Fix: consumer add channel return value was positive on error
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread lttng pipe to poll back again. This usually means that some
81 * global state has changed so we just send back the thread in a poll wait
82 * call.
83 */
84 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
85 {
86 struct lttng_consumer_stream *null_stream = NULL;
87
88 assert(pipe);
89
90 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
91 }
92
93 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
94 struct lttng_consumer_channel *chan,
95 uint64_t key,
96 enum consumer_channel_action action)
97 {
98 struct consumer_channel_msg msg;
99 int ret;
100
101 memset(&msg, 0, sizeof(msg));
102
103 msg.action = action;
104 msg.chan = chan;
105 msg.key = key;
106 do {
107 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
108 } while (ret < 0 && errno == EINTR);
109 }
110
111 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
112 uint64_t key)
113 {
114 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
115 }
116
117 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel **chan,
119 uint64_t *key,
120 enum consumer_channel_action *action)
121 {
122 struct consumer_channel_msg msg;
123 int ret;
124
125 do {
126 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
127 } while (ret < 0 && errno == EINTR);
128 if (ret > 0) {
129 *action = msg.action;
130 *chan = msg.chan;
131 *key = msg.key;
132 }
133 return ret;
134 }
135
136 /*
137 * Find a stream. The consumer_data.lock must be locked during this
138 * call.
139 */
140 static struct lttng_consumer_stream *find_stream(uint64_t key,
141 struct lttng_ht *ht)
142 {
143 struct lttng_ht_iter iter;
144 struct lttng_ht_node_u64 *node;
145 struct lttng_consumer_stream *stream = NULL;
146
147 assert(ht);
148
149 /* -1ULL keys are lookup failures */
150 if (key == (uint64_t) -1ULL) {
151 return NULL;
152 }
153
154 rcu_read_lock();
155
156 lttng_ht_lookup(ht, &key, &iter);
157 node = lttng_ht_iter_get_node_u64(&iter);
158 if (node != NULL) {
159 stream = caa_container_of(node, struct lttng_consumer_stream, node);
160 }
161
162 rcu_read_unlock();
163
164 return stream;
165 }
166
167 static void steal_stream_key(int key, struct lttng_ht *ht)
168 {
169 struct lttng_consumer_stream *stream;
170
171 rcu_read_lock();
172 stream = find_stream(key, ht);
173 if (stream) {
174 stream->key = -1ULL;
175 /*
176 * We don't want the lookup to match, but we still need
177 * to iterate on this stream when iterating over the hash table. Just
178 * change the node key.
179 */
180 stream->node.key = -1ULL;
181 }
182 rcu_read_unlock();
183 }
184
185 /*
186 * Return a channel object for the given key.
187 *
188 * RCU read side lock MUST be acquired before calling this function and
189 * protects the channel ptr.
190 */
191 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
192 {
193 struct lttng_ht_iter iter;
194 struct lttng_ht_node_u64 *node;
195 struct lttng_consumer_channel *channel = NULL;
196
197 /* -1ULL keys are lookup failures */
198 if (key == (uint64_t) -1ULL) {
199 return NULL;
200 }
201
202 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
203 node = lttng_ht_iter_get_node_u64(&iter);
204 if (node != NULL) {
205 channel = caa_container_of(node, struct lttng_consumer_channel, node);
206 }
207
208 return channel;
209 }
210
211 static void free_stream_rcu(struct rcu_head *head)
212 {
213 struct lttng_ht_node_u64 *node =
214 caa_container_of(head, struct lttng_ht_node_u64, head);
215 struct lttng_consumer_stream *stream =
216 caa_container_of(node, struct lttng_consumer_stream, node);
217
218 free(stream);
219 }
220
221 static void free_channel_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct lttng_consumer_channel *channel =
226 caa_container_of(node, struct lttng_consumer_channel, node);
227
228 free(channel);
229 }
230
231 /*
232 * RCU protected relayd socket pair free.
233 */
234 static void free_relayd_rcu(struct rcu_head *head)
235 {
236 struct lttng_ht_node_u64 *node =
237 caa_container_of(head, struct lttng_ht_node_u64, head);
238 struct consumer_relayd_sock_pair *relayd =
239 caa_container_of(node, struct consumer_relayd_sock_pair, node);
240
241 /*
242 * Close all sockets. This is done in the call RCU since we don't want the
243 * socket fds to be reassigned thus potentially creating bad state of the
244 * relayd object.
245 *
246 * We do not have to lock the control socket mutex here since at this stage
247 * there is no one referencing to this relayd object.
248 */
249 (void) relayd_close(&relayd->control_sock);
250 (void) relayd_close(&relayd->data_sock);
251
252 free(relayd);
253 }
254
255 /*
256 * Destroy and free relayd socket pair object.
257 *
258 * This function MUST be called with the consumer_data lock acquired.
259 */
260 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
261 {
262 int ret;
263 struct lttng_ht_iter iter;
264
265 if (relayd == NULL) {
266 return;
267 }
268
269 DBG("Consumer destroy and close relayd socket pair");
270
271 iter.iter.node = &relayd->node.node;
272 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
273 if (ret != 0) {
274 /* We assume the relayd is being or is destroyed */
275 return;
276 }
277
278 /* RCU free() call */
279 call_rcu(&relayd->node.head, free_relayd_rcu);
280 }
281
282 /*
283 * Remove a channel from the global list protected by a mutex. This function is
284 * also responsible for freeing its data structures.
285 */
286 void consumer_del_channel(struct lttng_consumer_channel *channel)
287 {
288 int ret;
289 struct lttng_ht_iter iter;
290
291 DBG("Consumer delete channel key %" PRIu64, channel->key);
292
293 pthread_mutex_lock(&consumer_data.lock);
294
295 switch (consumer_data.type) {
296 case LTTNG_CONSUMER_KERNEL:
297 break;
298 case LTTNG_CONSUMER32_UST:
299 case LTTNG_CONSUMER64_UST:
300 lttng_ustconsumer_del_channel(channel);
301 break;
302 default:
303 ERR("Unknown consumer_data type");
304 assert(0);
305 goto end;
306 }
307
308 rcu_read_lock();
309 iter.iter.node = &channel->node.node;
310 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
311 assert(!ret);
312 rcu_read_unlock();
313
314 call_rcu(&channel->node.head, free_channel_rcu);
315 end:
316 pthread_mutex_unlock(&consumer_data.lock);
317 }
318
319 /*
320 * Iterate over the relayd hash table and destroy each element. Finally,
321 * destroy the whole hash table.
322 */
323 static void cleanup_relayd_ht(void)
324 {
325 struct lttng_ht_iter iter;
326 struct consumer_relayd_sock_pair *relayd;
327
328 rcu_read_lock();
329
330 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
331 node.node) {
332 destroy_relayd(relayd);
333 }
334
335 rcu_read_unlock();
336
337 lttng_ht_destroy(consumer_data.relayd_ht);
338 }
339
340 /*
341 * Update the end point status of all streams having the given network sequence
342 * index (relayd index).
343 *
344 * It's atomically set without having the stream mutex locked which is fine
345 * because we handle the write/read race with a pipe wakeup for each thread.
346 */
347 static void update_endpoint_status_by_netidx(int net_seq_idx,
348 enum consumer_endpoint_status status)
349 {
350 struct lttng_ht_iter iter;
351 struct lttng_consumer_stream *stream;
352
353 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
354
355 rcu_read_lock();
356
357 /* Let's begin with metadata */
358 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
359 if (stream->net_seq_idx == net_seq_idx) {
360 uatomic_set(&stream->endpoint_status, status);
361 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
362 }
363 }
364
365 /* Follow up by the data streams */
366 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
367 if (stream->net_seq_idx == net_seq_idx) {
368 uatomic_set(&stream->endpoint_status, status);
369 DBG("Delete flag set to data stream %d", stream->wait_fd);
370 }
371 }
372 rcu_read_unlock();
373 }
374
375 /*
376 * Cleanup a relayd object by flagging every associated streams for deletion,
377 * destroying the object meaning removing it from the relayd hash table,
378 * closing the sockets and freeing the memory in a RCU call.
379 *
380 * If a local data context is available, notify the threads that the streams'
381 * state have changed.
382 */
383 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
384 struct lttng_consumer_local_data *ctx)
385 {
386 int netidx;
387
388 assert(relayd);
389
390 DBG("Cleaning up relayd sockets");
391
392 /* Save the net sequence index before destroying the object */
393 netidx = relayd->net_seq_idx;
394
395 /*
396 * Delete the relayd from the relayd hash table, close the sockets and free
397 * the object in a RCU call.
398 */
399 destroy_relayd(relayd);
400
401 /* Set inactive endpoint to all streams */
402 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
403
404 /*
405 * With a local data context, notify the threads that the streams' state
406 * have changed. The write() action on the pipe acts as an "implicit"
407 * memory barrier ordering the updates of the end point status from the
408 * read of this status which happens AFTER receiving this notify.
409 */
410 if (ctx) {
411 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
412 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
413 }
414 }
415
416 /*
417 * Flag a relayd socket pair for destruction. Destroy it if the refcount
418 * reaches zero.
419 *
420 * RCU read side lock MUST be aquired before calling this function.
421 */
422 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
423 {
424 assert(relayd);
425
426 /* Set destroy flag for this object */
427 uatomic_set(&relayd->destroy_flag, 1);
428
429 /* Destroy the relayd if refcount is 0 */
430 if (uatomic_read(&relayd->refcount) == 0) {
431 destroy_relayd(relayd);
432 }
433 }
434
435 /*
436 * Remove a stream from the global list protected by a mutex. This
437 * function is also responsible for freeing its data structures.
438 */
439 void consumer_del_stream(struct lttng_consumer_stream *stream,
440 struct lttng_ht *ht)
441 {
442 int ret;
443 struct lttng_ht_iter iter;
444 struct lttng_consumer_channel *free_chan = NULL;
445 struct consumer_relayd_sock_pair *relayd;
446
447 assert(stream);
448
449 DBG("Consumer del stream %d", stream->wait_fd);
450
451 if (ht == NULL) {
452 /* Means the stream was allocated but not successfully added */
453 goto free_stream_rcu;
454 }
455
456 pthread_mutex_lock(&consumer_data.lock);
457 pthread_mutex_lock(&stream->lock);
458
459 switch (consumer_data.type) {
460 case LTTNG_CONSUMER_KERNEL:
461 if (stream->mmap_base != NULL) {
462 ret = munmap(stream->mmap_base, stream->mmap_len);
463 if (ret != 0) {
464 PERROR("munmap");
465 }
466 }
467
468 if (stream->wait_fd >= 0) {
469 ret = close(stream->wait_fd);
470 if (ret) {
471 PERROR("close");
472 }
473 }
474 break;
475 case LTTNG_CONSUMER32_UST:
476 case LTTNG_CONSUMER64_UST:
477 lttng_ustconsumer_del_stream(stream);
478 break;
479 default:
480 ERR("Unknown consumer_data type");
481 assert(0);
482 goto end;
483 }
484
485 rcu_read_lock();
486 iter.iter.node = &stream->node.node;
487 ret = lttng_ht_del(ht, &iter);
488 assert(!ret);
489
490 iter.iter.node = &stream->node_channel_id.node;
491 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
492 assert(!ret);
493
494 iter.iter.node = &stream->node_session_id.node;
495 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
496 assert(!ret);
497 rcu_read_unlock();
498
499 assert(consumer_data.stream_count > 0);
500 consumer_data.stream_count--;
501
502 if (stream->out_fd >= 0) {
503 ret = close(stream->out_fd);
504 if (ret) {
505 PERROR("close");
506 }
507 }
508
509 /* Check and cleanup relayd */
510 rcu_read_lock();
511 relayd = consumer_find_relayd(stream->net_seq_idx);
512 if (relayd != NULL) {
513 uatomic_dec(&relayd->refcount);
514 assert(uatomic_read(&relayd->refcount) >= 0);
515
516 /* Closing streams requires to lock the control socket. */
517 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
518 ret = relayd_send_close_stream(&relayd->control_sock,
519 stream->relayd_stream_id,
520 stream->next_net_seq_num - 1);
521 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
522 if (ret < 0) {
523 DBG("Unable to close stream on the relayd. Continuing");
524 /*
525 * Continue here. There is nothing we can do for the relayd.
526 * Chances are that the relayd has closed the socket so we just
527 * continue cleaning up.
