Fix: output number of bytes written by relayd
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
41
42 #include "consumer.h"
43
44 struct lttng_consumer_global_data consumer_data = {
45 .stream_count = 0,
46 .need_update = 1,
47 .type = LTTNG_CONSUMER_UNKNOWN,
48 };
49
50 /* timeout parameter, to control the polling thread grace period. */
51 int consumer_poll_timeout = -1;
52
53 /*
54 * Flag to inform the polling thread to quit when all fd hung up. Updated by
55 * the consumer_thread_receive_fds when it notices that all fds has hung up.
56 * Also updated by the signal handler (consumer_should_exit()). Read by the
57 * polling threads.
58 */
59 volatile int consumer_quit = 0;
60
61 /*
62 * Find a stream. The consumer_data.lock must be locked during this
63 * call.
64 */
65 static struct lttng_consumer_stream *consumer_find_stream(int key,
66 struct lttng_ht *ht)
67 {
68 struct lttng_ht_iter iter;
69 struct lttng_ht_node_ulong *node;
70 struct lttng_consumer_stream *stream = NULL;
71
72 assert(ht);
73
74 /* Negative keys are lookup failures */
75 if (key < 0) {
76 return NULL;
77 }
78
79 rcu_read_lock();
80
81 lttng_ht_lookup(ht, (void *)((unsigned long) key), &iter);
82 node = lttng_ht_iter_get_node_ulong(&iter);
83 if (node != NULL) {
84 stream = caa_container_of(node, struct lttng_consumer_stream, node);
85 }
86
87 rcu_read_unlock();
88
89 return stream;
90 }
91
92 static void consumer_steal_stream_key(int key, struct lttng_ht *ht)
93 {
94 struct lttng_consumer_stream *stream;
95
96 rcu_read_lock();
97 stream = consumer_find_stream(key, ht);
98 if (stream) {
99 stream->key = -1;
100 /*
101 * We don't want the lookup to match, but we still need
102 * to iterate on this stream when iterating over the hash table. Just
103 * change the node key.
104 */
105 stream->node.key = -1;
106 }
107 rcu_read_unlock();
108 }
109
110 static struct lttng_consumer_channel *consumer_find_channel(int key)
111 {
112 struct lttng_ht_iter iter;
113 struct lttng_ht_node_ulong *node;
114 struct lttng_consumer_channel *channel = NULL;
115
116 /* Negative keys are lookup failures */
117 if (key < 0) {
118 return NULL;
119 }
120
121 rcu_read_lock();
122
123 lttng_ht_lookup(consumer_data.channel_ht, (void *)((unsigned long) key),
124 &iter);
125 node = lttng_ht_iter_get_node_ulong(&iter);
126 if (node != NULL) {
127 channel = caa_container_of(node, struct lttng_consumer_channel, node);
128 }
129
130 rcu_read_unlock();
131
132 return channel;
133 }
134
135 static void consumer_steal_channel_key(int key)
136 {
137 struct lttng_consumer_channel *channel;
138
139 rcu_read_lock();
140 channel = consumer_find_channel(key);
141 if (channel) {
142 channel->key = -1;
143 /*
144 * We don't want the lookup to match, but we still need
145 * to iterate on this channel when iterating over the hash table. Just
146 * change the node key.
147 */
148 channel->node.key = -1;
149 }
150 rcu_read_unlock();
151 }
152
153 static
154 void consumer_free_stream(struct rcu_head *head)
155 {
156 struct lttng_ht_node_ulong *node =
157 caa_container_of(head, struct lttng_ht_node_ulong, head);
158 struct lttng_consumer_stream *stream =
159 caa_container_of(node, struct lttng_consumer_stream, node);
160
161 free(stream);
162 }
163
164 /*
165 * RCU protected relayd socket pair free.
166 */
167 static void consumer_rcu_free_relayd(struct rcu_head *head)
168 {
169 struct lttng_ht_node_ulong *node =
170 caa_container_of(head, struct lttng_ht_node_ulong, head);
171 struct consumer_relayd_sock_pair *relayd =
172 caa_container_of(node, struct consumer_relayd_sock_pair, node);
173
174 free(relayd);
175 }
176
177 /*
178 * Destroy and free relayd socket pair object.
179 *
180 * This function MUST be called with the consumer_data lock acquired.
181 */
182 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
183 {
184 int ret;
185 struct lttng_ht_iter iter;
186
187 if (relayd == NULL) {
188 return;
189 }
190
191 DBG("Consumer destroy and close relayd socket pair");
192
193 iter.iter.node = &relayd->node.node;
194 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
195 if (ret != 0) {
196 /* We assume the relayd was already destroyed */
197 return;
198 }
199
200 /* Close all sockets */
201 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
202 (void) relayd_close(&relayd->control_sock);
203 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
204 (void) relayd_close(&relayd->data_sock);
205
206 /* RCU free() call */
207 call_rcu(&relayd->node.head, consumer_rcu_free_relayd);
208 }
209
210 /*
211 * Flag a relayd socket pair for destruction. Destroy it if the refcount
212 * reaches zero.
213 *
214 * RCU read side lock MUST be aquired before calling this function.
215 */
216 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
217 {
218 assert(relayd);
219
220 /* Set destroy flag for this object */
221 uatomic_set(&relayd->destroy_flag, 1);
222
223 /* Destroy the relayd if refcount is 0 */
224 if (uatomic_read(&relayd->refcount) == 0) {
225 destroy_relayd(relayd);
226 }
227 }
228
229 /*
230 * Remove a stream from the global list protected by a mutex. This
231 * function is also responsible for freeing its data structures.
232 */
233 void consumer_del_stream(struct lttng_consumer_stream *stream)
234 {
235 int ret;
236 struct lttng_ht_iter iter;
237 struct lttng_consumer_channel *free_chan = NULL;
238 struct consumer_relayd_sock_pair *relayd;
239
240 assert(stream);
241
242 pthread_mutex_lock(&consumer_data.lock);
243
244 switch (consumer_data.type) {
245 case LTTNG_CONSUMER_KERNEL:
246 if (stream->mmap_base != NULL) {
247 ret = munmap(stream->mmap_base, stream->mmap_len);
248 if (ret != 0) {
249 PERROR("munmap");
250 }
251 }
252 break;
253 case LTTNG_CONSUMER32_UST:
254 case LTTNG_CONSUMER64_UST:
255 lttng_ustconsumer_del_stream(stream);
256 break;
257 default:
258 ERR("Unknown consumer_data type");
259 assert(0);
260 goto end;
261 }
262
263 rcu_read_lock();
264 iter.iter.node = &stream->node.node;
265 ret = lttng_ht_del(consumer_data.stream_ht, &iter);
266 assert(!ret);
267
268 rcu_read_unlock();
269
270 if (consumer_data.stream_count <= 0) {
271 goto end;
272 }
273 consumer_data.stream_count--;
274 if (!stream) {
275 goto end;
276 }
277 if (stream->out_fd >= 0) {
278 ret = close(stream->out_fd);
279 if (ret) {
280 PERROR("close");
281 }
282 }
283 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
284 ret = close(stream->wait_fd);
285 if (ret) {
286 PERROR("close");
287 }
288 }
289 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
290 ret = close(stream->shm_fd);
291 if (ret) {
292 PERROR("close");
293 }
294 }
295
296 /* Check and cleanup relayd */
297 rcu_read_lock();
298 relayd = consumer_find_relayd(stream->net_seq_idx);
299 if (relayd != NULL) {
300 uatomic_dec(&relayd->refcount);
301 assert(uatomic_read(&relayd->refcount) >= 0);
302
303 /* Closing streams requires to lock the control socket. */
304 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
305 ret = relayd_send_close_stream(&relayd->control_sock,
306 stream->relayd_stream_id,
307 stream->next_net_seq_num - 1);
308 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
309 if (ret < 0) {
310 DBG("Unable to close stream on the relayd. Continuing");
311 /*
312 * Continue here. There is nothing we can do for the relayd.
313 * Chances are that the relayd has closed the socket so we just
314 * continue cleaning up.
315 */
316 }
317
318 /* Both conditions are met, we destroy the relayd. */
319 if (uatomic_read(&relayd->refcount) == 0 &&
320 uatomic_read(&relayd->destroy_flag)) {
321 destroy_relayd(relayd);
322 }
323 }
324 rcu_read_unlock();
325
326 uatomic_dec(&stream->chan->refcount);
327 if (!uatomic_read(&stream->chan->refcount)
328 && !uatomic_read(&stream->chan->nb_init_streams)) {
329 free_chan = stream->chan;
330 }
331
332 call_rcu(&stream->node.head, consumer_free_stream);
333 end:
334 consumer_data.need_update = 1;
335 pthread_mutex_unlock(&consumer_data.lock);
336
337 if (free_chan) {
338 consumer_del_channel(free_chan);
339 }
340 }
341
342 struct lttng_consumer_stream *consumer_allocate_stream(
343 int channel_key, int stream_key,
344 int shm_fd, int wait_fd,
345 enum lttng_consumer_stream_state state,
346 uint64_t mmap_len,
347 enum lttng_event_output output,
348 const char *path_name,
349 uid_t uid,
350 gid_t gid,
351 int net_index,
352 int metadata_flag,
353 int *alloc_ret)
354 {
355 struct lttng_consumer_stream *stream;
356 int ret;
357
358 stream = zmalloc(sizeof(*stream));
359 if (stream == NULL) {
360 PERROR("malloc struct lttng_consumer_stream");
361 *alloc_ret = -ENOMEM;
362 goto end;
363 }
364
365 /*
366 * Get stream's channel reference. Needed when adding the stream to the
367 * global hash table.
