Fix: format string type mismatch
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44 #include "consumer-stream.h"
45
46 struct lttng_consumer_global_data consumer_data = {
47 .stream_count = 0,
48 .need_update = 1,
49 .type = LTTNG_CONSUMER_UNKNOWN,
50 };
51
52 enum consumer_channel_action {
53 CONSUMER_CHANNEL_ADD,
54 CONSUMER_CHANNEL_DEL,
55 CONSUMER_CHANNEL_QUIT,
56 };
57
58 struct consumer_channel_msg {
59 enum consumer_channel_action action;
60 struct lttng_consumer_channel *chan; /* add */
61 uint64_t key; /* del */
62 };
63
64 /*
65 * Flag to inform the polling thread to quit when all fd hung up. Updated by
66 * the consumer_thread_receive_fds when it notices that all fds has hung up.
67 * Also updated by the signal handler (consumer_should_exit()). Read by the
68 * polling threads.
69 */
70 volatile int consumer_quit;
71
72 /*
73 * Global hash table containing respectively metadata and data streams. The
74 * stream element in this ht should only be updated by the metadata poll thread
75 * for the metadata and the data poll thread for the data.
76 */
77 static struct lttng_ht *metadata_ht;
78 static struct lttng_ht *data_ht;
79
80 /*
81 * Notify a thread lttng pipe to poll back again. This usually means that some
82 * global state has changed so we just send back the thread in a poll wait
83 * call.
84 */
85 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
86 {
87 struct lttng_consumer_stream *null_stream = NULL;
88
89 assert(pipe);
90
91 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
92 }
93
94 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
95 struct lttng_consumer_channel *chan,
96 uint64_t key,
97 enum consumer_channel_action action)
98 {
99 struct consumer_channel_msg msg;
100 int ret;
101
102 memset(&msg, 0, sizeof(msg));
103
104 msg.action = action;
105 msg.chan = chan;
106 msg.key = key;
107 do {
108 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
109 } while (ret < 0 && errno == EINTR);
110 }
111
112 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
113 uint64_t key)
114 {
115 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
116 }
117
118 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
119 struct lttng_consumer_channel **chan,
120 uint64_t *key,
121 enum consumer_channel_action *action)
122 {
123 struct consumer_channel_msg msg;
124 int ret;
125
126 do {
127 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
128 } while (ret < 0 && errno == EINTR);
129 if (ret > 0) {
130 *action = msg.action;
131 *chan = msg.chan;
132 *key = msg.key;
133 }
134 return ret;
135 }
136
137 /*
138 * Find a stream. The consumer_data.lock must be locked during this
139 * call.
140 */
141 static struct lttng_consumer_stream *find_stream(uint64_t key,
142 struct lttng_ht *ht)
143 {
144 struct lttng_ht_iter iter;
145 struct lttng_ht_node_u64 *node;
146 struct lttng_consumer_stream *stream = NULL;
147
148 assert(ht);
149
150 /* -1ULL keys are lookup failures */
151 if (key == (uint64_t) -1ULL) {
152 return NULL;
153 }
154
155 rcu_read_lock();
156
157 lttng_ht_lookup(ht, &key, &iter);
158 node = lttng_ht_iter_get_node_u64(&iter);
159 if (node != NULL) {
160 stream = caa_container_of(node, struct lttng_consumer_stream, node);
161 }
162
163 rcu_read_unlock();
164
165 return stream;
166 }
167
168 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
169 {
170 struct lttng_consumer_stream *stream;
171
172 rcu_read_lock();
173 stream = find_stream(key, ht);
174 if (stream) {
175 stream->key = (uint64_t) -1ULL;
176 /*
177 * We don't want the lookup to match, but we still need
178 * to iterate on this stream when iterating over the hash table. Just
179 * change the node key.
180 */
181 stream->node.key = (uint64_t) -1ULL;
182 }
183 rcu_read_unlock();
184 }
185
186 /*
187 * Return a channel object for the given key.
188 *
189 * RCU read side lock MUST be acquired before calling this function and
190 * protects the channel ptr.
191 */
192 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
193 {
194 struct lttng_ht_iter iter;
195 struct lttng_ht_node_u64 *node;
196 struct lttng_consumer_channel *channel = NULL;
197
198 /* -1ULL keys are lookup failures */
199 if (key == (uint64_t) -1ULL) {
200 return NULL;
201 }
202
203 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 channel = caa_container_of(node, struct lttng_consumer_channel, node);
207 }
208
209 return channel;
210 }
211
212 static void free_stream_rcu(struct rcu_head *head)
213 {
214 struct lttng_ht_node_u64 *node =
215 caa_container_of(head, struct lttng_ht_node_u64, head);
216 struct lttng_consumer_stream *stream =
217 caa_container_of(node, struct lttng_consumer_stream, node);
218
219 free(stream);
220 }
221
222 static void free_channel_rcu(struct rcu_head *head)
223 {
224 struct lttng_ht_node_u64 *node =
225 caa_container_of(head, struct lttng_ht_node_u64, head);
226 struct lttng_consumer_channel *channel =
227 caa_container_of(node, struct lttng_consumer_channel, node);
228
229 free(channel);
230 }
231
232 /*
233 * RCU protected relayd socket pair free.
234 */
235 static void free_relayd_rcu(struct rcu_head *head)
236 {
237 struct lttng_ht_node_u64 *node =
238 caa_container_of(head, struct lttng_ht_node_u64, head);
239 struct consumer_relayd_sock_pair *relayd =
240 caa_container_of(node, struct consumer_relayd_sock_pair, node);
241
242 /*
243 * Close all sockets. This is done in the call RCU since we don't want the
244 * socket fds to be reassigned thus potentially creating bad state of the
245 * relayd object.
246 *
247 * We do not have to lock the control socket mutex here since at this stage
248 * there is no one referencing to this relayd object.
249 */
250 (void) relayd_close(&relayd->control_sock);
251 (void) relayd_close(&relayd->data_sock);
252
253 free(relayd);
254 }
255
256 /*
257 * Destroy and free relayd socket pair object.
258 */
259 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
260 {
261 int ret;
262 struct lttng_ht_iter iter;
263
264 if (relayd == NULL) {
265 return;
266 }
267
268 DBG("Consumer destroy and close relayd socket pair");
269
270 iter.iter.node = &relayd->node.node;
271 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
272 if (ret != 0) {
273 /* We assume the relayd is being or is destroyed */
274 return;
275 }
276
277 /* RCU free() call */
278 call_rcu(&relayd->node.head, free_relayd_rcu);
279 }
280
281 /*
282 * Remove a channel from the global list protected by a mutex. This function is
283 * also responsible for freeing its data structures.
284 */
285 void consumer_del_channel(struct lttng_consumer_channel *channel)
286 {
287 int ret;
288 struct lttng_ht_iter iter;
289 struct lttng_consumer_stream *stream, *stmp;
290
291 DBG("Consumer delete channel key %" PRIu64, channel->key);
292
293 pthread_mutex_lock(&consumer_data.lock);
294 pthread_mutex_lock(&channel->lock);
295
296 /* Delete streams that might have been left in the stream list. */
297 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
298 send_node) {
299 cds_list_del(&stream->send_node);
300 /*
301 * Once a stream is added to this list, the buffers were created so
302 * we have a guarantee that this call will succeed.
303 */
304 consumer_stream_destroy(stream, NULL);
305 }
306
307 switch (consumer_data.type) {
308 case LTTNG_CONSUMER_KERNEL:
309 break;
310 case LTTNG_CONSUMER32_UST:
311 case LTTNG_CONSUMER64_UST:
312 lttng_ustconsumer_del_channel(channel);
313 break;
314 default:
315 ERR("Unknown consumer_data type");
316 assert(0);
317 goto end;
318 }
319
320 rcu_read_lock();
321 iter.iter.node = &channel->node.node;
322 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
323 assert(!ret);
324 rcu_read_unlock();
325
326 call_rcu(&channel->node.head, free_channel_rcu);
327 end:
328 pthread_mutex_unlock(&channel->lock);
329 pthread_mutex_unlock(&consumer_data.lock);
330 }
331
332 /*
333 * Iterate over the relayd hash table and destroy each element. Finally,
334 * destroy the whole hash table.
335 */
336 static void cleanup_relayd_ht(void)
337 {
338 struct lttng_ht_iter iter;
339 struct consumer_relayd_sock_pair *relayd;
340
341 rcu_read_lock();
342
343 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
344 node.node) {
345 consumer_destroy_relayd(relayd);
346 }
347
348 rcu_read_unlock();
349
350 lttng_ht_destroy(consumer_data.relayd_ht);
351 }
352
353 /*
354 * Update the end point status of all streams having the given network sequence
355 * index (relayd index).
356 *
357 * It's atomically set without having the stream mutex locked which is fine
358 * because we handle the write/read race with a pipe wakeup for each thread.
359 */
360 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
361 enum consumer_endpoint_status status)
362 {
363 struct lttng_ht_iter iter;
364 struct lttng_consumer_stream *stream;
365
366 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
367
368 rcu_read_lock();
369
370 /* Let's begin with metadata */
371 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
372 if (stream->net_seq_idx == net_seq_idx) {
373 uatomic_set(&stream->endpoint_status, status);
374 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
375 }
376 }
377
378 /* Follow up by the data streams */
379 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
380 if (stream->net_seq_idx == net_seq_idx) {
381 uatomic_set(&stream->endpoint_status, status);
382 DBG("Delete flag set to data stream %d", stream->wait_fd);
383 }
384 }
385 rcu_read_unlock();
386 }
387
388 /*
389 * Cleanup a relayd object by flagging every associated streams for deletion,
390 * destroying the object meaning removing it from the relayd hash table,
391 * closing the sockets and freeing the memory in a RCU call.
392 *
393 * If a local data context is available, notify the threads that the streams'
394 * state have changed.
395 */
396 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
397 struct lttng_consumer_local_data *ctx)
398 {
399 uint64_t netidx;
400
401 assert(relayd);
402
403 DBG("Cleaning up relayd sockets");
404
405 /* Save the net sequence index before destroying the object */
406 netidx = relayd->net_seq_idx;
407
408 /*
409 * Delete the relayd from the relayd hash table, close the sockets and free
410 * the object in a RCU call.
411 */
412 consumer_destroy_relayd(relayd);
413
414 /* Set inactive endpoint to all streams */
415 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
416
417 /*
418 * With a local data context, notify the threads that the streams' state
419 * have changed. The write() action on the pipe acts as an "implicit"
420 * memory barrier ordering the updates of the end point status from the
421 * read of this status which happens AFTER receiving this notify.
422 */
423 if (ctx) {
424 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
425 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
426 }
427 }
428
429 /*
430 * Flag a relayd socket pair for destruction. Destroy it if the refcount
431 * reaches zero.
432 *
433 * RCU read side lock MUST be aquired before calling this function.
434 */
435 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
436 {
437 assert(relayd);
438
439 /* Set destroy flag for this object */
440 uatomic_set(&relayd->destroy_flag, 1);
441
442 /* Destroy the relayd if refcount is 0 */
443 if (uatomic_read(&relayd->refcount) == 0) {
444 consumer_destroy_relayd(relayd);
445 }
446 }
447
448 /*
449 * Completly destroy stream from every visiable data structure and the given
450 * hash table if one.
451 *
452 * One this call returns, the stream object is not longer usable nor visible.
453 */
454 void consumer_del_stream(struct lttng_consumer_stream *stream,
455 struct lttng_ht *ht)
456 {
457 consumer_stream_destroy(stream, ht);
458 }
459
460 /*
461 * XXX naming of del vs destroy is all mixed up.
462 */
463 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
464 {
465 consumer_stream_destroy(stream, data_ht);
466 }
467
468 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
469 {
470 consumer_stream_destroy(stream, metadata_ht);
471 }
472
473 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
474 uint64_t stream_key,
475 enum lttng_consumer_stream_state state,
476 const char *channel_name,
477 uid_t uid,
478 gid_t gid,
479 uint64_t relayd_id,
480 uint64_t session_id,
481 int cpu,
482 int *alloc_ret,
483 enum consumer_channel_type type,
484 unsigned int monitor)
485 {
486 int ret;
487 struct lttng_consumer_stream *stream;
488
489 stream = zmalloc(sizeof(*stream));
490 if (stream == NULL) {
491 PERROR("malloc struct lttng_consumer_stream");
492 ret = -ENOMEM;
493 goto end;
494 }
495
496 rcu_read_lock();
497
498 stream->key = stream_key;
499 stream->out_fd = -1;
500 stream->out_fd_offset = 0;
501 stream->state = state;
502 stream->uid = uid;
503 stream->gid = gid;
504 stream->net_seq_idx = relayd_id;
505 stream->session_id = session_id;
506 stream->monitor = monitor;
507 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
508 pthread_mutex_init(&stream->lock, NULL);
509
510 /* If channel is the metadata, flag this stream as metadata. */
511 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
512 stream->metadata_flag = 1;
513 /* Metadata is flat out. */
514 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
515 } else {
516 /* Format stream name to <channel_name>_<cpu_number> */
517 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
518 channel_name, cpu);
519 if (ret < 0) {
520 PERROR("snprintf stream name");
521 goto error;
522 }
523 }
524
525 /* Key is always the wait_fd for streams. */
526 lttng_ht_node_init_u64(&stream->node, stream->key);
527
528 /* Init node per channel id key */
529 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
530
531 /* Init session id node with the stream session id */
532 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
533
534 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
535 " relayd_id %" PRIu64 ", session_id %" PRIu64,
536 stream->name, stream->key, channel_key,
537 stream->net_seq_idx, stream->session_id);
538
539 rcu_read_unlock();
540 return stream;
541
542 error:
543 rcu_read_unlock();
544 free(stream);
545 end:
546 if (alloc_ret) {
547 *alloc_ret = ret;
548 }
549 return NULL;
550 }
551
552 /*
553 * Add a stream to the global list protected by a mutex.
