Fix RCU-related hangs: incorrect lttng_ht_destroy use
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_QUIT,
54 };
55
56 struct consumer_channel_msg {
57 enum consumer_channel_action action;
58 struct lttng_consumer_channel *chan;
59 };
60
61 /*
62 * Flag to inform the polling thread to quit when all fd hung up. Updated by
63 * the consumer_thread_receive_fds when it notices that all fds has hung up.
64 * Also updated by the signal handler (consumer_should_exit()). Read by the
65 * polling threads.
66 */
67 volatile int consumer_quit;
68
69 /*
70 * Global hash table containing respectively metadata and data streams. The
71 * stream element in this ht should only be updated by the metadata poll thread
72 * for the metadata and the data poll thread for the data.
73 */
74 static struct lttng_ht *metadata_ht;
75 static struct lttng_ht *data_ht;
76
77 /*
78 * Notify a thread pipe to poll back again. This usually means that some global
79 * state has changed so we just send back the thread in a poll wait call.
80 */
81 static void notify_thread_pipe(int wpipe)
82 {
83 int ret;
84
85 do {
86 struct lttng_consumer_stream *null_stream = NULL;
87
88 ret = write(wpipe, &null_stream, sizeof(null_stream));
89 } while (ret < 0 && errno == EINTR);
90 }
91
92 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
93 struct lttng_consumer_channel *chan,
94 enum consumer_channel_action action)
95 {
96 struct consumer_channel_msg msg;
97 int ret;
98
99 msg.action = action;
100 msg.chan = chan;
101 do {
102 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
103 } while (ret < 0 && errno == EINTR);
104 }
105
106 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
107 struct lttng_consumer_channel **chan,
108 enum consumer_channel_action *action)
109 {
110 struct consumer_channel_msg msg;
111 int ret;
112
113 do {
114 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
115 } while (ret < 0 && errno == EINTR);
116 if (ret > 0) {
117 *action = msg.action;
118 *chan = msg.chan;
119 }
120 return ret;
121 }
122
123 /*
124 * Find a stream. The consumer_data.lock must be locked during this
125 * call.
126 */
127 static struct lttng_consumer_stream *find_stream(uint64_t key,
128 struct lttng_ht *ht)
129 {
130 struct lttng_ht_iter iter;
131 struct lttng_ht_node_u64 *node;
132 struct lttng_consumer_stream *stream = NULL;
133
134 assert(ht);
135
136 /* -1ULL keys are lookup failures */
137 if (key == (uint64_t) -1ULL) {
138 return NULL;
139 }
140
141 rcu_read_lock();
142
143 lttng_ht_lookup(ht, &key, &iter);
144 node = lttng_ht_iter_get_node_u64(&iter);
145 if (node != NULL) {
146 stream = caa_container_of(node, struct lttng_consumer_stream, node);
147 }
148
149 rcu_read_unlock();
150
151 return stream;
152 }
153
154 static void steal_stream_key(int key, struct lttng_ht *ht)
155 {
156 struct lttng_consumer_stream *stream;
157
158 rcu_read_lock();
159 stream = find_stream(key, ht);
160 if (stream) {
161 stream->key = -1ULL;
162 /*
163 * We don't want the lookup to match, but we still need
164 * to iterate on this stream when iterating over the hash table. Just
165 * change the node key.
166 */
167 stream->node.key = -1ULL;
168 }
169 rcu_read_unlock();
170 }
171
172 /*
173 * Return a channel object for the given key.
174 *
175 * RCU read side lock MUST be acquired before calling this function and
176 * protects the channel ptr.
177 */
178 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
179 {
180 struct lttng_ht_iter iter;
181 struct lttng_ht_node_u64 *node;
182 struct lttng_consumer_channel *channel = NULL;
183
184 /* -1ULL keys are lookup failures */
185 if (key == (uint64_t) -1ULL) {
186 return NULL;
187 }
188
189 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
190 node = lttng_ht_iter_get_node_u64(&iter);
191 if (node != NULL) {
192 channel = caa_container_of(node, struct lttng_consumer_channel, node);
193 }
194
195 return channel;
196 }
197
198 static void free_stream_rcu(struct rcu_head *head)
199 {
200 struct lttng_ht_node_u64 *node =
201 caa_container_of(head, struct lttng_ht_node_u64, head);
202 struct lttng_consumer_stream *stream =
203 caa_container_of(node, struct lttng_consumer_stream, node);
204
205 free(stream);
206 }
207
208 static void free_channel_rcu(struct rcu_head *head)
209 {
210 struct lttng_ht_node_u64 *node =
211 caa_container_of(head, struct lttng_ht_node_u64, head);
212 struct lttng_consumer_channel *channel =
213 caa_container_of(node, struct lttng_consumer_channel, node);
214
215 free(channel);
216 }
217
218 /*
219 * RCU protected relayd socket pair free.
