Doc: live protocol clarifications
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/index/index.h>
38 #include <common/kernel-ctl/kernel-ctl.h>
39 #include <common/sessiond-comm/relayd.h>
40 #include <common/sessiond-comm/sessiond-comm.h>
41 #include <common/kernel-consumer/kernel-consumer.h>
42 #include <common/relayd/relayd.h>
43 #include <common/ust-consumer/ust-consumer.h>
44 #include <common/consumer-timer.h>
45
46 #include "consumer.h"
47 #include "consumer-stream.h"
48 #include "consumer-testpoint.h"
49
50 struct lttng_consumer_global_data consumer_data = {
51 .stream_count = 0,
52 .need_update = 1,
53 .type = LTTNG_CONSUMER_UNKNOWN,
54 };
55
56 enum consumer_channel_action {
57 CONSUMER_CHANNEL_ADD,
58 CONSUMER_CHANNEL_DEL,
59 CONSUMER_CHANNEL_QUIT,
60 };
61
62 struct consumer_channel_msg {
63 enum consumer_channel_action action;
64 struct lttng_consumer_channel *chan; /* add */
65 uint64_t key; /* del */
66 };
67
68 /*
69 * Flag to inform the polling thread to quit when all fd hung up. Updated by
70 * the consumer_thread_receive_fds when it notices that all fds has hung up.
71 * Also updated by the signal handler (consumer_should_exit()). Read by the
72 * polling threads.
73 */
74 volatile int consumer_quit;
75
76 /*
77 * Global hash table containing respectively metadata and data streams. The
78 * stream element in this ht should only be updated by the metadata poll thread
79 * for the metadata and the data poll thread for the data.
80 */
81 static struct lttng_ht *metadata_ht;
82 static struct lttng_ht *data_ht;
83
84 /*
85 * Notify a thread lttng pipe to poll back again. This usually means that some
86 * global state has changed so we just send back the thread in a poll wait
87 * call.
88 */
89 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
90 {
91 struct lttng_consumer_stream *null_stream = NULL;
92
93 assert(pipe);
94
95 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
96 }
97
98 static void notify_health_quit_pipe(int *pipe)
99 {
100 ssize_t ret;
101
102 ret = lttng_write(pipe[1], "4", 1);
103 if (ret < 1) {
104 PERROR("write consumer health quit");
105 }
106 }
107
108 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
109 struct lttng_consumer_channel *chan,
110 uint64_t key,
111 enum consumer_channel_action action)
112 {
113 struct consumer_channel_msg msg;
114 ssize_t ret;
115
116 memset(&msg, 0, sizeof(msg));
117
118 msg.action = action;
119 msg.chan = chan;
120 msg.key = key;
121 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
122 if (ret < sizeof(msg)) {
123 PERROR("notify_channel_pipe write error");
124 }
125 }
126
127 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
128 uint64_t key)
129 {
130 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
131 }
132
133 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
134 struct lttng_consumer_channel **chan,
135 uint64_t *key,
136 enum consumer_channel_action *action)
137 {
138 struct consumer_channel_msg msg;
139 ssize_t ret;
140
141 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
142 if (ret < sizeof(msg)) {
143 ret = -1;
144 goto error;
145 }
146 *action = msg.action;
147 *chan = msg.chan;
148 *key = msg.key;
149 error:
150 return (int) ret;
151 }
152
153 /*
154 * Find a stream. The consumer_data.lock must be locked during this
155 * call.
156 */
157 static struct lttng_consumer_stream *find_stream(uint64_t key,
158 struct lttng_ht *ht)
159 {
160 struct lttng_ht_iter iter;
161 struct lttng_ht_node_u64 *node;
162 struct lttng_consumer_stream *stream = NULL;
163
164 assert(ht);
165
166 /* -1ULL keys are lookup failures */
167 if (key == (uint64_t) -1ULL) {
168 return NULL;
169 }
170
171 rcu_read_lock();
172
173 lttng_ht_lookup(ht, &key, &iter);
174 node = lttng_ht_iter_get_node_u64(&iter);
175 if (node != NULL) {
176 stream = caa_container_of(node, struct lttng_consumer_stream, node);
177 }
178
179 rcu_read_unlock();
180
181 return stream;
182 }
183
184 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
185 {
186 struct lttng_consumer_stream *stream;
187
188 rcu_read_lock();
189 stream = find_stream(key, ht);
190 if (stream) {
191 stream->key = (uint64_t) -1ULL;
192 /*
193 * We don't want the lookup to match, but we still need
194 * to iterate on this stream when iterating over the hash table. Just
195 * change the node key.
196 */
197 stream->node.key = (uint64_t) -1ULL;
198 }
199 rcu_read_unlock();
200 }
201
202 /*
203 * Return a channel object for the given key.
204 *
205 * RCU read side lock MUST be acquired before calling this function and
206 * protects the channel ptr.
207 */
208 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
209 {
210 struct lttng_ht_iter iter;
211 struct lttng_ht_node_u64 *node;
212 struct lttng_consumer_channel *channel = NULL;
213
214 /* -1ULL keys are lookup failures */
215 if (key == (uint64_t) -1ULL) {
216 return NULL;
217 }
218
219 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
220 node = lttng_ht_iter_get_node_u64(&iter);
221 if (node != NULL) {
222 channel = caa_container_of(node, struct lttng_consumer_channel, node);
223 }
224
225 return channel;
226 }
227
228 static void free_stream_rcu(struct rcu_head *head)
229 {
230 struct lttng_ht_node_u64 *node =
231 caa_container_of(head, struct lttng_ht_node_u64, head);
232 struct lttng_consumer_stream *stream =
233 caa_container_of(node, struct lttng_consumer_stream, node);
234
235 free(stream);
236 }
237
238 static void free_channel_rcu(struct rcu_head *head)
239 {
240 struct lttng_ht_node_u64 *node =
241 caa_container_of(head, struct lttng_ht_node_u64, head);
242 struct lttng_consumer_channel *channel =
243 caa_container_of(node, struct lttng_consumer_channel, node);
244
245 free(channel);
246 }
247
248 /*
249 * RCU protected relayd socket pair free.
250 */
251 static void free_relayd_rcu(struct rcu_head *head)
252 {
253 struct lttng_ht_node_u64 *node =
254 caa_container_of(head, struct lttng_ht_node_u64, head);
255 struct consumer_relayd_sock_pair *relayd =
256 caa_container_of(node, struct consumer_relayd_sock_pair, node);
257
258 /*
259 * Close all sockets. This is done in the call RCU since we don't want the
260 * socket fds to be reassigned thus potentially creating bad state of the
261 * relayd object.
262 *
263 * We do not have to lock the control socket mutex here since at this stage
264 * there is no one referencing to this relayd object.
265 */
266 (void) relayd_close(&relayd->control_sock);
267 (void) relayd_close(&relayd->data_sock);
268
269 free(relayd);
270 }
271
272 /*
273 * Destroy and free relayd socket pair object.
274 */
275 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
276 {
277 int ret;
278 struct lttng_ht_iter iter;
279
280 if (relayd == NULL) {
281 return;
282 }
283
284 DBG("Consumer destroy and close relayd socket pair");
285
286 iter.iter.node = &relayd->node.node;
287 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
288 if (ret != 0) {
289 /* We assume the relayd is being or is destroyed */
290 return;
291 }
292
293 /* RCU free() call */
294 call_rcu(&relayd->node.head, free_relayd_rcu);
295 }
296
297 /*
298 * Remove a channel from the global list protected by a mutex. This function is
299 * also responsible for freeing its data structures.
300 */
301 void consumer_del_channel(struct lttng_consumer_channel *channel)
302 {
303 int ret;
304 struct lttng_ht_iter iter;
305 struct lttng_consumer_stream *stream, *stmp;
306
307 DBG("Consumer delete channel key %" PRIu64, channel->key);
308
309 pthread_mutex_lock(&consumer_data.lock);
310 pthread_mutex_lock(&channel->lock);
311
312 /* Delete streams that might have been left in the stream list. */
313 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
314 send_node) {
315 cds_list_del(&stream->send_node);
316 /*
317 * Once a stream is added to this list, the buffers were created so
318 * we have a guarantee that this call will succeed.
319 */
320 consumer_stream_destroy(stream, NULL);
321 }
322
323 if (channel->live_timer_enabled == 1) {
324 consumer_timer_live_stop(channel);
325 }
326
327 switch (consumer_data.type) {
328 case LTTNG_CONSUMER_KERNEL:
329 break;
330 case LTTNG_CONSUMER32_UST:
331 case LTTNG_CONSUMER64_UST:
332 lttng_ustconsumer_del_channel(channel);
333 break;
334 default:
335 ERR("Unknown consumer_data type");
336 assert(0);
337 goto end;
338 }
339
340 rcu_read_lock();
341 iter.iter.node = &channel->node.node;
342 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
343 assert(!ret);
344 rcu_read_unlock();
345
346 call_rcu(&channel->node.head, free_channel_rcu);
347 end:
348 pthread_mutex_unlock(&channel->lock);
349 pthread_mutex_unlock(&consumer_data.lock);
350 }
351
352 /*
353 * Iterate over the relayd hash table and destroy each element. Finally,
354 * destroy the whole hash table.
355 */
356 static void cleanup_relayd_ht(void)
357 {
358 struct lttng_ht_iter iter;
359 struct consumer_relayd_sock_pair *relayd;
360
361 rcu_read_lock();
362
363 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
364 node.node) {
365 consumer_destroy_relayd(relayd);
366 }
367
368 rcu_read_unlock();
369
370 lttng_ht_destroy(consumer_data.relayd_ht);
371 }
372
373 /*
374 * Update the end point status of all streams having the given network sequence
375 * index (relayd index).
376 *
377 * It's atomically set without having the stream mutex locked which is fine
378 * because we handle the write/read race with a pipe wakeup for each thread.
379 */
380 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
381 enum consumer_endpoint_status status)
382 {
383 struct lttng_ht_iter iter;
384 struct lttng_consumer_stream *stream;
385
386 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
387
388 rcu_read_lock();
389
390 /* Let's begin with metadata */
391 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
392 if (stream->net_seq_idx == net_seq_idx) {
393 uatomic_set(&stream->endpoint_status, status);
394 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
395 }
396 }
397
398 /* Follow up by the data streams */
399 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
400 if (stream->net_seq_idx == net_seq_idx) {
401 uatomic_set(&stream->endpoint_status, status);
402 DBG("Delete flag set to data stream %d", stream->wait_fd);
403 }
404 }
405 rcu_read_unlock();
406 }
407
408 /*
409 * Cleanup a relayd object by flagging every associated streams for deletion,
410 * destroying the object meaning removing it from the relayd hash table,
411 * closing the sockets and freeing the memory in a RCU call.
412 *
413 * If a local data context is available, notify the threads that the streams'
414 * state have changed.
415 */
416 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
417 struct lttng_consumer_local_data *ctx)
418 {
419 uint64_t netidx;
420
421 assert(relayd);
422
423 DBG("Cleaning up relayd sockets");
424
425 /* Save the net sequence index before destroying the object */
426 netidx = relayd->net_seq_idx;
427
428 /*
429 * Delete the relayd from the relayd hash table, close the sockets and free
430 * the object in a RCU call.
431 */
432 consumer_destroy_relayd(relayd);
433
434 /* Set inactive endpoint to all streams */
435 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
436
437 /*
438 * With a local data context, notify the threads that the streams' state
439 * have changed. The write() action on the pipe acts as an "implicit"
440 * memory barrier ordering the updates of the end point status from the
441 * read of this status which happens AFTER receiving this notify.
442 */
443 if (ctx) {
444 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
445 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
446 }
447 }
448
449 /*
450 * Flag a relayd socket pair for destruction. Destroy it if the refcount
451 * reaches zero.
452 *
453 * RCU read side lock MUST be aquired before calling this function.
454 */
455 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
456 {
457 assert(relayd);
458
459 /* Set destroy flag for this object */
460 uatomic_set(&relayd->destroy_flag, 1);
461
462 /* Destroy the relayd if refcount is 0 */
463 if (uatomic_read(&relayd->refcount) == 0) {
464 consumer_destroy_relayd(relayd);
465 }
466 }
467
468 /*
469 * Completly destroy stream from every visiable data structure and the given
470 * hash table if one.
471 *
472 * One this call returns, the stream object is not longer usable nor visible.
473 */
474 void consumer_del_stream(struct lttng_consumer_stream *stream,
475 struct lttng_ht *ht)
476 {
477 consumer_stream_destroy(stream, ht);
478 }
479
480 /*
481 * XXX naming of del vs destroy is all mixed up.