528 */
529 }
530
531 /* Both conditions are met, we destroy the relayd. */
532 if (uatomic_read(&relayd->refcount) == 0 &&
533 uatomic_read(&relayd->destroy_flag)) {
534 destroy_relayd(relayd);
535 }
536 }
537 rcu_read_unlock();
538
539 if (!uatomic_sub_return(&stream->chan->refcount, 1)
540 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
541 free_chan = stream->chan;
542 }
543
544 end:
545 consumer_data.need_update = 1;
546 pthread_mutex_unlock(&stream->lock);
547 pthread_mutex_unlock(&consumer_data.lock);
548
549 if (free_chan) {
550 consumer_del_channel(free_chan);
551 }
552
553 free_stream_rcu:
554 call_rcu(&stream->node.head, free_stream_rcu);
555 }
556
557 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
558 uint64_t stream_key,
559 enum lttng_consumer_stream_state state,
560 const char *channel_name,
561 uid_t uid,
562 gid_t gid,
563 int relayd_id,
564 uint64_t session_id,
565 int cpu,
566 int *alloc_ret,
567 enum consumer_channel_type type)
568 {
569 int ret;
570 struct lttng_consumer_stream *stream;
571
572 stream = zmalloc(sizeof(*stream));
573 if (stream == NULL) {
574 PERROR("malloc struct lttng_consumer_stream");
575 ret = -ENOMEM;
576 goto end;
577 }
578
579 rcu_read_lock();
580
581 stream->key = stream_key;
582 stream->out_fd = -1;
583 stream->out_fd_offset = 0;
584 stream->state = state;
585 stream->uid = uid;
586 stream->gid = gid;
587 stream->net_seq_idx = relayd_id;
588 stream->session_id = session_id;
589 pthread_mutex_init(&stream->lock, NULL);
590
591 /* If channel is the metadata, flag this stream as metadata. */
592 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
593 stream->metadata_flag = 1;
594 /* Metadata is flat out. */
595 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
596 } else {
597 /* Format stream name to <channel_name>_<cpu_number> */
598 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
599 channel_name, cpu);
600 if (ret < 0) {
601 PERROR("snprintf stream name");
602 goto error;
603 }
604 }
605
606 /* Key is always the wait_fd for streams. */
607 lttng_ht_node_init_u64(&stream->node, stream->key);
608
609 /* Init node per channel id key */
610 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
611
612 /* Init session id node with the stream session id */
613 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
614
615 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
616 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
617
618 rcu_read_unlock();
619 return stream;
620
621 error:
622 rcu_read_unlock();
623 free(stream);
624 end:
625 if (alloc_ret) {
626 *alloc_ret = ret;
627 }
628 return NULL;
629 }
630
631 /*
632 * Add a stream to the global list protected by a mutex.
633 */
634 static int add_stream(struct lttng_consumer_stream *stream,
635 struct lttng_ht *ht)
636 {
637 int ret = 0;
638 struct consumer_relayd_sock_pair *relayd;
639
640 assert(stream);
641 assert(ht);
642
643 DBG3("Adding consumer stream %" PRIu64, stream->key);
644
645 pthread_mutex_lock(&consumer_data.lock);
646 pthread_mutex_lock(&stream->lock);
647 rcu_read_lock();
648
649 /* Steal stream identifier to avoid having streams with the same key */
650 steal_stream_key(stream->key, ht);
651
652 lttng_ht_add_unique_u64(ht, &stream->node);
653
654 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
655 &stream->node_channel_id);
656
657 /*
658 * Add stream to the stream_list_ht of the consumer data. No need to steal
659 * the key since the HT does not use it and we allow to add redundant keys
660 * into this table.
661 */
662 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
663
664 /* Check and cleanup relayd */
665 relayd = consumer_find_relayd(stream->net_seq_idx);
666 if (relayd != NULL) {
667 uatomic_inc(&relayd->refcount);
668 }
669
670 /*
671 * When nb_init_stream_left reaches 0, we don't need to trigger any action
672 * in terms of destroying the associated channel, because the action that
673 * causes the count to become 0 also causes a stream to be added. The
674 * channel deletion will thus be triggered by the following removal of this
675 * stream.
676 */
677 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
678 /* Increment refcount before decrementing nb_init_stream_left */
679 cmm_smp_wmb();
680 uatomic_dec(&stream->chan->nb_init_stream_left);
681 }
682
683 /* Update consumer data once the node is inserted. */
684 consumer_data.stream_count++;
685 consumer_data.need_update = 1;
686
687 rcu_read_unlock();
688 pthread_mutex_unlock(&stream->lock);
689 pthread_mutex_unlock(&consumer_data.lock);
690
691 return ret;
692 }
693
694 /*
695 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
696 * be acquired before calling this.
697 */
698 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
699 {
700 int ret = 0;
701 struct lttng_ht_node_u64 *node;
702 struct lttng_ht_iter iter;
703
704 assert(relayd);
705
706 lttng_ht_lookup(consumer_data.relayd_ht,
707 &relayd->net_seq_idx, &iter);
708 node = lttng_ht_iter_get_node_u64(&iter);
709 if (node != NULL) {
710 goto end;
711 }
712 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
713
714 end:
715 return ret;
716 }
717
718 /*
719 * Allocate and return a consumer relayd socket.
720 */
721 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
722 int net_seq_idx)
723 {
724 struct consumer_relayd_sock_pair *obj = NULL;
725
726 /* Negative net sequence index is a failure */
727 if (net_seq_idx < 0) {
728 goto error;
729 }
730
731 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
732 if (obj == NULL) {
733 PERROR("zmalloc relayd sock");
734 goto error;
735 }
736
737 obj->net_seq_idx = net_seq_idx;
738 obj->refcount = 0;
739 obj->destroy_flag = 0;
740 obj->control_sock.sock.fd = -1;
741 obj->data_sock.sock.fd = -1;
742 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
743 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
744
745 error:
746 return obj;
747 }
748
749 /*
750 * Find a relayd socket pair in the global consumer data.
751 *
752 * Return the object if found else NULL.
753 * RCU read-side lock must be held across this call and while using the
754 * returned object.
755 */
756 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
757 {
758 struct lttng_ht_iter iter;
759 struct lttng_ht_node_u64 *node;
760 struct consumer_relayd_sock_pair *relayd = NULL;
761
762 /* Negative keys are lookup failures */
763 if (key == (uint64_t) -1ULL) {
764 goto error;
765 }
766
767 lttng_ht_lookup(consumer_data.relayd_ht, &key,
768 &iter);
769 node = lttng_ht_iter_get_node_u64(&iter);
770 if (node != NULL) {
771 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
772 }
773
774 error:
775 return relayd;
776 }
777
778 /*
779 * Handle stream for relayd transmission if the stream applies for network
780 * streaming where the net sequence index is set.
781 *
782 * Return destination file descriptor or negative value on error.
783 */
784 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
785 size_t data_size, unsigned long padding,
786 struct consumer_relayd_sock_pair *relayd)
787 {
788 int outfd = -1, ret;
789 struct lttcomm_relayd_data_hdr data_hdr;
790
791 /* Safety net */
792 assert(stream);
793 assert(relayd);
794
795 /* Reset data header */
796 memset(&data_hdr, 0, sizeof(data_hdr));
797
798 if (stream->metadata_flag) {
799 /* Caller MUST acquire the relayd control socket lock */
800 ret = relayd_send_metadata(&relayd->control_sock, data_size);
801 if (ret < 0) {
802 goto error;
803 }
804
805 /* Metadata are always sent on the control socket. */
806 outfd = relayd->control_sock.sock.fd;
807 } else {
808 /* Set header with stream information */
809 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
810 data_hdr.data_size = htobe32(data_size);
811 data_hdr.padding_size = htobe32(padding);
812 /*
813 * Note that net_seq_num below is assigned with the *current* value of
814 * next_net_seq_num and only after that the next_net_seq_num will be
815 * increment. This is why when issuing a command on the relayd using
816 * this next value, 1 should always be substracted in order to compare
817 * the last seen sequence number on the relayd side to the last sent.
818 */
819 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
820 /* Other fields are zeroed previously */
821
822 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
823 sizeof(data_hdr));
824 if (ret < 0) {
825 goto error;
826 }
827
828 ++stream->next_net_seq_num;
829
830 /* Set to go on data socket */
831 outfd = relayd->data_sock.sock.fd;
832 }
833
834 error:
835 return outfd;
836 }
837
838 /*
839 * Allocate and return a new lttng_consumer_channel object using the given key
840 * to initialize the hash table node.
841 *
842 * On error, return NULL.
843 */
844 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
845 uint64_t session_id,
846 const char *pathname,
847 const char *name,
848 uid_t uid,
849 gid_t gid,
850 int relayd_id,
851 enum lttng_event_output output,
852 uint64_t tracefile_size,
853 uint64_t tracefile_count)
854 {
855 struct lttng_consumer_channel *channel;
856
857 channel = zmalloc(sizeof(*channel));
858 if (channel == NULL) {
859 PERROR("malloc struct lttng_consumer_channel");
860 goto end;
861 }
862
863 channel->key = key;
864 channel->refcount = 0;
865 channel->session_id = session_id;
866 channel->uid = uid;
867 channel->gid = gid;
868 channel->relayd_id = relayd_id;
869 channel->output = output;
870 channel->tracefile_size = tracefile_size;
871 channel->tracefile_count = tracefile_count;
872
873 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
874 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
875
876 strncpy(channel->name, name, sizeof(channel->name));
877 channel->name[sizeof(channel->name) - 1] = '\0';
878
879 lttng_ht_node_init_u64(&channel->node, channel->key);
880
881 channel->wait_fd = -1;
882
883 CDS_INIT_LIST_HEAD(&channel->streams.head);
884
885 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
886
887 end:
888 return channel;
889 }
890
891 /*
892 * Add a channel to the global list protected by a mutex.
893 *
894 * On success 0 is returned else a negative value.
895 */
896 int consumer_add_channel(struct lttng_consumer_channel *channel,
897 struct lttng_consumer_local_data *ctx)
898 {
899 int ret = 0;
900 struct lttng_ht_node_u64 *node;
901 struct lttng_ht_iter iter;
902
903 pthread_mutex_lock(&consumer_data.lock);
904 rcu_read_lock();
905
906 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
907 node = lttng_ht_iter_get_node_u64(&iter);
908 if (node != NULL) {
909 /* Channel already exist. Ignore the insertion */
910 ERR("Consumer add channel key %" PRIu64 " already exists!",
911 channel->key);
912 ret = -EEXIST;
913 goto end;
914 }
915
916 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
917
918 end:
919 rcu_read_unlock();
920 pthread_mutex_unlock(&consumer_data.lock);
921
922 if (!ret && channel->wait_fd != -1 &&
923 channel->metadata_stream == NULL) {
924 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
925 }
926 return ret;
927 }
928
929 /*
930 * Allocate the pollfd structure and the local view of the out fds to avoid
931 * doing a lookup in the linked list and concurrency issues when writing is
932 * needed. Called with consumer_data.lock held.
933 *
934 * Returns the number of fds in the structures.
935 */
936 static int update_poll_array(struct lttng_consumer_local_data *ctx,
937 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
938 struct lttng_ht *ht)
939 {
940 int i = 0;
941 struct lttng_ht_iter iter;
942 struct lttng_consumer_stream *stream;
943
944 assert(ctx);
945 assert(ht);
946 assert(pollfd);
947 assert(local_stream);
948
949 DBG("Updating poll fd array");
950 rcu_read_lock();
951 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
952 /*
953 * Only active streams with an active end point can be added to the
954 * poll set and local stream storage of the thread.
955 *
956 * There is a potential race here for endpoint_status to be updated
957 * just after the check. However, this is OK since the stream(s) will
958 * be deleted once the thread is notified that the end point state has
959 * changed where this function will be called back again.
960 */
961 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
962 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
963 continue;
964 }
965 /*
966 * This clobbers way too much the debug output. Uncomment that if you
967 * need it for debugging purposes.
968 *
969 * DBG("Active FD %d", stream->wait_fd);
970 */
971 (*pollfd)[i].fd = stream->wait_fd;
972 (*pollfd)[i].events = POLLIN | POLLPRI;
973 local_stream[i] = stream;
974 i++;
975 }
976 rcu_read_unlock();
977
978 /*
979 * Insert the consumer_data_pipe at the end of the array and don't
980 * increment i so nb_fd is the number of real FD.