220 */
221 static void free_relayd_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct consumer_relayd_sock_pair *relayd =
226 caa_container_of(node, struct consumer_relayd_sock_pair, node);
227
228 /*
229 * Close all sockets. This is done in the call RCU since we don't want the
230 * socket fds to be reassigned thus potentially creating bad state of the
231 * relayd object.
232 *
233 * We do not have to lock the control socket mutex here since at this stage
234 * there is no one referencing to this relayd object.
235 */
236 (void) relayd_close(&relayd->control_sock);
237 (void) relayd_close(&relayd->data_sock);
238
239 free(relayd);
240 }
241
242 /*
243 * Destroy and free relayd socket pair object.
244 *
245 * This function MUST be called with the consumer_data lock acquired.
246 */
247 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
248 {
249 int ret;
250 struct lttng_ht_iter iter;
251
252 if (relayd == NULL) {
253 return;
254 }
255
256 DBG("Consumer destroy and close relayd socket pair");
257
258 iter.iter.node = &relayd->node.node;
259 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
260 if (ret != 0) {
261 /* We assume the relayd is being or is destroyed */
262 return;
263 }
264
265 /* RCU free() call */
266 call_rcu(&relayd->node.head, free_relayd_rcu);
267 }
268
269 /*
270 * Remove a channel from the global list protected by a mutex. This function is
271 * also responsible for freeing its data structures.
272 */
273 void consumer_del_channel(struct lttng_consumer_channel *channel)
274 {
275 int ret;
276 struct lttng_ht_iter iter;
277
278 DBG("Consumer delete channel key %" PRIu64, channel->key);
279
280 pthread_mutex_lock(&consumer_data.lock);
281
282 switch (consumer_data.type) {
283 case LTTNG_CONSUMER_KERNEL:
284 break;
285 case LTTNG_CONSUMER32_UST:
286 case LTTNG_CONSUMER64_UST:
287 lttng_ustconsumer_del_channel(channel);
288 break;
289 default:
290 ERR("Unknown consumer_data type");
291 assert(0);
292 goto end;
293 }
294
295 rcu_read_lock();
296 iter.iter.node = &channel->node.node;
297 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
298 assert(!ret);
299 rcu_read_unlock();
300
301 call_rcu(&channel->node.head, free_channel_rcu);
302 end:
303 pthread_mutex_unlock(&consumer_data.lock);
304 }
305
306 /*
307 * Iterate over the relayd hash table and destroy each element. Finally,
308 * destroy the whole hash table.
309 */
310 static void cleanup_relayd_ht(void)
311 {
312 struct lttng_ht_iter iter;
313 struct consumer_relayd_sock_pair *relayd;
314
315 rcu_read_lock();
316
317 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
318 node.node) {
319 destroy_relayd(relayd);
320 }
321
322 rcu_read_unlock();
323
324 lttng_ht_destroy(consumer_data.relayd_ht);
325 }
326
327 /*
328 * Update the end point status of all streams having the given network sequence
329 * index (relayd index).
330 *
331 * It's atomically set without having the stream mutex locked which is fine
332 * because we handle the write/read race with a pipe wakeup for each thread.
333 */
334 static void update_endpoint_status_by_netidx(int net_seq_idx,
335 enum consumer_endpoint_status status)
336 {
337 struct lttng_ht_iter iter;
338 struct lttng_consumer_stream *stream;
339
340 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
341
342 rcu_read_lock();
343
344 /* Let's begin with metadata */
345 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
346 if (stream->net_seq_idx == net_seq_idx) {
347 uatomic_set(&stream->endpoint_status, status);
348 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
349 }
350 }
351
352 /* Follow up by the data streams */
353 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
354 if (stream->net_seq_idx == net_seq_idx) {
355 uatomic_set(&stream->endpoint_status, status);
356 DBG("Delete flag set to data stream %d", stream->wait_fd);
357 }
358 }
359 rcu_read_unlock();
360 }
361
362 /*
363 * Cleanup a relayd object by flagging every associated streams for deletion,
364 * destroying the object meaning removing it from the relayd hash table,
365 * closing the sockets and freeing the memory in a RCU call.
366 *
367 * If a local data context is available, notify the threads that the streams'
368 * state have changed.
369 */
370 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
371 struct lttng_consumer_local_data *ctx)
372 {
373 int netidx;
374
375 assert(relayd);
376
377 DBG("Cleaning up relayd sockets");
378
379 /* Save the net sequence index before destroying the object */
380 netidx = relayd->net_seq_idx;
381
382 /*
383 * Delete the relayd from the relayd hash table, close the sockets and free
384 * the object in a RCU call.
385 */
386 destroy_relayd(relayd);
387
388 /* Set inactive endpoint to all streams */
389 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
390
391 /*
392 * With a local data context, notify the threads that the streams' state
393 * have changed. The write() action on the pipe acts as an "implicit"
394 * memory barrier ordering the updates of the end point status from the
395 * read of this status which happens AFTER receiving this notify.