554 */
555 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
556 {
557 struct lttng_ht *ht = data_ht;
558 int ret = 0;
559
560 assert(stream);
561 assert(ht);
562
563 DBG3("Adding consumer stream %" PRIu64, stream->key);
564
565 pthread_mutex_lock(&consumer_data.lock);
566 pthread_mutex_lock(&stream->chan->lock);
567 pthread_mutex_lock(&stream->chan->timer_lock);
568 pthread_mutex_lock(&stream->lock);
569 rcu_read_lock();
570
571 /* Steal stream identifier to avoid having streams with the same key */
572 steal_stream_key(stream->key, ht);
573
574 lttng_ht_add_unique_u64(ht, &stream->node);
575
576 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
577 &stream->node_channel_id);
578
579 /*
580 * Add stream to the stream_list_ht of the consumer data. No need to steal
581 * the key since the HT does not use it and we allow to add redundant keys
582 * into this table.
583 */
584 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
585
586 /*
587 * When nb_init_stream_left reaches 0, we don't need to trigger any action
588 * in terms of destroying the associated channel, because the action that
589 * causes the count to become 0 also causes a stream to be added. The
590 * channel deletion will thus be triggered by the following removal of this
591 * stream.
592 */
593 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
594 /* Increment refcount before decrementing nb_init_stream_left */
595 cmm_smp_wmb();
596 uatomic_dec(&stream->chan->nb_init_stream_left);
597 }
598
599 /* Update consumer data once the node is inserted. */
600 consumer_data.stream_count++;
601 consumer_data.need_update = 1;
602
603 rcu_read_unlock();
604 pthread_mutex_unlock(&stream->lock);
605 pthread_mutex_unlock(&stream->chan->timer_lock);
606 pthread_mutex_unlock(&stream->chan->lock);
607 pthread_mutex_unlock(&consumer_data.lock);
608
609 return ret;
610 }
611
612 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
613 {
614 consumer_del_stream(stream, data_ht);
615 }
616
617 /*
618 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
619 * be acquired before calling this.
620 */
621 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
622 {
623 int ret = 0;
624 struct lttng_ht_node_u64 *node;
625 struct lttng_ht_iter iter;
626
627 assert(relayd);
628
629 lttng_ht_lookup(consumer_data.relayd_ht,
630 &relayd->net_seq_idx, &iter);
631 node = lttng_ht_iter_get_node_u64(&iter);
632 if (node != NULL) {
633 goto end;
634 }
635 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
636
637 end:
638 return ret;
639 }
640
641 /*
642 * Allocate and return a consumer relayd socket.
643 */
644 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
645 uint64_t net_seq_idx)
646 {
647 struct consumer_relayd_sock_pair *obj = NULL;
648
649 /* net sequence index of -1 is a failure */
650 if (net_seq_idx == (uint64_t) -1ULL) {
651 goto error;
652 }
653
654 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
655 if (obj == NULL) {
656 PERROR("zmalloc relayd sock");
657 goto error;
658 }
659
660 obj->net_seq_idx = net_seq_idx;
661 obj->refcount = 0;
662 obj->destroy_flag = 0;
663 obj->control_sock.sock.fd = -1;
664 obj->data_sock.sock.fd = -1;
665 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
666 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
667
668 error:
669 return obj;
670 }
671
672 /*
673 * Find a relayd socket pair in the global consumer data.
674 *
675 * Return the object if found else NULL.
676 * RCU read-side lock must be held across this call and while using the
677 * returned object.
678 */
679 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
680 {
681 struct lttng_ht_iter iter;
682 struct lttng_ht_node_u64 *node;
683 struct consumer_relayd_sock_pair *relayd = NULL;
684
685 /* Negative keys are lookup failures */
686 if (key == (uint64_t) -1ULL) {
687 goto error;
688 }
689
690 lttng_ht_lookup(consumer_data.relayd_ht, &key,
691 &iter);
692 node = lttng_ht_iter_get_node_u64(&iter);
693 if (node != NULL) {
694 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
695 }
696
697 error:
698 return relayd;
699 }
700
701 /*
702 * Find a relayd and send the stream
703 *
704 * Returns 0 on success, < 0 on error
705 */
706 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
707 char *path)
708 {
709 int ret = 0;
710 struct consumer_relayd_sock_pair *relayd;
711
712 assert(stream);
713 assert(stream->net_seq_idx != -1ULL);
714 assert(path);
715
716 /* The stream is not metadata. Get relayd reference if exists. */
717 rcu_read_lock();
718 relayd = consumer_find_relayd(stream->net_seq_idx);
719 if (relayd != NULL) {
720 /* Add stream on the relayd */
721 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
722 ret = relayd_add_stream(&relayd->control_sock, stream->name,
723 path, &stream->relayd_stream_id,
724 stream->chan->tracefile_size, stream->chan->tracefile_count);
725 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
726 if (ret < 0) {
727 goto end;
728 }
729 uatomic_inc(&relayd->refcount);
730 stream->sent_to_relayd = 1;
731 } else {
732 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
733 stream->key, stream->net_seq_idx);
734 ret = -1;
735 goto end;
736 }
737
738 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
739 stream->name, stream->key, stream->net_seq_idx);
740
741 end:
742 rcu_read_unlock();
743 return ret;
744 }
745
746 /*
747 * Find a relayd and close the stream
748 */
749 void close_relayd_stream(struct lttng_consumer_stream *stream)
750 {
751 struct consumer_relayd_sock_pair *relayd;
752
753 /* The stream is not metadata. Get relayd reference if exists. */
754 rcu_read_lock();
755 relayd = consumer_find_relayd(stream->net_seq_idx);
756 if (relayd) {
757 consumer_stream_relayd_close(stream, relayd);
758 }
759 rcu_read_unlock();
760 }
761
762 /*
763 * Handle stream for relayd transmission if the stream applies for network
764 * streaming where the net sequence index is set.
765 *
766 * Return destination file descriptor or negative value on error.
767 */
768 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
769 size_t data_size, unsigned long padding,
770 struct consumer_relayd_sock_pair *relayd)
771 {
772 int outfd = -1, ret;
773 struct lttcomm_relayd_data_hdr data_hdr;
774
775 /* Safety net */
776 assert(stream);
777 assert(relayd);
778
779 /* Reset data header */
780 memset(&data_hdr, 0, sizeof(data_hdr));
781
782 if (stream->metadata_flag) {
783 /* Caller MUST acquire the relayd control socket lock */
784 ret = relayd_send_metadata(&relayd->control_sock, data_size);
785 if (ret < 0) {
786 goto error;
787 }
788
789 /* Metadata are always sent on the control socket. */
790 outfd = relayd->control_sock.sock.fd;
791 } else {
792 /* Set header with stream information */
793 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
794 data_hdr.data_size = htobe32(data_size);
795 data_hdr.padding_size = htobe32(padding);
796 /*
797 * Note that net_seq_num below is assigned with the *current* value of
798 * next_net_seq_num and only after that the next_net_seq_num will be
799 * increment. This is why when issuing a command on the relayd using
800 * this next value, 1 should always be substracted in order to compare
801 * the last seen sequence number on the relayd side to the last sent.
802 */
803 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
804 /* Other fields are zeroed previously */
805
806 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
807 sizeof(data_hdr));
808 if (ret < 0) {
809 goto error;
810 }
811
812 ++stream->next_net_seq_num;
813
814 /* Set to go on data socket */
815 outfd = relayd->data_sock.sock.fd;
816 }
817
818 error:
819 return outfd;
820 }
821
822 /*
823 * Allocate and return a new lttng_consumer_channel object using the given key
824 * to initialize the hash table node.
825 *
826 * On error, return NULL.
827 */
828 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
829 uint64_t session_id,
830 const char *pathname,
831 const char *name,
832 uid_t uid,
833 gid_t gid,
834 uint64_t relayd_id,
835 enum lttng_event_output output,
836 uint64_t tracefile_size,
837 uint64_t tracefile_count,
838 uint64_t session_id_per_pid,
839 unsigned int monitor)
840 {
841 struct lttng_consumer_channel *channel;
842
843 channel = zmalloc(sizeof(*channel));
844 if (channel == NULL) {
845 PERROR("malloc struct lttng_consumer_channel");
846 goto end;
847 }
848
849 channel->key = key;
850 channel->refcount = 0;
851 channel->session_id = session_id;
852 channel->session_id_per_pid = session_id_per_pid;
853 channel->uid = uid;
854 channel->gid = gid;
855 channel->relayd_id = relayd_id;
856 channel->output = output;
857 channel->tracefile_size = tracefile_size;
858 channel->tracefile_count = tracefile_count;
859 channel->monitor = monitor;
860 pthread_mutex_init(&channel->lock, NULL);
861 pthread_mutex_init(&channel->timer_lock, NULL);
862
863 /*
864 * In monitor mode, the streams associated with the channel will be put in
865 * a special list ONLY owned by this channel. So, the refcount is set to 1
866 * here meaning that the channel itself has streams that are referenced.
867 *
868 * On a channel deletion, once the channel is no longer visible, the
869 * refcount is decremented and checked for a zero value to delete it. With
870 * streams in no monitor mode, it will now be safe to destroy the channel.
871 */
872 if (!channel->monitor) {
873 channel->refcount = 1;
874 }
875
876 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
877 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
878
879 strncpy(channel->name, name, sizeof(channel->name));
880 channel->name[sizeof(channel->name) - 1] = '\0';
881
882 lttng_ht_node_init_u64(&channel->node, channel->key);
883
884 channel->wait_fd = -1;
885
886 CDS_INIT_LIST_HEAD(&channel->streams.head);
887
888 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
889
890 end:
891 return channel;
892 }
893
894 /*
895 * Add a channel to the global list protected by a mutex.
896 *
897 * On success 0 is returned else a negative value.
898 */
899 int consumer_add_channel(struct lttng_consumer_channel *channel,
900 struct lttng_consumer_local_data *ctx)
901 {
902 int ret = 0;
903 struct lttng_ht_node_u64 *node;
904 struct lttng_ht_iter iter;
905
906 pthread_mutex_lock(&consumer_data.lock);
907 pthread_mutex_lock(&channel->lock);
908 pthread_mutex_lock(&channel->timer_lock);
909 rcu_read_lock();
910
911 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
912 node = lttng_ht_iter_get_node_u64(&iter);
913 if (node != NULL) {
914 /* Channel already exist. Ignore the insertion */
915 ERR("Consumer add channel key %" PRIu64 " already exists!",
916 channel->key);
917 ret = -EEXIST;
918 goto end;
919 }
920
921 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
922
923 end:
924 rcu_read_unlock();
925 pthread_mutex_unlock(&channel->timer_lock);
926 pthread_mutex_unlock(&channel->lock);
927 pthread_mutex_unlock(&consumer_data.lock);
928
929 if (!ret && channel->wait_fd != -1 &&
930 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
931 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
932 }
933 return ret;
934 }
935
936 /*
937 * Allocate the pollfd structure and the local view of the out fds to avoid
938 * doing a lookup in the linked list and concurrency issues when writing is
939 * needed. Called with consumer_data.lock held.
940 *
941 * Returns the number of fds in the structures.
942 */
943 static int update_poll_array(struct lttng_consumer_local_data *ctx,
944 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
945 struct lttng_ht *ht)
946 {
947 int i = 0;
948 struct lttng_ht_iter iter;
949 struct lttng_consumer_stream *stream;
950
951 assert(ctx);
952 assert(ht);
953 assert(pollfd);
954 assert(local_stream);
955
956 DBG("Updating poll fd array");
957 rcu_read_lock();
958 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
959 /*
960 * Only active streams with an active end point can be added to the
961 * poll set and local stream storage of the thread.
962 *
963 * There is a potential race here for endpoint_status to be updated
964 * just after the check. However, this is OK since the stream(s) will
965 * be deleted once the thread is notified that the end point state has
966 * changed where this function will be called back again.
