 goto error;
2904 }
2905 DBG("Metadata connection on client_socket");
2906
2907 /* Blocking call, waiting for transmission */
2908 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2909 if (ctx->consumer_metadata_socket < 0) {
2910 WARN("On accept metadata");
2911 ret = -1;
2912 goto error;
2913 }
2914 ret = 0;
2915
2916 error:
2917 return ret;
2918 }
2919
2920 /*
2921 * This thread listens on the consumerd socket and receives the file
2922 * descriptors from the session daemon.
2923 */
2924 void *consumer_thread_sessiond_poll(void *data)
2925 {
2926 int sock = -1, client_socket, ret;
2927 /*
2928 * structure to poll for incoming data on communication socket avoids
2929 * making blocking sockets.
2930 */
2931 struct pollfd consumer_sockpoll[2];
2932 struct lttng_consumer_local_data *ctx = data;
2933
2934 rcu_register_thread();
2935
2936 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2937 unlink(ctx->consumer_command_sock_path);
2938 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2939 if (client_socket < 0) {
2940 ERR("Cannot create command socket");
2941 goto end;
2942 }
2943
2944 ret = lttcomm_listen_unix_sock(client_socket);
2945 if (ret < 0) {
2946 goto end;
2947 }
2948
2949 DBG("Sending ready command to lttng-sessiond");
2950 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2951 /* return < 0 on error, but == 0 is not fatal */
2952 if (ret < 0) {
2953 ERR("Error sending ready command to lttng-sessiond");
2954 goto end;
2955 }
2956
2957 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2958 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2959 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2960 consumer_sockpoll[1].fd = client_socket;
2961 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2962
2963 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2964 goto end;
2965 }
2966 DBG("Connection on client_socket");
2967
2968 /* Blocking call, waiting for transmission */
2969 sock = lttcomm_accept_unix_sock(client_socket);
2970 if (sock < 0) {
2971 WARN("On accept");
2972 goto end;
2973 }
2974
2975 /*
2976 * Setup metadata socket which is the second socket connection on the
2977 * command unix socket.
2978 */
2979 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2980 if (ret < 0) {
2981 goto end;
2982 }
2983
2984 /* This socket is not useful anymore. */
2985 ret = close(client_socket);
2986 if (ret < 0) {
2987 PERROR("close client_socket");
2988 }
2989 client_socket = -1;
2990
2991 /* update the polling structure to poll on the established socket */
2992 consumer_sockpoll[1].fd = sock;
2993 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2994
2995 while (1) {
2996 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2997 goto end;
2998 }
2999 DBG("Incoming command on sock");
3000 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3001 if (ret == -ENOENT) {
3002 DBG("Received STOP command");
3003 goto end;
3004 }
3005 if (ret <= 0) {
3006 /*
3007 * This could simply be a session daemon quitting. Don't output
3008 * ERR() here.
3009 */
3010 DBG("Communication interrupted on command socket");
3011 goto end;
3012 }
3013 if (consumer_quit) {
3014 DBG("consumer_thread_receive_fds received quit from signal");
3015 goto end;
3016 }
3017 DBG("received command on sock");
3018 }
3019 end:
3020 DBG("Consumer thread sessiond poll exiting");
3021
3022 /*
3023 * Close metadata streams since the producer is the session daemon which
3024 * just died.
3025 *
3026 * NOTE: for now, this only applies to the UST tracer.
3027 */
3028 lttng_consumer_close_metadata();
3029
3030 /*
3031 * when all fds have hung up, the polling thread
3032 * can exit cleanly
3033 */
3034 consumer_quit = 1;
3035
3036 /*
3037 * Notify the data poll thread to poll back again and test the
3038 * consumer_quit state that we just set so to quit gracefully.