981 */
982 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
983 (*pollfd)[i].events = POLLIN | POLLPRI;
984 return i;
985 }
986
987 /*
988 * Poll on the should_quit pipe and the command socket return -1 on error and
989 * should exit, 0 if data is available on the command socket
990 */
991 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
992 {
993 int num_rdy;
994
995 restart:
996 num_rdy = poll(consumer_sockpoll, 2, -1);
997 if (num_rdy == -1) {
998 /*
999 * Restart interrupted system call.
1000 */
1001 if (errno == EINTR) {
1002 goto restart;
1003 }
1004 PERROR("Poll error");
1005 goto exit;
1006 }
1007 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1008 DBG("consumer_should_quit wake up");
1009 goto exit;
1010 }
1011 return 0;
1012
1013 exit:
1014 return -1;
1015 }
1016
1017 /*
1018 * Set the error socket.
1019 */
1020 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1021 int sock)
1022 {
1023 ctx->consumer_error_socket = sock;
1024 }
1025
1026 /*
1027 * Set the command socket path.
1028 */
1029 void lttng_consumer_set_command_sock_path(
1030 struct lttng_consumer_local_data *ctx, char *sock)
1031 {
1032 ctx->consumer_command_sock_path = sock;
1033 }
1034
1035 /*
1036 * Send return code to the session daemon.
1037 * If the socket is not defined, we return 0, it is not a fatal error
1038 */
1039 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1040 {
1041 if (ctx->consumer_error_socket > 0) {
1042 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1043 sizeof(enum lttcomm_sessiond_command));
1044 }
1045
1046 return 0;
1047 }
1048
1049 /*
1050 * Close all the tracefiles and stream fds and MUST be called when all
1051 * instances are destroyed i.e. when all threads were joined and are ended.
1052 */
1053 void lttng_consumer_cleanup(void)
1054 {
1055 struct lttng_ht_iter iter;
1056 struct lttng_consumer_channel *channel;
1057
1058 rcu_read_lock();
1059
1060 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1061 node.node) {
1062 consumer_del_channel(channel);
1063 }
1064
1065 rcu_read_unlock();
1066
1067 lttng_ht_destroy(consumer_data.channel_ht);
1068
1069 cleanup_relayd_ht();
1070
1071 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1072
1073 /*
1074 * This HT contains streams that are freed by either the metadata thread or
1075 * the data thread so we do *nothing* on the hash table and simply destroy
1076 * it.
1077 */
1078 lttng_ht_destroy(consumer_data.stream_list_ht);
1079 }
1080
1081 /*
1082 * Called from signal handler.
1083 */
1084 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1085 {
1086 int ret;
1087 consumer_quit = 1;
1088 do {
1089 ret = write(ctx->consumer_should_quit[1], "4", 1);
1090 } while (ret < 0 && errno == EINTR);
1091 if (ret < 0 || ret != 1) {
1092 PERROR("write consumer quit");
1093 }
1094
1095 DBG("Consumer flag that it should quit");
1096 }
1097
1098 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1099 off_t orig_offset)
1100 {
1101 int outfd = stream->out_fd;
1102
1103 /*
1104 * This does a blocking write-and-wait on any page that belongs to the
1105 * subbuffer prior to the one we just wrote.
1106 * Don't care about error values, as these are just hints and ways to
1107 * limit the amount of page cache used.
1108 */
1109 if (orig_offset < stream->max_sb_size) {
1110 return;
1111 }
1112 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1113 stream->max_sb_size,
1114 SYNC_FILE_RANGE_WAIT_BEFORE
1115 | SYNC_FILE_RANGE_WRITE
1116 | SYNC_FILE_RANGE_WAIT_AFTER);
1117 /*
1118 * Give hints to the kernel about how we access the file:
1119 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1120 * we write it.
1121 *
1122 * We need to call fadvise again after the file grows because the
1123 * kernel does not seem to apply fadvise to non-existing parts of the
1124 * file.
1125 *
1126 * Call fadvise _after_ having waited for the page writeback to
1127 * complete because the dirty page writeback semantic is not well
1128 * defined. So it can be expected to lead to lower throughput in
1129 * streaming.
1130 */
1131 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1132 stream->max_sb_size, POSIX_FADV_DONTNEED);
1133 }
1134
1135 /*
1136 * Initialise the necessary environnement :
1137 * - create a new context
1138 * - create the poll_pipe
1139 * - create the should_quit pipe (for signal handler)
1140 * - create the thread pipe (for splice)
1141 *
1142 * Takes a function pointer as argument, this function is called when data is
1143 * available on a buffer. This function is responsible to do the
1144 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1145 * buffer configuration and then kernctl_put_next_subbuf at the end.
1146 *
1147 * Returns a pointer to the new context or NULL on error.
1148 */
1149 struct lttng_consumer_local_data *lttng_consumer_create(
1150 enum lttng_consumer_type type,
1151 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1152 struct lttng_consumer_local_data *ctx),
1153 int (*recv_channel)(struct lttng_consumer_channel *channel),
1154 int (*recv_stream)(struct lttng_consumer_stream *stream),
1155 int (*update_stream)(int stream_key, uint32_t state))
1156 {
1157 int ret;
1158 struct lttng_consumer_local_data *ctx;
1159
1160 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1161 consumer_data.type == type);
1162 consumer_data.type = type;
1163
1164 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1165 if (ctx == NULL) {
1166 PERROR("allocating context");
1167 goto error;
1168 }
1169
1170 ctx->consumer_error_socket = -1;
1171 ctx->consumer_metadata_socket = -1;
1172 /* assign the callbacks */
1173 ctx->on_buffer_ready = buffer_ready;
1174 ctx->on_recv_channel = recv_channel;
1175 ctx->on_recv_stream = recv_stream;
1176 ctx->on_update_stream = update_stream;
1177
1178 ctx->consumer_data_pipe = lttng_pipe_open(0);
1179 if (!ctx->consumer_data_pipe) {
1180 goto error_poll_pipe;
1181 }
1182
1183 ret = pipe(ctx->consumer_should_quit);
1184 if (ret < 0) {
1185 PERROR("Error creating recv pipe");
1186 goto error_quit_pipe;
1187 }
1188
1189 ret = pipe(ctx->consumer_thread_pipe);
1190 if (ret < 0) {
1191 PERROR("Error creating thread pipe");
1192 goto error_thread_pipe;
1193 }
1194
1195 ret = pipe(ctx->consumer_channel_pipe);
1196 if (ret < 0) {
1197 PERROR("Error creating channel pipe");
1198 goto error_channel_pipe;
1199 }
1200
1201 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1202 if (!ctx->consumer_metadata_pipe) {
1203 goto error_metadata_pipe;
1204 }
1205
1206 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1207 if (ret < 0) {
1208 goto error_splice_pipe;
1209 }
1210
1211 return ctx;
1212
1213 error_splice_pipe:
1214 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1215 error_metadata_pipe:
1216 utils_close_pipe(ctx->consumer_channel_pipe);
1217 error_channel_pipe:
1218 utils_close_pipe(ctx->consumer_thread_pipe);
1219 error_thread_pipe:
1220 utils_close_pipe(ctx->consumer_should_quit);
1221 error_quit_pipe:
1222 lttng_pipe_destroy(ctx->consumer_data_pipe);
1223 error_poll_pipe:
1224 free(ctx);
1225 error:
1226 return NULL;
1227 }
1228
1229 /*
1230 * Close all fds associated with the instance and free the context.
1231 */
1232 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1233 {
1234 int ret;
1235
1236 DBG("Consumer destroying it. Closing everything.");
1237
1238 ret = close(ctx->consumer_error_socket);
1239 if (ret) {
1240 PERROR("close");
1241 }
1242 ret = close(ctx->consumer_metadata_socket);
1243 if (ret) {
1244 PERROR("close");
1245 }
1246 utils_close_pipe(ctx->consumer_thread_pipe);
1247 utils_close_pipe(ctx->consumer_channel_pipe);
1248 lttng_pipe_destroy(ctx->consumer_data_pipe);
1249 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1250 utils_close_pipe(ctx->consumer_should_quit);
1251 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1252
1253 unlink(ctx->consumer_command_sock_path);
1254 free(ctx);
1255 }
1256
1257 /*
1258 * Write the metadata stream id on the specified file descriptor.
1259 */
1260 static int write_relayd_metadata_id(int fd,
1261 struct lttng_consumer_stream *stream,
1262 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1263 {
1264 int ret;
1265 struct lttcomm_relayd_metadata_payload hdr;
1266
1267 hdr.stream_id = htobe64(stream->relayd_stream_id);
1268 hdr.padding_size = htobe32(padding);
1269 do {
1270 ret = write(fd, (void *) &hdr, sizeof(hdr));
1271 } while (ret < 0 && errno == EINTR);
1272 if (ret < 0 || ret != sizeof(hdr)) {
1273 /*
1274 * This error means that the fd's end is closed so ignore the perror
1275 * not to clubber the error output since this can happen in a normal
1276 * code path.
1277 */
1278 if (errno != EPIPE) {
1279 PERROR("write metadata stream id");
1280 }
1281 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1282 /*
1283 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1284 * handle writting the missing part so report that as an error and
1285 * don't lie to the caller.
1286 */
1287 ret = -1;
1288 goto end;
1289 }
1290 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1291 stream->relayd_stream_id, padding);
1292
1293 end:
1294 return ret;
1295 }
1296
1297 /*
1298 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1299 * core function for writing trace buffers to either the local filesystem or
1300 * the network.
1301 *
1302 * It must be called with the stream lock held.
1303 *
1304 * Careful review MUST be put if any changes occur!
1305 *
1306 * Returns the number of bytes written
1307 */
1308 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1309 struct lttng_consumer_local_data *ctx,
1310 struct lttng_consumer_stream *stream, unsigned long len,
1311 unsigned long padding)
1312 {
1313 unsigned long mmap_offset;
1314 void *mmap_base;
1315 ssize_t ret = 0, written = 0;
1316 off_t orig_offset = stream->out_fd_offset;
1317 /* Default is on the disk */
1318 int outfd = stream->out_fd;
1319 struct consumer_relayd_sock_pair *relayd = NULL;
1320 unsigned int relayd_hang_up = 0;
1321
1322 /* RCU lock for the relayd pointer */
1323 rcu_read_lock();
1324
1325 /* Flag that the current stream if set for network streaming. */
1326 if (stream->net_seq_idx != -1) {
1327 relayd = consumer_find_relayd(stream->net_seq_idx);
1328 if (relayd == NULL) {
1329 goto end;
1330 }
1331 }
1332
1333 /* get the offset inside the fd to mmap */
1334 switch (consumer_data.type) {
1335 case LTTNG_CONSUMER_KERNEL:
1336 mmap_base = stream->mmap_base;
1337 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1338 break;
1339 case LTTNG_CONSUMER32_UST:
1340 case LTTNG_CONSUMER64_UST:
1341 mmap_base = lttng_ustctl_get_mmap_base(stream);
1342 if (!mmap_base) {
1343 ERR("read mmap get mmap base for stream %s", stream->name);
1344 written = -1;
1345 goto end;
1346 }
1347 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1348
1349 break;
1350 default:
1351 ERR("Unknown consumer_data type");
1352 assert(0);
1353 }
1354 if (ret != 0) {
1355 errno = -ret;
1356 PERROR("tracer ctl get_mmap_read_offset");
1357 written = ret;
1358 goto end;
1359 }
1360
1361 /* Handle stream on the relayd if the output is on the network */
1362 if (relayd) {
1363 unsigned long netlen = len;
1364
1365 /*
1366 * Lock the control socket for the complete duration of the function
1367 * since from this point on we will use the socket.
1368 */
1369 if (stream->metadata_flag) {
1370 /* Metadata requires the control socket. */
1371 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1372 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1373 }
1374
1375 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1376 if (ret >= 0) {
1377 /* Use the returned socket. */
1378 outfd = ret;
1379
1380 /* Write metadata stream id before payload */
1381 if (stream->metadata_flag) {
1382 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1383 if (ret < 0) {
1384 written = ret;
1385 /* Socket operation failed. We consider the relayd dead */
1386 if (ret == -EPIPE || ret == -EINVAL) {
1387 relayd_hang_up = 1;
1388 goto write_error;
1389 }
1390 goto end;
1391 }
1392 }
1393 } else {
1394 /* Socket operation failed. We consider the relayd dead */
1395 if (ret == -EPIPE || ret == -EINVAL) {
1396 relayd_hang_up = 1;
1397 goto write_error;
1398 }
1399 /* Else, use the default set before which is the filesystem. */
1400 }
1401 } else {
1402 /* No streaming, we have to set the len with the full padding */
1403 len += padding;
1404
1405 /*
1406 * Check if we need to change the tracefile before writing the packet.