967 */
968 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
969 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
970 continue;
971 }
972 /*
973 * This clobbers way too much the debug output. Uncomment that if you
974 * need it for debugging purposes.
975 *
976 * DBG("Active FD %d", stream->wait_fd);
977 */
978 (*pollfd)[i].fd = stream->wait_fd;
979 (*pollfd)[i].events = POLLIN | POLLPRI;
980 local_stream[i] = stream;
981 i++;
982 }
983 rcu_read_unlock();
984
985 /*
986 * Insert the consumer_data_pipe at the end of the array and don't
987 * increment i so nb_fd is the number of real FD.
988 */
989 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
990 (*pollfd)[i].events = POLLIN | POLLPRI;
991 return i;
992 }
993
994 /*
995 * Poll on the should_quit pipe and the command socket return -1 on error and
996 * should exit, 0 if data is available on the command socket
997 */
998 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
999 {
1000 int num_rdy;
1001
1002 restart:
1003 num_rdy = poll(consumer_sockpoll, 2, -1);
1004 if (num_rdy == -1) {
1005 /*
1006 * Restart interrupted system call.
1007 */
1008 if (errno == EINTR) {
1009 goto restart;
1010 }
1011 PERROR("Poll error");
1012 goto exit;
1013 }
1014 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1015 DBG("consumer_should_quit wake up");
1016 goto exit;
1017 }
1018 return 0;
1019
1020 exit:
1021 return -1;
1022 }
1023
1024 /*
1025 * Set the error socket.
1026 */
1027 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1028 int sock)
1029 {
1030 ctx->consumer_error_socket = sock;
1031 }
1032
1033 /*
1034 * Set the command socket path.
1035 */
1036 void lttng_consumer_set_command_sock_path(
1037 struct lttng_consumer_local_data *ctx, char *sock)
1038 {
1039 ctx->consumer_command_sock_path = sock;
1040 }
1041
1042 /*
1043 * Send return code to the session daemon.
1044 * If the socket is not defined, we return 0, it is not a fatal error
1045 */
1046 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1047 {
1048 if (ctx->consumer_error_socket > 0) {
1049 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1050 sizeof(enum lttcomm_sessiond_command));
1051 }
1052
1053 return 0;
1054 }
1055
1056 /*
1057 * Close all the tracefiles and stream fds and MUST be called when all
1058 * instances are destroyed i.e. when all threads were joined and are ended.
1059 */
1060 void lttng_consumer_cleanup(void)
1061 {
1062 struct lttng_ht_iter iter;
1063 struct lttng_consumer_channel *channel;
1064
1065 rcu_read_lock();
1066
1067 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1068 node.node) {
1069 consumer_del_channel(channel);
1070 }
1071
1072 rcu_read_unlock();
1073
1074 lttng_ht_destroy(consumer_data.channel_ht);
1075
1076 cleanup_relayd_ht();
1077
1078 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1079
1080 /*
1081 * This HT contains streams that are freed by either the metadata thread or
1082 * the data thread so we do *nothing* on the hash table and simply destroy
1083 * it.
1084 */
1085 lttng_ht_destroy(consumer_data.stream_list_ht);
1086 }
1087
1088 /*
1089 * Called from signal handler.
1090 */
1091 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1092 {
1093 int ret;
1094 consumer_quit = 1;
1095 do {
1096 ret = write(ctx->consumer_should_quit[1], "4", 1);
1097 } while (ret < 0 && errno == EINTR);
1098 if (ret < 0 || ret != 1) {
1099 PERROR("write consumer quit");
1100 }
1101
1102 DBG("Consumer flag that it should quit");
1103 }
1104
1105 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1106 off_t orig_offset)
1107 {
1108 int outfd = stream->out_fd;
1109
1110 /*
1111 * This does a blocking write-and-wait on any page that belongs to the
1112 * subbuffer prior to the one we just wrote.
1113 * Don't care about error values, as these are just hints and ways to
1114 * limit the amount of page cache used.
1115 */
1116 if (orig_offset < stream->max_sb_size) {
1117 return;
1118 }
1119 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1120 stream->max_sb_size,
1121 SYNC_FILE_RANGE_WAIT_BEFORE
1122 | SYNC_FILE_RANGE_WRITE
1123 | SYNC_FILE_RANGE_WAIT_AFTER);
1124 /*
1125 * Give hints to the kernel about how we access the file:
1126 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1127 * we write it.
1128 *
1129 * We need to call fadvise again after the file grows because the
1130 * kernel does not seem to apply fadvise to non-existing parts of the
1131 * file.
1132 *
1133 * Call fadvise _after_ having waited for the page writeback to
1134 * complete because the dirty page writeback semantic is not well
1135 * defined. So it can be expected to lead to lower throughput in
1136 * streaming.
1137 */
1138 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1139 stream->max_sb_size, POSIX_FADV_DONTNEED);
1140 }
1141
1142 /*
1143 * Initialise the necessary environnement :
1144 * - create a new context
1145 * - create the poll_pipe
1146 * - create the should_quit pipe (for signal handler)
1147 * - create the thread pipe (for splice)
1148 *
1149 * Takes a function pointer as argument, this function is called when data is
1150 * available on a buffer. This function is responsible to do the
1151 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1152 * buffer configuration and then kernctl_put_next_subbuf at the end.
1153 *
1154 * Returns a pointer to the new context or NULL on error.
1155 */
1156 struct lttng_consumer_local_data *lttng_consumer_create(
1157 enum lttng_consumer_type type,
1158 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1159 struct lttng_consumer_local_data *ctx),
1160 int (*recv_channel)(struct lttng_consumer_channel *channel),
1161 int (*recv_stream)(struct lttng_consumer_stream *stream),
1162 int (*update_stream)(uint64_t stream_key, uint32_t state))
1163 {
1164 int ret;
1165 struct lttng_consumer_local_data *ctx;
1166
1167 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1168 consumer_data.type == type);
1169 consumer_data.type = type;
1170
1171 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1172 if (ctx == NULL) {
1173 PERROR("allocating context");
1174 goto error;
1175 }
1176
1177 ctx->consumer_error_socket = -1;
1178 ctx->consumer_metadata_socket = -1;
1179 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1180 /* assign the callbacks */
1181 ctx->on_buffer_ready = buffer_ready;
1182 ctx->on_recv_channel = recv_channel;
1183 ctx->on_recv_stream = recv_stream;
1184 ctx->on_update_stream = update_stream;
1185
1186 ctx->consumer_data_pipe = lttng_pipe_open(0);
1187 if (!ctx->consumer_data_pipe) {
1188 goto error_poll_pipe;
1189 }
1190
1191 ret = pipe(ctx->consumer_should_quit);
1192 if (ret < 0) {
1193 PERROR("Error creating recv pipe");
1194 goto error_quit_pipe;
1195 }
1196
1197 ret = pipe(ctx->consumer_thread_pipe);
1198 if (ret < 0) {
1199 PERROR("Error creating thread pipe");
1200 goto error_thread_pipe;
1201 }
1202
1203 ret = pipe(ctx->consumer_channel_pipe);
1204 if (ret < 0) {
1205 PERROR("Error creating channel pipe");
1206 goto error_channel_pipe;
1207 }
1208
1209 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1210 if (!ctx->consumer_metadata_pipe) {
1211 goto error_metadata_pipe;
1212 }
1213
1214 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1215 if (ret < 0) {
1216 goto error_splice_pipe;
1217 }
1218
1219 return ctx;
1220
1221 error_splice_pipe:
1222 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1223 error_metadata_pipe:
1224 utils_close_pipe(ctx->consumer_channel_pipe);
1225 error_channel_pipe:
1226 utils_close_pipe(ctx->consumer_thread_pipe);
1227 error_thread_pipe:
1228 utils_close_pipe(ctx->consumer_should_quit);
1229 error_quit_pipe:
1230 lttng_pipe_destroy(ctx->consumer_data_pipe);
1231 error_poll_pipe:
1232 free(ctx);
1233 error:
1234 return NULL;
1235 }
1236
1237 /*
1238 * Close all fds associated with the instance and free the context.
1239 */
1240 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1241 {
1242 int ret;
1243
1244 DBG("Consumer destroying it. Closing everything.");
1245
1246 ret = close(ctx->consumer_error_socket);
1247 if (ret) {
1248 PERROR("close");
1249 }
1250 ret = close(ctx->consumer_metadata_socket);
1251 if (ret) {
1252 PERROR("close");
1253 }
1254 utils_close_pipe(ctx->consumer_thread_pipe);
1255 utils_close_pipe(ctx->consumer_channel_pipe);
1256 lttng_pipe_destroy(ctx->consumer_data_pipe);
1257 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1258 utils_close_pipe(ctx->consumer_should_quit);
1259 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1260
1261 unlink(ctx->consumer_command_sock_path);
1262 free(ctx);
1263 }
1264
1265 /*
1266 * Write the metadata stream id on the specified file descriptor.
1267 */
1268 static int write_relayd_metadata_id(int fd,
1269 struct lttng_consumer_stream *stream,
1270 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1271 {
1272 int ret;
1273 struct lttcomm_relayd_metadata_payload hdr;
1274
1275 hdr.stream_id = htobe64(stream->relayd_stream_id);
1276 hdr.padding_size = htobe32(padding);
1277 do {
1278 ret = write(fd, (void *) &hdr, sizeof(hdr));
1279 } while (ret < 0 && errno == EINTR);
1280 if (ret < 0 || ret != sizeof(hdr)) {
1281 /*
1282 * This error means that the fd's end is closed so ignore the perror
1283 * not to clubber the error output since this can happen in a normal
1284 * code path.
1285 */
1286 if (errno != EPIPE) {
1287 PERROR("write metadata stream id");
1288 }
1289 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1290 /*
1291 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1292 * handle writting the missing part so report that as an error and
1293 * don't lie to the caller.
1294 */
1295 ret = -1;
1296 goto end;
1297 }
1298 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1299 stream->relayd_stream_id, padding);
1300
1301 end:
1302 return ret;
1303 }
1304
1305 /*
1306 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1307 * core function for writing trace buffers to either the local filesystem or
1308 * the network.
1309 *
1310 * It must be called with the stream lock held.
1311 *
1312 * Careful review MUST be put if any changes occur!
1313 *
1314 * Returns the number of bytes written
1315 */
1316 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1317 struct lttng_consumer_local_data *ctx,
1318 struct lttng_consumer_stream *stream, unsigned long len,
1319 unsigned long padding)
1320 {
1321 unsigned long mmap_offset;
1322 void *mmap_base;
1323 ssize_t ret = 0, written = 0;
1324 off_t orig_offset = stream->out_fd_offset;
1325 /* Default is on the disk */
1326 int outfd = stream->out_fd;
1327 struct consumer_relayd_sock_pair *relayd = NULL;
1328 unsigned int relayd_hang_up = 0;
1329
1330 /* RCU lock for the relayd pointer */
1331 rcu_read_lock();
1332
1333 /* Flag that the current stream if set for network streaming. */
1334 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1335 relayd = consumer_find_relayd(stream->net_seq_idx);
1336 if (relayd == NULL) {
1337 goto end;
1338 }
1339 }
1340
1341 /* get the offset inside the fd to mmap */
1342 switch (consumer_data.type) {
1343 case LTTNG_CONSUMER_KERNEL:
1344 mmap_base = stream->mmap_base;
1345 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1346 break;
1347 case LTTNG_CONSUMER32_UST:
1348 case LTTNG_CONSUMER64_UST:
1349 mmap_base = lttng_ustctl_get_mmap_base(stream);
1350 if (!mmap_base) {
1351 ERR("read mmap get mmap base for stream %s", stream->name);
1352 written = -1;
1353 goto end;
1354 }
1355 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1356
1357 break;
1358 default:
1359 ERR("Unknown consumer_data type");
1360 assert(0);
1361 }
1362 if (ret != 0) {
1363 errno = -ret;
1364 PERROR("tracer ctl get_mmap_read_offset");
1365 written = ret;
1366 goto end;
1367 }
1368
1369 /* Handle stream on the relayd if the output is on the network */
1370 if (relayd) {
1371 unsigned long netlen = len;
1372
1373 /*
1374 * Lock the control socket for the complete duration of the function
1375 * since from this point on we will use the socket.
1376 */
1377 if (stream->metadata_flag) {
1378 /* Metadata requires the control socket. */
1379 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1380 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1381 }
1382
1383 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1384 if (ret >= 0) {
1385 /* Use the returned socket. */
1386 outfd = ret;
1387
1388 /* Write metadata stream id before payload */
1389 if (stream->metadata_flag) {
1390 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1391 if (ret < 0) {
1392 written = ret;
1393 /* Socket operation failed. We consider the relayd dead */
1394 if (ret == -EPIPE || ret == -EINVAL) {
1395 relayd_hang_up = 1;
1396 goto write_error;
1397 }
1398 goto end;
1399 }
1400 }
1401 } else {
1402 /* Socket operation failed. We consider the relayd dead */
1403 if (ret == -EPIPE || ret == -EINVAL) {
1404 relayd_hang_up = 1;
1405 goto write_error;
1406 }
1407 /* Else, use the default set before which is the filesystem. */
1408 }
1409 } else {
1410 /* No streaming, we have to set the len with the full padding */
1411 len += padding;
1412
1413 /*
1414 * Check if we need to change the tracefile before writing the packet.