368 */
369 stream->chan = consumer_find_channel(channel_key);
370 if (!stream->chan) {
371 *alloc_ret = -ENOENT;
372 ERR("Unable to find channel for stream %d", stream_key);
373 goto error;
374 }
375 stream->chan->refcount++;
376 stream->key = stream_key;
377 stream->shm_fd = shm_fd;
378 stream->wait_fd = wait_fd;
379 stream->out_fd = -1;
380 stream->out_fd_offset = 0;
381 stream->state = state;
382 stream->mmap_len = mmap_len;
383 stream->mmap_base = NULL;
384 stream->output = output;
385 stream->uid = uid;
386 stream->gid = gid;
387 stream->net_seq_idx = net_index;
388 stream->metadata_flag = metadata_flag;
389 strncpy(stream->path_name, path_name, sizeof(stream->path_name));
390 stream->path_name[sizeof(stream->path_name) - 1] = '\0';
391 lttng_ht_node_init_ulong(&stream->node, stream->key);
392 lttng_ht_node_init_ulong(&stream->waitfd_node, stream->wait_fd);
393
394 switch (consumer_data.type) {
395 case LTTNG_CONSUMER_KERNEL:
396 break;
397 case LTTNG_CONSUMER32_UST:
398 case LTTNG_CONSUMER64_UST:
399 stream->cpu = stream->chan->cpucount++;
400 ret = lttng_ustconsumer_allocate_stream(stream);
401 if (ret) {
402 *alloc_ret = -EINVAL;
403 goto error;
404 }
405 break;
406 default:
407 ERR("Unknown consumer_data type");
408 *alloc_ret = -EINVAL;
409 goto error;
410 }
411
412 /*
413 * When nb_init_streams reaches 0, we don't need to trigger any action in
414 * terms of destroying the associated channel, because the action that
415 * causes the count to become 0 also causes a stream to be added. The
416 * channel deletion will thus be triggered by the following removal of this
417 * stream.
418 */
419 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
420 uatomic_dec(&stream->chan->nb_init_streams);
421 }
422
423 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
424 " out_fd %d, net_seq_idx %d)", stream->path_name, stream->key,
425 stream->shm_fd, stream->wait_fd,
426 (unsigned long long) stream->mmap_len, stream->out_fd,
427 stream->net_seq_idx);
428 return stream;
429
430 error:
431 free(stream);
432 end:
433 return NULL;
434 }
435
436 /*
437 * Add a stream to the global list protected by a mutex.
438 */
439 int consumer_add_stream(struct lttng_consumer_stream *stream)
440 {
441 int ret = 0;
442 struct lttng_ht_node_ulong *node;
443 struct lttng_ht_iter iter;
444 struct consumer_relayd_sock_pair *relayd;
445
446 pthread_mutex_lock(&consumer_data.lock);
447 /* Steal stream identifier, for UST */
448 consumer_steal_stream_key(stream->key, consumer_data.stream_ht);
449
450 rcu_read_lock();
451 lttng_ht_lookup(consumer_data.stream_ht,
452 (void *)((unsigned long) stream->key), &iter);
453 node = lttng_ht_iter_get_node_ulong(&iter);
454 if (node != NULL) {
455 rcu_read_unlock();
456 /* Stream already exist. Ignore the insertion */
457 goto end;
458 }
459
460 lttng_ht_add_unique_ulong(consumer_data.stream_ht, &stream->node);
461
462 /* Check and cleanup relayd */
463 relayd = consumer_find_relayd(stream->net_seq_idx);
464 if (relayd != NULL) {
465 uatomic_inc(&relayd->refcount);
466 }
467 rcu_read_unlock();
468
469 /* Update consumer data */
470 consumer_data.stream_count++;
471 consumer_data.need_update = 1;
472
473 end:
474 pthread_mutex_unlock(&consumer_data.lock);
475
476 return ret;
477 }
478
479 /*
480 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
481 * be acquired before calling this.
482 */
483 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
484 {
485 int ret = 0;
486 struct lttng_ht_node_ulong *node;
487 struct lttng_ht_iter iter;
488
489 if (relayd == NULL) {
490 ret = -1;
491 goto end;
492 }
493
494 lttng_ht_lookup(consumer_data.relayd_ht,
495 (void *)((unsigned long) relayd->net_seq_idx), &iter);
496 node = lttng_ht_iter_get_node_ulong(&iter);
497 if (node != NULL) {
498 /* Relayd already exist. Ignore the insertion */
499 goto end;
500 }
501 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
502
503 end:
504 return ret;
505 }
506
507 /*
508 * Allocate and return a consumer relayd socket.
509 */
510 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
511 int net_seq_idx)
512 {
513 struct consumer_relayd_sock_pair *obj = NULL;
514
515 /* Negative net sequence index is a failure */
516 if (net_seq_idx < 0) {
517 goto error;
518 }
519
520 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
521 if (obj == NULL) {
522 PERROR("zmalloc relayd sock");
523 goto error;
524 }
525
526 obj->net_seq_idx = net_seq_idx;
527 obj->refcount = 0;
528 obj->destroy_flag = 0;
529 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
530 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
531
532 error:
533 return obj;
534 }
535
536 /*
537 * Find a relayd socket pair in the global consumer data.
538 *
539 * Return the object if found else NULL.
540 * RCU read-side lock must be held across this call and while using the
541 * returned object.
542 */
543 struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
544 {
545 struct lttng_ht_iter iter;
546 struct lttng_ht_node_ulong *node;
547 struct consumer_relayd_sock_pair *relayd = NULL;
548
549 /* Negative keys are lookup failures */
550 if (key < 0) {
551 goto error;
552 }
553
554 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
555 &iter);
556 node = lttng_ht_iter_get_node_ulong(&iter);
557 if (node != NULL) {
558 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
559 }
560
561 error:
562 return relayd;
563 }
564
565 /*
566 * Handle stream for relayd transmission if the stream applies for network
567 * streaming where the net sequence index is set.
568 *
569 * Return destination file descriptor or negative value on error.
570 */
571 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
572 size_t data_size, unsigned long padding,
573 struct consumer_relayd_sock_pair *relayd)
574 {
575 int outfd = -1, ret;
576 struct lttcomm_relayd_data_hdr data_hdr;
577
578 /* Safety net */
579 assert(stream);
580 assert(relayd);
581
582 /* Reset data header */
583 memset(&data_hdr, 0, sizeof(data_hdr));
584
585 if (stream->metadata_flag) {
586 /* Caller MUST acquire the relayd control socket lock */
587 ret = relayd_send_metadata(&relayd->control_sock, data_size);
588 if (ret < 0) {
589 goto error;
590 }
591
592 /* Metadata are always sent on the control socket. */
593 outfd = relayd->control_sock.fd;
594 } else {
595 /* Set header with stream information */
596 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
597 data_hdr.data_size = htobe32(data_size);
598 data_hdr.padding_size = htobe32(padding);
599 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num++);
600 /* Other fields are zeroed previously */
601
602 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
603 sizeof(data_hdr));
604 if (ret < 0) {
605 goto error;
606 }
607
608 /* Set to go on data socket */
609 outfd = relayd->data_sock.fd;
610 }
611
612 error:
613 return outfd;
614 }
615
616 /*
617 * Update a stream according to what we just received.
618 */
619 void consumer_change_stream_state(int stream_key,
620 enum lttng_consumer_stream_state state)
621 {
622 struct lttng_consumer_stream *stream;
623
624 pthread_mutex_lock(&consumer_data.lock);
625 stream = consumer_find_stream(stream_key, consumer_data.stream_ht);
626 if (stream) {
627 stream->state = state;
628 }
629 consumer_data.need_update = 1;
630 pthread_mutex_unlock(&consumer_data.lock);
631 }
632
633 static
634 void consumer_free_channel(struct rcu_head *head)
635 {
636 struct lttng_ht_node_ulong *node =
637 caa_container_of(head, struct lttng_ht_node_ulong, head);
638 struct lttng_consumer_channel *channel =
639 caa_container_of(node, struct lttng_consumer_channel, node);
640
641 free(channel);
642 }
643
644 /*
645 * Remove a channel from the global list protected by a mutex. This
646 * function is also responsible for freeing its data structures.