1407 */
1408 if (stream->chan->tracefile_size > 0 &&
1409 (stream->tracefile_size_current + len) >
1410 stream->chan->tracefile_size) {
1411 ret = utils_rotate_stream_file(stream->chan->pathname,
1412 stream->name, stream->chan->tracefile_size,
1413 stream->chan->tracefile_count, stream->uid, stream->gid,
1414 stream->out_fd, &(stream->tracefile_count_current));
1415 if (ret < 0) {
1416 ERR("Rotating output file");
1417 goto end;
1418 }
1419 outfd = stream->out_fd = ret;
1420 /* Reset current size because we just perform a rotation. */
1421 stream->tracefile_size_current = 0;
1422 }
1423 stream->tracefile_size_current += len;
1424 }
1425
1426 while (len > 0) {
1427 do {
1428 ret = write(outfd, mmap_base + mmap_offset, len);
1429 } while (ret < 0 && errno == EINTR);
1430 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1431 if (ret < 0) {
1432 /*
1433 * This is possible if the fd is closed on the other side (outfd)
1434 * or any write problem. It can be verbose a bit for a normal
1435 * execution if for instance the relayd is stopped abruptly. This
1436 * can happen so set this to a DBG statement.
1437 */
1438 DBG("Error in file write mmap");
1439 if (written == 0) {
1440 written = ret;
1441 }
1442 /* Socket operation failed. We consider the relayd dead */
1443 if (errno == EPIPE || errno == EINVAL) {
1444 relayd_hang_up = 1;
1445 goto write_error;
1446 }
1447 goto end;
1448 } else if (ret > len) {
1449 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1450 written += ret;
1451 goto end;
1452 } else {
1453 len -= ret;
1454 mmap_offset += ret;
1455 }
1456
1457 /* This call is useless on a socket so better save a syscall. */
1458 if (!relayd) {
1459 /* This won't block, but will start writeout asynchronously */
1460 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1461 SYNC_FILE_RANGE_WRITE);
1462 stream->out_fd_offset += ret;
1463 }
1464 written += ret;
1465 }
1466 lttng_consumer_sync_trace_file(stream, orig_offset);
1467
1468 write_error:
1469 /*
1470 * This is a special case that the relayd has closed its socket. Let's
1471 * cleanup the relayd object and all associated streams.
1472 */
1473 if (relayd && relayd_hang_up) {
1474 cleanup_relayd(relayd, ctx);
1475 }
1476
1477 end:
1478 /* Unlock only if ctrl socket used */
1479 if (relayd && stream->metadata_flag) {
1480 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1481 }
1482
1483 rcu_read_unlock();
1484 return written;
1485 }
1486
1487 /*
1488 * Splice the data from the ring buffer to the tracefile.
1489 *
1490 * It must be called with the stream lock held.
1491 *
1492 * Returns the number of bytes spliced.
1493 */
1494 ssize_t lttng_consumer_on_read_subbuffer_splice(
1495 struct lttng_consumer_local_data *ctx,
1496 struct lttng_consumer_stream *stream, unsigned long len,
1497 unsigned long padding)
1498 {
1499 ssize_t ret = 0, written = 0, ret_splice = 0;
1500 loff_t offset = 0;
1501 off_t orig_offset = stream->out_fd_offset;
1502 int fd = stream->wait_fd;
1503 /* Default is on the disk */
1504 int outfd = stream->out_fd;
1505 struct consumer_relayd_sock_pair *relayd = NULL;
1506 int *splice_pipe;
1507 unsigned int relayd_hang_up = 0;
1508
1509 switch (consumer_data.type) {
1510 case LTTNG_CONSUMER_KERNEL:
1511 break;
1512 case LTTNG_CONSUMER32_UST:
1513 case LTTNG_CONSUMER64_UST:
1514 /* Not supported for user space tracing */
1515 return -ENOSYS;
1516 default:
1517 ERR("Unknown consumer_data type");
1518 assert(0);
1519 }
1520
1521 /* RCU lock for the relayd pointer */
1522 rcu_read_lock();
1523
1524 /* Flag that the current stream if set for network streaming. */
1525 if (stream->net_seq_idx != -1) {
1526 relayd = consumer_find_relayd(stream->net_seq_idx);
1527 if (relayd == NULL) {
1528 goto end;
1529 }
1530 }
1531
1532 /*
1533 * Choose right pipe for splice. Metadata and trace data are handled by
1534 * different threads hence the use of two pipes in order not to race or
1535 * corrupt the written data.
1536 */
1537 if (stream->metadata_flag) {
1538 splice_pipe = ctx->consumer_splice_metadata_pipe;
1539 } else {
1540 splice_pipe = ctx->consumer_thread_pipe;
1541 }
1542
1543 /* Write metadata stream id before payload */
1544 if (relayd) {
1545 int total_len = len;
1546
1547 if (stream->metadata_flag) {
1548 /*
1549 * Lock the control socket for the complete duration of the function
1550 * since from this point on we will use the socket.
1551 */
1552 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1553
1554 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1555 padding);
1556 if (ret < 0) {
1557 written = ret;
1558 /* Socket operation failed. We consider the relayd dead */
1559 if (ret == -EBADF) {
1560 WARN("Remote relayd disconnected. Stopping");
1561 relayd_hang_up = 1;
1562 goto write_error;
1563 }
1564 goto end;
1565 }
1566
1567 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1568 }
1569
1570 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1571 if (ret >= 0) {
1572 /* Use the returned socket. */
1573 outfd = ret;
1574 } else {
1575 /* Socket operation failed. We consider the relayd dead */
1576 if (ret == -EBADF) {
1577 WARN("Remote relayd disconnected. Stopping");
1578 relayd_hang_up = 1;
1579 goto write_error;
1580 }
1581 goto end;
1582 }
1583 } else {
1584 /* No streaming, we have to set the len with the full padding */
1585 len += padding;
1586
1587 /*
1588 * Check if we need to change the tracefile before writing the packet.
1589 */
1590 if (stream->chan->tracefile_size > 0 &&
1591 (stream->tracefile_size_current + len) >
1592 stream->chan->tracefile_size) {
1593 ret = utils_rotate_stream_file(stream->chan->pathname,
1594 stream->name, stream->chan->tracefile_size,
1595 stream->chan->tracefile_count, stream->uid, stream->gid,
1596 stream->out_fd, &(stream->tracefile_count_current));
1597 if (ret < 0) {
1598 ERR("Rotating output file");
1599 goto end;
1600 }
1601 outfd = stream->out_fd = ret;
1602 /* Reset current size because we just perform a rotation. */
1603 stream->tracefile_size_current = 0;
1604 }
1605 stream->tracefile_size_current += len;
1606 }
1607
1608 while (len > 0) {
1609 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1610 (unsigned long)offset, len, fd, splice_pipe[1]);
1611 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1612 SPLICE_F_MOVE | SPLICE_F_MORE);
1613 DBG("splice chan to pipe, ret %zd", ret_splice);
1614 if (ret_splice < 0) {
1615 PERROR("Error in relay splice");
1616 if (written == 0) {
1617 written = ret_splice;
1618 }
1619 ret = errno;
1620 goto splice_error;
1621 }
1622
1623 /* Handle stream on the relayd if the output is on the network */
1624 if (relayd) {
1625 if (stream->metadata_flag) {
1626 size_t metadata_payload_size =
1627 sizeof(struct lttcomm_relayd_metadata_payload);
1628
1629 /* Update counter to fit the spliced data */
1630 ret_splice += metadata_payload_size;
1631 len += metadata_payload_size;
1632 /*
1633 * We do this so the return value can match the len passed as
1634 * argument to this function.
1635 */
1636 written -= metadata_payload_size;
1637 }
1638 }
1639
1640 /* Splice data out */
1641 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1642 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1643 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1644 if (ret_splice < 0) {
1645 PERROR("Error in file splice");
1646 if (written == 0) {
1647 written = ret_splice;
1648 }
1649 /* Socket operation failed. We consider the relayd dead */
1650 if (errno == EBADF || errno == EPIPE) {
1651 WARN("Remote relayd disconnected. Stopping");
1652 relayd_hang_up = 1;
1653 goto write_error;
1654 }
1655 ret = errno;
1656 goto splice_error;
1657 } else if (ret_splice > len) {
1658 errno = EINVAL;
1659 PERROR("Wrote more data than requested %zd (len: %lu)",
1660 ret_splice, len);
1661 written += ret_splice;
1662 ret = errno;
1663 goto splice_error;
1664 }
1665 len -= ret_splice;
1666
1667 /* This call is useless on a socket so better save a syscall. */
1668 if (!relayd) {
1669 /* This won't block, but will start writeout asynchronously */
1670 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1671 SYNC_FILE_RANGE_WRITE);
1672 stream->out_fd_offset += ret_splice;
1673 }
1674 written += ret_splice;
1675 }
1676 lttng_consumer_sync_trace_file(stream, orig_offset);
1677
1678 ret = ret_splice;
1679
1680 goto end;
1681
1682 write_error:
1683 /*
1684 * This is a special case that the relayd has closed its socket. Let's
1685 * cleanup the relayd object and all associated streams.
1686 */
1687 if (relayd && relayd_hang_up) {
1688 cleanup_relayd(relayd, ctx);
1689 /* Skip splice error so the consumer does not fail */
1690 goto end;
1691 }
1692
1693 splice_error:
1694 /* send the appropriate error description to sessiond */
1695 switch (ret) {
1696 case EINVAL:
1697 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1698 break;
1699 case ENOMEM:
1700 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1701 break;
1702 case ESPIPE:
1703 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1704 break;
1705 }
1706
1707 end:
1708 if (relayd && stream->metadata_flag) {
1709 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1710 }
1711
1712 rcu_read_unlock();
1713 return written;
1714 }
1715
1716 /*
1717 * Take a snapshot for a specific fd
1718 *
1719 * Returns 0 on success, < 0 on error
1720 */
1721 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1722 {
1723 switch (consumer_data.type) {
1724 case LTTNG_CONSUMER_KERNEL:
1725 return lttng_kconsumer_take_snapshot(stream);
1726 case LTTNG_CONSUMER32_UST:
1727 case LTTNG_CONSUMER64_UST:
1728 return lttng_ustconsumer_take_snapshot(stream);
1729 default:
1730 ERR("Unknown consumer_data type");
1731 assert(0);
1732 return -ENOSYS;
1733 }
1734 }
1735
1736 /*
1737 * Get the produced position
1738 *
1739 * Returns 0 on success, < 0 on error
1740 */
1741 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1742 unsigned long *pos)
1743 {
1744 switch (consumer_data.type) {
1745 case LTTNG_CONSUMER_KERNEL:
1746 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1747 case LTTNG_CONSUMER32_UST:
1748 case LTTNG_CONSUMER64_UST:
1749 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1750 default:
1751 ERR("Unknown consumer_data type");
1752 assert(0);
1753 return -ENOSYS;
1754 }
1755 }
1756
1757 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1758 int sock, struct pollfd *consumer_sockpoll)
1759 {
1760 switch (consumer_data.type) {
1761 case LTTNG_CONSUMER_KERNEL:
1762 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1763 case LTTNG_CONSUMER32_UST:
1764 case LTTNG_CONSUMER64_UST:
1765 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1766 default:
1767 ERR("Unknown consumer_data type");
1768 assert(0);
1769 return -ENOSYS;
1770 }
1771 }
1772
1773 /*
1774 * Iterate over all streams of the hashtable and free them properly.
1775 *
1776 * WARNING: *MUST* be used with data stream only.
1777 */
1778 static void destroy_data_stream_ht(struct lttng_ht *ht)
1779 {
1780 struct lttng_ht_iter iter;
1781 struct lttng_consumer_stream *stream;
1782
1783 if (ht == NULL) {
1784 return;
1785 }
1786
1787 rcu_read_lock();
1788 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1789 /*
1790 * Ignore return value since we are currently cleaning up so any error
1791 * can't be handled.