482 */
483 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
484 {
485 consumer_stream_destroy(stream, data_ht);
486 }
487
488 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
489 {
490 consumer_stream_destroy(stream, metadata_ht);
491 }
492
493 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
494 uint64_t stream_key,
495 enum lttng_consumer_stream_state state,
496 const char *channel_name,
497 uid_t uid,
498 gid_t gid,
499 uint64_t relayd_id,
500 uint64_t session_id,
501 int cpu,
502 int *alloc_ret,
503 enum consumer_channel_type type,
504 unsigned int monitor)
505 {
506 int ret;
507 struct lttng_consumer_stream *stream;
508
509 stream = zmalloc(sizeof(*stream));
510 if (stream == NULL) {
511 PERROR("malloc struct lttng_consumer_stream");
512 ret = -ENOMEM;
513 goto end;
514 }
515
516 rcu_read_lock();
517
518 stream->key = stream_key;
519 stream->out_fd = -1;
520 stream->out_fd_offset = 0;
521 stream->output_written = 0;
522 stream->state = state;
523 stream->uid = uid;
524 stream->gid = gid;
525 stream->net_seq_idx = relayd_id;
526 stream->session_id = session_id;
527 stream->monitor = monitor;
528 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
529 stream->index_fd = -1;
530 pthread_mutex_init(&stream->lock, NULL);
531
532 /* If channel is the metadata, flag this stream as metadata. */
533 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
534 stream->metadata_flag = 1;
535 /* Metadata is flat out. */
536 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
537 /* Live rendez-vous point. */
538 pthread_cond_init(&stream->metadata_rdv, NULL);
539 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
540 } else {
541 /* Format stream name to <channel_name>_<cpu_number> */
542 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
543 channel_name, cpu);
544 if (ret < 0) {
545 PERROR("snprintf stream name");
546 goto error;
547 }
548 }
549
550 /* Key is always the wait_fd for streams. */
551 lttng_ht_node_init_u64(&stream->node, stream->key);
552
553 /* Init node per channel id key */
554 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
555
556 /* Init session id node with the stream session id */
557 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
558
559 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
560 " relayd_id %" PRIu64 ", session_id %" PRIu64,
561 stream->name, stream->key, channel_key,
562 stream->net_seq_idx, stream->session_id);
563
564 rcu_read_unlock();
565 return stream;
566
567 error:
568 rcu_read_unlock();
569 free(stream);
570 end:
571 if (alloc_ret) {
572 *alloc_ret = ret;
573 }
574 return NULL;
575 }
576
577 /*
578 * Add a stream to the global list protected by a mutex.
579 */
580 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
581 {
582 struct lttng_ht *ht = data_ht;
583 int ret = 0;
584
585 assert(stream);
586 assert(ht);
587
588 DBG3("Adding consumer stream %" PRIu64, stream->key);
589
590 pthread_mutex_lock(&consumer_data.lock);
591 pthread_mutex_lock(&stream->chan->lock);
592 pthread_mutex_lock(&stream->chan->timer_lock);
593 pthread_mutex_lock(&stream->lock);
594 rcu_read_lock();
595
596 /* Steal stream identifier to avoid having streams with the same key */
597 steal_stream_key(stream->key, ht);
598
599 lttng_ht_add_unique_u64(ht, &stream->node);
600
601 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
602 &stream->node_channel_id);
603
604 /*
605 * Add stream to the stream_list_ht of the consumer data. No need to steal
606 * the key since the HT does not use it and we allow to add redundant keys
607 * into this table.
608 */
609 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
610
611 /*
612 * When nb_init_stream_left reaches 0, we don't need to trigger any action
613 * in terms of destroying the associated channel, because the action that
614 * causes the count to become 0 also causes a stream to be added. The
615 * channel deletion will thus be triggered by the following removal of this
616 * stream.
617 */
618 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
619 /* Increment refcount before decrementing nb_init_stream_left */
620 cmm_smp_wmb();
621 uatomic_dec(&stream->chan->nb_init_stream_left);
622 }
623
624 /* Update consumer data once the node is inserted. */
625 consumer_data.stream_count++;
626 consumer_data.need_update = 1;
627
628 rcu_read_unlock();
629 pthread_mutex_unlock(&stream->lock);
630 pthread_mutex_unlock(&stream->chan->timer_lock);
631 pthread_mutex_unlock(&stream->chan->lock);
632 pthread_mutex_unlock(&consumer_data.lock);
633
634 return ret;
635 }
636
637 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
638 {
639 consumer_del_stream(stream, data_ht);
640 }
641
642 /*
643 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
644 * be acquired before calling this.
645 */
646 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
647 {
648 int ret = 0;
649 struct lttng_ht_node_u64 *node;
650 struct lttng_ht_iter iter;
651
652 assert(relayd);
653
654 lttng_ht_lookup(consumer_data.relayd_ht,
655 &relayd->net_seq_idx, &iter);
656 node = lttng_ht_iter_get_node_u64(&iter);
657 if (node != NULL) {
658 goto end;
659 }
660 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
661
662 end:
663 return ret;
664 }
665
666 /*
667 * Allocate and return a consumer relayd socket.
668 */
669 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
670 uint64_t net_seq_idx)
671 {
672 struct consumer_relayd_sock_pair *obj = NULL;
673
674 /* net sequence index of -1 is a failure */
675 if (net_seq_idx == (uint64_t) -1ULL) {
676 goto error;
677 }
678
679 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
680 if (obj == NULL) {
681 PERROR("zmalloc relayd sock");
682 goto error;
683 }
684
685 obj->net_seq_idx = net_seq_idx;
686 obj->refcount = 0;
687 obj->destroy_flag = 0;
688 obj->control_sock.sock.fd = -1;
689 obj->data_sock.sock.fd = -1;
690 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
691 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
692
693 error:
694 return obj;
695 }
696
697 /*
698 * Find a relayd socket pair in the global consumer data.
699 *
700 * Return the object if found else NULL.
701 * RCU read-side lock must be held across this call and while using the
702 * returned object.
703 */
704 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
705 {
706 struct lttng_ht_iter iter;
707 struct lttng_ht_node_u64 *node;
708 struct consumer_relayd_sock_pair *relayd = NULL;
709
710 /* Negative keys are lookup failures */
711 if (key == (uint64_t) -1ULL) {
712 goto error;
713 }
714
715 lttng_ht_lookup(consumer_data.relayd_ht, &key,
716 &iter);
717 node = lttng_ht_iter_get_node_u64(&iter);
718 if (node != NULL) {
719 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
720 }
721
722 error:
723 return relayd;
724 }
725
726 /*
727 * Find a relayd and send the stream
728 *
729 * Returns 0 on success, < 0 on error
730 */
731 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
732 char *path)
733 {
734 int ret = 0;
735 struct consumer_relayd_sock_pair *relayd;
736
737 assert(stream);
738 assert(stream->net_seq_idx != -1ULL);
739 assert(path);
740
741 /* The stream is not metadata. Get relayd reference if exists. */
742 rcu_read_lock();
743 relayd = consumer_find_relayd(stream->net_seq_idx);
744 if (relayd != NULL) {
745 /* Add stream on the relayd */
746 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
747 ret = relayd_add_stream(&relayd->control_sock, stream->name,
748 path, &stream->relayd_stream_id,
749 stream->chan->tracefile_size, stream->chan->tracefile_count);
750 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
751 if (ret < 0) {
752 goto end;
753 }
754
755 uatomic_inc(&relayd->refcount);
756 stream->sent_to_relayd = 1;
757 } else {
758 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
759 stream->key, stream->net_seq_idx);
760 ret = -1;
761 goto end;
762 }
763
764 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
765 stream->name, stream->key, stream->net_seq_idx);
766
767 end:
768 rcu_read_unlock();
769 return ret;
770 }
771
772 /*
773 * Find a relayd and send the streams sent message
774 *
775 * Returns 0 on success, < 0 on error
776 */
777 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
778 {
779 int ret = 0;
780 struct consumer_relayd_sock_pair *relayd;
781
782 assert(net_seq_idx != -1ULL);
783
784 /* The stream is not metadata. Get relayd reference if exists. */
785 rcu_read_lock();
786 relayd = consumer_find_relayd(net_seq_idx);
787 if (relayd != NULL) {
788 /* Add stream on the relayd */
789 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
790 ret = relayd_streams_sent(&relayd->control_sock);
791 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
792 if (ret < 0) {
793 goto end;
794 }
795 } else {
796 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
797 net_seq_idx);
798 ret = -1;
799 goto end;
800 }
801
802 ret = 0;
803 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
804
805 end:
806 rcu_read_unlock();
807 return ret;
808 }
809
810 /*
811 * Find a relayd and close the stream
812 */
813 void close_relayd_stream(struct lttng_consumer_stream *stream)
814 {
815 struct consumer_relayd_sock_pair *relayd;
816
817 /* The stream is not metadata. Get relayd reference if exists. */
818 rcu_read_lock();
819 relayd = consumer_find_relayd(stream->net_seq_idx);
820 if (relayd) {
821 consumer_stream_relayd_close(stream, relayd);
822 }
823 rcu_read_unlock();
824 }
825
826 /*
827 * Handle stream for relayd transmission if the stream applies for network
828 * streaming where the net sequence index is set.
829 *
830 * Return destination file descriptor or negative value on error.
831 */
832 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
833 size_t data_size, unsigned long padding,
834 struct consumer_relayd_sock_pair *relayd)
835 {
836 int outfd = -1, ret;
837 struct lttcomm_relayd_data_hdr data_hdr;
838
839 /* Safety net */
840 assert(stream);
841 assert(relayd);
842
843 /* Reset data header */
844 memset(&data_hdr, 0, sizeof(data_hdr));
845
846 if (stream->metadata_flag) {
847 /* Caller MUST acquire the relayd control socket lock */
848 ret = relayd_send_metadata(&relayd->control_sock, data_size);
849 if (ret < 0) {
850 goto error;
851 }
852
853 /* Metadata are always sent on the control socket. */
854 outfd = relayd->control_sock.sock.fd;
855 } else {
856 /* Set header with stream information */
857 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
858 data_hdr.data_size = htobe32(data_size);
859 data_hdr.padding_size = htobe32(padding);
860 /*
861 * Note that net_seq_num below is assigned with the *current* value of
862 * next_net_seq_num and only after that the next_net_seq_num will be
863 * increment. This is why when issuing a command on the relayd using
864 * this next value, 1 should always be substracted in order to compare
865 * the last seen sequence number on the relayd side to the last sent.
866 */
867 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
868 /* Other fields are zeroed previously */
869
870 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
871 sizeof(data_hdr));
872 if (ret < 0) {
873 goto error;
874 }
875
876 ++stream->next_net_seq_num;
877
878 /* Set to go on data socket */
879 outfd = relayd->data_sock.sock.fd;
880 }
881
882 error:
883 return outfd;
884 }
885
886 /*
887 * Allocate and return a new lttng_consumer_channel object using the given key
888 * to initialize the hash table node.
889 *
890 * On error, return NULL.
891 */
892 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
893 uint64_t session_id,
894 const char *pathname,
895 const char *name,
896 uid_t uid,
897 gid_t gid,
898 uint64_t relayd_id,
899 enum lttng_event_output output,
900 uint64_t tracefile_size,
901 uint64_t tracefile_count,
902 uint64_t session_id_per_pid,
903 unsigned int monitor,
904 unsigned int live_timer_interval)
905 {
906 struct lttng_consumer_channel *channel;
907
908 channel = zmalloc(sizeof(*channel));
909 if (channel == NULL) {
910 PERROR("malloc struct lttng_consumer_channel");
911 goto end;
912 }
913
914 channel->key = key;
915 channel->refcount = 0;
916 channel->session_id = session_id;
917 channel->session_id_per_pid = session_id_per_pid;
918 channel->uid = uid;
919 channel->gid = gid;
920 channel->relayd_id = relayd_id;
921 channel->tracefile_size = tracefile_size;
922 channel->tracefile_count = tracefile_count;
923 channel->monitor = monitor;
924 channel->live_timer_interval = live_timer_interval;
925 pthread_mutex_init(&channel->lock, NULL);
926 pthread_mutex_init(&channel->timer_lock, NULL);
927
928 switch (output) {
929 case LTTNG_EVENT_SPLICE:
930 channel->output = CONSUMER_CHANNEL_SPLICE;
931 break;
932 case LTTNG_EVENT_MMAP:
933 channel->output = CONSUMER_CHANNEL_MMAP;
934 break;
935 default:
936 assert(0);
937 free(channel);
938 channel = NULL;
939 goto end;
940 }
941
942 /*
943 * In monitor mode, the streams associated with the channel will be put in
944 * a special list ONLY owned by this channel. So, the refcount is set to 1
945 * here meaning that the channel itself has streams that are referenced.
946 *
947 * On a channel deletion, once the channel is no longer visible, the
948 * refcount is decremented and checked for a zero value to delete it. With
949 * streams in no monitor mode, it will now be safe to destroy the channel.
950 */
951 if (!channel->monitor) {
952 channel->refcount = 1;
953 }
954
955 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
956 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
957
958 strncpy(channel->name, name, sizeof(channel->name));
959 channel->name[sizeof(channel->name) - 1] = '\0';
960
961 lttng_ht_node_init_u64(&channel->node, channel->key);
962
963 channel->wait_fd = -1;
964
965 CDS_INIT_LIST_HEAD(&channel->streams.head);
966
967 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
968
969 end:
970 return channel;
971 }
972
973 /*
974 * Add a channel to the global list protected by a mutex.
975 *
976 * On success 0 is returned else a negative value.
977 */
978 int consumer_add_channel(struct lttng_consumer_channel *channel,
979 struct lttng_consumer_local_data *ctx)
980 {
981 int ret = 0;
982 struct lttng_ht_node_u64 *node;
983 struct lttng_ht_iter iter;
984
985 pthread_mutex_lock(&consumer_data.lock);
986 pthread_mutex_lock(&channel->lock);
987 pthread_mutex_lock(&channel->timer_lock);
988 rcu_read_lock();
989
990 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
991 node = lttng_ht_iter_get_node_u64(&iter);
992 if (node != NULL) {
993 /* Channel already exist. Ignore the insertion */
994 ERR("Consumer add channel key %" PRIu64 " already exists!",
995 channel->key);
996 ret = -EEXIST;
997 goto end;
998 }
999
1000 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1001
1002 end:
1003 rcu_read_unlock();
1004 pthread_mutex_unlock(&channel->timer_lock);
1005 pthread_mutex_unlock(&channel->lock);
1006 pthread_mutex_unlock(&consumer_data.lock);
1007
1008 if (!ret && channel->wait_fd != -1 &&
1009 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1010 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1011 }
1012 return ret;
1013 }
1014
1015 /*
1016 * Allocate the pollfd structure and the local view of the out fds to avoid
1017 * doing a lookup in the linked list and concurrency issues when writing is
1018 * needed. Called with consumer_data.lock held.