396 */
397 if (ctx) {
398 notify_thread_pipe(ctx->consumer_data_pipe[1]);
399 notify_thread_pipe(ctx->consumer_metadata_pipe[1]);
400 }
401 }
402
403 /*
404 * Flag a relayd socket pair for destruction. Destroy it if the refcount
405 * reaches zero.
406 *
407 * RCU read side lock MUST be aquired before calling this function.
408 */
409 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
410 {
411 assert(relayd);
412
413 /* Set destroy flag for this object */
414 uatomic_set(&relayd->destroy_flag, 1);
415
416 /* Destroy the relayd if refcount is 0 */
417 if (uatomic_read(&relayd->refcount) == 0) {
418 destroy_relayd(relayd);
419 }
420 }
421
422 /*
423 * Remove a stream from the global list protected by a mutex. This
424 * function is also responsible for freeing its data structures.
425 */
426 void consumer_del_stream(struct lttng_consumer_stream *stream,
427 struct lttng_ht *ht)
428 {
429 int ret;
430 struct lttng_ht_iter iter;
431 struct lttng_consumer_channel *free_chan = NULL;
432 struct consumer_relayd_sock_pair *relayd;
433
434 assert(stream);
435
436 DBG("Consumer del stream %d", stream->wait_fd);
437
438 if (ht == NULL) {
439 /* Means the stream was allocated but not successfully added */
440 goto free_stream_rcu;
441 }
442
443 pthread_mutex_lock(&consumer_data.lock);
444 pthread_mutex_lock(&stream->lock);
445
446 switch (consumer_data.type) {
447 case LTTNG_CONSUMER_KERNEL:
448 if (stream->mmap_base != NULL) {
449 ret = munmap(stream->mmap_base, stream->mmap_len);
450 if (ret != 0) {
451 PERROR("munmap");
452 }
453 }
454 break;
455 case LTTNG_CONSUMER32_UST:
456 case LTTNG_CONSUMER64_UST:
457 lttng_ustconsumer_del_stream(stream);
458 break;
459 default:
460 ERR("Unknown consumer_data type");
461 assert(0);
462 goto end;
463 }
464
465 rcu_read_lock();
466 iter.iter.node = &stream->node.node;
467 ret = lttng_ht_del(ht, &iter);
468 assert(!ret);
469
470 iter.iter.node = &stream->node_channel_id.node;
471 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
472 assert(!ret);
473
474 iter.iter.node = &stream->node_session_id.node;
475 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
476 assert(!ret);
477 rcu_read_unlock();
478
479 assert(consumer_data.stream_count > 0);
480 consumer_data.stream_count--;
481
482 if (stream->out_fd >= 0) {
483 ret = close(stream->out_fd);
484 if (ret) {
485 PERROR("close");
486 }
487 }
488
489 /* Check and cleanup relayd */
490 rcu_read_lock();
491 relayd = consumer_find_relayd(stream->net_seq_idx);
492 if (relayd != NULL) {
493 uatomic_dec(&relayd->refcount);
494 assert(uatomic_read(&relayd->refcount) >= 0);
495
496 /* Closing streams requires to lock the control socket. */
497 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
498 ret = relayd_send_close_stream(&relayd->control_sock,
499 stream->relayd_stream_id,
500 stream->next_net_seq_num - 1);
501 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
502 if (ret < 0) {
503 DBG("Unable to close stream on the relayd. Continuing");
504 /*
505 * Continue here. There is nothing we can do for the relayd.
506 * Chances are that the relayd has closed the socket so we just
507 * continue cleaning up.
508 */
509 }
510
511 /* Both conditions are met, we destroy the relayd. */
512 if (uatomic_read(&relayd->refcount) == 0 &&
513 uatomic_read(&relayd->destroy_flag)) {
514 destroy_relayd(relayd);
515 }
516 }
517 rcu_read_unlock();
518
519 if (!uatomic_sub_return(&stream->chan->refcount, 1)
520 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
521 free_chan = stream->chan;
522 }
523
524 end:
525 consumer_data.need_update = 1;
526 pthread_mutex_unlock(&stream->lock);
527 pthread_mutex_unlock(&consumer_data.lock);
528
529 if (free_chan) {
530 consumer_del_channel(free_chan);
531 }
532
533 free_stream_rcu:
534 call_rcu(&stream->node.head, free_stream_rcu);
535 }
536
537 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
538 uint64_t stream_key,
539 enum lttng_consumer_stream_state state,
540 const char *channel_name,
541 uid_t uid,
542 gid_t gid,
543 int relayd_id,
544 uint64_t session_id,
545 int cpu,
546 int *alloc_ret,
547 enum consumer_channel_type type)
548 {
549 int ret;
550 struct lttng_consumer_stream *stream;
551
552 stream = zmalloc(sizeof(*stream));
553 if (stream == NULL) {
554 PERROR("malloc struct lttng_consumer_stream");
555 ret = -ENOMEM;
556 goto end;
557 }
558
559 rcu_read_lock();
560
561 stream->key = stream_key;
562 stream->out_fd = -1;
563 stream->out_fd_offset = 0;
564 stream->state = state;
565 stream->uid = uid;
566 stream->gid = gid;
567 stream->net_seq_idx = relayd_id;
568 stream->session_id = session_id;
569 pthread_mutex_init(&stream->lock, NULL);
570
571 /* If channel is the metadata, flag this stream as metadata. */
572 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
573 stream->metadata_flag = 1;
574 /* Metadata is flat out. */
575 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
576 } else {
577 /* Format stream name to <channel_name>_<cpu_number> */
578 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
579 channel_name, cpu);
580 if (ret < 0) {
581 PERROR("snprintf stream name");
582 goto error;
583 }
584 }
585
586 /* Key is always the wait_fd for streams. */
587 lttng_ht_node_init_u64(&stream->node, stream->key);
588
589 /* Init node per channel id key */
590 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
591
592 /* Init session id node with the stream session id */
593 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
594
595 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
596 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
597
598 rcu_read_unlock();
599 return stream;
600
601 error:
602 rcu_read_unlock();
603 free(stream);
604 end:
605 if (alloc_ret) {
606 *alloc_ret = ret;
607 }
608 return NULL;
609 }
610
611 /*
612 * Add a stream to the global list protected by a mutex.