1792 */
1793 (void) consumer_del_stream(stream, ht);
1794 }
1795 rcu_read_unlock();
1796
1797 lttng_ht_destroy(ht);
1798 }
1799
1800 /*
1801 * Iterate over all streams of the hashtable and free them properly.
1802 *
1803 * XXX: Should not be only for metadata stream or else use an other name.
1804 */
1805 static void destroy_stream_ht(struct lttng_ht *ht)
1806 {
1807 struct lttng_ht_iter iter;
1808 struct lttng_consumer_stream *stream;
1809
1810 if (ht == NULL) {
1811 return;
1812 }
1813
1814 rcu_read_lock();
1815 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1816 /*
1817 * Ignore return value since we are currently cleaning up so any error
1818 * can't be handled.
1819 */
1820 (void) consumer_del_metadata_stream(stream, ht);
1821 }
1822 rcu_read_unlock();
1823
1824 lttng_ht_destroy(ht);
1825 }
1826
1827 void lttng_consumer_close_metadata(void)
1828 {
1829 switch (consumer_data.type) {
1830 case LTTNG_CONSUMER_KERNEL:
1831 /*
1832 * The Kernel consumer has a different metadata scheme so we don't
1833 * close anything because the stream will be closed by the session
1834 * daemon.
1835 */
1836 break;
1837 case LTTNG_CONSUMER32_UST:
1838 case LTTNG_CONSUMER64_UST:
1839 /*
1840 * Close all metadata streams. The metadata hash table is passed and
1841 * this call iterates over it by closing all wakeup fd. This is safe
1842 * because at this point we are sure that the metadata producer is
1843 * either dead or blocked.
1844 */
1845 lttng_ustconsumer_close_metadata(metadata_ht);
1846 break;
1847 default:
1848 ERR("Unknown consumer_data type");
1849 assert(0);
1850 }
1851 }
1852
1853 /*
1854 * Clean up a metadata stream and free its memory.
1855 */
1856 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1857 struct lttng_ht *ht)
1858 {
1859 int ret;
1860 struct lttng_ht_iter iter;
1861 struct lttng_consumer_channel *free_chan = NULL;
1862 struct consumer_relayd_sock_pair *relayd;
1863
1864 assert(stream);
1865 /*
1866 * This call should NEVER receive regular stream. It must always be
1867 * metadata stream and this is crucial for data structure synchronization.
1868 */
1869 assert(stream->metadata_flag);
1870
1871 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1872
1873 if (ht == NULL) {
1874 /* Means the stream was allocated but not successfully added */
1875 goto free_stream_rcu;
1876 }
1877
1878 pthread_mutex_lock(&consumer_data.lock);
1879 pthread_mutex_lock(&stream->lock);
1880
1881 switch (consumer_data.type) {
1882 case LTTNG_CONSUMER_KERNEL:
1883 if (stream->mmap_base != NULL) {
1884 ret = munmap(stream->mmap_base, stream->mmap_len);
1885 if (ret != 0) {
1886 PERROR("munmap metadata stream");
1887 }
1888 }
1889
1890 if (stream->wait_fd >= 0) {
1891 ret = close(stream->wait_fd);
1892 if (ret < 0) {
1893 PERROR("close kernel metadata wait_fd");
1894 }
1895 }
1896 break;
1897 case LTTNG_CONSUMER32_UST:
1898 case LTTNG_CONSUMER64_UST:
1899 lttng_ustconsumer_del_stream(stream);
1900 break;
1901 default:
1902 ERR("Unknown consumer_data type");
1903 assert(0);
1904 goto end;
1905 }
1906
1907 rcu_read_lock();
1908 iter.iter.node = &stream->node.node;
1909 ret = lttng_ht_del(ht, &iter);
1910 assert(!ret);
1911
1912 iter.iter.node = &stream->node_channel_id.node;
1913 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1914 assert(!ret);
1915
1916 iter.iter.node = &stream->node_session_id.node;
1917 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1918 assert(!ret);
1919 rcu_read_unlock();
1920
1921 if (stream->out_fd >= 0) {
1922 ret = close(stream->out_fd);
1923 if (ret) {
1924 PERROR("close");
1925 }
1926 }
1927
1928 /* Check and cleanup relayd */
1929 rcu_read_lock();
1930 relayd = consumer_find_relayd(stream->net_seq_idx);
1931 if (relayd != NULL) {
1932 uatomic_dec(&relayd->refcount);
1933 assert(uatomic_read(&relayd->refcount) >= 0);
1934
1935 /* Closing streams requires to lock the control socket. */
1936 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1937 ret = relayd_send_close_stream(&relayd->control_sock,
1938 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1939 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1940 if (ret < 0) {
1941 DBG("Unable to close stream on the relayd. Continuing");
1942 /*
1943 * Continue here. There is nothing we can do for the relayd.
1944 * Chances are that the relayd has closed the socket so we just
1945 * continue cleaning up.
1946 */
1947 }
1948
1949 /* Both conditions are met, we destroy the relayd. */
1950 if (uatomic_read(&relayd->refcount) == 0 &&
1951 uatomic_read(&relayd->destroy_flag)) {
1952 destroy_relayd(relayd);
1953 }
1954 }
1955 rcu_read_unlock();
1956
1957 /* Atomically decrement channel refcount since other threads can use it. */
1958 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1959 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1960 /* Go for channel deletion! */
1961 free_chan = stream->chan;
1962 }
1963
1964 end:
1965 /*
1966 * Nullify the stream reference so it is not used after deletion. The
1967 * consumer data lock MUST be acquired before being able to check for a
1968 * NULL pointer value.
1969 */
1970 stream->chan->metadata_stream = NULL;
1971
1972 pthread_mutex_unlock(&stream->lock);
1973 pthread_mutex_unlock(&consumer_data.lock);
1974
1975 if (free_chan) {
1976 consumer_del_channel(free_chan);
1977 }
1978
1979 free_stream_rcu:
1980 call_rcu(&stream->node.head, free_stream_rcu);
1981 }
1982
1983 /*
1984 * Action done with the metadata stream when adding it to the consumer internal
1985 * data structures to handle it.
1986 */
1987 static int add_metadata_stream(struct lttng_consumer_stream *stream,
1988 struct lttng_ht *ht)
1989 {
1990 int ret = 0;
1991 struct consumer_relayd_sock_pair *relayd;
1992 struct lttng_ht_iter iter;
1993 struct lttng_ht_node_u64 *node;
1994
1995 assert(stream);
1996 assert(ht);
1997
1998 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
1999
2000 pthread_mutex_lock(&consumer_data.lock);
2001 pthread_mutex_lock(&stream->lock);
2002
2003 /*
2004 * From here, refcounts are updated so be _careful_ when returning an error
2005 * after this point.
2006 */
2007
2008 rcu_read_lock();
2009
2010 /*
2011 * Lookup the stream just to make sure it does not exist in our internal
2012 * state. This should NEVER happen.
2013 */
2014 lttng_ht_lookup(ht, &stream->key, &iter);
2015 node = lttng_ht_iter_get_node_u64(&iter);
2016 assert(!node);
2017
2018 /* Find relayd and, if one is found, increment refcount. */
2019 relayd = consumer_find_relayd(stream->net_seq_idx);
2020 if (relayd != NULL) {
2021 uatomic_inc(&relayd->refcount);
2022 }
2023
2024 /*
2025 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2026 * in terms of destroying the associated channel, because the action that
2027 * causes the count to become 0 also causes a stream to be added. The
2028 * channel deletion will thus be triggered by the following removal of this
2029 * stream.
2030 */
2031 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2032 /* Increment refcount before decrementing nb_init_stream_left */
2033 cmm_smp_wmb();
2034 uatomic_dec(&stream->chan->nb_init_stream_left);
2035 }
2036
2037 lttng_ht_add_unique_u64(ht, &stream->node);
2038
2039 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2040 &stream->node_channel_id);
2041
2042 /*
2043 * Add stream to the stream_list_ht of the consumer data. No need to steal
2044 * the key since the HT does not use it and we allow to add redundant keys
2045 * into this table.
2046 */
2047 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2048
2049 rcu_read_unlock();
2050
2051 pthread_mutex_unlock(&stream->lock);
2052 pthread_mutex_unlock(&consumer_data.lock);
2053 return ret;
2054 }
2055
2056 /*
2057 * Delete data stream that are flagged for deletion (endpoint_status).
2058 */
2059 static void validate_endpoint_status_data_stream(void)
2060 {
2061 struct lttng_ht_iter iter;
2062 struct lttng_consumer_stream *stream;
2063
2064 DBG("Consumer delete flagged data stream");
2065
2066 rcu_read_lock();
2067 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2068 /* Validate delete flag of the stream */
2069 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2070 continue;
2071 }
2072 /* Delete it right now */
2073 consumer_del_stream(stream, data_ht);
2074 }
2075 rcu_read_unlock();
2076 }
2077
2078 /*
2079 * Delete metadata stream that are flagged for deletion (endpoint_status).
2080 */
2081 static void validate_endpoint_status_metadata_stream(
2082 struct lttng_poll_event *pollset)
2083 {
2084 struct lttng_ht_iter iter;
2085 struct lttng_consumer_stream *stream;
2086
2087 DBG("Consumer delete flagged metadata stream");
2088
2089 assert(pollset);
2090
2091 rcu_read_lock();
2092 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2093 /* Validate delete flag of the stream */
2094 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2095 continue;
2096 }
2097 /*
2098 * Remove from pollset so the metadata thread can continue without
2099 * blocking on a deleted stream.
2100 */
2101 lttng_poll_del(pollset, stream->wait_fd);
2102
2103 /* Delete it right now */
2104 consumer_del_metadata_stream(stream, metadata_ht);
2105 }
2106 rcu_read_unlock();
2107 }
2108
2109 /*
2110 * Thread polls on metadata file descriptor and write them on disk or on the
2111 * network.
2112 */
2113 void *consumer_thread_metadata_poll(void *data)
2114 {
2115 int ret, i, pollfd;
2116 uint32_t revents, nb_fd;
2117 struct lttng_consumer_stream *stream = NULL;
2118 struct lttng_ht_iter iter;
2119 struct lttng_ht_node_u64 *node;
2120 struct lttng_poll_event events;
2121 struct lttng_consumer_local_data *ctx = data;
2122 ssize_t len;
2123
2124 rcu_register_thread();
2125
2126 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2127 if (!metadata_ht) {
2128 /* ENOMEM at this point. Better to bail out. */
2129 goto end_ht;
2130 }
2131
2132 DBG("Thread metadata poll started");
2133
2134 /* Size is set to 1 for the consumer_metadata pipe */
2135 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2136 if (ret < 0) {
2137 ERR("Poll set creation failed");
2138 goto end_poll;
2139 }
2140
2141 ret = lttng_poll_add(&events,
2142 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2143 if (ret < 0) {
2144 goto end;
2145 }
2146
2147 /* Main loop */
2148 DBG("Metadata main loop started");
2149
2150 while (1) {
2151 /* Only the metadata pipe is set */
2152 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2153 goto end;
2154 }
2155
2156 restart:
2157 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2158 ret = lttng_poll_wait(&events, -1);
2159 DBG("Metadata event catched in thread");
2160 if (ret < 0) {
2161 if (errno == EINTR) {
2162 ERR("Poll EINTR catched");
2163 goto restart;
2164 }
2165 goto error;
2166 }
2167
2168 nb_fd = ret;
2169
2170 /* From here, the event is a metadata wait fd */
2171 for (i = 0; i < nb_fd; i++) {
2172 revents = LTTNG_POLL_GETEV(&events, i);
2173 pollfd = LTTNG_POLL_GETFD(&events, i);
2174
2175 /* Just don't waste time if no returned events for the fd */
2176 if (!revents) {
2177 continue;
2178 }
2179
2180 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2181 if (revents & (LPOLLERR | LPOLLHUP )) {
2182 DBG("Metadata thread pipe hung up");
2183 /*
2184 * Remove the pipe from the poll set and continue the loop
2185 * since their might be data to consume.
2186 */
2187 lttng_poll_del(&events,
2188 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2189 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2190 continue;
2191 } else if (revents & LPOLLIN) {
2192 ssize_t pipe_len;
2193
2194 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2195 &stream, sizeof(stream));
2196 if (pipe_len < 0) {
2197 ERR("read metadata stream, ret: %ld", pipe_len);
2198 /*
2199 * Continue here to handle the rest of the streams.