3039 */
3040 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3041
3042 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3043
3044 /* Cleaning up possibly open sockets. */
3045 if (sock >= 0) {
3046 ret = close(sock);
3047 if (ret < 0) {
3048 PERROR("close sock sessiond poll");
3049 }
3050 }
3051 if (client_socket >= 0) {
3052 ret = close(client_socket);
3053 if (ret < 0) {
3054 PERROR("close client_socket sessiond poll");
3055 }
3056 }
3057
3058 rcu_unregister_thread();
3059 return NULL;
3060 }
3061
3062 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3063 struct lttng_consumer_local_data *ctx)
3064 {
3065 ssize_t ret;
3066
3067 pthread_mutex_lock(&stream->lock);
3068 if (stream->metadata_flag) {
3069 pthread_mutex_lock(&stream->metadata_rdv_lock);
3070 }
3071
3072 switch (consumer_data.type) {
3073 case LTTNG_CONSUMER_KERNEL:
3074 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3075 break;
3076 case LTTNG_CONSUMER32_UST:
3077 case LTTNG_CONSUMER64_UST:
3078 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3079 break;
3080 default:
3081 ERR("Unknown consumer_data type");
3082 assert(0);
3083 ret = -ENOSYS;
3084 break;
3085 }
3086
3087 if (stream->metadata_flag) {
3088 pthread_cond_broadcast(&stream->metadata_rdv);
3089 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3090 }
3091 pthread_mutex_unlock(&stream->lock);
3092 return ret;
3093 }
3094
3095 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3096 {
3097 switch (consumer_data.type) {
3098 case LTTNG_CONSUMER_KERNEL:
3099 return lttng_kconsumer_on_recv_stream(stream);
3100 case LTTNG_CONSUMER32_UST:
3101 case LTTNG_CONSUMER64_UST:
3102 return lttng_ustconsumer_on_recv_stream(stream);
3103 default:
3104 ERR("Unknown consumer_data type");
3105 assert(0);
3106 return -ENOSYS;
3107 }
3108 }
3109
3110 /*
3111 * Allocate and set consumer data hash tables.
3112 */
3113 void lttng_consumer_init(void)
3114 {
3115 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3116 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3117 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3118 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3119 }
3120
3121 /*
3122 * Process the ADD_RELAYD command receive by a consumer.
3123 *
3124 * This will create a relayd socket pair and add it to the relayd hash table.
3125 * The caller MUST acquire a RCU read side lock before calling it.
3126 */
3127 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3128 struct lttng_consumer_local_data *ctx, int sock,
3129 struct pollfd *consumer_sockpoll,
3130 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3131 uint64_t relayd_session_id)
3132 {
3133 int fd = -1, ret = -1, relayd_created = 0;
3134 enum lttng_error_code ret_code = LTTNG_OK;
3135 struct consumer_relayd_sock_pair *relayd = NULL;
3136
3137 assert(ctx);
3138 assert(relayd_sock);
3139
3140 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3141
3142 /* Get relayd reference if exists. */
3143 relayd = consumer_find_relayd(net_seq_idx);
3144 if (relayd == NULL) {
3145 assert(sock_type == LTTNG_STREAM_CONTROL);
3146 /* Not found. Allocate one. */
3147 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3148 if (relayd == NULL) {
3149 ret = -ENOMEM;
3150 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3151 goto error;
3152 } else {
3153 relayd->sessiond_session_id = sessiond_id;
3154 relayd_created = 1;
3155 }
3156
3157 /*
3158 * This code path MUST continue to the consumer send status message to
3159 * we can notify the session daemon and continue our work without
3160 * killing everything.
3161 */
3162 } else {
3163 /*
3164 * relayd key should never be found for control socket.