647 */
648 void consumer_del_channel(struct lttng_consumer_channel *channel)
649 {
650 int ret;
651 struct lttng_ht_iter iter;
652
653 pthread_mutex_lock(&consumer_data.lock);
654
655 switch (consumer_data.type) {
656 case LTTNG_CONSUMER_KERNEL:
657 break;
658 case LTTNG_CONSUMER32_UST:
659 case LTTNG_CONSUMER64_UST:
660 lttng_ustconsumer_del_channel(channel);
661 break;
662 default:
663 ERR("Unknown consumer_data type");
664 assert(0);
665 goto end;
666 }
667
668 rcu_read_lock();
669 iter.iter.node = &channel->node.node;
670 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
671 assert(!ret);
672 rcu_read_unlock();
673
674 if (channel->mmap_base != NULL) {
675 ret = munmap(channel->mmap_base, channel->mmap_len);
676 if (ret != 0) {
677 PERROR("munmap");
678 }
679 }
680 if (channel->wait_fd >= 0 && !channel->wait_fd_is_copy) {
681 ret = close(channel->wait_fd);
682 if (ret) {
683 PERROR("close");
684 }
685 }
686 if (channel->shm_fd >= 0 && channel->wait_fd != channel->shm_fd) {
687 ret = close(channel->shm_fd);
688 if (ret) {
689 PERROR("close");
690 }
691 }
692
693 call_rcu(&channel->node.head, consumer_free_channel);
694 end:
695 pthread_mutex_unlock(&consumer_data.lock);
696 }
697
698 struct lttng_consumer_channel *consumer_allocate_channel(
699 int channel_key,
700 int shm_fd, int wait_fd,
701 uint64_t mmap_len,
702 uint64_t max_sb_size,
703 unsigned int nb_init_streams)
704 {
705 struct lttng_consumer_channel *channel;
706 int ret;
707
708 channel = zmalloc(sizeof(*channel));
709 if (channel == NULL) {
710 PERROR("malloc struct lttng_consumer_channel");
711 goto end;
712 }
713 channel->key = channel_key;
714 channel->shm_fd = shm_fd;
715 channel->wait_fd = wait_fd;
716 channel->mmap_len = mmap_len;
717 channel->max_sb_size = max_sb_size;
718 channel->refcount = 0;
719 channel->nb_init_streams = nb_init_streams;
720 lttng_ht_node_init_ulong(&channel->node, channel->key);
721
722 switch (consumer_data.type) {
723 case LTTNG_CONSUMER_KERNEL:
724 channel->mmap_base = NULL;
725 channel->mmap_len = 0;
726 break;
727 case LTTNG_CONSUMER32_UST:
728 case LTTNG_CONSUMER64_UST:
729 ret = lttng_ustconsumer_allocate_channel(channel);
730 if (ret) {
731 free(channel);
732 return NULL;
733 }
734 break;
735 default:
736 ERR("Unknown consumer_data type");
737 assert(0);
738 goto end;
739 }
740 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
741 channel->key, channel->shm_fd, channel->wait_fd,
742 (unsigned long long) channel->mmap_len,
743 (unsigned long long) channel->max_sb_size);
744 end:
745 return channel;
746 }
747
748 /*
749 * Add a channel to the global list protected by a mutex.
750 */
751 int consumer_add_channel(struct lttng_consumer_channel *channel)
752 {
753 struct lttng_ht_node_ulong *node;
754 struct lttng_ht_iter iter;
755
756 pthread_mutex_lock(&consumer_data.lock);
757 /* Steal channel identifier, for UST */
758 consumer_steal_channel_key(channel->key);
759 rcu_read_lock();
760
761 lttng_ht_lookup(consumer_data.channel_ht,
762 (void *)((unsigned long) channel->key), &iter);
763 node = lttng_ht_iter_get_node_ulong(&iter);
764 if (node != NULL) {
765 /* Channel already exist. Ignore the insertion */
766 goto end;
767 }
768
769 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
770
771 end:
772 rcu_read_unlock();
773 pthread_mutex_unlock(&consumer_data.lock);
774
775 return 0;
776 }
777
778 /*
779 * Allocate the pollfd structure and the local view of the out fds to avoid
780 * doing a lookup in the linked list and concurrency issues when writing is
781 * needed. Called with consumer_data.lock held.
782 *
783 * Returns the number of fds in the structures.
784 */
785 int consumer_update_poll_array(
786 struct lttng_consumer_local_data *ctx, struct pollfd **pollfd,
787 struct lttng_consumer_stream **local_stream)
788 {
789 int i = 0;
790 struct lttng_ht_iter iter;
791 struct lttng_consumer_stream *stream;
792
793 DBG("Updating poll fd array");
794 rcu_read_lock();
795 cds_lfht_for_each_entry(consumer_data.stream_ht->ht, &iter.iter, stream,
796 node.node) {
797 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM) {
798 continue;
799 }
800 DBG("Active FD %d", stream->wait_fd);
801 (*pollfd)[i].fd = stream->wait_fd;
802 (*pollfd)[i].events = POLLIN | POLLPRI;
803 local_stream[i] = stream;
804 i++;
805 }
806 rcu_read_unlock();
807
808 /*
809 * Insert the consumer_poll_pipe at the end of the array and don't
810 * increment i so nb_fd is the number of real FD.
811 */
812 (*pollfd)[i].fd = ctx->consumer_poll_pipe[0];
813 (*pollfd)[i].events = POLLIN | POLLPRI;
814 return i;
815 }
816
817 /*
818 * Poll on the should_quit pipe and the command socket return -1 on error and
819 * should exit, 0 if data is available on the command socket
820 */
821 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
822 {
823 int num_rdy;
824
825 restart:
826 num_rdy = poll(consumer_sockpoll, 2, -1);
827 if (num_rdy == -1) {
828 /*
829 * Restart interrupted system call.
830 */
831 if (errno == EINTR) {
832 goto restart;
833 }
834 PERROR("Poll error");
835 goto exit;
836 }
837 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
838 DBG("consumer_should_quit wake up");
839 goto exit;
840 }
841 return 0;
842
843 exit:
844 return -1;
845 }
846
847 /*
848 * Set the error socket.
849 */
850 void lttng_consumer_set_error_sock(
851 struct lttng_consumer_local_data *ctx, int sock)
852 {
853 ctx->consumer_error_socket = sock;
854 }
855
856 /*
857 * Set the command socket path.
858 */
859 void lttng_consumer_set_command_sock_path(
860 struct lttng_consumer_local_data *ctx, char *sock)
861 {
862 ctx->consumer_command_sock_path = sock;
863 }
864
865 /*
866 * Send return code to the session daemon.
867 * If the socket is not defined, we return 0, it is not a fatal error
868 */
869 int lttng_consumer_send_error(
870 struct lttng_consumer_local_data *ctx, int cmd)
871 {
872 if (ctx->consumer_error_socket > 0) {
873 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
874 sizeof(enum lttcomm_sessiond_command));
875 }
876
877 return 0;
878 }
879
880 /*
881 * Close all the tracefiles and stream fds, should be called when all instances
882 * are destroyed.
883 */
884 void lttng_consumer_cleanup(void)
885 {
886 struct lttng_ht_iter iter;
887 struct lttng_ht_node_ulong *node;
888
889 rcu_read_lock();
890
891 /*
892 * close all outfd. Called when there are no more threads running (after
893 * joining on the threads), no need to protect list iteration with mutex.
894 */
895 cds_lfht_for_each_entry(consumer_data.stream_ht->ht, &iter.iter, node,
896 node) {
897 struct lttng_consumer_stream *stream =
898 caa_container_of(node, struct lttng_consumer_stream, node);
899 consumer_del_stream(stream);
900 }
901
902 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, node,
903 node) {
904 struct lttng_consumer_channel *channel =
905 caa_container_of(node, struct lttng_consumer_channel, node);
906 consumer_del_channel(channel);
907 }
908
909 rcu_read_unlock();
910
911 lttng_ht_destroy(consumer_data.stream_ht);
912 lttng_ht_destroy(consumer_data.channel_ht);
913 }
914
915 /*
916 * Called from signal handler.
917 */
918 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
919 {
920 int ret;
921 consumer_quit = 1;
922 do {
923 ret = write(ctx->consumer_should_quit[1], "4", 1);
924 } while (ret < 0 && errno == EINTR);
925 if (ret < 0) {
926 PERROR("write consumer quit");
927 }
928 }
929
930 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
931 off_t orig_offset)
932 {
933 int outfd = stream->out_fd;
934
935 /*
936 * This does a blocking write-and-wait on any page that belongs to the
937 * subbuffer prior to the one we just wrote.
938 * Don't care about error values, as these are just hints and ways to
939 * limit the amount of page cache used.