1415 */
1416 if (stream->chan->tracefile_size > 0 &&
1417 (stream->tracefile_size_current + len) >
1418 stream->chan->tracefile_size) {
1419 ret = utils_rotate_stream_file(stream->chan->pathname,
1420 stream->name, stream->chan->tracefile_size,
1421 stream->chan->tracefile_count, stream->uid, stream->gid,
1422 stream->out_fd, &(stream->tracefile_count_current));
1423 if (ret < 0) {
1424 ERR("Rotating output file");
1425 goto end;
1426 }
1427 outfd = stream->out_fd = ret;
1428 /* Reset current size because we just perform a rotation. */
1429 stream->tracefile_size_current = 0;
1430 }
1431 stream->tracefile_size_current += len;
1432 }
1433
1434 while (len > 0) {
1435 do {
1436 ret = write(outfd, mmap_base + mmap_offset, len);
1437 } while (ret < 0 && errno == EINTR);
1438 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1439 if (ret < 0) {
1440 /*
1441 * This is possible if the fd is closed on the other side (outfd)
1442 * or any write problem. It can be verbose a bit for a normal
1443 * execution if for instance the relayd is stopped abruptly. This
1444 * can happen so set this to a DBG statement.
1445 */
1446 DBG("Error in file write mmap");
1447 if (written == 0) {
1448 written = ret;
1449 }
1450 /* Socket operation failed. We consider the relayd dead */
1451 if (errno == EPIPE || errno == EINVAL) {
1452 relayd_hang_up = 1;
1453 goto write_error;
1454 }
1455 goto end;
1456 } else if (ret > len) {
1457 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1458 written += ret;
1459 goto end;
1460 } else {
1461 len -= ret;
1462 mmap_offset += ret;
1463 }
1464
1465 /* This call is useless on a socket so better save a syscall. */
1466 if (!relayd) {
1467 /* This won't block, but will start writeout asynchronously */
1468 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1469 SYNC_FILE_RANGE_WRITE);
1470 stream->out_fd_offset += ret;
1471 }
1472 written += ret;
1473 }
1474 lttng_consumer_sync_trace_file(stream, orig_offset);
1475
1476 write_error:
1477 /*
1478 * This is a special case that the relayd has closed its socket. Let's
1479 * cleanup the relayd object and all associated streams.
1480 */
1481 if (relayd && relayd_hang_up) {
1482 cleanup_relayd(relayd, ctx);
1483 }
1484
1485 end:
1486 /* Unlock only if ctrl socket used */
1487 if (relayd && stream->metadata_flag) {
1488 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1489 }
1490
1491 rcu_read_unlock();
1492 return written;
1493 }
1494
1495 /*
1496 * Splice the data from the ring buffer to the tracefile.
1497 *
1498 * It must be called with the stream lock held.
1499 *
1500 * Returns the number of bytes spliced.
1501 */
1502 ssize_t lttng_consumer_on_read_subbuffer_splice(
1503 struct lttng_consumer_local_data *ctx,
1504 struct lttng_consumer_stream *stream, unsigned long len,
1505 unsigned long padding)
1506 {
1507 ssize_t ret = 0, written = 0, ret_splice = 0;
1508 loff_t offset = 0;
1509 off_t orig_offset = stream->out_fd_offset;
1510 int fd = stream->wait_fd;
1511 /* Default is on the disk */
1512 int outfd = stream->out_fd;
1513 struct consumer_relayd_sock_pair *relayd = NULL;
1514 int *splice_pipe;
1515 unsigned int relayd_hang_up = 0;
1516
1517 switch (consumer_data.type) {
1518 case LTTNG_CONSUMER_KERNEL:
1519 break;
1520 case LTTNG_CONSUMER32_UST:
1521 case LTTNG_CONSUMER64_UST:
1522 /* Not supported for user space tracing */
1523 return -ENOSYS;
1524 default:
1525 ERR("Unknown consumer_data type");
1526 assert(0);
1527 }
1528
1529 /* RCU lock for the relayd pointer */
1530 rcu_read_lock();
1531
1532 /* Flag that the current stream if set for network streaming. */
1533 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1534 relayd = consumer_find_relayd(stream->net_seq_idx);
1535 if (relayd == NULL) {
1536 goto end;
1537 }
1538 }
1539
1540 /*
1541 * Choose right pipe for splice. Metadata and trace data are handled by
1542 * different threads hence the use of two pipes in order not to race or
1543 * corrupt the written data.
1544 */
1545 if (stream->metadata_flag) {
1546 splice_pipe = ctx->consumer_splice_metadata_pipe;
1547 } else {
1548 splice_pipe = ctx->consumer_thread_pipe;
1549 }
1550
1551 /* Write metadata stream id before payload */
1552 if (relayd) {
1553 int total_len = len;
1554
1555 if (stream->metadata_flag) {
1556 /*
1557 * Lock the control socket for the complete duration of the function
1558 * since from this point on we will use the socket.
1559 */
1560 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1561
1562 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1563 padding);
1564 if (ret < 0) {
1565 written = ret;
1566 /* Socket operation failed. We consider the relayd dead */
1567 if (ret == -EBADF) {
1568 WARN("Remote relayd disconnected. Stopping");
1569 relayd_hang_up = 1;
1570 goto write_error;
1571 }
1572 goto end;
1573 }
1574
1575 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1576 }
1577
1578 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1579 if (ret >= 0) {
1580 /* Use the returned socket. */
1581 outfd = ret;
1582 } else {
1583 /* Socket operation failed. We consider the relayd dead */
1584 if (ret == -EBADF) {
1585 WARN("Remote relayd disconnected. Stopping");
1586 relayd_hang_up = 1;
1587 goto write_error;
1588 }
1589 goto end;
1590 }
1591 } else {
1592 /* No streaming, we have to set the len with the full padding */
1593 len += padding;
1594
1595 /*
1596 * Check if we need to change the tracefile before writing the packet.
1597 */
1598 if (stream->chan->tracefile_size > 0 &&
1599 (stream->tracefile_size_current + len) >
1600 stream->chan->tracefile_size) {
1601 ret = utils_rotate_stream_file(stream->chan->pathname,
1602 stream->name, stream->chan->tracefile_size,
1603 stream->chan->tracefile_count, stream->uid, stream->gid,
1604 stream->out_fd, &(stream->tracefile_count_current));
1605 if (ret < 0) {
1606 ERR("Rotating output file");
1607 goto end;
1608 }
1609 outfd = stream->out_fd = ret;
1610 /* Reset current size because we just perform a rotation. */
1611 stream->tracefile_size_current = 0;
1612 }
1613 stream->tracefile_size_current += len;
1614 }
1615
1616 while (len > 0) {
1617 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1618 (unsigned long)offset, len, fd, splice_pipe[1]);
1619 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1620 SPLICE_F_MOVE | SPLICE_F_MORE);
1621 DBG("splice chan to pipe, ret %zd", ret_splice);
1622 if (ret_splice < 0) {
1623 PERROR("Error in relay splice");
1624 if (written == 0) {
1625 written = ret_splice;
1626 }
1627 ret = errno;
1628 goto splice_error;
1629 }
1630
1631 /* Handle stream on the relayd if the output is on the network */
1632 if (relayd) {
1633 if (stream->metadata_flag) {
1634 size_t metadata_payload_size =
1635 sizeof(struct lttcomm_relayd_metadata_payload);
1636
1637 /* Update counter to fit the spliced data */
1638 ret_splice += metadata_payload_size;
1639 len += metadata_payload_size;
1640 /*
1641 * We do this so the return value can match the len passed as
1642 * argument to this function.
1643 */
1644 written -= metadata_payload_size;
1645 }
1646 }
1647
1648 /* Splice data out */
1649 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1650 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1651 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1652 if (ret_splice < 0) {
1653 PERROR("Error in file splice");
1654 if (written == 0) {
1655 written = ret_splice;
1656 }
1657 /* Socket operation failed. We consider the relayd dead */
1658 if (errno == EBADF || errno == EPIPE) {
1659 WARN("Remote relayd disconnected. Stopping");
1660 relayd_hang_up = 1;
1661 goto write_error;
1662 }
1663 ret = errno;
1664 goto splice_error;
1665 } else if (ret_splice > len) {
1666 errno = EINVAL;
1667 PERROR("Wrote more data than requested %zd (len: %lu)",
1668 ret_splice, len);
1669 written += ret_splice;
1670 ret = errno;
1671 goto splice_error;
1672 }
1673 len -= ret_splice;
1674
1675 /* This call is useless on a socket so better save a syscall. */
1676 if (!relayd) {
1677 /* This won't block, but will start writeout asynchronously */
1678 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1679 SYNC_FILE_RANGE_WRITE);
1680 stream->out_fd_offset += ret_splice;
1681 }
1682 written += ret_splice;
1683 }
1684 lttng_consumer_sync_trace_file(stream, orig_offset);
1685
1686 ret = ret_splice;
1687
1688 goto end;
1689
1690 write_error:
1691 /*
1692 * This is a special case that the relayd has closed its socket. Let's
1693 * cleanup the relayd object and all associated streams.
1694 */
1695 if (relayd && relayd_hang_up) {
1696 cleanup_relayd(relayd, ctx);
1697 /* Skip splice error so the consumer does not fail */
1698 goto end;
1699 }
1700
1701 splice_error:
1702 /* send the appropriate error description to sessiond */
1703 switch (ret) {
1704 case EINVAL:
1705 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1706 break;
1707 case ENOMEM:
1708 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1709 break;
1710 case ESPIPE:
1711 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1712 break;
1713 }
1714
1715 end:
1716 if (relayd && stream->metadata_flag) {
1717 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1718 }
1719
1720 rcu_read_unlock();
1721 return written;
1722 }
1723
1724 /*
1725 * Take a snapshot for a specific fd
1726 *
1727 * Returns 0 on success, < 0 on error
1728 */
1729 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1730 {
1731 switch (consumer_data.type) {
1732 case LTTNG_CONSUMER_KERNEL:
1733 return lttng_kconsumer_take_snapshot(stream);
1734 case LTTNG_CONSUMER32_UST:
1735 case LTTNG_CONSUMER64_UST:
1736 return lttng_ustconsumer_take_snapshot(stream);
1737 default:
1738 ERR("Unknown consumer_data type");
1739 assert(0);
1740 return -ENOSYS;
1741 }
1742 }
1743
1744 /*
1745 * Get the produced position
1746 *
1747 * Returns 0 on success, < 0 on error
1748 */
1749 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1750 unsigned long *pos)
1751 {
1752 switch (consumer_data.type) {
1753 case LTTNG_CONSUMER_KERNEL:
1754 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1755 case LTTNG_CONSUMER32_UST:
1756 case LTTNG_CONSUMER64_UST:
1757 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1758 default:
1759 ERR("Unknown consumer_data type");
1760 assert(0);
1761 return -ENOSYS;
1762 }
1763 }
1764
1765 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1766 int sock, struct pollfd *consumer_sockpoll)
1767 {
1768 switch (consumer_data.type) {
1769 case LTTNG_CONSUMER_KERNEL:
1770 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1771 case LTTNG_CONSUMER32_UST:
1772 case LTTNG_CONSUMER64_UST:
1773 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1774 default:
1775 ERR("Unknown consumer_data type");
1776 assert(0);
1777 return -ENOSYS;
1778 }
1779 }
1780
1781 /*
1782 * Iterate over all streams of the hashtable and free them properly.
1783 *
1784 * WARNING: *MUST* be used with data stream only.
1785 */
1786 static void destroy_data_stream_ht(struct lttng_ht *ht)
1787 {
1788 struct lttng_ht_iter iter;
1789 struct lttng_consumer_stream *stream;
1790
1791 if (ht == NULL) {
1792 return;
1793 }
1794
1795 rcu_read_lock();
1796 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1797 /*
1798 * Ignore return value since we are currently cleaning up so any error
1799 * can't be handled.
1800 */
1801 (void) consumer_del_stream(stream, ht);
1802 }
1803 rcu_read_unlock();
1804
1805 lttng_ht_destroy(ht);
1806 }
1807
1808 /*
1809 * Iterate over all streams of the hashtable and free them properly.
1810 *
1811 * XXX: Should not be only for metadata stream or else use an other name.