3165 */
3166 assert(sock_type != LTTNG_STREAM_CONTROL);
3167 }
3168
3169 /* First send a status message before receiving the fds. */
3170 ret = consumer_send_status_msg(sock, LTTNG_OK);
3171 if (ret < 0) {
3172 /* Somehow, the session daemon is not responding anymore. */
3173 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3174 goto error_nosignal;
3175 }
3176
3177 /* Poll on consumer socket. */
3178 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3179 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3180 ret = -EINTR;
3181 goto error_nosignal;
3182 }
3183
3184 /* Get relayd socket from session daemon */
3185 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3186 if (ret != sizeof(fd)) {
3187 ret = -1;
3188 fd = -1; /* Just in case it gets set with an invalid value. */
3189
3190 /*
3191 * Failing to receive FDs might indicate a major problem such as
3192 * reaching a fd limit during the receive where the kernel returns a
3193 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3194 * don't take any chances and stop everything.
3195 *
3196 * XXX: Feature request #558 will fix that and avoid this possible
3197 * issue when reaching the fd limit.
3198 */
3199 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3200 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3201 goto error;
3202 }
3203
3204 /* Copy socket information and received FD */
3205 switch (sock_type) {
3206 case LTTNG_STREAM_CONTROL:
3207 /* Copy received lttcomm socket */
3208 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3209 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3210 /* Handle create_sock error. */
3211 if (ret < 0) {
3212 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3213 goto error;
3214 }
3215 /*
3216 * Close the socket created internally by
3217 * lttcomm_create_sock, so we can replace it by the one
3218 * received from sessiond.
3219 */
3220 if (close(relayd->control_sock.sock.fd)) {
3221 PERROR("close");
3222 }
3223
3224 /* Assign new file descriptor */
3225 relayd->control_sock.sock.fd = fd;
3226 fd = -1; /* For error path */
3227 /* Assign version values. */
3228 relayd->control_sock.major = relayd_sock->major;
3229 relayd->control_sock.minor = relayd_sock->minor;
3230
3231 relayd->relayd_session_id = relayd_session_id;
3232
3233 break;
3234 case LTTNG_STREAM_DATA:
3235 /* Copy received lttcomm socket */
3236 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3237 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3238 /* Handle create_sock error. */
3239 if (ret < 0) {
3240 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3241 goto error;
3242 }
3243 /*
3244 * Close the socket created internally by
3245 * lttcomm_create_sock, so we can replace it by the one
3246 * received from sessiond.
3247 */
3248 if (close(relayd->data_sock.sock.fd)) {
3249 PERROR("close");
3250 }
3251
3252 /* Assign new file descriptor */
3253 relayd->data_sock.sock.fd = fd;
3254 fd = -1; /* for eventual error paths */
3255 /* Assign version values. */
3256 relayd->data_sock.major = relayd_sock->major;
3257 relayd->data_sock.minor = relayd_sock->minor;
3258 break;
3259 default:
3260 ERR("Unknown relayd socket type (%d)", sock_type);
3261 ret = -1;
3262 ret_code = LTTCOMM_CONSUMERD_FATAL;
3263 goto error;
3264 }
3265
3266 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3267 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3268 relayd->net_seq_idx, fd);
3269
3270 /* We successfully added the socket. Send status back. */
3271 ret = consumer_send_status_msg(sock, ret_code);
3272 if (ret < 0) {
3273 /* Somehow, the session daemon is not responding anymore. */
3274 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3275 goto error_nosignal;
3276 }
3277
3278 /*
3279 * Add relayd socket pair to consumer data hashtable. If object already
3280 * exists or on error, the function gracefully returns.
3281 */
3282 add_relayd(relayd);
3283
3284 /* All good! */
3285 return 0;
3286
3287 error:
3288 if (consumer_send_status_msg(sock, ret_code) < 0) {
3289 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3290 }
3291
3292 error_nosignal:
3293 /* Close received socket if valid. */
3294 if (fd >= 0) {
3295 if (close(fd)) {
3296 PERROR("close received socket");
3297 }
3298 }
3299
3300 if (relayd_created) {
3301 free(relayd);
3302 }
3303
3304 return ret;
3305 }
3306
3307 /*
3308 * Try to lock the stream mutex.