940 */
941 if (orig_offset < stream->chan->max_sb_size) {
942 return;
943 }
944 lttng_sync_file_range(outfd, orig_offset - stream->chan->max_sb_size,
945 stream->chan->max_sb_size,
946 SYNC_FILE_RANGE_WAIT_BEFORE
947 | SYNC_FILE_RANGE_WRITE
948 | SYNC_FILE_RANGE_WAIT_AFTER);
949 /*
950 * Give hints to the kernel about how we access the file:
951 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
952 * we write it.
953 *
954 * We need to call fadvise again after the file grows because the
955 * kernel does not seem to apply fadvise to non-existing parts of the
956 * file.
957 *
958 * Call fadvise _after_ having waited for the page writeback to
959 * complete because the dirty page writeback semantic is not well
960 * defined. So it can be expected to lead to lower throughput in
961 * streaming.
962 */
963 posix_fadvise(outfd, orig_offset - stream->chan->max_sb_size,
964 stream->chan->max_sb_size, POSIX_FADV_DONTNEED);
965 }
966
967 /*
968 * Initialise the necessary environnement :
969 * - create a new context
970 * - create the poll_pipe
971 * - create the should_quit pipe (for signal handler)
972 * - create the thread pipe (for splice)
973 *
974 * Takes a function pointer as argument, this function is called when data is
975 * available on a buffer. This function is responsible to do the
976 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
977 * buffer configuration and then kernctl_put_next_subbuf at the end.
978 *
979 * Returns a pointer to the new context or NULL on error.
980 */
981 struct lttng_consumer_local_data *lttng_consumer_create(
982 enum lttng_consumer_type type,
983 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
984 struct lttng_consumer_local_data *ctx),
985 int (*recv_channel)(struct lttng_consumer_channel *channel),
986 int (*recv_stream)(struct lttng_consumer_stream *stream),
987 int (*update_stream)(int stream_key, uint32_t state))
988 {
989 int ret, i;
990 struct lttng_consumer_local_data *ctx;
991
992 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
993 consumer_data.type == type);
994 consumer_data.type = type;
995
996 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
997 if (ctx == NULL) {
998 PERROR("allocating context");
999 goto error;
1000 }
1001
1002 ctx->consumer_error_socket = -1;
1003 /* assign the callbacks */
1004 ctx->on_buffer_ready = buffer_ready;
1005 ctx->on_recv_channel = recv_channel;
1006 ctx->on_recv_stream = recv_stream;
1007 ctx->on_update_stream = update_stream;
1008
1009 ret = pipe(ctx->consumer_poll_pipe);
1010 if (ret < 0) {
1011 PERROR("Error creating poll pipe");
1012 goto error_poll_pipe;
1013 }
1014
1015 /* set read end of the pipe to non-blocking */
1016 ret = fcntl(ctx->consumer_poll_pipe[0], F_SETFL, O_NONBLOCK);
1017 if (ret < 0) {
1018 PERROR("fcntl O_NONBLOCK");
1019 goto error_poll_fcntl;
1020 }
1021
1022 /* set write end of the pipe to non-blocking */
1023 ret = fcntl(ctx->consumer_poll_pipe[1], F_SETFL, O_NONBLOCK);
1024 if (ret < 0) {
1025 PERROR("fcntl O_NONBLOCK");
1026 goto error_poll_fcntl;
1027 }
1028
1029 ret = pipe(ctx->consumer_should_quit);
1030 if (ret < 0) {
1031 PERROR("Error creating recv pipe");
1032 goto error_quit_pipe;
1033 }
1034
1035 ret = pipe(ctx->consumer_thread_pipe);
1036 if (ret < 0) {
1037 PERROR("Error creating thread pipe");
1038 goto error_thread_pipe;
1039 }
1040
1041 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1042 if (ret < 0) {
1043 goto error_metadata_pipe;
1044 }
1045
1046 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1047 if (ret < 0) {
1048 goto error_splice_pipe;
1049 }
1050
1051 return ctx;
1052
1053 error_splice_pipe:
1054 utils_close_pipe(ctx->consumer_metadata_pipe);
1055 error_metadata_pipe:
1056 utils_close_pipe(ctx->consumer_thread_pipe);
1057 error_thread_pipe:
1058 for (i = 0; i < 2; i++) {
1059 int err;
1060
1061 err = close(ctx->consumer_should_quit[i]);
1062 if (err) {
1063 PERROR("close");
1064 }
1065 }
1066 error_poll_fcntl:
1067 error_quit_pipe:
1068 for (i = 0; i < 2; i++) {
1069 int err;
1070
1071 err = close(ctx->consumer_poll_pipe[i]);
1072 if (err) {
1073 PERROR("close");
1074 }
1075 }
1076 error_poll_pipe:
1077 free(ctx);
1078 error:
1079 return NULL;
1080 }
1081
1082 /*
1083 * Close all fds associated with the instance and free the context.
1084 */
1085 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1086 {
1087 int ret;
1088
1089 ret = close(ctx->consumer_error_socket);
1090 if (ret) {
1091 PERROR("close");
1092 }
1093 ret = close(ctx->consumer_thread_pipe[0]);
1094 if (ret) {
1095 PERROR("close");
1096 }
1097 ret = close(ctx->consumer_thread_pipe[1]);
1098 if (ret) {
1099 PERROR("close");
1100 }
1101 ret = close(ctx->consumer_poll_pipe[0]);
1102 if (ret) {
1103 PERROR("close");
1104 }
1105 ret = close(ctx->consumer_poll_pipe[1]);
1106 if (ret) {
1107 PERROR("close");
1108 }
1109 ret = close(ctx->consumer_should_quit[0]);
1110 if (ret) {
1111 PERROR("close");
1112 }
1113 ret = close(ctx->consumer_should_quit[1]);
1114 if (ret) {
1115 PERROR("close");
1116 }
1117 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1118
1119 unlink(ctx->consumer_command_sock_path);
1120 free(ctx);
1121 }
1122
1123 /*
1124 * Write the metadata stream id on the specified file descriptor.
1125 */
1126 static int write_relayd_metadata_id(int fd,
1127 struct lttng_consumer_stream *stream,
1128 struct consumer_relayd_sock_pair *relayd,
1129 unsigned long padding)
1130 {
1131 int ret;
1132 struct lttcomm_relayd_metadata_payload hdr;
1133
1134 hdr.stream_id = htobe64(stream->relayd_stream_id);
1135 hdr.padding_size = htobe32(padding);
1136 do {
1137 ret = write(fd, (void *) &hdr, sizeof(hdr));
1138 } while (ret < 0 && errno == EINTR);
1139 if (ret < 0) {
1140 PERROR("write metadata stream id");
1141 goto end;
1142 }
1143 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1144 stream->relayd_stream_id, padding);
1145
1146 end:
1147 return ret;
1148 }
1149
1150 /*
1151 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1152 * core function for writing trace buffers to either the local filesystem or
1153 * the network.
1154 *
1155 * Careful review MUST be put if any changes occur!
1156 *
1157 * Returns the number of bytes written
1158 */
1159 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1160 struct lttng_consumer_local_data *ctx,
1161 struct lttng_consumer_stream *stream, unsigned long len,
1162 unsigned long padding)
1163 {
1164 unsigned long mmap_offset;
1165 ssize_t ret = 0, written = 0;
1166 off_t orig_offset = stream->out_fd_offset;
1167 /* Default is on the disk */
1168 int outfd = stream->out_fd;
1169 struct consumer_relayd_sock_pair *relayd = NULL;
1170
1171 /* RCU lock for the relayd pointer */
1172 rcu_read_lock();
1173
1174 /* Flag that the current stream if set for network streaming. */
1175 if (stream->net_seq_idx != -1) {
1176 relayd = consumer_find_relayd(stream->net_seq_idx);
1177 if (relayd == NULL) {
1178 goto end;
1179 }
1180 }
1181
1182 /* get the offset inside the fd to mmap */
1183 switch (consumer_data.type) {
1184 case LTTNG_CONSUMER_KERNEL:
1185 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1186 break;
1187 case LTTNG_CONSUMER32_UST:
1188 case LTTNG_CONSUMER64_UST:
1189 ret = lttng_ustctl_get_mmap_read_offset(stream->chan->handle,
1190 stream->buf, &mmap_offset);
1191 break;
1192 default:
1193 ERR("Unknown consumer_data type");
1194 assert(0);
1195 }
1196 if (ret != 0) {
1197 errno = -ret;
1198 PERROR("tracer ctl get_mmap_read_offset");
1199 written = ret;
1200 goto end;
1201 }
1202
1203 /* Handle stream on the relayd if the output is on the network */
1204 if (relayd) {
1205 unsigned long netlen = len;
1206
1207 /*
1208 * Lock the control socket for the complete duration of the function
1209 * since from this point on we will use the socket.