1019 *
1020 * Returns the number of fds in the structures.
1021 */
1022 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1023 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1024 struct lttng_ht *ht)
1025 {
1026 int i = 0;
1027 struct lttng_ht_iter iter;
1028 struct lttng_consumer_stream *stream;
1029
1030 assert(ctx);
1031 assert(ht);
1032 assert(pollfd);
1033 assert(local_stream);
1034
1035 DBG("Updating poll fd array");
1036 rcu_read_lock();
1037 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1038 /*
1039 * Only active streams with an active end point can be added to the
1040 * poll set and local stream storage of the thread.
1041 *
1042 * There is a potential race here for endpoint_status to be updated
1043 * just after the check. However, this is OK since the stream(s) will
1044 * be deleted once the thread is notified that the end point state has
1045 * changed where this function will be called back again.
1046 */
1047 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1048 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1049 continue;
1050 }
1051 /*
1052 * This clobbers way too much the debug output. Uncomment that if you
1053 * need it for debugging purposes.
1054 *
1055 * DBG("Active FD %d", stream->wait_fd);
1056 */
1057 (*pollfd)[i].fd = stream->wait_fd;
1058 (*pollfd)[i].events = POLLIN | POLLPRI;
1059 local_stream[i] = stream;
1060 i++;
1061 }
1062 rcu_read_unlock();
1063
1064 /*
1065 * Insert the consumer_data_pipe at the end of the array and don't
1066 * increment i so nb_fd is the number of real FD.
1067 */
1068 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1069 (*pollfd)[i].events = POLLIN | POLLPRI;
1070 return i;
1071 }
1072
1073 /*
1074 * Poll on the should_quit pipe and the command socket return -1 on error and
1075 * should exit, 0 if data is available on the command socket
1076 */
1077 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1078 {
1079 int num_rdy;
1080
1081 restart:
1082 num_rdy = poll(consumer_sockpoll, 2, -1);
1083 if (num_rdy == -1) {
1084 /*
1085 * Restart interrupted system call.
1086 */
1087 if (errno == EINTR) {
1088 goto restart;
1089 }
1090 PERROR("Poll error");
1091 goto exit;
1092 }
1093 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1094 DBG("consumer_should_quit wake up");
1095 goto exit;
1096 }
1097 return 0;
1098
1099 exit:
1100 return -1;
1101 }
1102
1103 /*
1104 * Set the error socket.
1105 */
1106 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1107 int sock)
1108 {
1109 ctx->consumer_error_socket = sock;
1110 }
1111
1112 /*
1113 * Set the command socket path.
1114 */
1115 void lttng_consumer_set_command_sock_path(
1116 struct lttng_consumer_local_data *ctx, char *sock)
1117 {
1118 ctx->consumer_command_sock_path = sock;
1119 }
1120
1121 /*
1122 * Send return code to the session daemon.
1123 * If the socket is not defined, we return 0, it is not a fatal error
1124 */
1125 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1126 {
1127 if (ctx->consumer_error_socket > 0) {
1128 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1129 sizeof(enum lttcomm_sessiond_command));
1130 }
1131
1132 return 0;
1133 }
1134
1135 /*
1136 * Close all the tracefiles and stream fds and MUST be called when all
1137 * instances are destroyed i.e. when all threads were joined and are ended.
1138 */
1139 void lttng_consumer_cleanup(void)
1140 {
1141 struct lttng_ht_iter iter;
1142 struct lttng_consumer_channel *channel;
1143
1144 rcu_read_lock();
1145
1146 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1147 node.node) {
1148 consumer_del_channel(channel);
1149 }
1150
1151 rcu_read_unlock();
1152
1153 lttng_ht_destroy(consumer_data.channel_ht);
1154
1155 cleanup_relayd_ht();
1156
1157 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1158
1159 /*
1160 * This HT contains streams that are freed by either the metadata thread or
1161 * the data thread so we do *nothing* on the hash table and simply destroy
1162 * it.
1163 */
1164 lttng_ht_destroy(consumer_data.stream_list_ht);
1165 }
1166
1167 /*
1168 * Called from signal handler.
1169 */
1170 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1171 {
1172 ssize_t ret;
1173
1174 consumer_quit = 1;
1175 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1176 if (ret < 1) {
1177 PERROR("write consumer quit");
1178 }
1179
1180 DBG("Consumer flag that it should quit");
1181 }
1182
1183 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1184 off_t orig_offset)
1185 {
1186 int outfd = stream->out_fd;
1187
1188 /*
1189 * This does a blocking write-and-wait on any page that belongs to the
1190 * subbuffer prior to the one we just wrote.
1191 * Don't care about error values, as these are just hints and ways to
1192 * limit the amount of page cache used.
1193 */
1194 if (orig_offset < stream->max_sb_size) {
1195 return;
1196 }
1197 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1198 stream->max_sb_size,
1199 SYNC_FILE_RANGE_WAIT_BEFORE
1200 | SYNC_FILE_RANGE_WRITE
1201 | SYNC_FILE_RANGE_WAIT_AFTER);
1202 /*
1203 * Give hints to the kernel about how we access the file:
1204 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1205 * we write it.
1206 *
1207 * We need to call fadvise again after the file grows because the
1208 * kernel does not seem to apply fadvise to non-existing parts of the
1209 * file.
1210 *
1211 * Call fadvise _after_ having waited for the page writeback to
1212 * complete because the dirty page writeback semantic is not well
1213 * defined. So it can be expected to lead to lower throughput in
1214 * streaming.
1215 */
1216 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1217 stream->max_sb_size, POSIX_FADV_DONTNEED);
1218 }
1219
1220 /*
1221 * Initialise the necessary environnement :
1222 * - create a new context
1223 * - create the poll_pipe
1224 * - create the should_quit pipe (for signal handler)
1225 * - create the thread pipe (for splice)
1226 *
1227 * Takes a function pointer as argument, this function is called when data is
1228 * available on a buffer. This function is responsible to do the
1229 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1230 * buffer configuration and then kernctl_put_next_subbuf at the end.
1231 *
1232 * Returns a pointer to the new context or NULL on error.
1233 */
1234 struct lttng_consumer_local_data *lttng_consumer_create(
1235 enum lttng_consumer_type type,
1236 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1237 struct lttng_consumer_local_data *ctx),
1238 int (*recv_channel)(struct lttng_consumer_channel *channel),
1239 int (*recv_stream)(struct lttng_consumer_stream *stream),
1240 int (*update_stream)(uint64_t stream_key, uint32_t state))
1241 {
1242 int ret;
1243 struct lttng_consumer_local_data *ctx;
1244
1245 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1246 consumer_data.type == type);
1247 consumer_data.type = type;
1248
1249 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1250 if (ctx == NULL) {
1251 PERROR("allocating context");
1252 goto error;
1253 }
1254
1255 ctx->consumer_error_socket = -1;
1256 ctx->consumer_metadata_socket = -1;
1257 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1258 /* assign the callbacks */
1259 ctx->on_buffer_ready = buffer_ready;
1260 ctx->on_recv_channel = recv_channel;
1261 ctx->on_recv_stream = recv_stream;
1262 ctx->on_update_stream = update_stream;
1263
1264 ctx->consumer_data_pipe = lttng_pipe_open(0);
1265 if (!ctx->consumer_data_pipe) {
1266 goto error_poll_pipe;
1267 }
1268
1269 ret = pipe(ctx->consumer_should_quit);
1270 if (ret < 0) {
1271 PERROR("Error creating recv pipe");
1272 goto error_quit_pipe;
1273 }
1274
1275 ret = pipe(ctx->consumer_thread_pipe);
1276 if (ret < 0) {
1277 PERROR("Error creating thread pipe");
1278 goto error_thread_pipe;
1279 }
1280
1281 ret = pipe(ctx->consumer_channel_pipe);
1282 if (ret < 0) {
1283 PERROR("Error creating channel pipe");
1284 goto error_channel_pipe;
1285 }
1286
1287 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1288 if (!ctx->consumer_metadata_pipe) {
1289 goto error_metadata_pipe;
1290 }
1291
1292 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1293 if (ret < 0) {
1294 goto error_splice_pipe;
1295 }
1296
1297 return ctx;
1298
1299 error_splice_pipe:
1300 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1301 error_metadata_pipe:
1302 utils_close_pipe(ctx->consumer_channel_pipe);
1303 error_channel_pipe:
1304 utils_close_pipe(ctx->consumer_thread_pipe);
1305 error_thread_pipe:
1306 utils_close_pipe(ctx->consumer_should_quit);
1307 error_quit_pipe:
1308 lttng_pipe_destroy(ctx->consumer_data_pipe);
1309 error_poll_pipe:
1310 free(ctx);
1311 error:
1312 return NULL;
1313 }
1314
1315 /*
1316 * Iterate over all streams of the hashtable and free them properly.
1317 */
1318 static void destroy_data_stream_ht(struct lttng_ht *ht)
1319 {
1320 struct lttng_ht_iter iter;
1321 struct lttng_consumer_stream *stream;
1322
1323 if (ht == NULL) {
1324 return;
1325 }
1326
1327 rcu_read_lock();
1328 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1329 /*
1330 * Ignore return value since we are currently cleaning up so any error
1331 * can't be handled.
1332 */
1333 (void) consumer_del_stream(stream, ht);
1334 }
1335 rcu_read_unlock();
1336
1337 lttng_ht_destroy(ht);
1338 }
1339
1340 /*
1341 * Iterate over all streams of the metadata hashtable and free them
1342 * properly.
1343 */
1344 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1345 {
1346 struct lttng_ht_iter iter;
1347 struct lttng_consumer_stream *stream;
1348
1349 if (ht == NULL) {
1350 return;
1351 }
1352
1353 rcu_read_lock();
1354 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1355 /*
1356 * Ignore return value since we are currently cleaning up so any error
1357 * can't be handled.
1358 */
1359 (void) consumer_del_metadata_stream(stream, ht);
1360 }
1361 rcu_read_unlock();
1362
1363 lttng_ht_destroy(ht);
1364 }
1365
1366 /*
1367 * Close all fds associated with the instance and free the context.
1368 */
1369 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1370 {
1371 int ret;
1372
1373 DBG("Consumer destroying it. Closing everything.");
1374
1375 destroy_data_stream_ht(data_ht);
1376 destroy_metadata_stream_ht(metadata_ht);
1377
1378 ret = close(ctx->consumer_error_socket);
1379 if (ret) {
1380 PERROR("close");
1381 }
1382 ret = close(ctx->consumer_metadata_socket);
1383 if (ret) {
1384 PERROR("close");
1385 }
1386 utils_close_pipe(ctx->consumer_thread_pipe);
1387 utils_close_pipe(ctx->consumer_channel_pipe);
1388 lttng_pipe_destroy(ctx->consumer_data_pipe);
1389 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1390 utils_close_pipe(ctx->consumer_should_quit);
1391 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1392
1393 unlink(ctx->consumer_command_sock_path);
1394 free(ctx);
1395 }
1396
1397 /*
1398 * Write the metadata stream id on the specified file descriptor.
1399 */
1400 static int write_relayd_metadata_id(int fd,
1401 struct lttng_consumer_stream *stream,
1402 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1403 {
1404 ssize_t ret;
1405 struct lttcomm_relayd_metadata_payload hdr;
1406
1407 hdr.stream_id = htobe64(stream->relayd_stream_id);
1408 hdr.padding_size = htobe32(padding);
1409 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1410 if (ret < sizeof(hdr)) {
1411 /*
1412 * This error means that the fd's end is closed so ignore the perror
1413 * not to clubber the error output since this can happen in a normal
1414 * code path.
1415 */
1416 if (errno != EPIPE) {
1417 PERROR("write metadata stream id");
1418 }
1419 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1420 /*
1421 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1422 * handle writting the missing part so report that as an error and
1423 * don't lie to the caller.
1424 */
1425 ret = -1;
1426 goto end;
1427 }
1428 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1429 stream->relayd_stream_id, padding);
1430
1431 end:
1432 return (int) ret;
1433 }
1434
1435 /*
1436 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1437 * core function for writing trace buffers to either the local filesystem or
1438 * the network.
1439 *
1440 * It must be called with the stream lock held.
1441 *
1442 * Careful review MUST be put if any changes occur!