613 */
614 static int add_stream(struct lttng_consumer_stream *stream,
615 struct lttng_ht *ht)
616 {
617 int ret = 0;
618 struct consumer_relayd_sock_pair *relayd;
619
620 assert(stream);
621 assert(ht);
622
623 DBG3("Adding consumer stream %" PRIu64, stream->key);
624
625 pthread_mutex_lock(&consumer_data.lock);
626 pthread_mutex_lock(&stream->lock);
627 rcu_read_lock();
628
629 /* Steal stream identifier to avoid having streams with the same key */
630 steal_stream_key(stream->key, ht);
631
632 lttng_ht_add_unique_u64(ht, &stream->node);
633
634 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
635 &stream->node_channel_id);
636
637 /*
638 * Add stream to the stream_list_ht of the consumer data. No need to steal
639 * the key since the HT does not use it and we allow to add redundant keys
640 * into this table.
641 */
642 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
643
644 /* Check and cleanup relayd */
645 relayd = consumer_find_relayd(stream->net_seq_idx);
646 if (relayd != NULL) {
647 uatomic_inc(&relayd->refcount);
648 }
649
650 /* Update channel refcount once added without error(s). */
651 uatomic_inc(&stream->chan->refcount);
652
653 /*
654 * When nb_init_stream_left reaches 0, we don't need to trigger any action
655 * in terms of destroying the associated channel, because the action that
656 * causes the count to become 0 also causes a stream to be added. The
657 * channel deletion will thus be triggered by the following removal of this
658 * stream.
659 */
660 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
661 /* Increment refcount before decrementing nb_init_stream_left */
662 cmm_smp_wmb();
663 uatomic_dec(&stream->chan->nb_init_stream_left);
664 }
665
666 /* Update consumer data once the node is inserted. */
667 consumer_data.stream_count++;
668 consumer_data.need_update = 1;
669
670 rcu_read_unlock();
671 pthread_mutex_unlock(&stream->lock);
672 pthread_mutex_unlock(&consumer_data.lock);
673
674 return ret;
675 }
676
677 /*
678 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
679 * be acquired before calling this.
680 */
681 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
682 {
683 int ret = 0;
684 struct lttng_ht_node_u64 *node;
685 struct lttng_ht_iter iter;
686
687 assert(relayd);
688
689 lttng_ht_lookup(consumer_data.relayd_ht,
690 &relayd->net_seq_idx, &iter);
691 node = lttng_ht_iter_get_node_u64(&iter);
692 if (node != NULL) {
693 goto end;
694 }
695 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
696
697 end:
698 return ret;
699 }
700
701 /*
702 * Allocate and return a consumer relayd socket.
703 */
704 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
705 int net_seq_idx)
706 {
707 struct consumer_relayd_sock_pair *obj = NULL;
708
709 /* Negative net sequence index is a failure */
710 if (net_seq_idx < 0) {
711 goto error;
712 }
713
714 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
715 if (obj == NULL) {
716 PERROR("zmalloc relayd sock");
717 goto error;
718 }
719
720 obj->net_seq_idx = net_seq_idx;
721 obj->refcount = 0;
722 obj->destroy_flag = 0;
723 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
724 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
725
726 error:
727 return obj;
728 }
729
730 /*
731 * Find a relayd socket pair in the global consumer data.
732 *
733 * Return the object if found else NULL.
734 * RCU read-side lock must be held across this call and while using the
735 * returned object.