2200 */
2201 continue;
2202 }
2203
2204 /* A NULL stream means that the state has changed. */
2205 if (stream == NULL) {
2206 /* Check for deleted streams. */
2207 validate_endpoint_status_metadata_stream(&events);
2208 goto restart;
2209 }
2210
2211 DBG("Adding metadata stream %d to poll set",
2212 stream->wait_fd);
2213
2214 ret = add_metadata_stream(stream, metadata_ht);
2215 if (ret) {
2216 ERR("Unable to add metadata stream");
2217 /* Stream was not setup properly. Continuing. */
2218 consumer_del_metadata_stream(stream, NULL);
2219 continue;
2220 }
2221
2222 /* Add metadata stream to the global poll events list */
2223 lttng_poll_add(&events, stream->wait_fd,
2224 LPOLLIN | LPOLLPRI);
2225 }
2226
2227 /* Handle other stream */
2228 continue;
2229 }
2230
2231 rcu_read_lock();
2232 {
2233 uint64_t tmp_id = (uint64_t) pollfd;
2234
2235 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2236 }
2237 node = lttng_ht_iter_get_node_u64(&iter);
2238 assert(node);
2239
2240 stream = caa_container_of(node, struct lttng_consumer_stream,
2241 node);
2242
2243 /* Check for error event */
2244 if (revents & (LPOLLERR | LPOLLHUP)) {
2245 DBG("Metadata fd %d is hup|err.", pollfd);
2246 if (!stream->hangup_flush_done
2247 && (consumer_data.type == LTTNG_CONSUMER32_UST
2248 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2249 DBG("Attempting to flush and consume the UST buffers");
2250 lttng_ustconsumer_on_stream_hangup(stream);
2251
2252 /* We just flushed the stream now read it. */
2253 do {
2254 len = ctx->on_buffer_ready(stream, ctx);
2255 /*
2256 * We don't check the return value here since if we get
2257 * a negative len, it means an error occured thus we
2258 * simply remove it from the poll set and free the
2259 * stream.
2260 */
2261 } while (len > 0);
2262 }
2263
2264 lttng_poll_del(&events, stream->wait_fd);
2265 /*
2266 * This call update the channel states, closes file descriptors
2267 * and securely free the stream.
2268 */
2269 consumer_del_metadata_stream(stream, metadata_ht);
2270 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2271 /* Get the data out of the metadata file descriptor */
2272 DBG("Metadata available on fd %d", pollfd);
2273 assert(stream->wait_fd == pollfd);
2274
2275 len = ctx->on_buffer_ready(stream, ctx);
2276 /* It's ok to have an unavailable sub-buffer */
2277 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2278 /* Clean up stream from consumer and free it. */
2279 lttng_poll_del(&events, stream->wait_fd);
2280 consumer_del_metadata_stream(stream, metadata_ht);
2281 } else if (len > 0) {
2282 stream->data_read = 1;
2283 }
2284 }
2285
2286 /* Release RCU lock for the stream looked up */
2287 rcu_read_unlock();
2288 }
2289 }
2290
2291 error:
2292 end:
2293 DBG("Metadata poll thread exiting");
2294
2295 lttng_poll_clean(&events);
2296 end_poll:
2297 destroy_stream_ht(metadata_ht);
2298 end_ht:
2299 rcu_unregister_thread();
2300 return NULL;
2301 }
2302
2303 /*
2304 * This thread polls the fds in the set to consume the data and write
2305 * it to tracefile if necessary.
2306 */
2307 void *consumer_thread_data_poll(void *data)
2308 {
2309 int num_rdy, num_hup, high_prio, ret, i;
2310 struct pollfd *pollfd = NULL;
2311 /* local view of the streams */
2312 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2313 /* local view of consumer_data.fds_count */
2314 int nb_fd = 0;
2315 struct lttng_consumer_local_data *ctx = data;
2316 ssize_t len;
2317
2318 rcu_register_thread();
2319
2320 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2321 if (data_ht == NULL) {
2322 /* ENOMEM at this point. Better to bail out. */
2323 goto end;
2324 }
2325
2326 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2327
2328 while (1) {
2329 high_prio = 0;
2330 num_hup = 0;
2331
2332 /*
2333 * the fds set has been updated, we need to update our
2334 * local array as well
2335 */
2336 pthread_mutex_lock(&consumer_data.lock);
2337 if (consumer_data.need_update) {
2338 free(pollfd);
2339 pollfd = NULL;
2340
2341 free(local_stream);
2342 local_stream = NULL;
2343
2344 /* allocate for all fds + 1 for the consumer_data_pipe */
2345 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2346 if (pollfd == NULL) {
2347 PERROR("pollfd malloc");
2348 pthread_mutex_unlock(&consumer_data.lock);
2349 goto end;
2350 }
2351
2352 /* allocate for all fds + 1 for the consumer_data_pipe */
2353 local_stream = zmalloc((consumer_data.stream_count + 1) *
2354 sizeof(struct lttng_consumer_stream *));
2355 if (local_stream == NULL) {
2356 PERROR("local_stream malloc");
2357 pthread_mutex_unlock(&consumer_data.lock);
2358 goto end;
2359 }
2360 ret = update_poll_array(ctx, &pollfd, local_stream,
2361 data_ht);
2362 if (ret < 0) {
2363 ERR("Error in allocating pollfd or local_outfds");
2364 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2365 pthread_mutex_unlock(&consumer_data.lock);
2366 goto end;
2367 }
2368 nb_fd = ret;
2369 consumer_data.need_update = 0;
2370 }
2371 pthread_mutex_unlock(&consumer_data.lock);
2372
2373 /* No FDs and consumer_quit, consumer_cleanup the thread */
2374 if (nb_fd == 0 && consumer_quit == 1) {
2375 goto end;
2376 }
2377 /* poll on the array of fds */
2378 restart:
2379 DBG("polling on %d fd", nb_fd + 1);
2380 num_rdy = poll(pollfd, nb_fd + 1, -1);
2381 DBG("poll num_rdy : %d", num_rdy);
2382 if (num_rdy == -1) {
2383 /*
2384 * Restart interrupted system call.
2385 */
2386 if (errno == EINTR) {
2387 goto restart;
2388 }
2389 PERROR("Poll error");
2390 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2391 goto end;
2392 } else if (num_rdy == 0) {
2393 DBG("Polling thread timed out");
2394 goto end;
2395 }
2396
2397 /*
2398 * If the consumer_data_pipe triggered poll go directly to the
2399 * beginning of the loop to update the array. We want to prioritize
2400 * array update over low-priority reads.
2401 */
2402 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2403 ssize_t pipe_readlen;
2404
2405 DBG("consumer_data_pipe wake up");
2406 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2407 &new_stream, sizeof(new_stream));
2408 if (pipe_readlen < 0) {
2409 ERR("Consumer data pipe ret %ld", pipe_readlen);
2410 /* Continue so we can at least handle the current stream(s). */
2411 continue;
2412 }
2413
2414 /*
2415 * If the stream is NULL, just ignore it. It's also possible that
2416 * the sessiond poll thread changed the consumer_quit state and is
2417 * waking us up to test it.
2418 */
2419 if (new_stream == NULL) {
2420 validate_endpoint_status_data_stream();
2421 continue;
2422 }
2423
2424 ret = add_stream(new_stream, data_ht);
2425 if (ret) {
2426 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2427 new_stream->key);
2428 /*
2429 * At this point, if the add_stream fails, it is not in the
2430 * hash table thus passing the NULL value here.
2431 */
2432 consumer_del_stream(new_stream, NULL);
2433 }
2434
2435 /* Continue to update the local streams and handle prio ones */
2436 continue;
2437 }
2438
2439 /* Take care of high priority channels first. */
2440 for (i = 0; i < nb_fd; i++) {
2441 if (local_stream[i] == NULL) {
2442 continue;
2443 }
2444 if (pollfd[i].revents & POLLPRI) {
2445 DBG("Urgent read on fd %d", pollfd[i].fd);
2446 high_prio = 1;
2447 len = ctx->on_buffer_ready(local_stream[i], ctx);
2448 /* it's ok to have an unavailable sub-buffer */
2449 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2450 /* Clean the stream and free it. */
2451 consumer_del_stream(local_stream[i], data_ht);
2452 local_stream[i] = NULL;
2453 } else if (len > 0) {
2454 local_stream[i]->data_read = 1;
2455 }
2456 }
2457 }
2458
2459 /*
2460 * If we read high prio channel in this loop, try again
2461 * for more high prio data.
2462 */
2463 if (high_prio) {
2464 continue;
2465 }
2466
2467 /* Take care of low priority channels. */
2468 for (i = 0; i < nb_fd; i++) {
2469 if (local_stream[i] == NULL) {
2470 continue;
2471 }
2472 if ((pollfd[i].revents & POLLIN) ||
2473 local_stream[i]->hangup_flush_done) {
2474 DBG("Normal read on fd %d", pollfd[i].fd);
2475 len = ctx->on_buffer_ready(local_stream[i], ctx);
2476 /* it's ok to have an unavailable sub-buffer */
2477 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2478 /* Clean the stream and free it. */
2479 consumer_del_stream(local_stream[i], data_ht);
2480 local_stream[i] = NULL;
2481 } else if (len > 0) {
2482 local_stream[i]->data_read = 1;
2483 }
2484 }
2485 }
2486
2487 /* Handle hangup and errors */
2488 for (i = 0; i < nb_fd; i++) {
2489 if (local_stream[i] == NULL) {
2490 continue;
2491 }
2492 if (!local_stream[i]->hangup_flush_done
2493 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2494 && (consumer_data.type == LTTNG_CONSUMER32_UST
2495 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2496 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2497 pollfd[i].fd);
2498 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2499 /* Attempt read again, for the data we just flushed. */
2500 local_stream[i]->data_read = 1;
2501 }
2502 /*
2503 * If the poll flag is HUP/ERR/NVAL and we have
2504 * read no data in this pass, we can remove the
2505 * stream from its hash table.
2506 */
2507 if ((pollfd[i].revents & POLLHUP)) {
2508 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2509 if (!local_stream[i]->data_read) {
2510 consumer_del_stream(local_stream[i], data_ht);
2511 local_stream[i] = NULL;
2512 num_hup++;
2513 }
2514 } else if (pollfd[i].revents & POLLERR) {
2515 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2516 if (!local_stream[i]->data_read) {
2517 consumer_del_stream(local_stream[i], data_ht);
2518 local_stream[i] = NULL;
2519 num_hup++;
2520 }
2521 } else if (pollfd[i].revents & POLLNVAL) {
2522 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2523 if (!local_stream[i]->data_read) {
2524 consumer_del_stream(local_stream[i], data_ht);
2525 local_stream[i] = NULL;
2526 num_hup++;
2527 }
2528 }
2529 if (local_stream[i] != NULL) {
2530 local_stream[i]->data_read = 0;
2531 }
2532 }
2533 }
2534 end:
2535 DBG("polling thread exiting");
2536 free(pollfd);
2537 free(local_stream);
2538
2539 /*
2540 * Close the write side of the pipe so epoll_wait() in
2541 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2542 * read side of the pipe. If we close them both, epoll_wait strangely does
2543 * not return and could create a endless wait period if the pipe is the
2544 * only tracked fd in the poll set. The thread will take care of closing
2545 * the read side.
2546 */
2547 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2548
2549 destroy_data_stream_ht(data_ht);
2550
2551 rcu_unregister_thread();
2552 return NULL;
2553 }
2554
2555 /*
2556 * Close wake-up end of each stream belonging to the channel. This will
2557 * allow the poll() on the stream read-side to detect when the
2558 * write-side (application) finally closes them.
2559 */
2560 static
2561 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2562 {
2563 struct lttng_ht *ht;
2564 struct lttng_consumer_stream *stream;
2565 struct lttng_ht_iter iter;
2566
2567 ht = consumer_data.stream_per_chan_id_ht;
2568
2569 rcu_read_lock();
2570 cds_lfht_for_each_entry_duplicate(ht->ht,
2571 ht->hash_fct(&channel->key, lttng_ht_seed),
2572 ht->match_fct, &channel->key,
2573 &iter.iter, stream, node_channel_id.node) {
2574 /*
2575 * Protect against teardown with mutex.