3309 *
3310 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3311 */
3312 static int stream_try_lock(struct lttng_consumer_stream *stream)
3313 {
3314 int ret;
3315
3316 assert(stream);
3317
3318 /*
3319 * Try to lock the stream mutex. On failure, we know that the stream is
3320 * being used else where hence there is data still being extracted.
3321 */
3322 ret = pthread_mutex_trylock(&stream->lock);
3323 if (ret) {
3324 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3325 ret = 0;
3326 goto end;
3327 }
3328
3329 ret = 1;
3330
3331 end:
3332 return ret;
3333 }
3334
3335 /*
3336 * Search for a relayd associated to the session id and return the reference.
3337 *
3338 * A rcu read side lock MUST be acquire before calling this function and locked
3339 * until the relayd object is no longer necessary.
3340 */
3341 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3342 {
3343 struct lttng_ht_iter iter;
3344 struct consumer_relayd_sock_pair *relayd = NULL;
3345
3346 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3347 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3348 node.node) {
3349 /*
3350 * Check by sessiond id which is unique here where the relayd session
3351 * id might not be when having multiple relayd.
3352 */
3353 if (relayd->sessiond_session_id == id) {
3354 /* Found the relayd. There can be only one per id. */
3355 goto found;
3356 }
3357 }
3358
3359 return NULL;
3360
3361 found:
3362 return relayd;
3363 }
3364
3365 /*
3366 * Check if for a given session id there is still data needed to be extract
3367 * from the buffers.
3368 *
3369 * Return 1 if data is pending or else 0 meaning ready to be read.
3370 */
3371 int consumer_data_pending(uint64_t id)
3372 {
3373 int ret;
3374 struct lttng_ht_iter iter;
3375 struct lttng_ht *ht;
3376 struct lttng_consumer_stream *stream;
3377 struct consumer_relayd_sock_pair *relayd = NULL;
3378 int (*data_pending)(struct lttng_consumer_stream *);
3379
3380 DBG("Consumer data pending command on session id %" PRIu64, id);
3381
3382 rcu_read_lock();
3383 pthread_mutex_lock(&consumer_data.lock);
3384
3385 switch (consumer_data.type) {
3386 case LTTNG_CONSUMER_KERNEL:
3387 data_pending = lttng_kconsumer_data_pending;
3388 break;
3389 case LTTNG_CONSUMER32_UST:
3390 case LTTNG_CONSUMER64_UST:
3391 data_pending = lttng_ustconsumer_data_pending;
3392 break;
3393 default:
3394 ERR("Unknown consumer data type");
3395 assert(0);
3396 }
3397
3398 /* Ease our life a bit */
3399 ht = consumer_data.stream_list_ht;
3400
3401 relayd = find_relayd_by_session_id(id);
3402 if (relayd) {
3403 /* Send init command for data pending. */
3404 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3405 ret = relayd_begin_data_pending(&relayd->control_sock,
3406 relayd->relayd_session_id);
3407 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3408 if (ret < 0) {
3409 /* Communication error thus the relayd so no data pending. */
3410 goto data_not_pending;
3411 }
3412 }
3413
3414 cds_lfht_for_each_entry_duplicate(ht->ht,
3415 ht->hash_fct(&id, lttng_ht_seed),
3416 ht->match_fct, &id,
3417 &iter.iter, stream, node_session_id.node) {
3418 /* If this call fails, the stream is being used hence data pending. */
3419 ret = stream_try_lock(stream);
3420 if (!ret) {
3421 goto data_pending;
3422 }
3423
3424 /*
3425 * A removed node from the hash table indicates that the stream has
3426 * been deleted thus having a guarantee that the buffers are closed
3427 * on the consumer side. However, data can still be transmitted
3428 * over the network so don't skip the relayd check.
3429 */
3430 ret = cds_lfht_is_node_deleted(&stream->node.node);
3431 if (!ret) {
3432 /*
3433 * An empty output file is not valid. We need at least one packet
3434 * generated per stream, even if it contains no event, so it
3435 * contains at least one packet header.