736 */
737 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
738 {
739 struct lttng_ht_iter iter;
740 struct lttng_ht_node_u64 *node;
741 struct consumer_relayd_sock_pair *relayd = NULL;
742
743 /* Negative keys are lookup failures */
744 if (key == (uint64_t) -1ULL) {
745 goto error;
746 }
747
748 lttng_ht_lookup(consumer_data.relayd_ht, &key,
749 &iter);
750 node = lttng_ht_iter_get_node_u64(&iter);
751 if (node != NULL) {
752 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
753 }
754
755 error:
756 return relayd;
757 }
758
759 /*
760 * Handle stream for relayd transmission if the stream applies for network
761 * streaming where the net sequence index is set.
762 *
763 * Return destination file descriptor or negative value on error.
764 */
765 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
766 size_t data_size, unsigned long padding,
767 struct consumer_relayd_sock_pair *relayd)
768 {
769 int outfd = -1, ret;
770 struct lttcomm_relayd_data_hdr data_hdr;
771
772 /* Safety net */
773 assert(stream);
774 assert(relayd);
775
776 /* Reset data header */
777 memset(&data_hdr, 0, sizeof(data_hdr));
778
779 if (stream->metadata_flag) {
780 /* Caller MUST acquire the relayd control socket lock */
781 ret = relayd_send_metadata(&relayd->control_sock, data_size);
782 if (ret < 0) {
783 goto error;
784 }
785
786 /* Metadata are always sent on the control socket. */
787 outfd = relayd->control_sock.sock.fd;
788 } else {
789 /* Set header with stream information */
790 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
791 data_hdr.data_size = htobe32(data_size);
792 data_hdr.padding_size = htobe32(padding);
793 /*
794 * Note that net_seq_num below is assigned with the *current* value of
795 * next_net_seq_num and only after that the next_net_seq_num will be
796 * increment. This is why when issuing a command on the relayd using
797 * this next value, 1 should always be substracted in order to compare
798 * the last seen sequence number on the relayd side to the last sent.
799 */
800 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
801 /* Other fields are zeroed previously */
802
803 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
804 sizeof(data_hdr));
805 if (ret < 0) {
806 goto error;
807 }
808
809 ++stream->next_net_seq_num;
810
811 /* Set to go on data socket */
812 outfd = relayd->data_sock.sock.fd;
813 }
814
815 error:
816 return outfd;
817 }
818
819 /*
820 * Allocate and return a new lttng_consumer_channel object using the given key
821 * to initialize the hash table node.
822 *
823 * On error, return NULL.
824 */
825 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
826 uint64_t session_id,
827 const char *pathname,
828 const char *name,
829 uid_t uid,
830 gid_t gid,
831 int relayd_id,
832 enum lttng_event_output output,
833 uint64_t tracefile_size,
834 uint64_t tracefile_count)
835 {
836 struct lttng_consumer_channel *channel;
837
838 channel = zmalloc(sizeof(*channel));
839 if (channel == NULL) {
840 PERROR("malloc struct lttng_consumer_channel");
841 goto end;
842 }
843
844 channel->key = key;
845 channel->refcount = 0;
846 channel->session_id = session_id;
847 channel->uid = uid;
848 channel->gid = gid;
849 channel->relayd_id = relayd_id;
850 channel->output = output;
851 channel->tracefile_size = tracefile_size;
852 channel->tracefile_count = tracefile_count;
853
854 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
855 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
856
857 strncpy(channel->name, name, sizeof(channel->name));
858 channel->name[sizeof(channel->name) - 1] = '\0';
859
860 lttng_ht_node_init_u64(&channel->node, channel->key);
861
862 channel->wait_fd = -1;
863
864 CDS_INIT_LIST_HEAD(&channel->streams.head);
865
866 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
867
868 end:
869 return channel;
870 }
871
872 /*
873 * Add a channel to the global list protected by a mutex.
874 */
875 int consumer_add_channel(struct lttng_consumer_channel *channel,
876 struct lttng_consumer_local_data *ctx)
877 {
878 int ret = 0;
879 struct lttng_ht_node_u64 *node;
880 struct lttng_ht_iter iter;
881
882 pthread_mutex_lock(&consumer_data.lock);
883 rcu_read_lock();
884
885 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
886 node = lttng_ht_iter_get_node_u64(&iter);
887 if (node != NULL) {
888 /* Channel already exist. Ignore the insertion */
889 ERR("Consumer add channel key %" PRIu64 " already exists!",
890 channel->key);
891 ret = -1;
892 goto end;
893 }
894
895 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
896
897 end:
898 rcu_read_unlock();
899 pthread_mutex_unlock(&consumer_data.lock);
900
901 if (!ret && channel->wait_fd != -1 &&
902 channel->metadata_stream == NULL) {
903 notify_channel_pipe(ctx, channel, CONSUMER_CHANNEL_ADD);
904 }
905 return ret;
906 }
907
908 /*
909 * Allocate the pollfd structure and the local view of the out fds to avoid
910 * doing a lookup in the linked list and concurrency issues when writing is
911 * needed. Called with consumer_data.lock held.
912 *
913 * Returns the number of fds in the structures.