1812 */
1813 static void destroy_stream_ht(struct lttng_ht *ht)
1814 {
1815 struct lttng_ht_iter iter;
1816 struct lttng_consumer_stream *stream;
1817
1818 if (ht == NULL) {
1819 return;
1820 }
1821
1822 rcu_read_lock();
1823 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1824 /*
1825 * Ignore return value since we are currently cleaning up so any error
1826 * can't be handled.
1827 */
1828 (void) consumer_del_metadata_stream(stream, ht);
1829 }
1830 rcu_read_unlock();
1831
1832 lttng_ht_destroy(ht);
1833 }
1834
1835 void lttng_consumer_close_metadata(void)
1836 {
1837 switch (consumer_data.type) {
1838 case LTTNG_CONSUMER_KERNEL:
1839 /*
1840 * The Kernel consumer has a different metadata scheme so we don't
1841 * close anything because the stream will be closed by the session
1842 * daemon.
1843 */
1844 break;
1845 case LTTNG_CONSUMER32_UST:
1846 case LTTNG_CONSUMER64_UST:
1847 /*
1848 * Close all metadata streams. The metadata hash table is passed and
1849 * this call iterates over it by closing all wakeup fd. This is safe
1850 * because at this point we are sure that the metadata producer is
1851 * either dead or blocked.
1852 */
1853 lttng_ustconsumer_close_metadata(metadata_ht);
1854 break;
1855 default:
1856 ERR("Unknown consumer_data type");
1857 assert(0);
1858 }
1859 }
1860
1861 /*
1862 * Clean up a metadata stream and free its memory.
1863 */
1864 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1865 struct lttng_ht *ht)
1866 {
1867 int ret;
1868 struct lttng_ht_iter iter;
1869 struct lttng_consumer_channel *free_chan = NULL;
1870 struct consumer_relayd_sock_pair *relayd;
1871
1872 assert(stream);
1873 /*
1874 * This call should NEVER receive regular stream. It must always be
1875 * metadata stream and this is crucial for data structure synchronization.
1876 */
1877 assert(stream->metadata_flag);
1878
1879 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1880
1881 if (ht == NULL) {
1882 /* Means the stream was allocated but not successfully added */
1883 goto free_stream_rcu;
1884 }
1885
1886 pthread_mutex_lock(&consumer_data.lock);
1887 pthread_mutex_lock(&stream->chan->lock);
1888 pthread_mutex_lock(&stream->lock);
1889
1890 switch (consumer_data.type) {
1891 case LTTNG_CONSUMER_KERNEL:
1892 if (stream->mmap_base != NULL) {
1893 ret = munmap(stream->mmap_base, stream->mmap_len);
1894 if (ret != 0) {
1895 PERROR("munmap metadata stream");
1896 }
1897 }
1898 if (stream->wait_fd >= 0) {
1899 ret = close(stream->wait_fd);
1900 if (ret < 0) {
1901 PERROR("close kernel metadata wait_fd");
1902 }
1903 }
1904 break;
1905 case LTTNG_CONSUMER32_UST:
1906 case LTTNG_CONSUMER64_UST:
1907 if (stream->monitor) {
1908 /* close the write-side in close_metadata */
1909 ret = close(stream->ust_metadata_poll_pipe[0]);
1910 if (ret < 0) {
1911 PERROR("Close UST metadata read-side poll pipe");
1912 }
1913 }
1914 lttng_ustconsumer_del_stream(stream);
1915 break;
1916 default:
1917 ERR("Unknown consumer_data type");
1918 assert(0);
1919 goto end;
1920 }
1921
1922 rcu_read_lock();
1923 iter.iter.node = &stream->node.node;
1924 ret = lttng_ht_del(ht, &iter);
1925 assert(!ret);
1926
1927 iter.iter.node = &stream->node_channel_id.node;
1928 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1929 assert(!ret);
1930
1931 iter.iter.node = &stream->node_session_id.node;
1932 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1933 assert(!ret);
1934 rcu_read_unlock();
1935
1936 if (stream->out_fd >= 0) {
1937 ret = close(stream->out_fd);
1938 if (ret) {
1939 PERROR("close");
1940 }
1941 }
1942
1943 /* Check and cleanup relayd */
1944 rcu_read_lock();
1945 relayd = consumer_find_relayd(stream->net_seq_idx);
1946 if (relayd != NULL) {
1947 uatomic_dec(&relayd->refcount);
1948 assert(uatomic_read(&relayd->refcount) >= 0);
1949
1950 /* Closing streams requires to lock the control socket. */
1951 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1952 ret = relayd_send_close_stream(&relayd->control_sock,
1953 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1954 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1955 if (ret < 0) {
1956 DBG("Unable to close stream on the relayd. Continuing");
1957 /*
1958 * Continue here. There is nothing we can do for the relayd.
1959 * Chances are that the relayd has closed the socket so we just
1960 * continue cleaning up.
1961 */
1962 }
1963
1964 /* Both conditions are met, we destroy the relayd. */
1965 if (uatomic_read(&relayd->refcount) == 0 &&
1966 uatomic_read(&relayd->destroy_flag)) {
1967 consumer_destroy_relayd(relayd);
1968 }
1969 }
1970 rcu_read_unlock();
1971
1972 /* Atomically decrement channel refcount since other threads can use it. */
1973 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1974 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1975 /* Go for channel deletion! */
1976 free_chan = stream->chan;
1977 }
1978
1979 end:
1980 /*
1981 * Nullify the stream reference so it is not used after deletion. The
1982 * channel lock MUST be acquired before being able to check for
1983 * a NULL pointer value.
1984 */
1985 stream->chan->metadata_stream = NULL;
1986
1987 pthread_mutex_unlock(&stream->lock);
1988 pthread_mutex_unlock(&stream->chan->lock);
1989 pthread_mutex_unlock(&consumer_data.lock);
1990
1991 if (free_chan) {
1992 consumer_del_channel(free_chan);
1993 }
1994
1995 free_stream_rcu:
1996 call_rcu(&stream->node.head, free_stream_rcu);
1997 }
1998
1999 /*
2000 * Action done with the metadata stream when adding it to the consumer internal
2001 * data structures to handle it.
2002 */
2003 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2004 {
2005 struct lttng_ht *ht = metadata_ht;
2006 int ret = 0;
2007 struct lttng_ht_iter iter;
2008 struct lttng_ht_node_u64 *node;
2009
2010 assert(stream);
2011 assert(ht);
2012
2013 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2014
2015 pthread_mutex_lock(&consumer_data.lock);
2016 pthread_mutex_lock(&stream->chan->lock);
2017 pthread_mutex_lock(&stream->chan->timer_lock);
2018 pthread_mutex_lock(&stream->lock);
2019
2020 /*
2021 * From here, refcounts are updated so be _careful_ when returning an error
2022 * after this point.
2023 */
2024
2025 rcu_read_lock();
2026
2027 /*
2028 * Lookup the stream just to make sure it does not exist in our internal
2029 * state. This should NEVER happen.
2030 */
2031 lttng_ht_lookup(ht, &stream->key, &iter);
2032 node = lttng_ht_iter_get_node_u64(&iter);
2033 assert(!node);
2034
2035 /*
2036 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2037 * in terms of destroying the associated channel, because the action that
2038 * causes the count to become 0 also causes a stream to be added. The
2039 * channel deletion will thus be triggered by the following removal of this
2040 * stream.
2041 */
2042 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2043 /* Increment refcount before decrementing nb_init_stream_left */
2044 cmm_smp_wmb();
2045 uatomic_dec(&stream->chan->nb_init_stream_left);
2046 }
2047
2048 lttng_ht_add_unique_u64(ht, &stream->node);
2049
2050 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2051 &stream->node_channel_id);
2052
2053 /*
2054 * Add stream to the stream_list_ht of the consumer data. No need to steal
2055 * the key since the HT does not use it and we allow to add redundant keys
2056 * into this table.
2057 */
2058 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2059
2060 rcu_read_unlock();
2061
2062 pthread_mutex_unlock(&stream->lock);
2063 pthread_mutex_unlock(&stream->chan->lock);
2064 pthread_mutex_unlock(&stream->chan->timer_lock);
2065 pthread_mutex_unlock(&consumer_data.lock);
2066 return ret;
2067 }
2068
2069 /*
2070 * Delete data stream that are flagged for deletion (endpoint_status).
2071 */
2072 static void validate_endpoint_status_data_stream(void)
2073 {
2074 struct lttng_ht_iter iter;
2075 struct lttng_consumer_stream *stream;
2076
2077 DBG("Consumer delete flagged data stream");
2078
2079 rcu_read_lock();
2080 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2081 /* Validate delete flag of the stream */
2082 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2083 continue;
2084 }
2085 /* Delete it right now */
2086 consumer_del_stream(stream, data_ht);
2087 }
2088 rcu_read_unlock();
2089 }
2090
2091 /*
2092 * Delete metadata stream that are flagged for deletion (endpoint_status).
2093 */
2094 static void validate_endpoint_status_metadata_stream(
2095 struct lttng_poll_event *pollset)
2096 {
2097 struct lttng_ht_iter iter;
2098 struct lttng_consumer_stream *stream;
2099
2100 DBG("Consumer delete flagged metadata stream");
2101
2102 assert(pollset);
2103
2104 rcu_read_lock();
2105 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2106 /* Validate delete flag of the stream */
2107 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2108 continue;
2109 }
2110 /*
2111 * Remove from pollset so the metadata thread can continue without
2112 * blocking on a deleted stream.
2113 */
2114 lttng_poll_del(pollset, stream->wait_fd);
2115
2116 /* Delete it right now */
2117 consumer_del_metadata_stream(stream, metadata_ht);
2118 }
2119 rcu_read_unlock();
2120 }
2121
2122 /*
2123 * Thread polls on metadata file descriptor and write them on disk or on the
2124 * network.
2125 */
2126 void *consumer_thread_metadata_poll(void *data)
2127 {
2128 int ret, i, pollfd;
2129 uint32_t revents, nb_fd;
2130 struct lttng_consumer_stream *stream = NULL;
2131 struct lttng_ht_iter iter;
2132 struct lttng_ht_node_u64 *node;
2133 struct lttng_poll_event events;
2134 struct lttng_consumer_local_data *ctx = data;
2135 ssize_t len;
2136
2137 rcu_register_thread();
2138
2139 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2140 if (!metadata_ht) {
2141 /* ENOMEM at this point. Better to bail out. */
2142 goto end_ht;
2143 }
2144
2145 DBG("Thread metadata poll started");
2146
2147 /* Size is set to 1 for the consumer_metadata pipe */
2148 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2149 if (ret < 0) {
2150 ERR("Poll set creation failed");
2151 goto end_poll;
2152 }
2153
2154 ret = lttng_poll_add(&events,
2155 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2156 if (ret < 0) {
2157 goto end;
2158 }
2159
2160 /* Main loop */
2161 DBG("Metadata main loop started");
2162
2163 while (1) {
2164 /* Only the metadata pipe is set */
2165 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2166 goto end;
2167 }
2168
2169 restart:
2170 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2171 ret = lttng_poll_wait(&events, -1);
2172 DBG("Metadata event catched in thread");
2173 if (ret < 0) {
2174 if (errno == EINTR) {
2175 ERR("Poll EINTR catched");
2176 goto restart;
2177 }
2178 goto error;
2179 }
2180
2181 nb_fd = ret;
2182
2183 /* From here, the event is a metadata wait fd */
2184 for (i = 0; i < nb_fd; i++) {
2185 revents = LTTNG_POLL_GETEV(&events, i);
2186 pollfd = LTTNG_POLL_GETFD(&events, i);
2187
2188 /* Just don't waste time if no returned events for the fd */
2189 if (!revents) {
2190 continue;
2191 }
2192
2193 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2194 if (revents & (LPOLLERR | LPOLLHUP )) {
2195 DBG("Metadata thread pipe hung up");
2196 /*
2197 * Remove the pipe from the poll set and continue the loop
2198 * since their might be data to consume.
2199 */
2200 lttng_poll_del(&events,
2201 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2202 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2203 continue;
2204 } else if (revents & LPOLLIN) {
2205 ssize_t pipe_len;
2206
2207 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2208 &stream, sizeof(stream));
2209 if (pipe_len < 0) {
2210 ERR("read metadata stream, ret: %zd", pipe_len);
2211 /*
2212 * Continue here to handle the rest of the streams.