1443 *
1444 * Returns the number of bytes written
1445 */
1446 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1447 struct lttng_consumer_local_data *ctx,
1448 struct lttng_consumer_stream *stream, unsigned long len,
1449 unsigned long padding,
1450 struct ctf_packet_index *index)
1451 {
1452 unsigned long mmap_offset;
1453 void *mmap_base;
1454 ssize_t ret = 0, written = 0;
1455 off_t orig_offset = stream->out_fd_offset;
1456 /* Default is on the disk */
1457 int outfd = stream->out_fd;
1458 struct consumer_relayd_sock_pair *relayd = NULL;
1459 unsigned int relayd_hang_up = 0;
1460
1461 /* RCU lock for the relayd pointer */
1462 rcu_read_lock();
1463
1464 /* Flag that the current stream if set for network streaming. */
1465 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1466 relayd = consumer_find_relayd(stream->net_seq_idx);
1467 if (relayd == NULL) {
1468 ret = -EPIPE;
1469 goto end;
1470 }
1471 }
1472
1473 /* get the offset inside the fd to mmap */
1474 switch (consumer_data.type) {
1475 case LTTNG_CONSUMER_KERNEL:
1476 mmap_base = stream->mmap_base;
1477 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1478 if (ret != 0) {
1479 PERROR("tracer ctl get_mmap_read_offset");
1480 written = -errno;
1481 goto end;
1482 }
1483 break;
1484 case LTTNG_CONSUMER32_UST:
1485 case LTTNG_CONSUMER64_UST:
1486 mmap_base = lttng_ustctl_get_mmap_base(stream);
1487 if (!mmap_base) {
1488 ERR("read mmap get mmap base for stream %s", stream->name);
1489 written = -EPERM;
1490 goto end;
1491 }
1492 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1493 if (ret != 0) {
1494 PERROR("tracer ctl get_mmap_read_offset");
1495 written = ret;
1496 goto end;
1497 }
1498 break;
1499 default:
1500 ERR("Unknown consumer_data type");
1501 assert(0);
1502 }
1503
1504 /* Handle stream on the relayd if the output is on the network */
1505 if (relayd) {
1506 unsigned long netlen = len;
1507
1508 /*
1509 * Lock the control socket for the complete duration of the function
1510 * since from this point on we will use the socket.
1511 */
1512 if (stream->metadata_flag) {
1513 /* Metadata requires the control socket. */
1514 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1515 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1516 }
1517
1518 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1519 if (ret >= 0) {
1520 /* Use the returned socket. */
1521 outfd = ret;
1522
1523 /* Write metadata stream id before payload */
1524 if (stream->metadata_flag) {
1525 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1526 if (ret < 0) {
1527 written = ret;
1528 /* Socket operation failed. We consider the relayd dead */
1529 if (ret == -EPIPE || ret == -EINVAL) {
1530 relayd_hang_up = 1;
1531 goto write_error;
1532 }
1533 goto end;
1534 }
1535 }
1536 } else {
1537 /* Socket operation failed. We consider the relayd dead */
1538 if (ret == -EPIPE || ret == -EINVAL) {
1539 relayd_hang_up = 1;
1540 goto write_error;
1541 }
1542 /* Else, use the default set before which is the filesystem. */
1543 }
1544 } else {
1545 /* No streaming, we have to set the len with the full padding */
1546 len += padding;
1547
1548 /*
1549 * Check if we need to change the tracefile before writing the packet.
1550 */
1551 if (stream->chan->tracefile_size > 0 &&
1552 (stream->tracefile_size_current + len) >
1553 stream->chan->tracefile_size) {
1554 ret = utils_rotate_stream_file(stream->chan->pathname,
1555 stream->name, stream->chan->tracefile_size,
1556 stream->chan->tracefile_count, stream->uid, stream->gid,
1557 stream->out_fd, &(stream->tracefile_count_current),
1558 &stream->out_fd);
1559 if (ret < 0) {
1560 ERR("Rotating output file");
1561 goto end;
1562 }
1563 outfd = stream->out_fd;
1564
1565 if (stream->index_fd >= 0) {
1566 ret = index_create_file(stream->chan->pathname,
1567 stream->name, stream->uid, stream->gid,
1568 stream->chan->tracefile_size,
1569 stream->tracefile_count_current);
1570 if (ret < 0) {
1571 goto end;
1572 }
1573 stream->index_fd = ret;
1574 }
1575
1576 /* Reset current size because we just perform a rotation. */
1577 stream->tracefile_size_current = 0;
1578 stream->out_fd_offset = 0;
1579 orig_offset = 0;
1580 }
1581 stream->tracefile_size_current += len;
1582 if (index) {
1583 index->offset = htobe64(stream->out_fd_offset);
1584 }
1585 }
1586
1587 while (len > 0) {
1588 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1589 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1590 if (ret < len) {
1591 /*
1592 * This is possible if the fd is closed on the other side (outfd)
1593 * or any write problem. It can be verbose a bit for a normal
1594 * execution if for instance the relayd is stopped abruptly. This
1595 * can happen so set this to a DBG statement.
1596 */
1597 DBG("Error in file write mmap");
1598 if (written == 0) {
1599 written = -errno;
1600 }
1601 /* Socket operation failed. We consider the relayd dead */
1602 if (errno == EPIPE || errno == EINVAL) {
1603 relayd_hang_up = 1;
1604 goto write_error;
1605 }
1606 goto end;
1607 } else if (ret > len) {
1608 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1609 written += ret;
1610 goto end;
1611 } else {
1612 len -= ret;
1613 mmap_offset += ret;
1614 }
1615
1616 /* This call is useless on a socket so better save a syscall. */
1617 if (!relayd) {
1618 /* This won't block, but will start writeout asynchronously */
1619 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1620 SYNC_FILE_RANGE_WRITE);
1621 stream->out_fd_offset += ret;
1622 }
1623 stream->output_written += ret;
1624 written += ret;
1625 }
1626 lttng_consumer_sync_trace_file(stream, orig_offset);
1627
1628 write_error:
1629 /*
1630 * This is a special case that the relayd has closed its socket. Let's
1631 * cleanup the relayd object and all associated streams.
1632 */
1633 if (relayd && relayd_hang_up) {
1634 cleanup_relayd(relayd, ctx);
1635 }
1636
1637 end:
1638 /* Unlock only if ctrl socket used */
1639 if (relayd && stream->metadata_flag) {
1640 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1641 }
1642
1643 rcu_read_unlock();
1644 return written;
1645 }
1646
1647 /*
1648 * Splice the data from the ring buffer to the tracefile.
1649 *
1650 * It must be called with the stream lock held.
1651 *
1652 * Returns the number of bytes spliced.
1653 */
1654 ssize_t lttng_consumer_on_read_subbuffer_splice(
1655 struct lttng_consumer_local_data *ctx,
1656 struct lttng_consumer_stream *stream, unsigned long len,
1657 unsigned long padding,
1658 struct ctf_packet_index *index)
1659 {
1660 ssize_t ret = 0, written = 0, ret_splice = 0;
1661 loff_t offset = 0;
1662 off_t orig_offset = stream->out_fd_offset;
1663 int fd = stream->wait_fd;
1664 /* Default is on the disk */
1665 int outfd = stream->out_fd;
1666 struct consumer_relayd_sock_pair *relayd = NULL;
1667 int *splice_pipe;
1668 unsigned int relayd_hang_up = 0;
1669
1670 switch (consumer_data.type) {
1671 case LTTNG_CONSUMER_KERNEL:
1672 break;
1673 case LTTNG_CONSUMER32_UST:
1674 case LTTNG_CONSUMER64_UST:
1675 /* Not supported for user space tracing */
1676 return -ENOSYS;
1677 default:
1678 ERR("Unknown consumer_data type");
1679 assert(0);
1680 }
1681
1682 /* RCU lock for the relayd pointer */
1683 rcu_read_lock();
1684
1685 /* Flag that the current stream if set for network streaming. */
1686 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1687 relayd = consumer_find_relayd(stream->net_seq_idx);
1688 if (relayd == NULL) {
1689 ret = -EPIPE;
1690 goto end;
1691 }
1692 }
1693
1694 /*
1695 * Choose right pipe for splice. Metadata and trace data are handled by
1696 * different threads hence the use of two pipes in order not to race or
1697 * corrupt the written data.
1698 */
1699 if (stream->metadata_flag) {
1700 splice_pipe = ctx->consumer_splice_metadata_pipe;
1701 } else {
1702 splice_pipe = ctx->consumer_thread_pipe;
1703 }
1704
1705 /* Write metadata stream id before payload */
1706 if (relayd) {
1707 int total_len = len;
1708
1709 if (stream->metadata_flag) {
1710 /*
1711 * Lock the control socket for the complete duration of the function
1712 * since from this point on we will use the socket.
1713 */
1714 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1715
1716 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1717 padding);
1718 if (ret < 0) {
1719 written = ret;
1720 /* Socket operation failed. We consider the relayd dead */
1721 if (ret == -EBADF) {
1722 WARN("Remote relayd disconnected. Stopping");
1723 relayd_hang_up = 1;
1724 goto write_error;
1725 }
1726 goto end;
1727 }
1728
1729 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1730 }
1731
1732 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1733 if (ret >= 0) {
1734 /* Use the returned socket. */
1735 outfd = ret;
1736 } else {
1737 /* Socket operation failed. We consider the relayd dead */
1738 if (ret == -EBADF) {
1739 WARN("Remote relayd disconnected. Stopping");
1740 relayd_hang_up = 1;
1741 goto write_error;
1742 }
1743 goto end;
1744 }
1745 } else {
1746 /* No streaming, we have to set the len with the full padding */
1747 len += padding;
1748
1749 /*
1750 * Check if we need to change the tracefile before writing the packet.
1751 */
1752 if (stream->chan->tracefile_size > 0 &&
1753 (stream->tracefile_size_current + len) >
1754 stream->chan->tracefile_size) {
1755 ret = utils_rotate_stream_file(stream->chan->pathname,
1756 stream->name, stream->chan->tracefile_size,
1757 stream->chan->tracefile_count, stream->uid, stream->gid,
1758 stream->out_fd, &(stream->tracefile_count_current),
1759 &stream->out_fd);
1760 if (ret < 0) {
1761 ERR("Rotating output file");
1762 goto end;
1763 }
1764 outfd = stream->out_fd;
1765
1766 if (stream->index_fd >= 0) {
1767 ret = index_create_file(stream->chan->pathname,
1768 stream->name, stream->uid, stream->gid,
1769 stream->chan->tracefile_size,
1770 stream->tracefile_count_current);
1771 if (ret < 0) {
1772 goto end;
1773 }
1774 stream->index_fd = ret;
1775 }
1776
1777 /* Reset current size because we just perform a rotation. */
1778 stream->tracefile_size_current = 0;
1779 stream->out_fd_offset = 0;
1780 orig_offset = 0;
1781 }
1782 stream->tracefile_size_current += len;
1783 index->offset = htobe64(stream->out_fd_offset);
1784 }
1785
1786 while (len > 0) {
1787 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1788 (unsigned long)offset, len, fd, splice_pipe[1]);
1789 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1790 SPLICE_F_MOVE | SPLICE_F_MORE);
1791 DBG("splice chan to pipe, ret %zd", ret_splice);
1792 if (ret_splice < 0) {
1793 PERROR("Error in relay splice");
1794 if (written == 0) {
1795 written = ret_splice;
1796 }
1797 ret = errno;
1798 goto splice_error;
1799 }
1800
1801 /* Handle stream on the relayd if the output is on the network */
1802 if (relayd) {
1803 if (stream->metadata_flag) {
1804 size_t metadata_payload_size =
1805 sizeof(struct lttcomm_relayd_metadata_payload);
1806
1807 /* Update counter to fit the spliced data */
1808 ret_splice += metadata_payload_size;
1809 len += metadata_payload_size;
1810 /*
1811 * We do this so the return value can match the len passed as
1812 * argument to this function.
1813 */
1814 written -= metadata_payload_size;
1815 }
1816 }
1817
1818 /* Splice data out */
1819 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1820 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1821 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1822 if (ret_splice < 0) {
1823 PERROR("Error in file splice");
1824 if (written == 0) {
1825 written = ret_splice;
1826 }
1827 /* Socket operation failed. We consider the relayd dead */
1828 if (errno == EBADF || errno == EPIPE) {
1829 WARN("Remote relayd disconnected. Stopping");
1830 relayd_hang_up = 1;
1831 goto write_error;
1832 }
1833 ret = errno;
1834 goto splice_error;
1835 } else if (ret_splice > len) {
1836 errno = EINVAL;
1837 PERROR("Wrote more data than requested %zd (len: %lu)",
1838 ret_splice, len);
1839 written += ret_splice;
1840 ret = errno;
1841 goto splice_error;
1842 }
1843 len -= ret_splice;
1844
1845 /* This call is useless on a socket so better save a syscall. */
1846 if (!relayd) {
1847 /* This won't block, but will start writeout asynchronously */
1848 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1849 SYNC_FILE_RANGE_WRITE);
1850 stream->out_fd_offset += ret_splice;
1851 }
1852 stream->output_written += ret_splice;
1853 written += ret_splice;
1854 }
1855 lttng_consumer_sync_trace_file(stream, orig_offset);
1856
1857 ret = ret_splice;
1858
1859 goto end;
1860
1861 write_error:
1862 /*
1863 * This is a special case that the relayd has closed its socket. Let's
1864 * cleanup the relayd object and all associated streams.