1210 */
1211 if (stream->metadata_flag) {
1212 /* Metadata requires the control socket. */
1213 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1214 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1215 }
1216
1217 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1218 if (ret >= 0) {
1219 /* Use the returned socket. */
1220 outfd = ret;
1221
1222 /* Write metadata stream id before payload */
1223 if (stream->metadata_flag) {
1224 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1225 if (ret < 0) {
1226 written = ret;
1227 goto end;
1228 }
1229 }
1230 }
1231 /* Else, use the default set before which is the filesystem. */
1232 } else {
1233 /* No streaming, we have to set the len with the full padding */
1234 len += padding;
1235 }
1236
1237 while (len > 0) {
1238 do {
1239 ret = write(outfd, stream->mmap_base + mmap_offset, len);
1240 } while (ret < 0 && errno == EINTR);
1241 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1242 if (ret < 0) {
1243 PERROR("Error in file write");
1244 if (written == 0) {
1245 written = ret;
1246 }
1247 goto end;
1248 } else if (ret > len) {
1249 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1250 written += ret;
1251 goto end;
1252 } else {
1253 len -= ret;
1254 mmap_offset += ret;
1255 }
1256
1257 /* This call is useless on a socket so better save a syscall. */
1258 if (!relayd) {
1259 /* This won't block, but will start writeout asynchronously */
1260 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1261 SYNC_FILE_RANGE_WRITE);
1262 stream->out_fd_offset += ret;
1263 }
1264 written += ret;
1265 }
1266 lttng_consumer_sync_trace_file(stream, orig_offset);
1267
1268 end:
1269 /* Unlock only if ctrl socket used */
1270 if (relayd && stream->metadata_flag) {
1271 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1272 }
1273
1274 rcu_read_unlock();
1275 return written;
1276 }
1277
1278 /*
1279 * Splice the data from the ring buffer to the tracefile.
1280 *
1281 * Returns the number of bytes spliced.
1282 */
1283 ssize_t lttng_consumer_on_read_subbuffer_splice(
1284 struct lttng_consumer_local_data *ctx,
1285 struct lttng_consumer_stream *stream, unsigned long len,
1286 unsigned long padding)
1287 {
1288 ssize_t ret = 0, written = 0, ret_splice = 0;
1289 loff_t offset = 0;
1290 off_t orig_offset = stream->out_fd_offset;
1291 int fd = stream->wait_fd;
1292 /* Default is on the disk */
1293 int outfd = stream->out_fd;
1294 struct consumer_relayd_sock_pair *relayd = NULL;
1295 int *splice_pipe;
1296
1297 switch (consumer_data.type) {
1298 case LTTNG_CONSUMER_KERNEL:
1299 break;
1300 case LTTNG_CONSUMER32_UST:
1301 case LTTNG_CONSUMER64_UST:
1302 /* Not supported for user space tracing */
1303 return -ENOSYS;
1304 default:
1305 ERR("Unknown consumer_data type");
1306 assert(0);
1307 }
1308
1309 /* RCU lock for the relayd pointer */
1310 rcu_read_lock();
1311
1312 /* Flag that the current stream if set for network streaming. */
1313 if (stream->net_seq_idx != -1) {
1314 relayd = consumer_find_relayd(stream->net_seq_idx);
1315 if (relayd == NULL) {
1316 goto end;
1317 }
1318 }
1319
1320 /*
1321 * Choose right pipe for splice. Metadata and trace data are handled by
1322 * different threads hence the use of two pipes in order not to race or
1323 * corrupt the written data.
1324 */
1325 if (stream->metadata_flag) {
1326 splice_pipe = ctx->consumer_splice_metadata_pipe;
1327 } else {
1328 splice_pipe = ctx->consumer_thread_pipe;
1329 }
1330
1331 /* Write metadata stream id before payload */
1332 if (relayd) {
1333 int total_len = len;
1334
1335 if (stream->metadata_flag) {
1336 /*
1337 * Lock the control socket for the complete duration of the function
1338 * since from this point on we will use the socket.
1339 */
1340 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1341
1342 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1343 padding);
1344 if (ret < 0) {
1345 written = ret;
1346 goto end;
1347 }
1348
1349 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1350 }
1351
1352 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1353 if (ret >= 0) {
1354 /* Use the returned socket. */
1355 outfd = ret;
1356 } else {
1357 ERR("Remote relayd disconnected. Stopping");
1358 goto end;
1359 }
1360 } else {
1361 /* No streaming, we have to set the len with the full padding */
1362 len += padding;
1363 }
1364
1365 while (len > 0) {
1366 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1367 (unsigned long)offset, len, fd, splice_pipe[1]);
1368 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1369 SPLICE_F_MOVE | SPLICE_F_MORE);
1370 DBG("splice chan to pipe, ret %zd", ret_splice);
1371 if (ret_splice < 0) {
1372 PERROR("Error in relay splice");
1373 if (written == 0) {
1374 written = ret_splice;
1375 }
1376 ret = errno;
1377 goto splice_error;
1378 }
1379
1380 /* Handle stream on the relayd if the output is on the network */
1381 if (relayd) {
1382 if (stream->metadata_flag) {
1383 size_t metadata_payload_size =
1384 sizeof(struct lttcomm_relayd_metadata_payload);
1385
1386 /* Update counter to fit the spliced data */
1387 ret_splice += metadata_payload_size;
1388 len += metadata_payload_size;
1389 /*
1390 * We do this so the return value can match the len passed as
1391 * argument to this function.
1392 */
1393 written -= metadata_payload_size;
1394 }
1395 }
1396
1397 /* Splice data out */
1398 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1399 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1400 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1401 if (ret_splice < 0) {
1402 PERROR("Error in file splice");
1403 if (written == 0) {
1404 written = ret_splice;
1405 }
1406 ret = errno;
1407 goto splice_error;
1408 } else if (ret_splice > len) {
1409 errno = EINVAL;
1410 PERROR("Wrote more data than requested %zd (len: %lu)",
1411 ret_splice, len);
1412 written += ret_splice;
1413 ret = errno;
1414 goto splice_error;
1415 }
1416 len -= ret_splice;
1417
1418 /* This call is useless on a socket so better save a syscall. */
1419 if (!relayd) {
1420 /* This won't block, but will start writeout asynchronously */
1421 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1422 SYNC_FILE_RANGE_WRITE);
1423 stream->out_fd_offset += ret_splice;
1424 }
1425 written += ret_splice;
1426 }
1427 lttng_consumer_sync_trace_file(stream, orig_offset);
1428
1429 ret = ret_splice;
1430
1431 goto end;
1432
1433 splice_error:
1434 /* send the appropriate error description to sessiond */
1435 switch (ret) {
1436 case EBADF:
1437 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EBADF);
1438 break;
1439 case EINVAL:
1440 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1441 break;
1442 case ENOMEM:
1443 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1444 break;
1445 case ESPIPE:
1446 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1447 break;
1448 }
1449
1450 end:
1451 if (relayd && stream->metadata_flag) {
1452 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1453 }
1454
1455 rcu_read_unlock();
1456 return written;
1457 }
1458
1459 /*
1460 * Take a snapshot for a specific fd
1461 *
1462 * Returns 0 on success, < 0 on error
1463 */
1464 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data *ctx,
1465 struct lttng_consumer_stream *stream)
1466 {
1467 switch (consumer_data.type) {
1468 case LTTNG_CONSUMER_KERNEL:
1469 return lttng_kconsumer_take_snapshot(ctx, stream);
1470 case LTTNG_CONSUMER32_UST:
1471 case LTTNG_CONSUMER64_UST:
1472 return lttng_ustconsumer_take_snapshot(ctx, stream);
1473 default:
1474 ERR("Unknown consumer_data type");
1475 assert(0);
1476 return -ENOSYS;
1477 }
1478
1479 }
1480
1481 /*
1482 * Get the produced position
1483 *
1484 * Returns 0 on success, < 0 on error
1485 */
1486 int lttng_consumer_get_produced_snapshot(
1487 struct lttng_consumer_local_data *ctx,
1488 struct lttng_consumer_stream *stream,
1489 unsigned long *pos)
1490 {
1491 switch (consumer_data.type) {
1492 case LTTNG_CONSUMER_KERNEL:
1493 return lttng_kconsumer_get_produced_snapshot(ctx, stream, pos);
1494 case LTTNG_CONSUMER32_UST:
1495 case LTTNG_CONSUMER64_UST:
1496 return lttng_ustconsumer_get_produced_snapshot(ctx, stream, pos);
1497 default:
1498 ERR("Unknown consumer_data type");
1499 assert(0);
1500 return -ENOSYS;
1501 }
1502 }
1503
1504 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1505 int sock, struct pollfd *consumer_sockpoll)
1506 {
1507 switch (consumer_data.type) {
1508 case LTTNG_CONSUMER_KERNEL:
1509 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1510 case LTTNG_CONSUMER32_UST:
1511 case LTTNG_CONSUMER64_UST:
1512 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1513 default:
1514 ERR("Unknown consumer_data type");
1515 assert(0);
1516 return -ENOSYS;
1517 }
1518 }
1519
1520 /*
1521 * Iterate over all streams of the hashtable and free them properly.