2213 */
2214 continue;
2215 }
2216
2217 /* A NULL stream means that the state has changed. */
2218 if (stream == NULL) {
2219 /* Check for deleted streams. */
2220 validate_endpoint_status_metadata_stream(&events);
2221 goto restart;
2222 }
2223
2224 DBG("Adding metadata stream %d to poll set",
2225 stream->wait_fd);
2226
2227 /* Add metadata stream to the global poll events list */
2228 lttng_poll_add(&events, stream->wait_fd,
2229 LPOLLIN | LPOLLPRI);
2230 }
2231
2232 /* Handle other stream */
2233 continue;
2234 }
2235
2236 rcu_read_lock();
2237 {
2238 uint64_t tmp_id = (uint64_t) pollfd;
2239
2240 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2241 }
2242 node = lttng_ht_iter_get_node_u64(&iter);
2243 assert(node);
2244
2245 stream = caa_container_of(node, struct lttng_consumer_stream,
2246 node);
2247
2248 /* Check for error event */
2249 if (revents & (LPOLLERR | LPOLLHUP)) {
2250 DBG("Metadata fd %d is hup|err.", pollfd);
2251 if (!stream->hangup_flush_done
2252 && (consumer_data.type == LTTNG_CONSUMER32_UST
2253 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2254 DBG("Attempting to flush and consume the UST buffers");
2255 lttng_ustconsumer_on_stream_hangup(stream);
2256
2257 /* We just flushed the stream now read it. */
2258 do {
2259 len = ctx->on_buffer_ready(stream, ctx);
2260 /*
2261 * We don't check the return value here since if we get
2262 * a negative len, it means an error occured thus we
2263 * simply remove it from the poll set and free the
2264 * stream.
2265 */
2266 } while (len > 0);
2267 }
2268
2269 lttng_poll_del(&events, stream->wait_fd);
2270 /*
2271 * This call update the channel states, closes file descriptors
2272 * and securely free the stream.
2273 */
2274 consumer_del_metadata_stream(stream, metadata_ht);
2275 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2276 /* Get the data out of the metadata file descriptor */
2277 DBG("Metadata available on fd %d", pollfd);
2278 assert(stream->wait_fd == pollfd);
2279
2280 do {
2281 len = ctx->on_buffer_ready(stream, ctx);
2282 /*
2283 * We don't check the return value here since if we get
2284 * a negative len, it means an error occured thus we
2285 * simply remove it from the poll set and free the
2286 * stream.
2287 */
2288 } while (len > 0);
2289
2290 /* It's ok to have an unavailable sub-buffer */
2291 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2292 /* Clean up stream from consumer and free it. */
2293 lttng_poll_del(&events, stream->wait_fd);
2294 consumer_del_metadata_stream(stream, metadata_ht);
2295 }
2296 }
2297
2298 /* Release RCU lock for the stream looked up */
2299 rcu_read_unlock();
2300 }
2301 }
2302
2303 error:
2304 end:
2305 DBG("Metadata poll thread exiting");
2306
2307 lttng_poll_clean(&events);
2308 end_poll:
2309 destroy_stream_ht(metadata_ht);
2310 end_ht:
2311 rcu_unregister_thread();
2312 return NULL;
2313 }
2314
2315 /*
2316 * This thread polls the fds in the set to consume the data and write
2317 * it to tracefile if necessary.
2318 */
2319 void *consumer_thread_data_poll(void *data)
2320 {
2321 int num_rdy, num_hup, high_prio, ret, i;
2322 struct pollfd *pollfd = NULL;
2323 /* local view of the streams */
2324 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2325 /* local view of consumer_data.fds_count */
2326 int nb_fd = 0;
2327 struct lttng_consumer_local_data *ctx = data;
2328 ssize_t len;
2329
2330 rcu_register_thread();
2331
2332 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2333 if (data_ht == NULL) {
2334 /* ENOMEM at this point. Better to bail out. */
2335 goto end;
2336 }
2337
2338 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2339 if (local_stream == NULL) {
2340 PERROR("local_stream malloc");
2341 goto end;
2342 }
2343
2344 while (1) {
2345 high_prio = 0;
2346 num_hup = 0;
2347
2348 /*
2349 * the fds set has been updated, we need to update our
2350 * local array as well
2351 */
2352 pthread_mutex_lock(&consumer_data.lock);
2353 if (consumer_data.need_update) {
2354 free(pollfd);
2355 pollfd = NULL;
2356
2357 free(local_stream);
2358 local_stream = NULL;
2359
2360 /* allocate for all fds + 1 for the consumer_data_pipe */
2361 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2362 if (pollfd == NULL) {
2363 PERROR("pollfd malloc");
2364 pthread_mutex_unlock(&consumer_data.lock);
2365 goto end;
2366 }
2367
2368 /* allocate for all fds + 1 for the consumer_data_pipe */
2369 local_stream = zmalloc((consumer_data.stream_count + 1) *
2370 sizeof(struct lttng_consumer_stream *));
2371 if (local_stream == NULL) {
2372 PERROR("local_stream malloc");
2373 pthread_mutex_unlock(&consumer_data.lock);
2374 goto end;
2375 }
2376 ret = update_poll_array(ctx, &pollfd, local_stream,
2377 data_ht);
2378 if (ret < 0) {
2379 ERR("Error in allocating pollfd or local_outfds");
2380 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2381 pthread_mutex_unlock(&consumer_data.lock);
2382 goto end;
2383 }
2384 nb_fd = ret;
2385 consumer_data.need_update = 0;
2386 }
2387 pthread_mutex_unlock(&consumer_data.lock);
2388
2389 /* No FDs and consumer_quit, consumer_cleanup the thread */
2390 if (nb_fd == 0 && consumer_quit == 1) {
2391 goto end;
2392 }
2393 /* poll on the array of fds */
2394 restart:
2395 DBG("polling on %d fd", nb_fd + 1);
2396 num_rdy = poll(pollfd, nb_fd + 1, -1);
2397 DBG("poll num_rdy : %d", num_rdy);
2398 if (num_rdy == -1) {
2399 /*
2400 * Restart interrupted system call.
2401 */
2402 if (errno == EINTR) {
2403 goto restart;
2404 }
2405 PERROR("Poll error");
2406 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2407 goto end;
2408 } else if (num_rdy == 0) {
2409 DBG("Polling thread timed out");
2410 goto end;
2411 }
2412
2413 /*
2414 * If the consumer_data_pipe triggered poll go directly to the
2415 * beginning of the loop to update the array. We want to prioritize
2416 * array update over low-priority reads.
2417 */
2418 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2419 ssize_t pipe_readlen;
2420
2421 DBG("consumer_data_pipe wake up");
2422 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2423 &new_stream, sizeof(new_stream));
2424 if (pipe_readlen < 0) {
2425 ERR("Consumer data pipe ret %zd", pipe_readlen);
2426 /* Continue so we can at least handle the current stream(s). */
2427 continue;
2428 }
2429
2430 /*
2431 * If the stream is NULL, just ignore it. It's also possible that
2432 * the sessiond poll thread changed the consumer_quit state and is
2433 * waking us up to test it.
2434 */
2435 if (new_stream == NULL) {
2436 validate_endpoint_status_data_stream();
2437 continue;
2438 }
2439
2440 /* Continue to update the local streams and handle prio ones */
2441 continue;
2442 }
2443
2444 /* Take care of high priority channels first. */
2445 for (i = 0; i < nb_fd; i++) {
2446 if (local_stream[i] == NULL) {
2447 continue;
2448 }
2449 if (pollfd[i].revents & POLLPRI) {
2450 DBG("Urgent read on fd %d", pollfd[i].fd);
2451 high_prio = 1;
2452 len = ctx->on_buffer_ready(local_stream[i], ctx);
2453 /* it's ok to have an unavailable sub-buffer */
2454 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2455 /* Clean the stream and free it. */
2456 consumer_del_stream(local_stream[i], data_ht);
2457 local_stream[i] = NULL;
2458 } else if (len > 0) {
2459 local_stream[i]->data_read = 1;
2460 }
2461 }
2462 }
2463
2464 /*
2465 * If we read high prio channel in this loop, try again
2466 * for more high prio data.
2467 */
2468 if (high_prio) {
2469 continue;
2470 }
2471
2472 /* Take care of low priority channels. */
2473 for (i = 0; i < nb_fd; i++) {
2474 if (local_stream[i] == NULL) {
2475 continue;
2476 }
2477 if ((pollfd[i].revents & POLLIN) ||
2478 local_stream[i]->hangup_flush_done) {
2479 DBG("Normal read on fd %d", pollfd[i].fd);
2480 len = ctx->on_buffer_ready(local_stream[i], ctx);
2481 /* it's ok to have an unavailable sub-buffer */
2482 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2483 /* Clean the stream and free it. */
2484 consumer_del_stream(local_stream[i], data_ht);
2485 local_stream[i] = NULL;
2486 } else if (len > 0) {
2487 local_stream[i]->data_read = 1;
2488 }
2489 }
2490 }
2491
2492 /* Handle hangup and errors */
2493 for (i = 0; i < nb_fd; i++) {
2494 if (local_stream[i] == NULL) {
2495 continue;
2496 }
2497 if (!local_stream[i]->hangup_flush_done
2498 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2499 && (consumer_data.type == LTTNG_CONSUMER32_UST
2500 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2501 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2502 pollfd[i].fd);
2503 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2504 /* Attempt read again, for the data we just flushed. */
2505 local_stream[i]->data_read = 1;
2506 }
2507 /*
2508 * If the poll flag is HUP/ERR/NVAL and we have
2509 * read no data in this pass, we can remove the
2510 * stream from its hash table.
2511 */
2512 if ((pollfd[i].revents & POLLHUP)) {
2513 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2514 if (!local_stream[i]->data_read) {
2515 consumer_del_stream(local_stream[i], data_ht);
2516 local_stream[i] = NULL;
2517 num_hup++;
2518 }
2519 } else if (pollfd[i].revents & POLLERR) {
2520 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2521 if (!local_stream[i]->data_read) {
2522 consumer_del_stream(local_stream[i], data_ht);
2523 local_stream[i] = NULL;
2524 num_hup++;
2525 }
2526 } else if (pollfd[i].revents & POLLNVAL) {
2527 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2528 if (!local_stream[i]->data_read) {
2529 consumer_del_stream(local_stream[i], data_ht);
2530 local_stream[i] = NULL;
2531 num_hup++;
2532 }
2533 }
2534 if (local_stream[i] != NULL) {
2535 local_stream[i]->data_read = 0;
2536 }
2537 }
2538 }
2539 end:
2540 DBG("polling thread exiting");
2541 free(pollfd);
2542 free(local_stream);
2543
2544 /*
2545 * Close the write side of the pipe so epoll_wait() in
2546 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2547 * read side of the pipe. If we close them both, epoll_wait strangely does
2548 * not return and could create a endless wait period if the pipe is the
2549 * only tracked fd in the poll set. The thread will take care of closing
2550 * the read side.
2551 */
2552 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2553
2554 destroy_data_stream_ht(data_ht);
2555
2556 rcu_unregister_thread();
2557 return NULL;
2558 }
2559
2560 /*
2561 * Close wake-up end of each stream belonging to the channel. This will
2562 * allow the poll() on the stream read-side to detect when the
2563 * write-side (application) finally closes them.
2564 */
2565 static
2566 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2567 {
2568 struct lttng_ht *ht;
2569 struct lttng_consumer_stream *stream;
2570 struct lttng_ht_iter iter;
2571
2572 ht = consumer_data.stream_per_chan_id_ht;
2573
2574 rcu_read_lock();
2575 cds_lfht_for_each_entry_duplicate(ht->ht,
2576 ht->hash_fct(&channel->key, lttng_ht_seed),
2577 ht->match_fct, &channel->key,
2578 &iter.iter, stream, node_channel_id.node) {
2579 /*
2580 * Protect against teardown with mutex.
2581 */
2582 pthread_mutex_lock(&stream->lock);
2583 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2584 goto next;
2585 }
2586 switch (consumer_data.type) {
2587 case LTTNG_CONSUMER_KERNEL:
2588 break;
2589 case LTTNG_CONSUMER32_UST:
2590 case LTTNG_CONSUMER64_UST:
2591 /*
2592 * Note: a mutex is taken internally within
2593 * liblttng-ust-ctl to protect timer wakeup_fd
2594 * use from concurrent close.
2595 */
2596 lttng_ustconsumer_close_stream_wakeup(stream);
2597 break;
2598 default:
2599 ERR("Unknown consumer_data type");
2600 assert(0);
2601 }
2602 next:
2603 pthread_mutex_unlock(&stream->lock);
2604 }
2605 rcu_read_unlock();
2606 }
2607
2608 static void destroy_channel_ht(struct lttng_ht *ht)
2609 {
2610 struct lttng_ht_iter iter;
2611 struct lttng_consumer_channel *channel;
2612 int ret;
2613
2614 if (ht == NULL) {
2615 return;
2616 }
2617
2618 rcu_read_lock();
2619 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2620 ret = lttng_ht_del(ht, &iter);
2621 assert(ret != 0);
2622 }
2623 rcu_read_unlock();
2624
2625 lttng_ht_destroy(ht);
2626 }
2627
2628 /*
2629 * This thread polls the channel fds to detect when they are being
2630 * closed. It closes all related streams if the channel is detected as
2631 * closed. It is currently only used as a shim layer for UST because the
2632 * consumerd needs to keep the per-stream wakeup end of pipes open for
2633 * periodical flush.