1865 */
1866 if (relayd && relayd_hang_up) {
1867 cleanup_relayd(relayd, ctx);
1868 /* Skip splice error so the consumer does not fail */
1869 goto end;
1870 }
1871
1872 splice_error:
1873 /* send the appropriate error description to sessiond */
1874 switch (ret) {
1875 case EINVAL:
1876 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1877 break;
1878 case ENOMEM:
1879 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1880 break;
1881 case ESPIPE:
1882 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1883 break;
1884 }
1885
1886 end:
1887 if (relayd && stream->metadata_flag) {
1888 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1889 }
1890
1891 rcu_read_unlock();
1892 return written;
1893 }
1894
1895 /*
1896 * Take a snapshot for a specific fd
1897 *
1898 * Returns 0 on success, < 0 on error
1899 */
1900 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1901 {
1902 switch (consumer_data.type) {
1903 case LTTNG_CONSUMER_KERNEL:
1904 return lttng_kconsumer_take_snapshot(stream);
1905 case LTTNG_CONSUMER32_UST:
1906 case LTTNG_CONSUMER64_UST:
1907 return lttng_ustconsumer_take_snapshot(stream);
1908 default:
1909 ERR("Unknown consumer_data type");
1910 assert(0);
1911 return -ENOSYS;
1912 }
1913 }
1914
1915 /*
1916 * Get the produced position
1917 *
1918 * Returns 0 on success, < 0 on error
1919 */
1920 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1921 unsigned long *pos)
1922 {
1923 switch (consumer_data.type) {
1924 case LTTNG_CONSUMER_KERNEL:
1925 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1926 case LTTNG_CONSUMER32_UST:
1927 case LTTNG_CONSUMER64_UST:
1928 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1929 default:
1930 ERR("Unknown consumer_data type");
1931 assert(0);
1932 return -ENOSYS;
1933 }
1934 }
1935
1936 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1937 int sock, struct pollfd *consumer_sockpoll)
1938 {
1939 switch (consumer_data.type) {
1940 case LTTNG_CONSUMER_KERNEL:
1941 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1942 case LTTNG_CONSUMER32_UST:
1943 case LTTNG_CONSUMER64_UST:
1944 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1945 default:
1946 ERR("Unknown consumer_data type");
1947 assert(0);
1948 return -ENOSYS;
1949 }
1950 }
1951
1952 void lttng_consumer_close_metadata(void)
1953 {
1954 switch (consumer_data.type) {
1955 case LTTNG_CONSUMER_KERNEL:
1956 /*
1957 * The Kernel consumer has a different metadata scheme so we don't
1958 * close anything because the stream will be closed by the session
1959 * daemon.
1960 */
1961 break;
1962 case LTTNG_CONSUMER32_UST:
1963 case LTTNG_CONSUMER64_UST:
1964 /*
1965 * Close all metadata streams. The metadata hash table is passed and
1966 * this call iterates over it by closing all wakeup fd. This is safe
1967 * because at this point we are sure that the metadata producer is
1968 * either dead or blocked.
1969 */
1970 lttng_ustconsumer_close_metadata(metadata_ht);
1971 break;
1972 default:
1973 ERR("Unknown consumer_data type");
1974 assert(0);
1975 }
1976 }
1977
1978 /*
1979 * Clean up a metadata stream and free its memory.
1980 */
1981 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1982 struct lttng_ht *ht)
1983 {
1984 int ret;
1985 struct lttng_ht_iter iter;
1986 struct lttng_consumer_channel *free_chan = NULL;
1987 struct consumer_relayd_sock_pair *relayd;
1988
1989 assert(stream);
1990 /*
1991 * This call should NEVER receive regular stream. It must always be
1992 * metadata stream and this is crucial for data structure synchronization.
1993 */
1994 assert(stream->metadata_flag);
1995
1996 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1997
1998 if (ht == NULL) {
1999 /* Means the stream was allocated but not successfully added */
2000 goto free_stream_rcu;
2001 }
2002
2003 pthread_mutex_lock(&consumer_data.lock);
2004 pthread_mutex_lock(&stream->chan->lock);
2005 pthread_mutex_lock(&stream->lock);
2006
2007 switch (consumer_data.type) {
2008 case LTTNG_CONSUMER_KERNEL:
2009 if (stream->mmap_base != NULL) {
2010 ret = munmap(stream->mmap_base, stream->mmap_len);
2011 if (ret != 0) {
2012 PERROR("munmap metadata stream");
2013 }
2014 }
2015 if (stream->wait_fd >= 0) {
2016 ret = close(stream->wait_fd);
2017 if (ret < 0) {
2018 PERROR("close kernel metadata wait_fd");
2019 }
2020 }
2021 break;
2022 case LTTNG_CONSUMER32_UST:
2023 case LTTNG_CONSUMER64_UST:
2024 if (stream->monitor) {
2025 /* close the write-side in close_metadata */
2026 ret = close(stream->ust_metadata_poll_pipe[0]);
2027 if (ret < 0) {
2028 PERROR("Close UST metadata read-side poll pipe");
2029 }
2030 }
2031 lttng_ustconsumer_del_stream(stream);
2032 break;
2033 default:
2034 ERR("Unknown consumer_data type");
2035 assert(0);
2036 goto end;
2037 }
2038
2039 rcu_read_lock();
2040 iter.iter.node = &stream->node.node;
2041 ret = lttng_ht_del(ht, &iter);
2042 assert(!ret);
2043
2044 iter.iter.node = &stream->node_channel_id.node;
2045 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
2046 assert(!ret);
2047
2048 iter.iter.node = &stream->node_session_id.node;
2049 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
2050 assert(!ret);
2051 rcu_read_unlock();
2052
2053 if (stream->out_fd >= 0) {
2054 ret = close(stream->out_fd);
2055 if (ret) {
2056 PERROR("close");
2057 }
2058 }
2059
2060 /* Check and cleanup relayd */
2061 rcu_read_lock();
2062 relayd = consumer_find_relayd(stream->net_seq_idx);
2063 if (relayd != NULL) {
2064 uatomic_dec(&relayd->refcount);
2065 assert(uatomic_read(&relayd->refcount) >= 0);
2066
2067 /* Closing streams requires to lock the control socket. */
2068 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2069 ret = relayd_send_close_stream(&relayd->control_sock,
2070 stream->relayd_stream_id, stream->next_net_seq_num - 1);
2071 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2072 if (ret < 0) {
2073 DBG("Unable to close stream on the relayd. Continuing");
2074 /*
2075 * Continue here. There is nothing we can do for the relayd.
2076 * Chances are that the relayd has closed the socket so we just
2077 * continue cleaning up.
2078 */
2079 }
2080
2081 /* Both conditions are met, we destroy the relayd. */
2082 if (uatomic_read(&relayd->refcount) == 0 &&
2083 uatomic_read(&relayd->destroy_flag)) {
2084 consumer_destroy_relayd(relayd);
2085 }
2086 }
2087 rcu_read_unlock();
2088
2089 /* Atomically decrement channel refcount since other threads can use it. */
2090 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2091 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2092 /* Go for channel deletion! */
2093 free_chan = stream->chan;
2094 }
2095
2096 end:
2097 /*
2098 * Nullify the stream reference so it is not used after deletion. The
2099 * channel lock MUST be acquired before being able to check for
2100 * a NULL pointer value.
2101 */
2102 stream->chan->metadata_stream = NULL;
2103
2104 pthread_mutex_unlock(&stream->lock);
2105 pthread_mutex_unlock(&stream->chan->lock);
2106 pthread_mutex_unlock(&consumer_data.lock);
2107
2108 if (free_chan) {
2109 consumer_del_channel(free_chan);
2110 }
2111
2112 free_stream_rcu:
2113 call_rcu(&stream->node.head, free_stream_rcu);
2114 }
2115
2116 /*
2117 * Action done with the metadata stream when adding it to the consumer internal
2118 * data structures to handle it.
2119 */
2120 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2121 {
2122 struct lttng_ht *ht = metadata_ht;
2123 int ret = 0;
2124 struct lttng_ht_iter iter;
2125 struct lttng_ht_node_u64 *node;
2126
2127 assert(stream);
2128 assert(ht);
2129
2130 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2131
2132 pthread_mutex_lock(&consumer_data.lock);
2133 pthread_mutex_lock(&stream->chan->lock);
2134 pthread_mutex_lock(&stream->chan->timer_lock);
2135 pthread_mutex_lock(&stream->lock);
2136
2137 /*
2138 * From here, refcounts are updated so be _careful_ when returning an error
2139 * after this point.
2140 */
2141
2142 rcu_read_lock();
2143
2144 /*
2145 * Lookup the stream just to make sure it does not exist in our internal
2146 * state. This should NEVER happen.
2147 */
2148 lttng_ht_lookup(ht, &stream->key, &iter);
2149 node = lttng_ht_iter_get_node_u64(&iter);
2150 assert(!node);
2151
2152 /*
2153 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2154 * in terms of destroying the associated channel, because the action that
2155 * causes the count to become 0 also causes a stream to be added. The
2156 * channel deletion will thus be triggered by the following removal of this
2157 * stream.
2158 */
2159 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2160 /* Increment refcount before decrementing nb_init_stream_left */
2161 cmm_smp_wmb();
2162 uatomic_dec(&stream->chan->nb_init_stream_left);
2163 }
2164
2165 lttng_ht_add_unique_u64(ht, &stream->node);
2166
2167 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2168 &stream->node_channel_id);
2169
2170 /*
2171 * Add stream to the stream_list_ht of the consumer data. No need to steal
2172 * the key since the HT does not use it and we allow to add redundant keys
2173 * into this table.
2174 */
2175 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2176
2177 rcu_read_unlock();
2178
2179 pthread_mutex_unlock(&stream->lock);
2180 pthread_mutex_unlock(&stream->chan->lock);
2181 pthread_mutex_unlock(&stream->chan->timer_lock);
2182 pthread_mutex_unlock(&consumer_data.lock);
2183 return ret;
2184 }
2185
2186 /*
2187 * Delete data stream that are flagged for deletion (endpoint_status).
2188 */
2189 static void validate_endpoint_status_data_stream(void)
2190 {
2191 struct lttng_ht_iter iter;
2192 struct lttng_consumer_stream *stream;
2193
2194 DBG("Consumer delete flagged data stream");
2195
2196 rcu_read_lock();
2197 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2198 /* Validate delete flag of the stream */
2199 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2200 continue;
2201 }
2202 /* Delete it right now */
2203 consumer_del_stream(stream, data_ht);
2204 }
2205 rcu_read_unlock();
2206 }
2207
2208 /*
2209 * Delete metadata stream that are flagged for deletion (endpoint_status).
2210 */
2211 static void validate_endpoint_status_metadata_stream(
2212 struct lttng_poll_event *pollset)
2213 {
2214 struct lttng_ht_iter iter;
2215 struct lttng_consumer_stream *stream;
2216
2217 DBG("Consumer delete flagged metadata stream");
2218
2219 assert(pollset);
2220
2221 rcu_read_lock();
2222 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2223 /* Validate delete flag of the stream */
2224 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2225 continue;
2226 }
2227 /*
2228 * Remove from pollset so the metadata thread can continue without
2229 * blocking on a deleted stream.
2230 */
2231 lttng_poll_del(pollset, stream->wait_fd);
2232
2233 /* Delete it right now */
2234 consumer_del_metadata_stream(stream, metadata_ht);
2235 }
2236 rcu_read_unlock();
2237 }
2238
2239 /*
2240 * Thread polls on metadata file descriptor and write them on disk or on the
2241 * network.
2242 */
2243 void *consumer_thread_metadata_poll(void *data)
2244 {
2245 int ret, i, pollfd, err = -1;
2246 uint32_t revents, nb_fd;
2247 struct lttng_consumer_stream *stream = NULL;
2248 struct lttng_ht_iter iter;
2249 struct lttng_ht_node_u64 *node;
2250 struct lttng_poll_event events;
2251 struct lttng_consumer_local_data *ctx = data;
2252 ssize_t len;
2253
2254 rcu_register_thread();
2255
2256 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2257
2258 if (testpoint(consumerd_thread_metadata)) {
2259 goto error_testpoint;
2260 }
2261
2262 health_code_update();
2263
2264 DBG("Thread metadata poll started");
2265
2266 /* Size is set to 1 for the consumer_metadata pipe */
2267 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2268 if (ret < 0) {
2269 ERR("Poll set creation failed");
2270 goto end_poll;
2271 }
2272
2273 ret = lttng_poll_add(&events,
2274 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2275 if (ret < 0) {
2276 goto end;
2277 }
2278
2279 /* Main loop */
2280 DBG("Metadata main loop started");
2281
2282 while (1) {
2283 health_code_update();
2284
2285 /* Only the metadata pipe is set */
2286 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2287 err = 0; /* All is OK */
2288 goto end;
2289 }
2290
2291 restart:
2292 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2293 health_poll_entry();
2294 ret = lttng_poll_wait(&events, -1);
2295 health_poll_exit();
2296 DBG("Metadata event catched in thread");
2297 if (ret < 0) {
2298 if (errno == EINTR) {
2299 ERR("Poll EINTR catched");
2300 goto restart;
2301 }
2302 goto error;
2303 }
2304
2305 nb_fd = ret;
2306
2307 /* From here, the event is a metadata wait fd */
2308 for (i = 0; i < nb_fd; i++) {
2309 health_code_update();
2310
2311 revents = LTTNG_POLL_GETEV(&events, i);
2312 pollfd = LTTNG_POLL_GETFD(&events, i);
2313
2314 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2315 if (revents & (LPOLLERR | LPOLLHUP )) {
2316 DBG("Metadata thread pipe hung up");
2317 /*
2318 * Remove the pipe from the poll set and continue the loop
2319 * since their might be data to consume.
2320 */
2321 lttng_poll_del(&events,
2322 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2323 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2324 continue;
2325 } else if (revents & LPOLLIN) {
2326 ssize_t pipe_len;
2327
2328 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2329 &stream, sizeof(stream));
2330 if (pipe_len < sizeof(stream)) {
2331 PERROR("read metadata stream");
2332 /*
2333 * Continue here to handle the rest of the streams.