914 */
915 static int update_poll_array(struct lttng_consumer_local_data *ctx,
916 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
917 struct lttng_ht *ht)
918 {
919 int i = 0;
920 struct lttng_ht_iter iter;
921 struct lttng_consumer_stream *stream;
922
923 assert(ctx);
924 assert(ht);
925 assert(pollfd);
926 assert(local_stream);
927
928 DBG("Updating poll fd array");
929 rcu_read_lock();
930 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
931 /*
932 * Only active streams with an active end point can be added to the
933 * poll set and local stream storage of the thread.
934 *
935 * There is a potential race here for endpoint_status to be updated
936 * just after the check. However, this is OK since the stream(s) will
937 * be deleted once the thread is notified that the end point state has
938 * changed where this function will be called back again.
939 */
940 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
941 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
942 continue;
943 }
944 /*
945 * This clobbers way too much the debug output. Uncomment that if you
946 * need it for debugging purposes.
947 *
948 * DBG("Active FD %d", stream->wait_fd);
949 */
950 (*pollfd)[i].fd = stream->wait_fd;
951 (*pollfd)[i].events = POLLIN | POLLPRI;
952 local_stream[i] = stream;
953 i++;
954 }
955 rcu_read_unlock();
956
957 /*
958 * Insert the consumer_data_pipe at the end of the array and don't
959 * increment i so nb_fd is the number of real FD.
960 */
961 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
962 (*pollfd)[i].events = POLLIN | POLLPRI;
963 return i;
964 }
965
966 /*
967 * Poll on the should_quit pipe and the command socket return -1 on error and
968 * should exit, 0 if data is available on the command socket
969 */
970 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
971 {
972 int num_rdy;
973
974 restart:
975 num_rdy = poll(consumer_sockpoll, 2, -1);
976 if (num_rdy == -1) {
977 /*
978 * Restart interrupted system call.
979 */
980 if (errno == EINTR) {
981 goto restart;
982 }
983 PERROR("Poll error");
984 goto exit;
985 }
986 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
987 DBG("consumer_should_quit wake up");
988 goto exit;
989 }
990 return 0;
991
992 exit:
993 return -1;
994 }
995
996 /*
997 * Set the error socket.
998 */
999 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1000 int sock)
1001 {
1002 ctx->consumer_error_socket = sock;
1003 }
1004
1005 /*
1006 * Set the command socket path.
1007 */
1008 void lttng_consumer_set_command_sock_path(
1009 struct lttng_consumer_local_data *ctx, char *sock)
1010 {
1011 ctx->consumer_command_sock_path = sock;
1012 }
1013
1014 /*
1015 * Send return code to the session daemon.
1016 * If the socket is not defined, we return 0, it is not a fatal error
1017 */
1018 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1019 {
1020 if (ctx->consumer_error_socket > 0) {
1021 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1022 sizeof(enum lttcomm_sessiond_command));
1023 }
1024
1025 return 0;
1026 }
1027
1028 /*
1029 * Close all the tracefiles and stream fds and MUST be called when all
1030 * instances are destroyed i.e. when all threads were joined and are ended.
1031 */
1032 void lttng_consumer_cleanup(void)
1033 {
1034 struct lttng_ht_iter iter;
1035 struct lttng_consumer_channel *channel;
1036
1037 rcu_read_lock();
1038
1039 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1040 node.node) {
1041 consumer_del_channel(channel);
1042 }
1043
1044 rcu_read_unlock();
1045
1046 lttng_ht_destroy(consumer_data.channel_ht);
1047
1048 cleanup_relayd_ht();
1049
1050 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1051
1052 /*
1053 * This HT contains streams that are freed by either the metadata thread or
1054 * the data thread so we do *nothing* on the hash table and simply destroy
1055 * it.
1056 */
1057 lttng_ht_destroy(consumer_data.stream_list_ht);
1058 }
1059
1060 /*
1061 * Called from signal handler.
1062 */
1063 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1064 {
1065 int ret;
1066 consumer_quit = 1;
1067 do {
1068 ret = write(ctx->consumer_should_quit[1], "4", 1);
1069 } while (ret < 0 && errno == EINTR);
1070 if (ret < 0 || ret != 1) {
1071 PERROR("write consumer quit");
1072 }
1073
1074 DBG("Consumer flag that it should quit");
1075 }
1076
1077 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1078 off_t orig_offset)
1079 {
1080 int outfd = stream->out_fd;
1081
1082 /*
1083 * This does a blocking write-and-wait on any page that belongs to the
1084 * subbuffer prior to the one we just wrote.
1085 * Don't care about error values, as these are just hints and ways to
1086 * limit the amount of page cache used.
1087 */
1088 if (orig_offset < stream->max_sb_size) {
1089 return;
1090 }
1091 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1092 stream->max_sb_size,
1093 SYNC_FILE_RANGE_WAIT_BEFORE
1094 | SYNC_FILE_RANGE_WRITE
1095 | SYNC_FILE_RANGE_WAIT_AFTER);
1096 /*
1097 * Give hints to the kernel about how we access the file:
1098 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1099 * we write it.