2634 */
2635 void *consumer_thread_channel_poll(void *data)
2636 {
2637 int ret, i, pollfd;
2638 uint32_t revents, nb_fd;
2639 struct lttng_consumer_channel *chan = NULL;
2640 struct lttng_ht_iter iter;
2641 struct lttng_ht_node_u64 *node;
2642 struct lttng_poll_event events;
2643 struct lttng_consumer_local_data *ctx = data;
2644 struct lttng_ht *channel_ht;
2645
2646 rcu_register_thread();
2647
2648 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2649 if (!channel_ht) {
2650 /* ENOMEM at this point. Better to bail out. */
2651 goto end_ht;
2652 }
2653
2654 DBG("Thread channel poll started");
2655
2656 /* Size is set to 1 for the consumer_channel pipe */
2657 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2658 if (ret < 0) {
2659 ERR("Poll set creation failed");
2660 goto end_poll;
2661 }
2662
2663 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2664 if (ret < 0) {
2665 goto end;
2666 }
2667
2668 /* Main loop */
2669 DBG("Channel main loop started");
2670
2671 while (1) {
2672 /* Only the channel pipe is set */
2673 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2674 goto end;
2675 }
2676
2677 restart:
2678 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2679 ret = lttng_poll_wait(&events, -1);
2680 DBG("Channel event catched in thread");
2681 if (ret < 0) {
2682 if (errno == EINTR) {
2683 ERR("Poll EINTR catched");
2684 goto restart;
2685 }
2686 goto end;
2687 }
2688
2689 nb_fd = ret;
2690
2691 /* From here, the event is a channel wait fd */
2692 for (i = 0; i < nb_fd; i++) {
2693 revents = LTTNG_POLL_GETEV(&events, i);
2694 pollfd = LTTNG_POLL_GETFD(&events, i);
2695
2696 /* Just don't waste time if no returned events for the fd */
2697 if (!revents) {
2698 continue;
2699 }
2700 if (pollfd == ctx->consumer_channel_pipe[0]) {
2701 if (revents & (LPOLLERR | LPOLLHUP)) {
2702 DBG("Channel thread pipe hung up");
2703 /*
2704 * Remove the pipe from the poll set and continue the loop
2705 * since their might be data to consume.
2706 */
2707 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2708 continue;
2709 } else if (revents & LPOLLIN) {
2710 enum consumer_channel_action action;
2711 uint64_t key;
2712
2713 ret = read_channel_pipe(ctx, &chan, &key, &action);
2714 if (ret <= 0) {
2715 ERR("Error reading channel pipe");
2716 continue;
2717 }
2718
2719 switch (action) {
2720 case CONSUMER_CHANNEL_ADD:
2721 DBG("Adding channel %d to poll set",
2722 chan->wait_fd);
2723
2724 lttng_ht_node_init_u64(&chan->wait_fd_node,
2725 chan->wait_fd);
2726 rcu_read_lock();
2727 lttng_ht_add_unique_u64(channel_ht,
2728 &chan->wait_fd_node);
2729 rcu_read_unlock();
2730 /* Add channel to the global poll events list */
2731 lttng_poll_add(&events, chan->wait_fd,
2732 LPOLLIN | LPOLLPRI);
2733 break;
2734 case CONSUMER_CHANNEL_DEL:
2735 {
2736 struct lttng_consumer_stream *stream, *stmp;
2737
2738 rcu_read_lock();
2739 chan = consumer_find_channel(key);
2740 if (!chan) {
2741 rcu_read_unlock();
2742 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2743 break;
2744 }
2745 lttng_poll_del(&events, chan->wait_fd);
2746 iter.iter.node = &chan->wait_fd_node.node;
2747 ret = lttng_ht_del(channel_ht, &iter);
2748 assert(ret == 0);
2749 consumer_close_channel_streams(chan);
2750
2751 switch (consumer_data.type) {
2752 case LTTNG_CONSUMER_KERNEL:
2753 break;
2754 case LTTNG_CONSUMER32_UST:
2755 case LTTNG_CONSUMER64_UST:
2756 /* Delete streams that might have been left in the stream list. */
2757 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2758 send_node) {
2759 cds_list_del(&stream->send_node);
2760 lttng_ustconsumer_del_stream(stream);
2761 uatomic_sub(&stream->chan->refcount, 1);
2762 assert(&chan->refcount);
2763 free(stream);
2764 }
2765 break;
2766 default:
2767 ERR("Unknown consumer_data type");
2768 assert(0);
2769 }
2770
2771 /*
2772 * Release our own refcount. Force channel deletion even if
2773 * streams were not initialized.
2774 */
2775 if (!uatomic_sub_return(&chan->refcount, 1)) {
2776 consumer_del_channel(chan);
2777 }
2778 rcu_read_unlock();
2779 goto restart;
2780 }
2781 case CONSUMER_CHANNEL_QUIT:
2782 /*
2783 * Remove the pipe from the poll set and continue the loop
2784 * since their might be data to consume.
2785 */
2786 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2787 continue;
2788 default:
2789 ERR("Unknown action");
2790 break;
2791 }
2792 }
2793
2794 /* Handle other stream */
2795 continue;
2796 }
2797
2798 rcu_read_lock();
2799 {
2800 uint64_t tmp_id = (uint64_t) pollfd;
2801
2802 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2803 }
2804 node = lttng_ht_iter_get_node_u64(&iter);
2805 assert(node);
2806
2807 chan = caa_container_of(node, struct lttng_consumer_channel,
2808 wait_fd_node);
2809
2810 /* Check for error event */
2811 if (revents & (LPOLLERR | LPOLLHUP)) {
2812 DBG("Channel fd %d is hup|err.", pollfd);
2813
2814 lttng_poll_del(&events, chan->wait_fd);
2815 ret = lttng_ht_del(channel_ht, &iter);
2816 assert(ret == 0);
2817 consumer_close_channel_streams(chan);
2818
2819 /* Release our own refcount */
2820 if (!uatomic_sub_return(&chan->refcount, 1)
2821 && !uatomic_read(&chan->nb_init_stream_left)) {
2822 consumer_del_channel(chan);
2823 }
2824 }
2825
2826 /* Release RCU lock for the channel looked up */
2827 rcu_read_unlock();
2828 }
2829 }
2830
2831 end:
2832 lttng_poll_clean(&events);
2833 end_poll:
2834 destroy_channel_ht(channel_ht);
2835 end_ht:
2836 DBG("Channel poll thread exiting");
2837 rcu_unregister_thread();
2838 return NULL;
2839 }
2840
2841 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2842 struct pollfd *sockpoll, int client_socket)
2843 {
2844 int ret;
2845
2846 assert(ctx);
2847 assert(sockpoll);
2848
2849 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2850 ret = -1;
2851 goto error;
2852 }
2853 DBG("Metadata connection on client_socket");
2854
2855 /* Blocking call, waiting for transmission */
2856 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2857 if (ctx->consumer_metadata_socket < 0) {
2858 WARN("On accept metadata");
2859 ret = -1;
2860 goto error;
2861 }
2862 ret = 0;
2863
2864 error:
2865 return ret;
2866 }
2867
2868 /*
2869 * This thread listens on the consumerd socket and receives the file
2870 * descriptors from the session daemon.
2871 */
2872 void *consumer_thread_sessiond_poll(void *data)
2873 {
2874 int sock = -1, client_socket, ret;
2875 /*
2876 * structure to poll for incoming data on communication socket avoids
2877 * making blocking sockets.
2878 */
2879 struct pollfd consumer_sockpoll[2];
2880 struct lttng_consumer_local_data *ctx = data;
2881
2882 rcu_register_thread();
2883
2884 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2885 unlink(ctx->consumer_command_sock_path);
2886 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2887 if (client_socket < 0) {
2888 ERR("Cannot create command socket");
2889 goto end;
2890 }
2891
2892 ret = lttcomm_listen_unix_sock(client_socket);
2893 if (ret < 0) {
2894 goto end;
2895 }
2896
2897 DBG("Sending ready command to lttng-sessiond");
2898 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2899 /* return < 0 on error, but == 0 is not fatal */
2900 if (ret < 0) {
2901 ERR("Error sending ready command to lttng-sessiond");
2902 goto end;
2903 }
2904
2905 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2906 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2907 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2908 consumer_sockpoll[1].fd = client_socket;
2909 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2910
2911 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2912 goto end;
2913 }
2914 DBG("Connection on client_socket");
2915
2916 /* Blocking call, waiting for transmission */
2917 sock = lttcomm_accept_unix_sock(client_socket);
2918 if (sock < 0) {
2919 WARN("On accept");
2920 goto end;
2921 }
2922
2923 /*
2924 * Setup metadata socket which is the second socket connection on the
2925 * command unix socket.
2926 */
2927 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2928 if (ret < 0) {
2929 goto end;
2930 }
2931
2932 /* This socket is not useful anymore. */
2933 ret = close(client_socket);
2934 if (ret < 0) {
2935 PERROR("close client_socket");
2936 }
2937 client_socket = -1;
2938
2939 /* update the polling structure to poll on the established socket */
2940 consumer_sockpoll[1].fd = sock;
2941 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2942
2943 while (1) {
2944 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2945 goto end;
2946 }
2947 DBG("Incoming command on sock");
2948 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2949 if (ret == -ENOENT) {
2950 DBG("Received STOP command");
2951 goto end;
2952 }
2953 if (ret <= 0) {
2954 /*
2955 * This could simply be a session daemon quitting. Don't output
2956 * ERR() here.
2957 */
2958 DBG("Communication interrupted on command socket");
2959 goto end;
2960 }
2961 if (consumer_quit) {
2962 DBG("consumer_thread_receive_fds received quit from signal");
2963 goto end;
2964 }
2965 DBG("received command on sock");
2966 }
2967 end:
2968 DBG("Consumer thread sessiond poll exiting");
2969
2970 /*
2971 * Close metadata streams since the producer is the session daemon which
2972 * just died.
2973 *
2974 * NOTE: for now, this only applies to the UST tracer.
2975 */
2976 lttng_consumer_close_metadata();
2977
2978 /*
2979 * when all fds have hung up, the polling thread
2980 * can exit cleanly
2981 */
2982 consumer_quit = 1;
2983
2984 /*
2985 * Notify the data poll thread to poll back again and test the
2986 * consumer_quit state that we just set so to quit gracefully.
2987 */
2988 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
2989
2990 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2991
2992 /* Cleaning up possibly open sockets. */
2993 if (sock >= 0) {
2994 ret = close(sock);
2995 if (ret < 0) {
2996 PERROR("close sock sessiond poll");
2997 }
2998 }
2999 if (client_socket >= 0) {
3000 ret = close(client_socket);
3001 if (ret < 0) {
3002 PERROR("close client_socket sessiond poll");
3003 }
3004 }
3005
3006 rcu_unregister_thread();
3007 return NULL;
3008 }
3009
3010 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3011 struct lttng_consumer_local_data *ctx)
3012 {
3013 ssize_t ret;
3014
3015 pthread_mutex_lock(&stream->lock);
3016
3017 switch (consumer_data.type) {
3018 case LTTNG_CONSUMER_KERNEL:
3019 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3020 break;
3021 case LTTNG_CONSUMER32_UST:
3022 case LTTNG_CONSUMER64_UST:
3023 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3024 break;
3025 default:
3026 ERR("Unknown consumer_data type");
3027 assert(0);
3028 ret = -ENOSYS;
3029 break;
3030 }
3031
3032 pthread_mutex_unlock(&stream->lock);
3033 return ret;
3034 }
3035
3036 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3037 {
3038 switch (consumer_data.type) {
3039 case LTTNG_CONSUMER_KERNEL:
3040 return lttng_kconsumer_on_recv_stream(stream);
3041 case LTTNG_CONSUMER32_UST:
3042 case LTTNG_CONSUMER64_UST:
3043 return lttng_ustconsumer_on_recv_stream(stream);
3044 default:
3045 ERR("Unknown consumer_data type");
3046 assert(0);
3047 return -ENOSYS;
3048 }
3049 }
3050
3051 /*
3052 * Allocate and set consumer data hash tables.
3053 */
3054 void lttng_consumer_init(void)
3055 {
3056 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3057 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3058 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3059 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3060 }
3061
3062 /*
3063 * Process the ADD_RELAYD command receive by a consumer.
3064 *
3065 * This will create a relayd socket pair and add it to the relayd hash table.
3066 * The caller MUST acquire a RCU read side lock before calling it.