2334 */
2335 continue;
2336 }
2337
2338 /* A NULL stream means that the state has changed. */
2339 if (stream == NULL) {
2340 /* Check for deleted streams. */
2341 validate_endpoint_status_metadata_stream(&events);
2342 goto restart;
2343 }
2344
2345 DBG("Adding metadata stream %d to poll set",
2346 stream->wait_fd);
2347
2348 /* Add metadata stream to the global poll events list */
2349 lttng_poll_add(&events, stream->wait_fd,
2350 LPOLLIN | LPOLLPRI);
2351 }
2352
2353 /* Handle other stream */
2354 continue;
2355 }
2356
2357 rcu_read_lock();
2358 {
2359 uint64_t tmp_id = (uint64_t) pollfd;
2360
2361 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2362 }
2363 node = lttng_ht_iter_get_node_u64(&iter);
2364 assert(node);
2365
2366 stream = caa_container_of(node, struct lttng_consumer_stream,
2367 node);
2368
2369 /* Check for error event */
2370 if (revents & (LPOLLERR | LPOLLHUP)) {
2371 DBG("Metadata fd %d is hup|err.", pollfd);
2372 if (!stream->hangup_flush_done
2373 && (consumer_data.type == LTTNG_CONSUMER32_UST
2374 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2375 DBG("Attempting to flush and consume the UST buffers");
2376 lttng_ustconsumer_on_stream_hangup(stream);
2377
2378 /* We just flushed the stream now read it. */
2379 do {
2380 health_code_update();
2381
2382 len = ctx->on_buffer_ready(stream, ctx);
2383 /*
2384 * We don't check the return value here since if we get
2385 * a negative len, it means an error occured thus we
2386 * simply remove it from the poll set and free the
2387 * stream.
2388 */
2389 } while (len > 0);
2390 }
2391
2392 lttng_poll_del(&events, stream->wait_fd);
2393 /*
2394 * This call update the channel states, closes file descriptors
2395 * and securely free the stream.
2396 */
2397 consumer_del_metadata_stream(stream, metadata_ht);
2398 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2399 /* Get the data out of the metadata file descriptor */
2400 DBG("Metadata available on fd %d", pollfd);
2401 assert(stream->wait_fd == pollfd);
2402
2403 do {
2404 health_code_update();
2405
2406 len = ctx->on_buffer_ready(stream, ctx);
2407 /*
2408 * We don't check the return value here since if we get
2409 * a negative len, it means an error occured thus we
2410 * simply remove it from the poll set and free the
2411 * stream.
2412 */
2413 } while (len > 0);
2414
2415 /* It's ok to have an unavailable sub-buffer */
2416 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2417 /* Clean up stream from consumer and free it. */
2418 lttng_poll_del(&events, stream->wait_fd);
2419 consumer_del_metadata_stream(stream, metadata_ht);
2420 }
2421 }
2422
2423 /* Release RCU lock for the stream looked up */
2424 rcu_read_unlock();
2425 }
2426 }
2427
2428 /* All is OK */
2429 err = 0;
2430 error:
2431 end:
2432 DBG("Metadata poll thread exiting");
2433
2434 lttng_poll_clean(&events);
2435 end_poll:
2436 error_testpoint:
2437 if (err) {
2438 health_error();
2439 ERR("Health error occurred in %s", __func__);
2440 }
2441 health_unregister(health_consumerd);
2442 rcu_unregister_thread();
2443 return NULL;
2444 }
2445
2446 /*
2447 * This thread polls the fds in the set to consume the data and write
2448 * it to tracefile if necessary.
2449 */
2450 void *consumer_thread_data_poll(void *data)
2451 {
2452 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2453 struct pollfd *pollfd = NULL;
2454 /* local view of the streams */
2455 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2456 /* local view of consumer_data.fds_count */
2457 int nb_fd = 0;
2458 struct lttng_consumer_local_data *ctx = data;
2459 ssize_t len;
2460
2461 rcu_register_thread();
2462
2463 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2464
2465 if (testpoint(consumerd_thread_data)) {
2466 goto error_testpoint;
2467 }
2468
2469 health_code_update();
2470
2471 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2472 if (local_stream == NULL) {
2473 PERROR("local_stream malloc");
2474 goto end;
2475 }
2476
2477 while (1) {
2478 health_code_update();
2479
2480 high_prio = 0;
2481 num_hup = 0;
2482
2483 /*
2484 * the fds set has been updated, we need to update our
2485 * local array as well
2486 */
2487 pthread_mutex_lock(&consumer_data.lock);
2488 if (consumer_data.need_update) {
2489 free(pollfd);
2490 pollfd = NULL;
2491
2492 free(local_stream);
2493 local_stream = NULL;
2494
2495 /* allocate for all fds + 1 for the consumer_data_pipe */
2496 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2497 if (pollfd == NULL) {
2498 PERROR("pollfd malloc");
2499 pthread_mutex_unlock(&consumer_data.lock);
2500 goto end;
2501 }
2502
2503 /* allocate for all fds + 1 for the consumer_data_pipe */
2504 local_stream = zmalloc((consumer_data.stream_count + 1) *
2505 sizeof(struct lttng_consumer_stream *));
2506 if (local_stream == NULL) {
2507 PERROR("local_stream malloc");
2508 pthread_mutex_unlock(&consumer_data.lock);
2509 goto end;
2510 }
2511 ret = update_poll_array(ctx, &pollfd, local_stream,
2512 data_ht);
2513 if (ret < 0) {
2514 ERR("Error in allocating pollfd or local_outfds");
2515 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2516 pthread_mutex_unlock(&consumer_data.lock);
2517 goto end;
2518 }
2519 nb_fd = ret;
2520 consumer_data.need_update = 0;
2521 }
2522 pthread_mutex_unlock(&consumer_data.lock);
2523
2524 /* No FDs and consumer_quit, consumer_cleanup the thread */
2525 if (nb_fd == 0 && consumer_quit == 1) {
2526 err = 0; /* All is OK */
2527 goto end;
2528 }
2529 /* poll on the array of fds */
2530 restart:
2531 DBG("polling on %d fd", nb_fd + 1);
2532 health_poll_entry();
2533 num_rdy = poll(pollfd, nb_fd + 1, -1);
2534 health_poll_exit();
2535 DBG("poll num_rdy : %d", num_rdy);
2536 if (num_rdy == -1) {
2537 /*
2538 * Restart interrupted system call.
2539 */
2540 if (errno == EINTR) {
2541 goto restart;
2542 }
2543 PERROR("Poll error");
2544 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2545 goto end;
2546 } else if (num_rdy == 0) {
2547 DBG("Polling thread timed out");
2548 goto end;
2549 }
2550
2551 /*
2552 * If the consumer_data_pipe triggered poll go directly to the
2553 * beginning of the loop to update the array. We want to prioritize
2554 * array update over low-priority reads.
2555 */
2556 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2557 ssize_t pipe_readlen;
2558
2559 DBG("consumer_data_pipe wake up");
2560 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2561 &new_stream, sizeof(new_stream));
2562 if (pipe_readlen < sizeof(new_stream)) {
2563 PERROR("Consumer data pipe");
2564 /* Continue so we can at least handle the current stream(s). */
2565 continue;
2566 }
2567
2568 /*
2569 * If the stream is NULL, just ignore it. It's also possible that
2570 * the sessiond poll thread changed the consumer_quit state and is
2571 * waking us up to test it.
2572 */
2573 if (new_stream == NULL) {
2574 validate_endpoint_status_data_stream();
2575 continue;
2576 }
2577
2578 /* Continue to update the local streams and handle prio ones */
2579 continue;
2580 }
2581
2582 /* Take care of high priority channels first. */
2583 for (i = 0; i < nb_fd; i++) {
2584 health_code_update();
2585
2586 if (local_stream[i] == NULL) {
2587 continue;
2588 }
2589 if (pollfd[i].revents & POLLPRI) {
2590 DBG("Urgent read on fd %d", pollfd[i].fd);
2591 high_prio = 1;
2592 len = ctx->on_buffer_ready(local_stream[i], ctx);
2593 /* it's ok to have an unavailable sub-buffer */
2594 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2595 /* Clean the stream and free it. */
2596 consumer_del_stream(local_stream[i], data_ht);
2597 local_stream[i] = NULL;
2598 } else if (len > 0) {
2599 local_stream[i]->data_read = 1;
2600 }
2601 }
2602 }
2603
2604 /*
2605 * If we read high prio channel in this loop, try again
2606 * for more high prio data.
2607 */
2608 if (high_prio) {
2609 continue;
2610 }
2611
2612 /* Take care of low priority channels. */
2613 for (i = 0; i < nb_fd; i++) {
2614 health_code_update();
2615
2616 if (local_stream[i] == NULL) {
2617 continue;
2618 }
2619 if ((pollfd[i].revents & POLLIN) ||
2620 local_stream[i]->hangup_flush_done) {
2621 DBG("Normal read on fd %d", pollfd[i].fd);
2622 len = ctx->on_buffer_ready(local_stream[i], ctx);
2623 /* it's ok to have an unavailable sub-buffer */
2624 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2625 /* Clean the stream and free it. */
2626 consumer_del_stream(local_stream[i], data_ht);
2627 local_stream[i] = NULL;
2628 } else if (len > 0) {
2629 local_stream[i]->data_read = 1;
2630 }
2631 }
2632 }
2633
2634 /* Handle hangup and errors */
2635 for (i = 0; i < nb_fd; i++) {
2636 health_code_update();
2637
2638 if (local_stream[i] == NULL) {
2639 continue;
2640 }
2641 if (!local_stream[i]->hangup_flush_done
2642 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2643 && (consumer_data.type == LTTNG_CONSUMER32_UST
2644 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2645 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2646 pollfd[i].fd);
2647 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2648 /* Attempt read again, for the data we just flushed. */
2649 local_stream[i]->data_read = 1;
2650 }
2651 /*
2652 * If the poll flag is HUP/ERR/NVAL and we have
2653 * read no data in this pass, we can remove the
2654 * stream from its hash table.
2655 */
2656 if ((pollfd[i].revents & POLLHUP)) {
2657 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2658 if (!local_stream[i]->data_read) {
2659 consumer_del_stream(local_stream[i], data_ht);
2660 local_stream[i] = NULL;
2661 num_hup++;
2662 }
2663 } else if (pollfd[i].revents & POLLERR) {
2664 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2665 if (!local_stream[i]->data_read) {
2666 consumer_del_stream(local_stream[i], data_ht);
2667 local_stream[i] = NULL;
2668 num_hup++;
2669 }
2670 } else if (pollfd[i].revents & POLLNVAL) {
2671 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2672 if (!local_stream[i]->data_read) {
2673 consumer_del_stream(local_stream[i], data_ht);
2674 local_stream[i] = NULL;
2675 num_hup++;
2676 }
2677 }
2678 if (local_stream[i] != NULL) {
2679 local_stream[i]->data_read = 0;
2680 }
2681 }
2682 }
2683 /* All is OK */
2684 err = 0;
2685 end:
2686 DBG("polling thread exiting");
2687 free(pollfd);
2688 free(local_stream);
2689
2690 /*
2691 * Close the write side of the pipe so epoll_wait() in
2692 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2693 * read side of the pipe. If we close them both, epoll_wait strangely does
2694 * not return and could create a endless wait period if the pipe is the
2695 * only tracked fd in the poll set. The thread will take care of closing
2696 * the read side.
2697 */
2698 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2699
2700 error_testpoint:
2701 if (err) {
2702 health_error();
2703 ERR("Health error occurred in %s", __func__);
2704 }
2705 health_unregister(health_consumerd);
2706
2707 rcu_unregister_thread();
2708 return NULL;
2709 }
2710
2711 /*
2712 * Close wake-up end of each stream belonging to the channel. This will
2713 * allow the poll() on the stream read-side to detect when the
2714 * write-side (application) finally closes them.
2715 */
2716 static
2717 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2718 {
2719 struct lttng_ht *ht;
2720 struct lttng_consumer_stream *stream;
2721 struct lttng_ht_iter iter;
2722
2723 ht = consumer_data.stream_per_chan_id_ht;
2724
2725 rcu_read_lock();
2726 cds_lfht_for_each_entry_duplicate(ht->ht,
2727 ht->hash_fct(&channel->key, lttng_ht_seed),
2728 ht->match_fct, &channel->key,
2729 &iter.iter, stream, node_channel_id.node) {
2730 /*
2731 * Protect against teardown with mutex.
2732 */
2733 pthread_mutex_lock(&stream->lock);
2734 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2735 goto next;
2736 }
2737 switch (consumer_data.type) {
2738 case LTTNG_CONSUMER_KERNEL:
2739 break;
2740 case LTTNG_CONSUMER32_UST:
2741 case LTTNG_CONSUMER64_UST:
2742 /*
2743 * Note: a mutex is taken internally within
2744 * liblttng-ust-ctl to protect timer wakeup_fd
2745 * use from concurrent close.
2746 */
2747 lttng_ustconsumer_close_stream_wakeup(stream);
2748 break;
2749 default:
2750 ERR("Unknown consumer_data type");
2751 assert(0);
2752 }
2753 next:
2754 pthread_mutex_unlock(&stream->lock);
2755 }
2756 rcu_read_unlock();
2757 }
2758
2759 static void destroy_channel_ht(struct lttng_ht *ht)
2760 {
2761 struct lttng_ht_iter iter;
2762 struct lttng_consumer_channel *channel;
2763 int ret;
2764
2765 if (ht == NULL) {
2766 return;
2767 }
2768
2769 rcu_read_lock();
2770 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2771 ret = lttng_ht_del(ht, &iter);
2772 assert(ret != 0);
2773 }
2774 rcu_read_unlock();
2775
2776 lttng_ht_destroy(ht);
2777 }
2778
2779 /*
2780 * This thread polls the channel fds to detect when they are being
2781 * closed. It closes all related streams if the channel is detected as
2782 * closed. It is currently only used as a shim layer for UST because the
2783 * consumerd needs to keep the per-stream wakeup end of pipes open for
2784 * periodical flush.