1100 *
1101 * We need to call fadvise again after the file grows because the
1102 * kernel does not seem to apply fadvise to non-existing parts of the
1103 * file.
1104 *
1105 * Call fadvise _after_ having waited for the page writeback to
1106 * complete because the dirty page writeback semantic is not well
1107 * defined. So it can be expected to lead to lower throughput in
1108 * streaming.
1109 */
1110 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1111 stream->max_sb_size, POSIX_FADV_DONTNEED);
1112 }
1113
1114 /*
1115 * Initialise the necessary environnement :
1116 * - create a new context
1117 * - create the poll_pipe
1118 * - create the should_quit pipe (for signal handler)
1119 * - create the thread pipe (for splice)
1120 *
1121 * Takes a function pointer as argument, this function is called when data is
1122 * available on a buffer. This function is responsible to do the
1123 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1124 * buffer configuration and then kernctl_put_next_subbuf at the end.
1125 *
1126 * Returns a pointer to the new context or NULL on error.
1127 */
1128 struct lttng_consumer_local_data *lttng_consumer_create(
1129 enum lttng_consumer_type type,
1130 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1131 struct lttng_consumer_local_data *ctx),
1132 int (*recv_channel)(struct lttng_consumer_channel *channel),
1133 int (*recv_stream)(struct lttng_consumer_stream *stream),
1134 int (*update_stream)(int stream_key, uint32_t state))
1135 {
1136 int ret;
1137 struct lttng_consumer_local_data *ctx;
1138
1139 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1140 consumer_data.type == type);
1141 consumer_data.type = type;
1142
1143 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1144 if (ctx == NULL) {
1145 PERROR("allocating context");
1146 goto error;
1147 }
1148
1149 ctx->consumer_error_socket = -1;
1150 ctx->consumer_metadata_socket = -1;
1151 /* assign the callbacks */
1152 ctx->on_buffer_ready = buffer_ready;
1153 ctx->on_recv_channel = recv_channel;
1154 ctx->on_recv_stream = recv_stream;
1155 ctx->on_update_stream = update_stream;
1156
1157 ret = pipe(ctx->consumer_data_pipe);
1158 if (ret < 0) {
1159 PERROR("Error creating poll pipe");
1160 goto error_poll_pipe;
1161 }
1162
1163 /* set read end of the pipe to non-blocking */
1164 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1165 if (ret < 0) {
1166 PERROR("fcntl O_NONBLOCK");
1167 goto error_poll_fcntl;
1168 }
1169
1170 /* set write end of the pipe to non-blocking */
1171 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1172 if (ret < 0) {
1173 PERROR("fcntl O_NONBLOCK");
1174 goto error_poll_fcntl;
1175 }
1176
1177 ret = pipe(ctx->consumer_should_quit);
1178 if (ret < 0) {
1179 PERROR("Error creating recv pipe");
1180 goto error_quit_pipe;
1181 }
1182
1183 ret = pipe(ctx->consumer_thread_pipe);
1184 if (ret < 0) {
1185 PERROR("Error creating thread pipe");
1186 goto error_thread_pipe;
1187 }
1188
1189 ret = pipe(ctx->consumer_channel_pipe);
1190 if (ret < 0) {
1191 PERROR("Error creating channel pipe");
1192 goto error_channel_pipe;
1193 }
1194
1195 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1196 if (ret < 0) {
1197 goto error_metadata_pipe;
1198 }
1199
1200 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1201 if (ret < 0) {
1202 goto error_splice_pipe;
1203 }
1204
1205 return ctx;
1206
1207 error_splice_pipe:
1208 utils_close_pipe(ctx->consumer_metadata_pipe);
1209 error_metadata_pipe:
1210 utils_close_pipe(ctx->consumer_channel_pipe);
1211 error_channel_pipe:
1212 utils_close_pipe(ctx->consumer_thread_pipe);
1213 error_thread_pipe:
1214 utils_close_pipe(ctx->consumer_should_quit);
1215 error_poll_fcntl:
1216 error_quit_pipe:
1217 utils_close_pipe(ctx->consumer_data_pipe);
1218 error_poll_pipe:
1219 free(ctx);
1220 error:
1221 return NULL;
1222 }
1223
1224 /*
1225 * Close all fds associated with the instance and free the context.
1226 */
1227 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1228 {
1229 int ret;
1230
1231 DBG("Consumer destroying it. Closing everything.");
1232
1233 ret = close(ctx->consumer_error_socket);
1234 if (ret) {
1235 PERROR("close");
1236 }
1237 ret = close(ctx->consumer_metadata_socket);
1238 if (ret) {
1239 PERROR("close");
1240 }
1241 utils_close_pipe(ctx->consumer_thread_pipe);
1242 utils_close_pipe(ctx->consumer_channel_pipe);
1243 utils_close_pipe(ctx->consumer_data_pipe);
1244 utils_close_pipe(ctx->consumer_should_quit);
1245 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1246
1247 unlink(ctx->consumer_command_sock_path);
1248 free(ctx);
1249 }
1250
1251 /*
1252 * Write the metadata stream id on the specified file descriptor.