1522 */
1523 static void destroy_stream_ht(struct lttng_ht *ht)
1524 {
1525 int ret;
1526 struct lttng_ht_iter iter;
1527 struct lttng_consumer_stream *stream;
1528
1529 if (ht == NULL) {
1530 return;
1531 }
1532
1533 rcu_read_lock();
1534 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1535 ret = lttng_ht_del(ht, &iter);
1536 assert(!ret);
1537
1538 call_rcu(&stream->node.head, consumer_free_stream);
1539 }
1540 rcu_read_unlock();
1541
1542 lttng_ht_destroy(ht);
1543 }
1544
1545 /*
1546 * Clean up a metadata stream and free its memory.
1547 */
1548 static void consumer_del_metadata_stream(struct lttng_consumer_stream *stream)
1549 {
1550 int ret;
1551 struct consumer_relayd_sock_pair *relayd;
1552
1553 assert(stream);
1554 /*
1555 * This call should NEVER receive regular stream. It must always be
1556 * metadata stream and this is crucial for data structure synchronization.
1557 */
1558 assert(stream->metadata_flag);
1559
1560 pthread_mutex_lock(&consumer_data.lock);
1561 switch (consumer_data.type) {
1562 case LTTNG_CONSUMER_KERNEL:
1563 if (stream->mmap_base != NULL) {
1564 ret = munmap(stream->mmap_base, stream->mmap_len);
1565 if (ret != 0) {
1566 PERROR("munmap metadata stream");
1567 }
1568 }
1569 break;
1570 case LTTNG_CONSUMER32_UST:
1571 case LTTNG_CONSUMER64_UST:
1572 lttng_ustconsumer_del_stream(stream);
1573 break;
1574 default:
1575 ERR("Unknown consumer_data type");
1576 assert(0);
1577 }
1578 pthread_mutex_unlock(&consumer_data.lock);
1579
1580 if (stream->out_fd >= 0) {
1581 ret = close(stream->out_fd);
1582 if (ret) {
1583 PERROR("close");
1584 }
1585 }
1586
1587 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
1588 ret = close(stream->wait_fd);
1589 if (ret) {
1590 PERROR("close");
1591 }
1592 }
1593
1594 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
1595 ret = close(stream->shm_fd);
1596 if (ret) {
1597 PERROR("close");
1598 }
1599 }
1600
1601 /* Check and cleanup relayd */
1602 rcu_read_lock();
1603 relayd = consumer_find_relayd(stream->net_seq_idx);
1604 if (relayd != NULL) {
1605 uatomic_dec(&relayd->refcount);
1606 assert(uatomic_read(&relayd->refcount) >= 0);
1607
1608 /* Closing streams requires to lock the control socket. */
1609 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1610 ret = relayd_send_close_stream(&relayd->control_sock,
1611 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1612 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1613 if (ret < 0) {
1614 DBG("Unable to close stream on the relayd. Continuing");
1615 /*
1616 * Continue here. There is nothing we can do for the relayd.
1617 * Chances are that the relayd has closed the socket so we just
1618 * continue cleaning up.
1619 */
1620 }
1621
1622 /* Both conditions are met, we destroy the relayd. */
1623 if (uatomic_read(&relayd->refcount) == 0 &&
1624 uatomic_read(&relayd->destroy_flag)) {
1625 destroy_relayd(relayd);
1626 }
1627 }
1628 rcu_read_unlock();
1629
1630 /* Atomically decrement channel refcount since other threads can use it. */
1631 uatomic_dec(&stream->chan->refcount);
1632 if (!uatomic_read(&stream->chan->refcount)
1633 && !uatomic_read(&stream->chan->nb_init_streams)) {
1634 /* Go for channel deletion! */
1635 consumer_del_channel(stream->chan);
1636 }
1637
1638 call_rcu(&stream->node.head, consumer_free_stream);
1639 }
1640
1641 /*
1642 * Action done with the metadata stream when adding it to the consumer internal
1643 * data structures to handle it.
1644 */
1645 static void consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
1646 {
1647 struct consumer_relayd_sock_pair *relayd;
1648
1649 /* Find relayd and, if one is found, increment refcount. */
1650 rcu_read_lock();
1651 relayd = consumer_find_relayd(stream->net_seq_idx);
1652 if (relayd != NULL) {
1653 uatomic_inc(&relayd->refcount);
1654 }
1655 rcu_read_unlock();
1656 }
1657
1658 /*
1659 * Thread polls on metadata file descriptor and write them on disk or on the
1660 * network.
1661 */
1662 void *lttng_consumer_thread_poll_metadata(void *data)
1663 {
1664 int ret, i, pollfd;
1665 uint32_t revents, nb_fd;
1666 struct lttng_consumer_stream *stream;
1667 struct lttng_ht_iter iter;
1668 struct lttng_ht_node_ulong *node;
1669 struct lttng_ht *metadata_ht = NULL;
1670 struct lttng_poll_event events;
1671 struct lttng_consumer_local_data *ctx = data;
1672 ssize_t len;
1673
1674 rcu_register_thread();
1675
1676 DBG("Thread metadata poll started");
1677
1678 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
1679 if (metadata_ht == NULL) {
1680 goto end;
1681 }
1682
1683 /* Size is set to 1 for the consumer_metadata pipe */
1684 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
1685 if (ret < 0) {
1686 ERR("Poll set creation failed");
1687 goto end;
1688 }
1689
1690 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
1691 if (ret < 0) {
1692 goto end;
1693 }
1694
1695 /* Main loop */
1696 DBG("Metadata main loop started");
1697
1698 while (1) {
1699 lttng_poll_reset(&events);
1700
1701 nb_fd = LTTNG_POLL_GETNB(&events);
1702
1703 /* Only the metadata pipe is set */
1704 if (nb_fd == 0 && consumer_quit == 1) {
1705 goto end;
1706 }
1707
1708 restart:
1709 DBG("Metadata poll wait with %d fd(s)", nb_fd);
1710 ret = lttng_poll_wait(&events, -1);
1711 DBG("Metadata event catched in thread");
1712 if (ret < 0) {
1713 if (errno == EINTR) {
1714 goto restart;
1715 }
1716 goto error;
1717 }
1718
1719 for (i = 0; i < nb_fd; i++) {
1720 revents = LTTNG_POLL_GETEV(&events, i);
1721 pollfd = LTTNG_POLL_GETFD(&events, i);
1722
1723 /* Check the metadata pipe for incoming metadata. */
1724 if (pollfd == ctx->consumer_metadata_pipe[0]) {
1725 if (revents & (LPOLLERR | LPOLLHUP )) {
1726 DBG("Metadata thread pipe hung up");
1727 /*
1728 * Remove the pipe from the poll set and continue the loop
1729 * since their might be data to consume.
1730 */
1731 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
1732 close(ctx->consumer_metadata_pipe[0]);
1733 continue;
1734 } else if (revents & LPOLLIN) {
1735 do {
1736 /* Get the stream pointer received */
1737 ret = read(pollfd, &stream, sizeof(stream));
1738 } while (ret < 0 && errno == EINTR);
1739 if (ret < 0 ||
1740 ret < sizeof(struct lttng_consumer_stream *)) {
1741 PERROR("read metadata stream");
1742 /*
1743 * Let's continue here and hope we can still work
1744 * without stopping the consumer. XXX: Should we?
1745 */
1746 continue;
1747 }
1748
1749 DBG("Adding metadata stream %d to poll set",
1750 stream->wait_fd);
1751
1752 rcu_read_lock();
1753 /* The node should be init at this point */
1754 lttng_ht_add_unique_ulong(metadata_ht,
1755 &stream->waitfd_node);
1756 rcu_read_unlock();
1757
1758 /* Add metadata stream to the global poll events list */
1759 lttng_poll_add(&events, stream->wait_fd,
1760 LPOLLIN | LPOLLPRI);
1761
1762 consumer_add_metadata_stream(stream);
1763 }
1764
1765 /* Metadata pipe handled. Continue handling the others */
1766 continue;
1767 }
1768
1769 /* From here, the event is a metadata wait fd */
1770
1771 rcu_read_lock();
1772 lttng_ht_lookup(metadata_ht, (void *)((unsigned long) pollfd),
1773 &iter);
1774 node = lttng_ht_iter_get_node_ulong(&iter);
1775 if (node == NULL) {
1776 /* FD not found, continue loop */
1777 rcu_read_unlock();
1778 continue;
1779 }
1780
1781 stream = caa_container_of(node, struct lttng_consumer_stream,
1782 waitfd_node);
1783
1784 /* Get the data out of the metadata file descriptor */
1785 if (revents & (LPOLLIN | LPOLLPRI)) {
1786 DBG("Metadata available on fd %d", pollfd);
1787 assert(stream->wait_fd == pollfd);
1788
1789 len = ctx->on_buffer_ready(stream, ctx);
1790 /* It's ok to have an unavailable sub-buffer */
1791 if (len < 0 && len != -EAGAIN) {
1792 rcu_read_unlock();
1793 goto end;
1794 } else if (len > 0) {
1795 stream->data_read = 1;
1796 }
1797 }
1798
1799 /*
1800 * Remove the stream from the hash table since there is no data
1801 * left on the fd because we previously did a read on the buffer.