3436 */
3437 if (stream->output_written == 0) {
3438 pthread_mutex_unlock(&stream->lock);
3439 goto data_pending;
3440 }
3441 /* Check the stream if there is data in the buffers. */
3442 ret = data_pending(stream);
3443 if (ret == 1) {
3444 pthread_mutex_unlock(&stream->lock);
3445 goto data_pending;
3446 }
3447 }
3448
3449 /* Relayd check */
3450 if (relayd) {
3451 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3452 if (stream->metadata_flag) {
3453 ret = relayd_quiescent_control(&relayd->control_sock,
3454 stream->relayd_stream_id);
3455 } else {
3456 ret = relayd_data_pending(&relayd->control_sock,
3457 stream->relayd_stream_id,
3458 stream->next_net_seq_num - 1);
3459 }
3460 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3461 if (ret == 1) {
3462 pthread_mutex_unlock(&stream->lock);
3463 goto data_pending;
3464 }
3465 }
3466 pthread_mutex_unlock(&stream->lock);
3467 }
3468
3469 if (relayd) {
3470 unsigned int is_data_inflight = 0;
3471
3472 /* Send init command for data pending. */
3473 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3474 ret = relayd_end_data_pending(&relayd->control_sock,
3475 relayd->relayd_session_id, &is_data_inflight);
3476 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3477 if (ret < 0) {
3478 goto data_not_pending;
3479 }
3480 if (is_data_inflight) {
3481 goto data_pending;
3482 }
3483 }
3484
3485 /*
3486 * Finding _no_ node in the hash table and no inflight data means that the
3487 * stream(s) have been removed thus data is guaranteed to be available for
3488 * analysis from the trace files.
3489 */
3490
3491 data_not_pending:
3492 /* Data is available to be read by a viewer. */
3493 pthread_mutex_unlock(&consumer_data.lock);
3494 rcu_read_unlock();
3495 return 0;
3496
3497 data_pending:
3498 /* Data is still being extracted from buffers. */
3499 pthread_mutex_unlock(&consumer_data.lock);
3500 rcu_read_unlock();
3501 return 1;
3502 }
3503
3504 /*
3505 * Send a ret code status message to the sessiond daemon.
3506 *
3507 * Return the sendmsg() return value.
3508 */
3509 int consumer_send_status_msg(int sock, int ret_code)
3510 {
3511 struct lttcomm_consumer_status_msg msg;
3512
3513 msg.ret_code = ret_code;
3514
3515 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3516 }
3517
3518 /*
3519 * Send a channel status message to the sessiond daemon.
3520 *
3521 * Return the sendmsg() return value.
3522 */
3523 int consumer_send_status_channel(int sock,
3524 struct lttng_consumer_channel *channel)
3525 {
3526 struct lttcomm_consumer_status_channel msg;
3527
3528 assert(sock >= 0);
3529
3530 if (!channel) {
3531 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3532 } else {
3533 msg.ret_code = LTTNG_OK;
3534 msg.key = channel->key;
3535 msg.stream_count = channel->streams.count;
3536 }
3537
3538 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3539 }
3540
3541 /*
3542 * Using a maximum stream size with the produced and consumed position of a
3543 * stream, computes the new consumed position to be as close as possible to the
3544 * maximum possible stream size.
3545 *
3546 * If maximum stream size is lower than the possible buffer size (produced -
3547 * consumed), the consumed_pos given is returned untouched else the new value
3548 * is returned.
3549 */
3550 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3551 unsigned long produced_pos, uint64_t max_stream_size)
3552 {
3553 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3554 /* Offset from the produced position to get the latest buffers. */
3555 return produced_pos - max_stream_size;
3556 }
3557
3558 return consumed_pos;
3559 }
This page took 0.140396 seconds and 5 git commands to generate.