3067 */
3068 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3069 struct lttng_consumer_local_data *ctx, int sock,
3070 struct pollfd *consumer_sockpoll,
3071 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3072 {
3073 int fd = -1, ret = -1, relayd_created = 0;
3074 enum lttng_error_code ret_code = LTTNG_OK;
3075 struct consumer_relayd_sock_pair *relayd = NULL;
3076
3077 assert(ctx);
3078 assert(relayd_sock);
3079
3080 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3081
3082 /* Get relayd reference if exists. */
3083 relayd = consumer_find_relayd(net_seq_idx);
3084 if (relayd == NULL) {
3085 assert(sock_type == LTTNG_STREAM_CONTROL);
3086 /* Not found. Allocate one. */
3087 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3088 if (relayd == NULL) {
3089 ret = -ENOMEM;
3090 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3091 goto error;
3092 } else {
3093 relayd->sessiond_session_id = sessiond_id;
3094 relayd_created = 1;
3095 }
3096
3097 /*
3098 * This code path MUST continue to the consumer send status message to
3099 * we can notify the session daemon and continue our work without
3100 * killing everything.
3101 */
3102 } else {
3103 /*
3104 * relayd key should never be found for control socket.
3105 */
3106 assert(sock_type != LTTNG_STREAM_CONTROL);
3107 }
3108
3109 /* First send a status message before receiving the fds. */
3110 ret = consumer_send_status_msg(sock, LTTNG_OK);
3111 if (ret < 0) {
3112 /* Somehow, the session daemon is not responding anymore. */
3113 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3114 goto error_nosignal;
3115 }
3116
3117 /* Poll on consumer socket. */
3118 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3119 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3120 ret = -EINTR;
3121 goto error_nosignal;
3122 }
3123
3124 /* Get relayd socket from session daemon */
3125 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3126 if (ret != sizeof(fd)) {
3127 ret = -1;
3128 fd = -1; /* Just in case it gets set with an invalid value. */
3129
3130 /*
3131 * Failing to receive FDs might indicate a major problem such as
3132 * reaching a fd limit during the receive where the kernel returns a
3133 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3134 * don't take any chances and stop everything.
3135 *
3136 * XXX: Feature request #558 will fix that and avoid this possible
3137 * issue when reaching the fd limit.
3138 */
3139 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3140 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3141 goto error;
3142 }
3143
3144 /* Copy socket information and received FD */
3145 switch (sock_type) {
3146 case LTTNG_STREAM_CONTROL:
3147 /* Copy received lttcomm socket */
3148 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3149 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3150 /* Handle create_sock error. */
3151 if (ret < 0) {
3152 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3153 goto error;
3154 }
3155 /*
3156 * Close the socket created internally by
3157 * lttcomm_create_sock, so we can replace it by the one
3158 * received from sessiond.
3159 */
3160 if (close(relayd->control_sock.sock.fd)) {
3161 PERROR("close");
3162 }
3163
3164 /* Assign new file descriptor */
3165 relayd->control_sock.sock.fd = fd;
3166 fd = -1; /* For error path */
3167 /* Assign version values. */
3168 relayd->control_sock.major = relayd_sock->major;
3169 relayd->control_sock.minor = relayd_sock->minor;
3170
3171 /*
3172 * Create a session on the relayd and store the returned id. Lock the
3173 * control socket mutex if the relayd was NOT created before.
3174 */
3175 if (!relayd_created) {
3176 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3177 }
3178 ret = relayd_create_session(&relayd->control_sock,
3179 &relayd->relayd_session_id);
3180 if (!relayd_created) {
3181 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3182 }
3183 if (ret < 0) {
3184 /*
3185 * Close all sockets of a relayd object. It will be freed if it was
3186 * created at the error code path or else it will be garbage
3187 * collect.
3188 */
3189 (void) relayd_close(&relayd->control_sock);
3190 (void) relayd_close(&relayd->data_sock);
3191 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3192 goto error;
3193 }
3194
3195 break;
3196 case LTTNG_STREAM_DATA:
3197 /* Copy received lttcomm socket */
3198 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3199 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3200 /* Handle create_sock error. */
3201 if (ret < 0) {
3202 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3203 goto error;
3204 }
3205 /*
3206 * Close the socket created internally by
3207 * lttcomm_create_sock, so we can replace it by the one
3208 * received from sessiond.
3209 */
3210 if (close(relayd->data_sock.sock.fd)) {
3211 PERROR("close");
3212 }
3213
3214 /* Assign new file descriptor */
3215 relayd->data_sock.sock.fd = fd;
3216 fd = -1; /* for eventual error paths */
3217 /* Assign version values. */
3218 relayd->data_sock.major = relayd_sock->major;
3219 relayd->data_sock.minor = relayd_sock->minor;
3220 break;
3221 default:
3222 ERR("Unknown relayd socket type (%d)", sock_type);
3223 ret = -1;
3224 ret_code = LTTCOMM_CONSUMERD_FATAL;
3225 goto error;
3226 }
3227
3228 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3229 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3230 relayd->net_seq_idx, fd);
3231
3232 /* We successfully added the socket. Send status back. */
3233 ret = consumer_send_status_msg(sock, ret_code);
3234 if (ret < 0) {
3235 /* Somehow, the session daemon is not responding anymore. */
3236 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3237 goto error_nosignal;
3238 }
3239
3240 /*
3241 * Add relayd socket pair to consumer data hashtable. If object already
3242 * exists or on error, the function gracefully returns.
3243 */
3244 add_relayd(relayd);
3245
3246 /* All good! */
3247 return 0;
3248
3249 error:
3250 if (consumer_send_status_msg(sock, ret_code) < 0) {
3251 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3252 }
3253
3254 error_nosignal:
3255 /* Close received socket if valid. */
3256 if (fd >= 0) {
3257 if (close(fd)) {
3258 PERROR("close received socket");
3259 }
3260 }
3261
3262 if (relayd_created) {
3263 free(relayd);
3264 }
3265
3266 return ret;
3267 }
3268
3269 /*
3270 * Try to lock the stream mutex.
3271 *
3272 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3273 */
3274 static int stream_try_lock(struct lttng_consumer_stream *stream)
3275 {
3276 int ret;
3277
3278 assert(stream);
3279
3280 /*
3281 * Try to lock the stream mutex. On failure, we know that the stream is
3282 * being used else where hence there is data still being extracted.
3283 */
3284 ret = pthread_mutex_trylock(&stream->lock);
3285 if (ret) {
3286 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3287 ret = 0;
3288 goto end;
3289 }
3290
3291 ret = 1;
3292
3293 end:
3294 return ret;
3295 }
3296
3297 /*
3298 * Search for a relayd associated to the session id and return the reference.
3299 *
3300 * A rcu read side lock MUST be acquire before calling this function and locked
3301 * until the relayd object is no longer necessary.
3302 */
3303 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3304 {
3305 struct lttng_ht_iter iter;
3306 struct consumer_relayd_sock_pair *relayd = NULL;
3307
3308 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3309 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3310 node.node) {
3311 /*
3312 * Check by sessiond id which is unique here where the relayd session
3313 * id might not be when having multiple relayd.
3314 */
3315 if (relayd->sessiond_session_id == id) {
3316 /* Found the relayd. There can be only one per id. */
3317 goto found;
3318 }
3319 }
3320
3321 return NULL;
3322
3323 found:
3324 return relayd;
3325 }
3326
3327 /*
3328 * Check if for a given session id there is still data needed to be extract
3329 * from the buffers.
3330 *
3331 * Return 1 if data is pending or else 0 meaning ready to be read.
3332 */
3333 int consumer_data_pending(uint64_t id)
3334 {
3335 int ret;
3336 struct lttng_ht_iter iter;
3337 struct lttng_ht *ht;
3338 struct lttng_consumer_stream *stream;
3339 struct consumer_relayd_sock_pair *relayd = NULL;
3340 int (*data_pending)(struct lttng_consumer_stream *);
3341
3342 DBG("Consumer data pending command on session id %" PRIu64, id);
3343
3344 rcu_read_lock();
3345 pthread_mutex_lock(&consumer_data.lock);
3346
3347 switch (consumer_data.type) {
3348 case LTTNG_CONSUMER_KERNEL:
3349 data_pending = lttng_kconsumer_data_pending;
3350 break;
3351 case LTTNG_CONSUMER32_UST:
3352 case LTTNG_CONSUMER64_UST:
3353 data_pending = lttng_ustconsumer_data_pending;
3354 break;
3355 default:
3356 ERR("Unknown consumer data type");
3357 assert(0);
3358 }
3359
3360 /* Ease our life a bit */
3361 ht = consumer_data.stream_list_ht;
3362
3363 relayd = find_relayd_by_session_id(id);
3364 if (relayd) {
3365 /* Send init command for data pending. */
3366 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3367 ret = relayd_begin_data_pending(&relayd->control_sock,
3368 relayd->relayd_session_id);
3369 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3370 if (ret < 0) {
3371 /* Communication error thus the relayd so no data pending. */
3372 goto data_not_pending;
3373 }
3374 }
3375
3376 cds_lfht_for_each_entry_duplicate(ht->ht,
3377 ht->hash_fct(&id, lttng_ht_seed),
3378 ht->match_fct, &id,
3379 &iter.iter, stream, node_session_id.node) {
3380 /* If this call fails, the stream is being used hence data pending. */
3381 ret = stream_try_lock(stream);
3382 if (!ret) {
3383 goto data_pending;
3384 }
3385
3386 /*
3387 * A removed node from the hash table indicates that the stream has
3388 * been deleted thus having a guarantee that the buffers are closed
3389 * on the consumer side. However, data can still be transmitted
3390 * over the network so don't skip the relayd check.
3391 */
3392 ret = cds_lfht_is_node_deleted(&stream->node.node);
3393 if (!ret) {
3394 /* Check the stream if there is data in the buffers. */
3395 ret = data_pending(stream);
3396 if (ret == 1) {
3397 pthread_mutex_unlock(&stream->lock);
3398 goto data_pending;
3399 }
3400 }
3401
3402 /* Relayd check */
3403 if (relayd) {
3404 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3405 if (stream->metadata_flag) {
3406 ret = relayd_quiescent_control(&relayd->control_sock,
3407 stream->relayd_stream_id);
3408 } else {
3409 ret = relayd_data_pending(&relayd->control_sock,
3410 stream->relayd_stream_id,
3411 stream->next_net_seq_num - 1);
3412 }
3413 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3414 if (ret == 1) {
3415 pthread_mutex_unlock(&stream->lock);
3416 goto data_pending;
3417 }
3418 }
3419 pthread_mutex_unlock(&stream->lock);
3420 }
3421
3422 if (relayd) {
3423 unsigned int is_data_inflight = 0;
3424
3425 /* Send init command for data pending. */
3426 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3427 ret = relayd_end_data_pending(&relayd->control_sock,
3428 relayd->relayd_session_id, &is_data_inflight);
3429 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3430 if (ret < 0) {
3431 goto data_not_pending;
3432 }
3433 if (is_data_inflight) {
3434 goto data_pending;
3435 }
3436 }
3437
3438 /*
3439 * Finding _no_ node in the hash table and no inflight data means that the
3440 * stream(s) have been removed thus data is guaranteed to be available for
3441 * analysis from the trace files.
3442 */
3443
3444 data_not_pending:
3445 /* Data is available to be read by a viewer. */
3446 pthread_mutex_unlock(&consumer_data.lock);
3447 rcu_read_unlock();
3448 return 0;
3449
3450 data_pending:
3451 /* Data is still being extracted from buffers. */
3452 pthread_mutex_unlock(&consumer_data.lock);
3453 rcu_read_unlock();
3454 return 1;
3455 }
3456
3457 /*
3458 * Send a ret code status message to the sessiond daemon.
3459 *
3460 * Return the sendmsg() return value.
3461 */
3462 int consumer_send_status_msg(int sock, int ret_code)
3463 {
3464 struct lttcomm_consumer_status_msg msg;
3465
3466 msg.ret_code = ret_code;
3467
3468 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3469 }
3470
3471 /*
3472 * Send a channel status message to the sessiond daemon.
3473 *
3474 * Return the sendmsg() return value.
3475 */
3476 int consumer_send_status_channel(int sock,
3477 struct lttng_consumer_channel *channel)
3478 {
3479 struct lttcomm_consumer_status_channel msg;
3480
3481 assert(sock >= 0);
3482
3483 if (!channel) {
3484 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3485 } else {
3486 msg.ret_code = LTTNG_OK;
3487 msg.key = channel->key;
3488 msg.stream_count = channel->streams.count;
3489 }
3490
3491 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3492 }
3493
3494 /*
3495 * Using a maximum stream size with the produced and consumed position of a
3496 * stream, computes the new consumed position to be as close as possible to the
3497 * maximum possible stream size.
3498 *
3499 * If maximum stream size is lower than the possible buffer size (produced -
3500 * consumed), the consumed_pos given is returned untouched else the new value
3501 * is returned.
3502 */
3503 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3504 unsigned long produced_pos, uint64_t max_stream_size)
3505 {
3506 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3507 /* Offset from the produced position to get the latest buffers. */
3508 return produced_pos - max_stream_size;
3509 }
3510
3511 return consumed_pos;
3512 }
This page took 0.145296 seconds and 5 git commands to generate.