2576 */
2577 pthread_mutex_lock(&stream->lock);
2578 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2579 goto next;
2580 }
2581 switch (consumer_data.type) {
2582 case LTTNG_CONSUMER_KERNEL:
2583 break;
2584 case LTTNG_CONSUMER32_UST:
2585 case LTTNG_CONSUMER64_UST:
2586 /*
2587 * Note: a mutex is taken internally within
2588 * liblttng-ust-ctl to protect timer wakeup_fd
2589 * use from concurrent close.
2590 */
2591 lttng_ustconsumer_close_stream_wakeup(stream);
2592 break;
2593 default:
2594 ERR("Unknown consumer_data type");
2595 assert(0);
2596 }
2597 next:
2598 pthread_mutex_unlock(&stream->lock);
2599 }
2600 rcu_read_unlock();
2601 }
2602
2603 static void destroy_channel_ht(struct lttng_ht *ht)
2604 {
2605 struct lttng_ht_iter iter;
2606 struct lttng_consumer_channel *channel;
2607 int ret;
2608
2609 if (ht == NULL) {
2610 return;
2611 }
2612
2613 rcu_read_lock();
2614 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2615 ret = lttng_ht_del(ht, &iter);
2616 assert(ret != 0);
2617 }
2618 rcu_read_unlock();
2619
2620 lttng_ht_destroy(ht);
2621 }
2622
2623 /*
2624 * This thread polls the channel fds to detect when they are being
2625 * closed. It closes all related streams if the channel is detected as
2626 * closed. It is currently only used as a shim layer for UST because the
2627 * consumerd needs to keep the per-stream wakeup end of pipes open for
2628 * periodical flush.
2629 */
2630 void *consumer_thread_channel_poll(void *data)
2631 {
2632 int ret, i, pollfd;
2633 uint32_t revents, nb_fd;
2634 struct lttng_consumer_channel *chan = NULL;
2635 struct lttng_ht_iter iter;
2636 struct lttng_ht_node_u64 *node;
2637 struct lttng_poll_event events;
2638 struct lttng_consumer_local_data *ctx = data;
2639 struct lttng_ht *channel_ht;
2640
2641 rcu_register_thread();
2642
2643 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2644 if (!channel_ht) {
2645 /* ENOMEM at this point. Better to bail out. */
2646 goto end_ht;
2647 }
2648
2649 DBG("Thread channel poll started");
2650
2651 /* Size is set to 1 for the consumer_channel pipe */
2652 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2653 if (ret < 0) {
2654 ERR("Poll set creation failed");
2655 goto end_poll;
2656 }
2657
2658 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2659 if (ret < 0) {
2660 goto end;
2661 }
2662
2663 /* Main loop */
2664 DBG("Channel main loop started");
2665
2666 while (1) {
2667 /* Only the channel pipe is set */
2668 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2669 goto end;
2670 }
2671
2672 restart:
2673 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2674 ret = lttng_poll_wait(&events, -1);
2675 DBG("Channel event catched in thread");
2676 if (ret < 0) {
2677 if (errno == EINTR) {
2678 ERR("Poll EINTR catched");
2679 goto restart;
2680 }
2681 goto end;
2682 }
2683
2684 nb_fd = ret;
2685
2686 /* From here, the event is a channel wait fd */
2687 for (i = 0; i < nb_fd; i++) {
2688 revents = LTTNG_POLL_GETEV(&events, i);
2689 pollfd = LTTNG_POLL_GETFD(&events, i);
2690
2691 /* Just don't waste time if no returned events for the fd */
2692 if (!revents) {
2693 continue;
2694 }
2695 if (pollfd == ctx->consumer_channel_pipe[0]) {
2696 if (revents & (LPOLLERR | LPOLLHUP)) {
2697 DBG("Channel thread pipe hung up");
2698 /*
2699 * Remove the pipe from the poll set and continue the loop
2700 * since their might be data to consume.
2701 */
2702 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2703 continue;
2704 } else if (revents & LPOLLIN) {
2705 enum consumer_channel_action action;
2706 uint64_t key;
2707
2708 ret = read_channel_pipe(ctx, &chan, &key, &action);
2709 if (ret <= 0) {
2710 ERR("Error reading channel pipe");
2711 continue;
2712 }
2713
2714 switch (action) {
2715 case CONSUMER_CHANNEL_ADD:
2716 DBG("Adding channel %d to poll set",
2717 chan->wait_fd);
2718
2719 lttng_ht_node_init_u64(&chan->wait_fd_node,
2720 chan->wait_fd);
2721 rcu_read_lock();
2722 lttng_ht_add_unique_u64(channel_ht,
2723 &chan->wait_fd_node);
2724 rcu_read_unlock();
2725 /* Add channel to the global poll events list */
2726 lttng_poll_add(&events, chan->wait_fd,
2727 LPOLLIN | LPOLLPRI);
2728 break;
2729 case CONSUMER_CHANNEL_DEL:
2730 {
2731 rcu_read_lock();
2732 chan = consumer_find_channel(key);
2733 if (!chan) {
2734 rcu_read_unlock();
2735 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2736 break;
2737 }
2738 lttng_poll_del(&events, chan->wait_fd);
2739 iter.iter.node = &chan->wait_fd_node.node;
2740 ret = lttng_ht_del(channel_ht, &iter);
2741 assert(ret == 0);
2742 consumer_close_channel_streams(chan);
2743
2744 /*
2745 * Release our own refcount. Force channel deletion even if
2746 * streams were not initialized.
2747 */
2748 if (!uatomic_sub_return(&chan->refcount, 1)) {
2749 consumer_del_channel(chan);
2750 }
2751 rcu_read_unlock();
2752 goto restart;
2753 }
2754 case CONSUMER_CHANNEL_QUIT:
2755 /*
2756 * Remove the pipe from the poll set and continue the loop
2757 * since their might be data to consume.
2758 */
2759 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2760 continue;
2761 default:
2762 ERR("Unknown action");
2763 break;
2764 }
2765 }
2766
2767 /* Handle other stream */
2768 continue;
2769 }
2770
2771 rcu_read_lock();
2772 {
2773 uint64_t tmp_id = (uint64_t) pollfd;
2774
2775 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2776 }
2777 node = lttng_ht_iter_get_node_u64(&iter);
2778 assert(node);
2779
2780 chan = caa_container_of(node, struct lttng_consumer_channel,
2781 wait_fd_node);
2782
2783 /* Check for error event */
2784 if (revents & (LPOLLERR | LPOLLHUP)) {
2785 DBG("Channel fd %d is hup|err.", pollfd);
2786
2787 lttng_poll_del(&events, chan->wait_fd);
2788 ret = lttng_ht_del(channel_ht, &iter);
2789 assert(ret == 0);
2790 consumer_close_channel_streams(chan);
2791
2792 /* Release our own refcount */
2793 if (!uatomic_sub_return(&chan->refcount, 1)
2794 && !uatomic_read(&chan->nb_init_stream_left)) {
2795 consumer_del_channel(chan);
2796 }
2797 }
2798
2799 /* Release RCU lock for the channel looked up */
2800 rcu_read_unlock();
2801 }
2802 }
2803
2804 end:
2805 lttng_poll_clean(&events);
2806 end_poll:
2807 destroy_channel_ht(channel_ht);
2808 end_ht:
2809 DBG("Channel poll thread exiting");
2810 rcu_unregister_thread();
2811 return NULL;
2812 }
2813
2814 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2815 struct pollfd *sockpoll, int client_socket)
2816 {
2817 int ret;
2818
2819 assert(ctx);
2820 assert(sockpoll);
2821
2822 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2823 ret = -1;
2824 goto error;
2825 }
2826 DBG("Metadata connection on client_socket");
2827
2828 /* Blocking call, waiting for transmission */
2829 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2830 if (ctx->consumer_metadata_socket < 0) {
2831 WARN("On accept metadata");
2832 ret = -1;
2833 goto error;
2834 }
2835 ret = 0;
2836
2837 error:
2838 return ret;
2839 }
2840
2841 /*
2842 * This thread listens on the consumerd socket and receives the file
2843 * descriptors from the session daemon.
2844 */
2845 void *consumer_thread_sessiond_poll(void *data)
2846 {
2847 int sock = -1, client_socket, ret;
2848 /*
2849 * structure to poll for incoming data on communication socket avoids
2850 * making blocking sockets.
2851 */
2852 struct pollfd consumer_sockpoll[2];
2853 struct lttng_consumer_local_data *ctx = data;
2854
2855 rcu_register_thread();
2856
2857 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2858 unlink(ctx->consumer_command_sock_path);
2859 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2860 if (client_socket < 0) {
2861 ERR("Cannot create command socket");
2862 goto end;
2863 }
2864
2865 ret = lttcomm_listen_unix_sock(client_socket);
2866 if (ret < 0) {
2867 goto end;
2868 }
2869
2870 DBG("Sending ready command to lttng-sessiond");
2871 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2872 /* return < 0 on error, but == 0 is not fatal */
2873 if (ret < 0) {
2874 ERR("Error sending ready command to lttng-sessiond");
2875 goto end;
2876 }
2877
2878 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2879 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2880 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2881 consumer_sockpoll[1].fd = client_socket;
2882 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2883
2884 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2885 goto end;
2886 }
2887 DBG("Connection on client_socket");
2888
2889 /* Blocking call, waiting for transmission */
2890 sock = lttcomm_accept_unix_sock(client_socket);
2891 if (sock < 0) {
2892 WARN("On accept");
2893 goto end;
2894 }
2895
2896 /*
2897 * Setup metadata socket which is the second socket connection on the
2898 * command unix socket.
2899 */
2900 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2901 if (ret < 0) {
2902 goto end;
2903 }
2904
2905 /* This socket is not useful anymore. */
2906 ret = close(client_socket);
2907 if (ret < 0) {
2908 PERROR("close client_socket");
2909 }
2910 client_socket = -1;
2911
2912 /* update the polling structure to poll on the established socket */
2913 consumer_sockpoll[1].fd = sock;
2914 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2915
2916 while (1) {
2917 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2918 goto end;
2919 }
2920 DBG("Incoming command on sock");
2921 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2922 if (ret == -ENOENT) {
2923 DBG("Received STOP command");
2924 goto end;
2925 }
2926 if (ret <= 0) {
2927 /*
2928 * This could simply be a session daemon quitting. Don't output
2929 * ERR() here.
2930 */
2931 DBG("Communication interrupted on command socket");
2932 goto end;
2933 }
2934 if (consumer_quit) {
2935 DBG("consumer_thread_receive_fds received quit from signal");
2936 goto end;
2937 }
2938 DBG("received command on sock");
2939 }
2940 end:
2941 DBG("Consumer thread sessiond poll exiting");
2942
2943 /*
2944 * Close metadata streams since the producer is the session daemon which
2945 * just died.
2946 *
2947 * NOTE: for now, this only applies to the UST tracer.
2948 */
2949 lttng_consumer_close_metadata();
2950
2951 /*
2952 * when all fds have hung up, the polling thread
2953 * can exit cleanly
2954 */
2955 consumer_quit = 1;
2956
2957 /*
2958 * Notify the data poll thread to poll back again and test the
2959 * consumer_quit state that we just set so to quit gracefully.
2960 */
2961 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
2962
2963 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2964
2965 /* Cleaning up possibly open sockets. */
2966 if (sock >= 0) {
2967 ret = close(sock);
2968 if (ret < 0) {
2969 PERROR("close sock sessiond poll");
2970 }
2971 }
2972 if (client_socket >= 0) {
2973 ret = close(client_socket);
2974 if (ret < 0) {
2975 PERROR("close client_socket sessiond poll");
2976 }
2977 }
2978
2979 rcu_unregister_thread();
2980 return NULL;
2981 }
2982
2983 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2984 struct lttng_consumer_local_data *ctx)
2985 {
2986 ssize_t ret;
2987
2988 pthread_mutex_lock(&stream->lock);
2989
2990 switch (consumer_data.type) {
2991 case LTTNG_CONSUMER_KERNEL:
2992 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2993 break;
2994 case LTTNG_CONSUMER32_UST:
2995 case LTTNG_CONSUMER64_UST:
2996 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
2997 break;
2998 default:
2999 ERR("Unknown consumer_data type");
3000 assert(0);
3001 ret = -ENOSYS;
3002 break;
3003 }
3004
3005 pthread_mutex_unlock(&stream->lock);
3006 return ret;
3007 }
3008
3009 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3010 {
3011 switch (consumer_data.type) {
3012 case LTTNG_CONSUMER_KERNEL:
3013 return lttng_kconsumer_on_recv_stream(stream);
3014 case LTTNG_CONSUMER32_UST:
3015 case LTTNG_CONSUMER64_UST:
3016 return lttng_ustconsumer_on_recv_stream(stream);
3017 default:
3018 ERR("Unknown consumer_data type");
3019 assert(0);
3020 return -ENOSYS;
3021 }
3022 }
3023
3024 /*
3025 * Allocate and set consumer data hash tables.