2785 */
2786 void *consumer_thread_channel_poll(void *data)
2787 {
2788 int ret, i, pollfd, err = -1;
2789 uint32_t revents, nb_fd;
2790 struct lttng_consumer_channel *chan = NULL;
2791 struct lttng_ht_iter iter;
2792 struct lttng_ht_node_u64 *node;
2793 struct lttng_poll_event events;
2794 struct lttng_consumer_local_data *ctx = data;
2795 struct lttng_ht *channel_ht;
2796
2797 rcu_register_thread();
2798
2799 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2800
2801 if (testpoint(consumerd_thread_channel)) {
2802 goto error_testpoint;
2803 }
2804
2805 health_code_update();
2806
2807 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2808 if (!channel_ht) {
2809 /* ENOMEM at this point. Better to bail out. */
2810 goto end_ht;
2811 }
2812
2813 DBG("Thread channel poll started");
2814
2815 /* Size is set to 1 for the consumer_channel pipe */
2816 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2817 if (ret < 0) {
2818 ERR("Poll set creation failed");
2819 goto end_poll;
2820 }
2821
2822 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2823 if (ret < 0) {
2824 goto end;
2825 }
2826
2827 /* Main loop */
2828 DBG("Channel main loop started");
2829
2830 while (1) {
2831 health_code_update();
2832
2833 /* Only the channel pipe is set */
2834 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2835 err = 0; /* All is OK */
2836 goto end;
2837 }
2838
2839 restart:
2840 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2841 health_poll_entry();
2842 ret = lttng_poll_wait(&events, -1);
2843 health_poll_exit();
2844 DBG("Channel event catched in thread");
2845 if (ret < 0) {
2846 if (errno == EINTR) {
2847 ERR("Poll EINTR catched");
2848 goto restart;
2849 }
2850 goto end;
2851 }
2852
2853 nb_fd = ret;
2854
2855 /* From here, the event is a channel wait fd */
2856 for (i = 0; i < nb_fd; i++) {
2857 health_code_update();
2858
2859 revents = LTTNG_POLL_GETEV(&events, i);
2860 pollfd = LTTNG_POLL_GETFD(&events, i);
2861
2862 /* Just don't waste time if no returned events for the fd */
2863 if (!revents) {
2864 continue;
2865 }
2866 if (pollfd == ctx->consumer_channel_pipe[0]) {
2867 if (revents & (LPOLLERR | LPOLLHUP)) {
2868 DBG("Channel thread pipe hung up");
2869 /*
2870 * Remove the pipe from the poll set and continue the loop
2871 * since their might be data to consume.
2872 */
2873 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2874 continue;
2875 } else if (revents & LPOLLIN) {
2876 enum consumer_channel_action action;
2877 uint64_t key;
2878
2879 ret = read_channel_pipe(ctx, &chan, &key, &action);
2880 if (ret <= 0) {
2881 ERR("Error reading channel pipe");
2882 continue;
2883 }
2884
2885 switch (action) {
2886 case CONSUMER_CHANNEL_ADD:
2887 DBG("Adding channel %d to poll set",
2888 chan->wait_fd);
2889
2890 lttng_ht_node_init_u64(&chan->wait_fd_node,
2891 chan->wait_fd);
2892 rcu_read_lock();
2893 lttng_ht_add_unique_u64(channel_ht,
2894 &chan->wait_fd_node);
2895 rcu_read_unlock();
2896 /* Add channel to the global poll events list */
2897 lttng_poll_add(&events, chan->wait_fd,
2898 LPOLLIN | LPOLLPRI);
2899 break;
2900 case CONSUMER_CHANNEL_DEL:
2901 {
2902 struct lttng_consumer_stream *stream, *stmp;
2903
2904 rcu_read_lock();
2905 chan = consumer_find_channel(key);
2906 if (!chan) {
2907 rcu_read_unlock();
2908 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2909 break;
2910 }
2911 lttng_poll_del(&events, chan->wait_fd);
2912 iter.iter.node = &chan->wait_fd_node.node;
2913 ret = lttng_ht_del(channel_ht, &iter);
2914 assert(ret == 0);
2915 consumer_close_channel_streams(chan);
2916
2917 switch (consumer_data.type) {
2918 case LTTNG_CONSUMER_KERNEL:
2919 break;
2920 case LTTNG_CONSUMER32_UST:
2921 case LTTNG_CONSUMER64_UST:
2922 /* Delete streams that might have been left in the stream list. */
2923 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2924 send_node) {
2925 health_code_update();
2926
2927 cds_list_del(&stream->send_node);
2928 lttng_ustconsumer_del_stream(stream);
2929 uatomic_sub(&stream->chan->refcount, 1);
2930 assert(&chan->refcount);
2931 free(stream);
2932 }
2933 break;
2934 default:
2935 ERR("Unknown consumer_data type");
2936 assert(0);
2937 }
2938
2939 /*
2940 * Release our own refcount. Force channel deletion even if
2941 * streams were not initialized.
2942 */
2943 if (!uatomic_sub_return(&chan->refcount, 1)) {
2944 consumer_del_channel(chan);
2945 }
2946 rcu_read_unlock();
2947 goto restart;
2948 }
2949 case CONSUMER_CHANNEL_QUIT:
2950 /*
2951 * Remove the pipe from the poll set and continue the loop
2952 * since their might be data to consume.
2953 */
2954 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2955 continue;
2956 default:
2957 ERR("Unknown action");
2958 break;
2959 }
2960 }
2961
2962 /* Handle other stream */
2963 continue;
2964 }
2965
2966 rcu_read_lock();
2967 {
2968 uint64_t tmp_id = (uint64_t) pollfd;
2969
2970 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2971 }
2972 node = lttng_ht_iter_get_node_u64(&iter);
2973 assert(node);
2974
2975 chan = caa_container_of(node, struct lttng_consumer_channel,
2976 wait_fd_node);
2977
2978 /* Check for error event */
2979 if (revents & (LPOLLERR | LPOLLHUP)) {
2980 DBG("Channel fd %d is hup|err.", pollfd);
2981
2982 lttng_poll_del(&events, chan->wait_fd);
2983 ret = lttng_ht_del(channel_ht, &iter);
2984 assert(ret == 0);
2985 consumer_close_channel_streams(chan);
2986
2987 /* Release our own refcount */
2988 if (!uatomic_sub_return(&chan->refcount, 1)
2989 && !uatomic_read(&chan->nb_init_stream_left)) {
2990 consumer_del_channel(chan);
2991 }
2992 }
2993
2994 /* Release RCU lock for the channel looked up */
2995 rcu_read_unlock();
2996 }
2997 }
2998
2999 /* All is OK */
3000 err = 0;
3001 end:
3002 lttng_poll_clean(&events);
3003 end_poll:
3004 destroy_channel_ht(channel_ht);
3005 end_ht:
3006 error_testpoint:
3007 DBG("Channel poll thread exiting");
3008 if (err) {
3009 health_error();
3010 ERR("Health error occurred in %s", __func__);
3011 }
3012 health_unregister(health_consumerd);
3013 rcu_unregister_thread();
3014 return NULL;
3015 }
3016
3017 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3018 struct pollfd *sockpoll, int client_socket)
3019 {
3020 int ret;
3021
3022 assert(ctx);
3023 assert(sockpoll);
3024
3025 if (lttng_consumer_poll_socket(sockpoll) < 0) {
3026 ret = -1;
3027 goto error;
3028 }
3029 DBG("Metadata connection on client_socket");
3030
3031 /* Blocking call, waiting for transmission */
3032 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3033 if (ctx->consumer_metadata_socket < 0) {
3034 WARN("On accept metadata");
3035 ret = -1;
3036 goto error;
3037 }
3038 ret = 0;
3039
3040 error:
3041 return ret;
3042 }
3043
3044 /*
3045 * This thread listens on the consumerd socket and receives the file
3046 * descriptors from the session daemon.
3047 */
3048 void *consumer_thread_sessiond_poll(void *data)
3049 {
3050 int sock = -1, client_socket, ret, err = -1;
3051 /*
3052 * structure to poll for incoming data on communication socket avoids
3053 * making blocking sockets.
3054 */
3055 struct pollfd consumer_sockpoll[2];
3056 struct lttng_consumer_local_data *ctx = data;
3057
3058 rcu_register_thread();
3059
3060 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3061
3062 if (testpoint(consumerd_thread_sessiond)) {
3063 goto error_testpoint;
3064 }
3065
3066 health_code_update();
3067
3068 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3069 unlink(ctx->consumer_command_sock_path);
3070 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3071 if (client_socket < 0) {
3072 ERR("Cannot create command socket");
3073 goto end;
3074 }
3075
3076 ret = lttcomm_listen_unix_sock(client_socket);
3077 if (ret < 0) {
3078 goto end;
3079 }
3080
3081 DBG("Sending ready command to lttng-sessiond");
3082 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3083 /* return < 0 on error, but == 0 is not fatal */
3084 if (ret < 0) {
3085 ERR("Error sending ready command to lttng-sessiond");
3086 goto end;
3087 }
3088
3089 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3090 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3091 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3092 consumer_sockpoll[1].fd = client_socket;
3093 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3094
3095 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3096 goto end;
3097 }
3098 DBG("Connection on client_socket");
3099
3100 /* Blocking call, waiting for transmission */
3101 sock = lttcomm_accept_unix_sock(client_socket);
3102 if (sock < 0) {
3103 WARN("On accept");
3104 goto end;
3105 }
3106
3107 /*
3108 * Setup metadata socket which is the second socket connection on the
3109 * command unix socket.
3110 */
3111 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3112 if (ret < 0) {
3113 goto end;
3114 }
3115
3116 /* This socket is not useful anymore. */
3117 ret = close(client_socket);
3118 if (ret < 0) {
3119 PERROR("close client_socket");
3120 }
3121 client_socket = -1;
3122
3123 /* update the polling structure to poll on the established socket */
3124 consumer_sockpoll[1].fd = sock;
3125 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3126
3127 while (1) {
3128 health_code_update();
3129
3130 health_poll_entry();
3131 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3132 health_poll_exit();
3133 if (ret < 0) {
3134 goto end;
3135 }
3136 DBG("Incoming command on sock");
3137 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3138 if (ret == -ENOENT) {
3139 DBG("Received STOP command");
3140 goto end;
3141 }
3142 if (ret <= 0) {
3143 /*
3144 * This could simply be a session daemon quitting. Don't output
3145 * ERR() here.
3146 */
3147 DBG("Communication interrupted on command socket");
3148 err = 0;
3149 goto end;
3150 }
3151 if (consumer_quit) {
3152 DBG("consumer_thread_receive_fds received quit from signal");
3153 err = 0; /* All is OK */
3154 goto end;
3155 }
3156 DBG("received command on sock");
3157 }
3158 /* All is OK */
3159 err = 0;
3160
3161 end:
3162 DBG("Consumer thread sessiond poll exiting");
3163
3164 /*
3165 * Close metadata streams since the producer is the session daemon which
3166 * just died.
3167 *
3168 * NOTE: for now, this only applies to the UST tracer.
3169 */
3170 lttng_consumer_close_metadata();
3171
3172 /*
3173 * when all fds have hung up, the polling thread
3174 * can exit cleanly
3175 */
3176 consumer_quit = 1;
3177
3178 /*
3179 * Notify the data poll thread to poll back again and test the
3180 * consumer_quit state that we just set so to quit gracefully.
3181 */
3182 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3183
3184 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3185
3186 notify_health_quit_pipe(health_quit_pipe);
3187
3188 /* Cleaning up possibly open sockets. */
3189 if (sock >= 0) {
3190 ret = close(sock);
3191 if (ret < 0) {
3192 PERROR("close sock sessiond poll");
3193 }
3194 }
3195 if (client_socket >= 0) {
3196 ret = close(client_socket);
3197 if (ret < 0) {
3198 PERROR("close client_socket sessiond poll");
3199 }
3200 }
3201
3202 error_testpoint:
3203 if (err) {
3204 health_error();
3205 ERR("Health error occurred in %s", __func__);
3206 }
3207 health_unregister(health_consumerd);
3208
3209 rcu_unregister_thread();
3210 return NULL;
3211 }
3212
3213 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3214 struct lttng_consumer_local_data *ctx)
3215 {
3216 ssize_t ret;
3217
3218 pthread_mutex_lock(&stream->lock);
3219 if (stream->metadata_flag) {
3220 pthread_mutex_lock(&stream->metadata_rdv_lock);
3221 }
3222
3223 switch (consumer_data.type) {
3224 case LTTNG_CONSUMER_KERNEL:
3225 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3226 break;
3227 case LTTNG_CONSUMER32_UST:
3228 case LTTNG_CONSUMER64_UST:
3229 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3230 break;
3231 default:
3232 ERR("Unknown consumer_data type");
3233 assert(0);
3234 ret = -ENOSYS;
3235 break;
3236 }
3237
3238 if (stream->metadata_flag) {
3239 pthread_cond_broadcast(&stream->metadata_rdv);
3240 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3241 }
3242 pthread_mutex_unlock(&stream->lock);
3243 return ret;
3244 }
3245
3246 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3247 {
3248 switch (consumer_data.type) {
3249 case LTTNG_CONSUMER_KERNEL:
3250 return lttng_kconsumer_on_recv_stream(stream);
3251 case LTTNG_CONSUMER32_UST:
3252 case LTTNG_CONSUMER64_UST:
3253 return lttng_ustconsumer_on_recv_stream(stream);
3254 default:
3255 ERR("Unknown consumer_data type");
3256 assert(0);
3257 return -ENOSYS;
3258 }
3259 }
3260
3261 /*
3262 * Allocate and set consumer data hash tables.