1802 */
1803 if (revents & (LPOLLERR | LPOLLHUP)) {
1804 DBG("Metadata fd %d is hup|err|nval.", pollfd);
1805 if (!stream->hangup_flush_done
1806 && (consumer_data.type == LTTNG_CONSUMER32_UST
1807 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
1808 DBG("Attempting to flush and consume the UST buffers");
1809 lttng_ustconsumer_on_stream_hangup(stream);
1810
1811 /* We just flushed the stream now read it. */
1812 len = ctx->on_buffer_ready(stream, ctx);
1813 /* It's ok to have an unavailable sub-buffer */
1814 if (len < 0 && len != -EAGAIN) {
1815 rcu_read_unlock();
1816 goto end;
1817 }
1818 }
1819
1820 /* Removing it from hash table, poll set and free memory */
1821 lttng_ht_del(metadata_ht, &iter);
1822
1823 lttng_poll_del(&events, stream->wait_fd);
1824 consumer_del_metadata_stream(stream);
1825 }
1826 rcu_read_unlock();
1827 }
1828 }
1829
1830 error:
1831 end:
1832 DBG("Metadata poll thread exiting");
1833 lttng_poll_clean(&events);
1834
1835 if (metadata_ht) {
1836 destroy_stream_ht(metadata_ht);
1837 }
1838
1839 rcu_unregister_thread();
1840 return NULL;
1841 }
1842
1843 /*
1844 * This thread polls the fds in the set to consume the data and write
1845 * it to tracefile if necessary.
1846 */
1847 void *lttng_consumer_thread_poll_fds(void *data)
1848 {
1849 int num_rdy, num_hup, high_prio, ret, i;
1850 struct pollfd *pollfd = NULL;
1851 /* local view of the streams */
1852 struct lttng_consumer_stream **local_stream = NULL;
1853 /* local view of consumer_data.fds_count */
1854 int nb_fd = 0;
1855 struct lttng_consumer_local_data *ctx = data;
1856 ssize_t len;
1857 pthread_t metadata_thread;
1858 void *status;
1859
1860 rcu_register_thread();
1861
1862 /* Start metadata polling thread */
1863 ret = pthread_create(&metadata_thread, NULL,
1864 lttng_consumer_thread_poll_metadata, (void *) ctx);
1865 if (ret < 0) {
1866 PERROR("pthread_create metadata thread");
1867 goto end;
1868 }
1869
1870 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
1871
1872 while (1) {
1873 high_prio = 0;
1874 num_hup = 0;
1875
1876 /*
1877 * the fds set has been updated, we need to update our
1878 * local array as well
1879 */
1880 pthread_mutex_lock(&consumer_data.lock);
1881 if (consumer_data.need_update) {
1882 if (pollfd != NULL) {
1883 free(pollfd);
1884 pollfd = NULL;
1885 }
1886 if (local_stream != NULL) {
1887 free(local_stream);
1888 local_stream = NULL;
1889 }
1890
1891 /* allocate for all fds + 1 for the consumer_poll_pipe */
1892 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
1893 if (pollfd == NULL) {
1894 PERROR("pollfd malloc");
1895 pthread_mutex_unlock(&consumer_data.lock);
1896 goto end;
1897 }
1898
1899 /* allocate for all fds + 1 for the consumer_poll_pipe */
1900 local_stream = zmalloc((consumer_data.stream_count + 1) *
1901 sizeof(struct lttng_consumer_stream));
1902 if (local_stream == NULL) {
1903 PERROR("local_stream malloc");
1904 pthread_mutex_unlock(&consumer_data.lock);
1905 goto end;
1906 }
1907 ret = consumer_update_poll_array(ctx, &pollfd, local_stream);
1908 if (ret < 0) {
1909 ERR("Error in allocating pollfd or local_outfds");
1910 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
1911 pthread_mutex_unlock(&consumer_data.lock);
1912 goto end;
1913 }
1914 nb_fd = ret;
1915 consumer_data.need_update = 0;
1916 }
1917 pthread_mutex_unlock(&consumer_data.lock);
1918
1919 /* No FDs and consumer_quit, consumer_cleanup the thread */
1920 if (nb_fd == 0 && consumer_quit == 1) {
1921 goto end;
1922 }
1923 /* poll on the array of fds */
1924 restart:
1925 DBG("polling on %d fd", nb_fd + 1);
1926 num_rdy = poll(pollfd, nb_fd + 1, consumer_poll_timeout);
1927 DBG("poll num_rdy : %d", num_rdy);
1928 if (num_rdy == -1) {
1929 /*
1930 * Restart interrupted system call.
1931 */
1932 if (errno == EINTR) {
1933 goto restart;
1934 }
1935 PERROR("Poll error");
1936 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
1937 goto end;
1938 } else if (num_rdy == 0) {
1939 DBG("Polling thread timed out");
1940 goto end;
1941 }
1942
1943 /*
1944 * If the consumer_poll_pipe triggered poll go directly to the
1945 * beginning of the loop to update the array. We want to prioritize
1946 * array update over low-priority reads.
1947 */
1948 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
1949 size_t pipe_readlen;
1950 char tmp;
1951
1952 DBG("consumer_poll_pipe wake up");
1953 /* Consume 1 byte of pipe data */
1954 do {
1955 pipe_readlen = read(ctx->consumer_poll_pipe[0], &tmp, 1);
1956 } while (pipe_readlen == -1 && errno == EINTR);
1957 continue;
1958 }
1959
1960 /* Take care of high priority channels first. */
1961 for (i = 0; i < nb_fd; i++) {
1962 if (pollfd[i].revents & POLLPRI) {
1963 DBG("Urgent read on fd %d", pollfd[i].fd);
1964 high_prio = 1;
1965 len = ctx->on_buffer_ready(local_stream[i], ctx);
1966 /* it's ok to have an unavailable sub-buffer */
1967 if (len < 0 && len != -EAGAIN) {
1968 goto end;
1969 } else if (len > 0) {
1970 local_stream[i]->data_read = 1;
1971 }
1972 }
1973 }
1974
1975 /*
1976 * If we read high prio channel in this loop, try again
1977 * for more high prio data.
1978 */
1979 if (high_prio) {
1980 continue;
1981 }
1982
1983 /* Take care of low priority channels. */
1984 for (i = 0; i < nb_fd; i++) {
1985 if ((pollfd[i].revents & POLLIN) ||
1986 local_stream[i]->hangup_flush_done) {
1987 DBG("Normal read on fd %d", pollfd[i].fd);
1988 len = ctx->on_buffer_ready(local_stream[i], ctx);
1989 /* it's ok to have an unavailable sub-buffer */
1990 if (len < 0 && len != -EAGAIN) {
1991 goto end;
1992 } else if (len > 0) {
1993 local_stream[i]->data_read = 1;
1994 }
1995 }
1996 }
1997
1998 /* Handle hangup and errors */
1999 for (i = 0; i < nb_fd; i++) {
2000 if (!local_stream[i]->hangup_flush_done
2001 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2002 && (consumer_data.type == LTTNG_CONSUMER32_UST
2003 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2004 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2005 pollfd[i].fd);
2006 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2007 /* Attempt read again, for the data we just flushed. */
2008 local_stream[i]->data_read = 1;
2009 }
2010 /*
2011 * If the poll flag is HUP/ERR/NVAL and we have
2012 * read no data in this pass, we can remove the
2013 * stream from its hash table.
2014 */
2015 if ((pollfd[i].revents & POLLHUP)) {
2016 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2017 if (!local_stream[i]->data_read) {
2018 consumer_del_stream(local_stream[i]);
2019 num_hup++;
2020 }
2021 } else if (pollfd[i].revents & POLLERR) {
2022 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2023 if (!local_stream[i]->data_read) {
2024 consumer_del_stream(local_stream[i]);
2025 num_hup++;
2026 }
2027 } else if (pollfd[i].revents & POLLNVAL) {
2028 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2029 if (!local_stream[i]->data_read) {
2030 consumer_del_stream(local_stream[i]);
2031 num_hup++;
2032 }
2033 }
2034 local_stream[i]->data_read = 0;
2035 }
2036 }
2037 end:
2038 DBG("polling thread exiting");
2039 if (pollfd != NULL) {
2040 free(pollfd);
2041 pollfd = NULL;
2042 }
2043 if (local_stream != NULL) {
2044 free(local_stream);
2045 local_stream = NULL;
2046 }
2047
2048 /*
2049 * Close the write side of the pipe so epoll_wait() in
2050 * lttng_consumer_thread_poll_metadata can catch it. The thread is
2051 * monitoring the read side of the pipe. If we close them both, epoll_wait
2052 * strangely does not return and could create a endless wait period if the
2053 * pipe is the only tracked fd in the poll set. The thread will take care
2054 * of closing the read side.