3026 */
3027 void lttng_consumer_init(void)
3028 {
3029 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3030 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3031 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3032 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3033 }
3034
3035 /*
3036 * Process the ADD_RELAYD command receive by a consumer.
3037 *
3038 * This will create a relayd socket pair and add it to the relayd hash table.
3039 * The caller MUST acquire a RCU read side lock before calling it.
3040 */
3041 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
3042 struct lttng_consumer_local_data *ctx, int sock,
3043 struct pollfd *consumer_sockpoll,
3044 struct lttcomm_relayd_sock *relayd_sock, unsigned int sessiond_id)
3045 {
3046 int fd = -1, ret = -1, relayd_created = 0;
3047 enum lttng_error_code ret_code = LTTNG_OK;
3048 struct consumer_relayd_sock_pair *relayd = NULL;
3049
3050 assert(ctx);
3051 assert(relayd_sock);
3052
3053 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
3054
3055 /* First send a status message before receiving the fds. */
3056 ret = consumer_send_status_msg(sock, ret_code);
3057 if (ret < 0) {
3058 /* Somehow, the session daemon is not responding anymore. */
3059 goto error;
3060 }
3061
3062 /* Get relayd reference if exists. */
3063 relayd = consumer_find_relayd(net_seq_idx);
3064 if (relayd == NULL) {
3065 /* Not found. Allocate one. */
3066 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3067 if (relayd == NULL) {
3068 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
3069 ret = -1;
3070 goto error;
3071 }
3072 relayd->sessiond_session_id = (uint64_t) sessiond_id;
3073 relayd_created = 1;
3074 }
3075
3076 /* Poll on consumer socket. */
3077 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3078 ret = -EINTR;
3079 goto error;
3080 }
3081
3082 /* Get relayd socket from session daemon */
3083 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3084 if (ret != sizeof(fd)) {
3085 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3086 ret = -1;
3087 fd = -1; /* Just in case it gets set with an invalid value. */
3088 goto error_close;
3089 }
3090
3091 /* We have the fds without error. Send status back. */
3092 ret = consumer_send_status_msg(sock, ret_code);
3093 if (ret < 0) {
3094 /* Somehow, the session daemon is not responding anymore. */
3095 goto error;
3096 }
3097
3098 /* Copy socket information and received FD */
3099 switch (sock_type) {
3100 case LTTNG_STREAM_CONTROL:
3101 /* Copy received lttcomm socket */
3102 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3103 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3104 /* Immediately try to close the created socket if valid. */
3105 if (relayd->control_sock.sock.fd >= 0) {
3106 if (close(relayd->control_sock.sock.fd)) {
3107 PERROR("close relayd control socket");
3108 }
3109 }
3110 /* Handle create_sock error. */
3111 if (ret < 0) {
3112 goto error;
3113 }
3114
3115 /* Assign new file descriptor */
3116 relayd->control_sock.sock.fd = fd;
3117 /* Assign version values. */
3118 relayd->control_sock.major = relayd_sock->major;
3119 relayd->control_sock.minor = relayd_sock->minor;
3120
3121 /*
3122 * Create a session on the relayd and store the returned id. Lock the
3123 * control socket mutex if the relayd was NOT created before.
3124 */
3125 if (!relayd_created) {
3126 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3127 }
3128 ret = relayd_create_session(&relayd->control_sock,
3129 &relayd->relayd_session_id);
3130 if (!relayd_created) {
3131 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3132 }
3133 if (ret < 0) {
3134 /*
3135 * Close all sockets of a relayd object. It will be freed if it was
3136 * created at the error code path or else it will be garbage
3137 * collect.
3138 */
3139 (void) relayd_close(&relayd->control_sock);
3140 (void) relayd_close(&relayd->data_sock);
3141 goto error;
3142 }
3143
3144 break;
3145 case LTTNG_STREAM_DATA:
3146 /* Copy received lttcomm socket */
3147 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3148 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3149 /* Immediately try to close the created socket if valid. */
3150 if (relayd->data_sock.sock.fd >= 0) {
3151 if (close(relayd->data_sock.sock.fd)) {
3152 PERROR("close relayd data socket");
3153 }
3154 }
3155 /* Handle create_sock error. */
3156 if (ret < 0) {
3157 goto error;
3158 }
3159
3160 /* Assign new file descriptor */
3161 relayd->data_sock.sock.fd = fd;
3162 /* Assign version values. */
3163 relayd->data_sock.major = relayd_sock->major;
3164 relayd->data_sock.minor = relayd_sock->minor;
3165 break;
3166 default:
3167 ERR("Unknown relayd socket type (%d)", sock_type);
3168 ret = -1;
3169 goto error;
3170 }
3171
3172 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3173 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3174 relayd->net_seq_idx, fd);
3175
3176 /*
3177 * Add relayd socket pair to consumer data hashtable. If object already
3178 * exists or on error, the function gracefully returns.
3179 */
3180 add_relayd(relayd);
3181
3182 /* All good! */
3183 return 0;
3184
3185 error:
3186 /* Close received socket if valid. */
3187 if (fd >= 0) {
3188 if (close(fd)) {
3189 PERROR("close received socket");
3190 }
3191 }
3192
3193 error_close:
3194 if (relayd_created) {
3195 free(relayd);
3196 }
3197
3198 return ret;
3199 }
3200
3201 /*
3202 * Try to lock the stream mutex.
3203 *
3204 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3205 */
3206 static int stream_try_lock(struct lttng_consumer_stream *stream)
3207 {
3208 int ret;
3209
3210 assert(stream);
3211
3212 /*
3213 * Try to lock the stream mutex. On failure, we know that the stream is
3214 * being used else where hence there is data still being extracted.
3215 */
3216 ret = pthread_mutex_trylock(&stream->lock);
3217 if (ret) {
3218 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3219 ret = 0;
3220 goto end;
3221 }
3222
3223 ret = 1;
3224
3225 end:
3226 return ret;
3227 }
3228
3229 /*
3230 * Search for a relayd associated to the session id and return the reference.
3231 *
3232 * A rcu read side lock MUST be acquire before calling this function and locked
3233 * until the relayd object is no longer necessary.
3234 */
3235 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3236 {
3237 struct lttng_ht_iter iter;
3238 struct consumer_relayd_sock_pair *relayd = NULL;
3239
3240 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3241 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3242 node.node) {
3243 /*
3244 * Check by sessiond id which is unique here where the relayd session
3245 * id might not be when having multiple relayd.
3246 */
3247 if (relayd->sessiond_session_id == id) {
3248 /* Found the relayd. There can be only one per id. */
3249 goto found;
3250 }
3251 }
3252
3253 return NULL;
3254
3255 found:
3256 return relayd;
3257 }
3258
3259 /*
3260 * Check if for a given session id there is still data needed to be extract
3261 * from the buffers.
3262 *
3263 * Return 1 if data is pending or else 0 meaning ready to be read.
3264 */
3265 int consumer_data_pending(uint64_t id)
3266 {
3267 int ret;
3268 struct lttng_ht_iter iter;
3269 struct lttng_ht *ht;
3270 struct lttng_consumer_stream *stream;
3271 struct consumer_relayd_sock_pair *relayd = NULL;
3272 int (*data_pending)(struct lttng_consumer_stream *);
3273
3274 DBG("Consumer data pending command on session id %" PRIu64, id);
3275
3276 rcu_read_lock();
3277 pthread_mutex_lock(&consumer_data.lock);
3278
3279 switch (consumer_data.type) {
3280 case LTTNG_CONSUMER_KERNEL:
3281 data_pending = lttng_kconsumer_data_pending;
3282 break;
3283 case LTTNG_CONSUMER32_UST:
3284 case LTTNG_CONSUMER64_UST:
3285 data_pending = lttng_ustconsumer_data_pending;
3286 break;
3287 default:
3288 ERR("Unknown consumer data type");
3289 assert(0);
3290 }
3291
3292 /* Ease our life a bit */
3293 ht = consumer_data.stream_list_ht;
3294
3295 relayd = find_relayd_by_session_id(id);
3296 if (relayd) {
3297 /* Send init command for data pending. */
3298 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3299 ret = relayd_begin_data_pending(&relayd->control_sock,
3300 relayd->relayd_session_id);
3301 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3302 if (ret < 0) {
3303 /* Communication error thus the relayd so no data pending. */
3304 goto data_not_pending;
3305 }
3306 }
3307
3308 cds_lfht_for_each_entry_duplicate(ht->ht,
3309 ht->hash_fct(&id, lttng_ht_seed),
3310 ht->match_fct, &id,
3311 &iter.iter, stream, node_session_id.node) {
3312 /* If this call fails, the stream is being used hence data pending. */
3313 ret = stream_try_lock(stream);
3314 if (!ret) {
3315 goto data_pending;
3316 }
3317
3318 /*
3319 * A removed node from the hash table indicates that the stream has
3320 * been deleted thus having a guarantee that the buffers are closed
3321 * on the consumer side. However, data can still be transmitted
3322 * over the network so don't skip the relayd check.
3323 */
3324 ret = cds_lfht_is_node_deleted(&stream->node.node);
3325 if (!ret) {
3326 /* Check the stream if there is data in the buffers. */
3327 ret = data_pending(stream);
3328 if (ret == 1) {
3329 pthread_mutex_unlock(&stream->lock);
3330 goto data_pending;
3331 }
3332 }
3333
3334 /* Relayd check */
3335 if (relayd) {
3336 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3337 if (stream->metadata_flag) {
3338 ret = relayd_quiescent_control(&relayd->control_sock,
3339 stream->relayd_stream_id);
3340 } else {
3341 ret = relayd_data_pending(&relayd->control_sock,
3342 stream->relayd_stream_id,
3343 stream->next_net_seq_num - 1);
3344 }
3345 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3346 if (ret == 1) {
3347 pthread_mutex_unlock(&stream->lock);
3348 goto data_pending;
3349 }
3350 }
3351 pthread_mutex_unlock(&stream->lock);
3352 }
3353
3354 if (relayd) {
3355 unsigned int is_data_inflight = 0;
3356
3357 /* Send init command for data pending. */
3358 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3359 ret = relayd_end_data_pending(&relayd->control_sock,
3360 relayd->relayd_session_id, &is_data_inflight);
3361 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3362 if (ret < 0) {
3363 goto data_not_pending;
3364 }
3365 if (is_data_inflight) {
3366 goto data_pending;
3367 }
3368 }
3369
3370 /*
3371 * Finding _no_ node in the hash table and no inflight data means that the
3372 * stream(s) have been removed thus data is guaranteed to be available for
3373 * analysis from the trace files.
3374 */
3375
3376 data_not_pending:
3377 /* Data is available to be read by a viewer. */
3378 pthread_mutex_unlock(&consumer_data.lock);
3379 rcu_read_unlock();
3380 return 0;
3381
3382 data_pending:
3383 /* Data is still being extracted from buffers. */
3384 pthread_mutex_unlock(&consumer_data.lock);
3385 rcu_read_unlock();
3386 return 1;
3387 }
3388
3389 /*
3390 * Send a ret code status message to the sessiond daemon.
3391 *
3392 * Return the sendmsg() return value.
3393 */
3394 int consumer_send_status_msg(int sock, int ret_code)
3395 {
3396 struct lttcomm_consumer_status_msg msg;
3397
3398 msg.ret_code = ret_code;
3399
3400 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3401 }
3402
3403 /*
3404 * Send a channel status message to the sessiond daemon.
3405 *
3406 * Return the sendmsg() return value.
3407 */
3408 int consumer_send_status_channel(int sock,
3409 struct lttng_consumer_channel *channel)
3410 {
3411 struct lttcomm_consumer_status_channel msg;
3412
3413 assert(sock >= 0);
3414
3415 if (!channel) {
3416 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3417 } else {
3418 msg.ret_code = LTTNG_OK;
3419 msg.key = channel->key;
3420 msg.stream_count = channel->streams.count;
3421 }
3422
3423 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3424 }
This page took 0.12593 seconds and 5 git commands to generate.