3263 */
3264 int lttng_consumer_init(void)
3265 {
3266 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3267 if (!consumer_data.channel_ht) {
3268 goto error;
3269 }
3270
3271 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3272 if (!consumer_data.relayd_ht) {
3273 goto error;
3274 }
3275
3276 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3277 if (!consumer_data.stream_list_ht) {
3278 goto error;
3279 }
3280
3281 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3282 if (!consumer_data.stream_per_chan_id_ht) {
3283 goto error;
3284 }
3285
3286 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3287 if (!data_ht) {
3288 goto error;
3289 }
3290
3291 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3292 if (!metadata_ht) {
3293 goto error;
3294 }
3295
3296 return 0;
3297
3298 error:
3299 return -1;
3300 }
3301
3302 /*
3303 * Process the ADD_RELAYD command receive by a consumer.
3304 *
3305 * This will create a relayd socket pair and add it to the relayd hash table.
3306 * The caller MUST acquire a RCU read side lock before calling it.
3307 */
3308 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3309 struct lttng_consumer_local_data *ctx, int sock,
3310 struct pollfd *consumer_sockpoll,
3311 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3312 uint64_t relayd_session_id)
3313 {
3314 int fd = -1, ret = -1, relayd_created = 0;
3315 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3316 struct consumer_relayd_sock_pair *relayd = NULL;
3317
3318 assert(ctx);
3319 assert(relayd_sock);
3320
3321 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3322
3323 /* Get relayd reference if exists. */
3324 relayd = consumer_find_relayd(net_seq_idx);
3325 if (relayd == NULL) {
3326 assert(sock_type == LTTNG_STREAM_CONTROL);
3327 /* Not found. Allocate one. */
3328 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3329 if (relayd == NULL) {
3330 ret = -ENOMEM;
3331 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3332 goto error;
3333 } else {
3334 relayd->sessiond_session_id = sessiond_id;
3335 relayd_created = 1;
3336 }
3337
3338 /*
3339 * This code path MUST continue to the consumer send status message to
3340 * we can notify the session daemon and continue our work without
3341 * killing everything.
3342 */
3343 } else {
3344 /*
3345 * relayd key should never be found for control socket.
3346 */
3347 assert(sock_type != LTTNG_STREAM_CONTROL);
3348 }
3349
3350 /* First send a status message before receiving the fds. */
3351 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3352 if (ret < 0) {
3353 /* Somehow, the session daemon is not responding anymore. */
3354 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3355 goto error_nosignal;
3356 }
3357
3358 /* Poll on consumer socket. */
3359 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3360 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3361 ret = -EINTR;
3362 goto error_nosignal;
3363 }
3364
3365 /* Get relayd socket from session daemon */
3366 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3367 if (ret != sizeof(fd)) {
3368 ret = -1;
3369 fd = -1; /* Just in case it gets set with an invalid value. */
3370
3371 /*
3372 * Failing to receive FDs might indicate a major problem such as
3373 * reaching a fd limit during the receive where the kernel returns a
3374 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3375 * don't take any chances and stop everything.
3376 *
3377 * XXX: Feature request #558 will fix that and avoid this possible
3378 * issue when reaching the fd limit.
3379 */
3380 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3381 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3382 goto error;
3383 }
3384
3385 /* Copy socket information and received FD */
3386 switch (sock_type) {
3387 case LTTNG_STREAM_CONTROL:
3388 /* Copy received lttcomm socket */
3389 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3390 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3391 /* Handle create_sock error. */
3392 if (ret < 0) {
3393 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3394 goto error;
3395 }
3396 /*
3397 * Close the socket created internally by
3398 * lttcomm_create_sock, so we can replace it by the one
3399 * received from sessiond.
3400 */
3401 if (close(relayd->control_sock.sock.fd)) {
3402 PERROR("close");
3403 }
3404
3405 /* Assign new file descriptor */
3406 relayd->control_sock.sock.fd = fd;
3407 fd = -1; /* For error path */
3408 /* Assign version values. */
3409 relayd->control_sock.major = relayd_sock->major;
3410 relayd->control_sock.minor = relayd_sock->minor;
3411
3412 relayd->relayd_session_id = relayd_session_id;
3413
3414 break;
3415 case LTTNG_STREAM_DATA:
3416 /* Copy received lttcomm socket */
3417 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3418 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3419 /* Handle create_sock error. */
3420 if (ret < 0) {
3421 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3422 goto error;
3423 }
3424 /*
3425 * Close the socket created internally by
3426 * lttcomm_create_sock, so we can replace it by the one
3427 * received from sessiond.
3428 */
3429 if (close(relayd->data_sock.sock.fd)) {
3430 PERROR("close");
3431 }
3432
3433 /* Assign new file descriptor */
3434 relayd->data_sock.sock.fd = fd;
3435 fd = -1; /* for eventual error paths */
3436 /* Assign version values. */
3437 relayd->data_sock.major = relayd_sock->major;
3438 relayd->data_sock.minor = relayd_sock->minor;
3439 break;
3440 default:
3441 ERR("Unknown relayd socket type (%d)", sock_type);
3442 ret = -1;
3443 ret_code = LTTCOMM_CONSUMERD_FATAL;
3444 goto error;
3445 }
3446
3447 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3448 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3449 relayd->net_seq_idx, fd);
3450
3451 /* We successfully added the socket. Send status back. */
3452 ret = consumer_send_status_msg(sock, ret_code);
3453 if (ret < 0) {
3454 /* Somehow, the session daemon is not responding anymore. */
3455 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3456 goto error_nosignal;
3457 }
3458
3459 /*
3460 * Add relayd socket pair to consumer data hashtable. If object already
3461 * exists or on error, the function gracefully returns.
3462 */
3463 add_relayd(relayd);
3464
3465 /* All good! */
3466 return 0;
3467
3468 error:
3469 if (consumer_send_status_msg(sock, ret_code) < 0) {
3470 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3471 }
3472
3473 error_nosignal:
3474 /* Close received socket if valid. */
3475 if (fd >= 0) {
3476 if (close(fd)) {
3477 PERROR("close received socket");
3478 }
3479 }
3480
3481 if (relayd_created) {
3482 free(relayd);
3483 }
3484
3485 return ret;
3486 }
3487
3488 /*
3489 * Try to lock the stream mutex.
3490 *
3491 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3492 */
3493 static int stream_try_lock(struct lttng_consumer_stream *stream)
3494 {
3495 int ret;
3496
3497 assert(stream);
3498
3499 /*
3500 * Try to lock the stream mutex. On failure, we know that the stream is
3501 * being used else where hence there is data still being extracted.
3502 */
3503 ret = pthread_mutex_trylock(&stream->lock);
3504 if (ret) {
3505 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3506 ret = 0;
3507 goto end;
3508 }
3509
3510 ret = 1;
3511
3512 end:
3513 return ret;
3514 }
3515
3516 /*
3517 * Search for a relayd associated to the session id and return the reference.
3518 *
3519 * A rcu read side lock MUST be acquire before calling this function and locked
3520 * until the relayd object is no longer necessary.
3521 */
3522 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3523 {
3524 struct lttng_ht_iter iter;
3525 struct consumer_relayd_sock_pair *relayd = NULL;
3526
3527 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3528 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3529 node.node) {
3530 /*
3531 * Check by sessiond id which is unique here where the relayd session
3532 * id might not be when having multiple relayd.
3533 */
3534 if (relayd->sessiond_session_id == id) {
3535 /* Found the relayd. There can be only one per id. */
3536 goto found;
3537 }
3538 }
3539
3540 return NULL;
3541
3542 found:
3543 return relayd;
3544 }
3545
3546 /*
3547 * Check if for a given session id there is still data needed to be extract
3548 * from the buffers.
3549 *
3550 * Return 1 if data is pending or else 0 meaning ready to be read.
3551 */
3552 int consumer_data_pending(uint64_t id)
3553 {
3554 int ret;
3555 struct lttng_ht_iter iter;
3556 struct lttng_ht *ht;
3557 struct lttng_consumer_stream *stream;
3558 struct consumer_relayd_sock_pair *relayd = NULL;
3559 int (*data_pending)(struct lttng_consumer_stream *);
3560
3561 DBG("Consumer data pending command on session id %" PRIu64, id);
3562
3563 rcu_read_lock();
3564 pthread_mutex_lock(&consumer_data.lock);
3565
3566 switch (consumer_data.type) {
3567 case LTTNG_CONSUMER_KERNEL:
3568 data_pending = lttng_kconsumer_data_pending;
3569 break;
3570 case LTTNG_CONSUMER32_UST:
3571 case LTTNG_CONSUMER64_UST:
3572 data_pending = lttng_ustconsumer_data_pending;
3573 break;
3574 default:
3575 ERR("Unknown consumer data type");
3576 assert(0);
3577 }
3578
3579 /* Ease our life a bit */
3580 ht = consumer_data.stream_list_ht;
3581
3582 relayd = find_relayd_by_session_id(id);
3583 if (relayd) {
3584 /* Send init command for data pending. */
3585 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3586 ret = relayd_begin_data_pending(&relayd->control_sock,
3587 relayd->relayd_session_id);
3588 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3589 if (ret < 0) {
3590 /* Communication error thus the relayd so no data pending. */
3591 goto data_not_pending;
3592 }
3593 }
3594
3595 cds_lfht_for_each_entry_duplicate(ht->ht,
3596 ht->hash_fct(&id, lttng_ht_seed),
3597 ht->match_fct, &id,
3598 &iter.iter, stream, node_session_id.node) {
3599 /* If this call fails, the stream is being used hence data pending. */
3600 ret = stream_try_lock(stream);
3601 if (!ret) {
3602 goto data_pending;
3603 }
3604
3605 /*
3606 * A removed node from the hash table indicates that the stream has
3607 * been deleted thus having a guarantee that the buffers are closed
3608 * on the consumer side. However, data can still be transmitted
3609 * over the network so don't skip the relayd check.
3610 */
3611 ret = cds_lfht_is_node_deleted(&stream->node.node);
3612 if (!ret) {
3613 /*
3614 * An empty output file is not valid. We need at least one packet
3615 * generated per stream, even if it contains no event, so it
3616 * contains at least one packet header.
3617 */
3618 if (stream->output_written == 0) {
3619 pthread_mutex_unlock(&stream->lock);
3620 goto data_pending;
3621 }
3622 /* Check the stream if there is data in the buffers. */
3623 ret = data_pending(stream);
3624 if (ret == 1) {
3625 pthread_mutex_unlock(&stream->lock);
3626 goto data_pending;
3627 }
3628 }
3629
3630 /* Relayd check */
3631 if (relayd) {
3632 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3633 if (stream->metadata_flag) {
3634 ret = relayd_quiescent_control(&relayd->control_sock,
3635 stream->relayd_stream_id);
3636 } else {
3637 ret = relayd_data_pending(&relayd->control_sock,
3638 stream->relayd_stream_id,
3639 stream->next_net_seq_num - 1);
3640 }
3641 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3642 if (ret == 1) {
3643 pthread_mutex_unlock(&stream->lock);
3644 goto data_pending;
3645 }
3646 }
3647 pthread_mutex_unlock(&stream->lock);
3648 }
3649
3650 if (relayd) {
3651 unsigned int is_data_inflight = 0;
3652
3653 /* Send init command for data pending. */
3654 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3655 ret = relayd_end_data_pending(&relayd->control_sock,
3656 relayd->relayd_session_id, &is_data_inflight);
3657 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3658 if (ret < 0) {
3659 goto data_not_pending;
3660 }
3661 if (is_data_inflight) {
3662 goto data_pending;
3663 }
3664 }
3665
3666 /*
3667 * Finding _no_ node in the hash table and no inflight data means that the
3668 * stream(s) have been removed thus data is guaranteed to be available for
3669 * analysis from the trace files.
3670 */
3671
3672 data_not_pending:
3673 /* Data is available to be read by a viewer. */
3674 pthread_mutex_unlock(&consumer_data.lock);
3675 rcu_read_unlock();
3676 return 0;
3677
3678 data_pending:
3679 /* Data is still being extracted from buffers. */
3680 pthread_mutex_unlock(&consumer_data.lock);
3681 rcu_read_unlock();
3682 return 1;
3683 }
3684
3685 /*
3686 * Send a ret code status message to the sessiond daemon.
3687 *
3688 * Return the sendmsg() return value.
3689 */
3690 int consumer_send_status_msg(int sock, int ret_code)
3691 {
3692 struct lttcomm_consumer_status_msg msg;
3693
3694 msg.ret_code = ret_code;
3695
3696 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3697 }
3698
3699 /*
3700 * Send a channel status message to the sessiond daemon.
3701 *
3702 * Return the sendmsg() return value.
3703 */
3704 int consumer_send_status_channel(int sock,
3705 struct lttng_consumer_channel *channel)
3706 {
3707 struct lttcomm_consumer_status_channel msg;
3708
3709 assert(sock >= 0);
3710
3711 if (!channel) {
3712 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3713 } else {
3714 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3715 msg.key = channel->key;
3716 msg.stream_count = channel->streams.count;
3717 }
3718
3719 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3720 }
3721
3722 /*
3723 * Using a maximum stream size with the produced and consumed position of a
3724 * stream, computes the new consumed position to be as close as possible to the
3725 * maximum possible stream size.
3726 *
3727 * If maximum stream size is lower than the possible buffer size (produced -
3728 * consumed), the consumed_pos given is returned untouched else the new value
3729 * is returned.
3730 */
3731 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3732 unsigned long produced_pos, uint64_t max_stream_size)
3733 {
3734 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3735 /* Offset from the produced position to get the latest buffers. */
3736 return produced_pos - max_stream_size;
3737 }
3738
3739 return consumed_pos;
3740 }
This page took 0.157348 seconds and 5 git commands to generate.