2055 */
2056 close(ctx->consumer_metadata_pipe[1]);
2057 if (ret) {
2058 ret = pthread_join(metadata_thread, &status);
2059 if (ret < 0) {
2060 PERROR("pthread_join metadata thread");
2061 }
2062 }
2063
2064 rcu_unregister_thread();
2065 return NULL;
2066 }
2067
2068 /*
2069 * This thread listens on the consumerd socket and receives the file
2070 * descriptors from the session daemon.
2071 */
2072 void *lttng_consumer_thread_receive_fds(void *data)
2073 {
2074 int sock, client_socket, ret;
2075 /*
2076 * structure to poll for incoming data on communication socket avoids
2077 * making blocking sockets.
2078 */
2079 struct pollfd consumer_sockpoll[2];
2080 struct lttng_consumer_local_data *ctx = data;
2081
2082 rcu_register_thread();
2083
2084 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2085 unlink(ctx->consumer_command_sock_path);
2086 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2087 if (client_socket < 0) {
2088 ERR("Cannot create command socket");
2089 goto end;
2090 }
2091
2092 ret = lttcomm_listen_unix_sock(client_socket);
2093 if (ret < 0) {
2094 goto end;
2095 }
2096
2097 DBG("Sending ready command to lttng-sessiond");
2098 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2099 /* return < 0 on error, but == 0 is not fatal */
2100 if (ret < 0) {
2101 ERR("Error sending ready command to lttng-sessiond");
2102 goto end;
2103 }
2104
2105 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2106 if (ret < 0) {
2107 PERROR("fcntl O_NONBLOCK");
2108 goto end;
2109 }
2110
2111 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2112 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2113 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2114 consumer_sockpoll[1].fd = client_socket;
2115 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2116
2117 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2118 goto end;
2119 }
2120 DBG("Connection on client_socket");
2121
2122 /* Blocking call, waiting for transmission */
2123 sock = lttcomm_accept_unix_sock(client_socket);
2124 if (sock <= 0) {
2125 WARN("On accept");
2126 goto end;
2127 }
2128 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2129 if (ret < 0) {
2130 PERROR("fcntl O_NONBLOCK");
2131 goto end;
2132 }
2133
2134 /* update the polling structure to poll on the established socket */
2135 consumer_sockpoll[1].fd = sock;
2136 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2137
2138 while (1) {
2139 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2140 goto end;
2141 }
2142 DBG("Incoming command on sock");
2143 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2144 if (ret == -ENOENT) {
2145 DBG("Received STOP command");
2146 goto end;
2147 }
2148 if (ret <= 0) {
2149 /*
2150 * This could simply be a session daemon quitting. Don't output
2151 * ERR() here.
2152 */
2153 DBG("Communication interrupted on command socket");
2154 goto end;
2155 }
2156 if (consumer_quit) {
2157 DBG("consumer_thread_receive_fds received quit from signal");
2158 goto end;
2159 }
2160 DBG("received fds on sock");
2161 }
2162 end:
2163 DBG("consumer_thread_receive_fds exiting");
2164
2165 /*
2166 * when all fds have hung up, the polling thread
2167 * can exit cleanly
2168 */
2169 consumer_quit = 1;
2170
2171 /*
2172 * 2s of grace period, if no polling events occur during
2173 * this period, the polling thread will exit even if there
2174 * are still open FDs (should not happen, but safety mechanism).
2175 */
2176 consumer_poll_timeout = LTTNG_CONSUMER_POLL_TIMEOUT;
2177
2178 /*
2179 * Wake-up the other end by writing a null byte in the pipe
2180 * (non-blocking). Important note: Because writing into the
2181 * pipe is non-blocking (and therefore we allow dropping wakeup
2182 * data, as long as there is wakeup data present in the pipe
2183 * buffer to wake up the other end), the other end should
2184 * perform the following sequence for waiting:
2185 * 1) empty the pipe (reads).
2186 * 2) perform update operation.
2187 * 3) wait on the pipe (poll).
2188 */
2189 do {
2190 ret = write(ctx->consumer_poll_pipe[1], "", 1);
2191 } while (ret < 0 && errno == EINTR);
2192 rcu_unregister_thread();
2193 return NULL;
2194 }
2195
2196 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2197 struct lttng_consumer_local_data *ctx)
2198 {
2199 switch (consumer_data.type) {
2200 case LTTNG_CONSUMER_KERNEL:
2201 return lttng_kconsumer_read_subbuffer(stream, ctx);
2202 case LTTNG_CONSUMER32_UST:
2203 case LTTNG_CONSUMER64_UST:
2204 return lttng_ustconsumer_read_subbuffer(stream, ctx);
2205 default:
2206 ERR("Unknown consumer_data type");
2207 assert(0);
2208 return -ENOSYS;
2209 }
2210 }
2211
2212 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2213 {
2214 switch (consumer_data.type) {
2215 case LTTNG_CONSUMER_KERNEL:
2216 return lttng_kconsumer_on_recv_stream(stream);
2217 case LTTNG_CONSUMER32_UST:
2218 case LTTNG_CONSUMER64_UST:
2219 return lttng_ustconsumer_on_recv_stream(stream);
2220 default:
2221 ERR("Unknown consumer_data type");
2222 assert(0);
2223 return -ENOSYS;
2224 }
2225 }
2226
2227 /*
2228 * Allocate and set consumer data hash tables.
2229 */
2230 void lttng_consumer_init(void)
2231 {
2232 consumer_data.stream_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2233 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2234 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2235 }
2236
2237 /*
2238 * Process the ADD_RELAYD command receive by a consumer.
2239 *
2240 * This will create a relayd socket pair and add it to the relayd hash table.
2241 * The caller MUST acquire a RCU read side lock before calling it.
2242 */
2243 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
2244 struct lttng_consumer_local_data *ctx, int sock,
2245 struct pollfd *consumer_sockpoll, struct lttcomm_sock *relayd_sock)
2246 {
2247 int fd, ret = -1;
2248 struct consumer_relayd_sock_pair *relayd;
2249
2250 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
2251
2252 /* Get relayd reference if exists. */
2253 relayd = consumer_find_relayd(net_seq_idx);
2254 if (relayd == NULL) {
2255 /* Not found. Allocate one. */
2256 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
2257 if (relayd == NULL) {
2258 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
2259 goto error;
2260 }
2261 }
2262
2263 /* Poll on consumer socket. */
2264 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2265 ret = -EINTR;
2266 goto error;
2267 }
2268
2269 /* Get relayd socket from session daemon */
2270 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
2271 if (ret != sizeof(fd)) {
2272 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
2273 ret = -1;
2274 goto error;
2275 }
2276
2277 /* Copy socket information and received FD */
2278 switch (sock_type) {
2279 case LTTNG_STREAM_CONTROL:
2280 /* Copy received lttcomm socket */
2281 lttcomm_copy_sock(&relayd->control_sock, relayd_sock);
2282 ret = lttcomm_create_sock(&relayd->control_sock);
2283 if (ret < 0) {
2284 goto error;
2285 }
2286
2287 /* Close the created socket fd which is useless */
2288 close(relayd->control_sock.fd);
2289
2290 /* Assign new file descriptor */
2291 relayd->control_sock.fd = fd;
2292 break;
2293 case LTTNG_STREAM_DATA:
2294 /* Copy received lttcomm socket */
2295 lttcomm_copy_sock(&relayd->data_sock, relayd_sock);
2296 ret = lttcomm_create_sock(&relayd->data_sock);
2297 if (ret < 0) {
2298 goto error;
2299 }
2300
2301 /* Close the created socket fd which is useless */
2302 close(relayd->data_sock.fd);
2303
2304 /* Assign new file descriptor */
2305 relayd->data_sock.fd = fd;
2306 break;
2307 default:
2308 ERR("Unknown relayd socket type (%d)", sock_type);
2309 goto error;
2310 }
2311
2312 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2313 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
2314 relayd->net_seq_idx, fd);
2315
2316 /*
2317 * Add relayd socket pair to consumer data hashtable. If object already
2318 * exists or on error, the function gracefully returns.
2319 */
2320 add_relayd(relayd);
2321
2322 /* All good! */
2323 ret = 0;
2324
2325 error:
2326 return ret;
2327 }
This page took 0.122934 seconds and 5 git commands to generate.