1253 */
1254 static int write_relayd_metadata_id(int fd,
1255 struct lttng_consumer_stream *stream,
1256 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1257 {
1258 int ret;
1259 struct lttcomm_relayd_metadata_payload hdr;
1260
1261 hdr.stream_id = htobe64(stream->relayd_stream_id);
1262 hdr.padding_size = htobe32(padding);
1263 do {
1264 ret = write(fd, (void *) &hdr, sizeof(hdr));
1265 } while (ret < 0 && errno == EINTR);
1266 if (ret < 0 || ret != sizeof(hdr)) {
1267 /*
1268 * This error means that the fd's end is closed so ignore the perror
1269 * not to clubber the error output since this can happen in a normal
1270 * code path.
1271 */
1272 if (errno != EPIPE) {
1273 PERROR("write metadata stream id");
1274 }
1275 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1276 /*
1277 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1278 * handle writting the missing part so report that as an error and
1279 * don't lie to the caller.
1280 */
1281 ret = -1;
1282 goto end;
1283 }
1284 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1285 stream->relayd_stream_id, padding);
1286
1287 end:
1288 return ret;
1289 }
1290
1291 /*
1292 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1293 * core function for writing trace buffers to either the local filesystem or
1294 * the network.
1295 *
1296 * It must be called with the stream lock held.
1297 *
1298 * Careful review MUST be put if any changes occur!
1299 *
1300 * Returns the number of bytes written
1301 */
1302 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1303 struct lttng_consumer_local_data *ctx,
1304 struct lttng_consumer_stream *stream, unsigned long len,
1305 unsigned long padding)
1306 {
1307 unsigned long mmap_offset;
1308 void *mmap_base;
1309 ssize_t ret = 0, written = 0;
1310 off_t orig_offset = stream->out_fd_offset;
1311 /* Default is on the disk */
1312 int outfd = stream->out_fd;
1313 struct consumer_relayd_sock_pair *relayd = NULL;
1314 unsigned int relayd_hang_up = 0;
1315
1316 /* RCU lock for the relayd pointer */
1317 rcu_read_lock();
1318
1319 /* Flag that the current stream if set for network streaming. */
1320 if (stream->net_seq_idx != -1) {
1321 relayd = consumer_find_relayd(stream->net_seq_idx);
1322 if (relayd == NULL) {
1323 goto end;
1324 }
1325 }
1326
1327 /* get the offset inside the fd to mmap */
1328 switch (consumer_data.type) {
1329 case LTTNG_CONSUMER_KERNEL:
1330 mmap_base = stream->mmap_base;
1331 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1332 break;
1333 case LTTNG_CONSUMER32_UST:
1334 case LTTNG_CONSUMER64_UST:
1335 mmap_base = lttng_ustctl_get_mmap_base(stream);
1336 if (!mmap_base) {
1337 ERR("read mmap get mmap base for stream %s", stream->name);
1338 written = -1;
1339 goto end;
1340 }
1341 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1342
1343 break;
1344 default:
1345 ERR("Unknown consumer_data type");
1346 assert(0);
1347 }
1348 if (ret != 0) {
1349 errno = -ret;
1350 PERROR("tracer ctl get_mmap_read_offset");
1351 written = ret;
1352 goto end;
1353 }
1354
1355 /* Handle stream on the relayd if the output is on the network */
1356 if (relayd) {
1357 unsigned long netlen = len;
1358
1359 /*
1360 * Lock the control socket for the complete duration of the function
1361 * since from this point on we will use the socket.
1362 */
1363 if (stream->metadata_flag) {
1364 /* Metadata requires the control socket. */
1365 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1366 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1367 }
1368
1369 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1370 if (ret >= 0) {
1371 /* Use the returned socket. */
1372 outfd = ret;
1373
1374 /* Write metadata stream id before payload */
1375 if (stream->metadata_flag) {
1376 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1377 if (ret < 0) {
1378 written = ret;
1379 /* Socket operation failed. We consider the relayd dead */
1380 if (ret == -EPIPE || ret == -EINVAL) {
1381 relayd_hang_up = 1;
1382 goto write_error;
1383 }
1384 goto end;
1385 }
1386 }
1387 } else {
1388 /* Socket operation failed. We consider the relayd dead */
1389 if (ret == -EPIPE || ret == -EINVAL) {
1390 relayd_hang_up = 1;
1391 goto write_error;
1392 }
1393 /* Else, use the default set before which is the filesystem. */
1394 }
1395 } else {
1396 /* No streaming, we have to set the len with the full padding */
1397 len += padding;
1398
1399 /*
1400 * Check if we need to change the tracefile before writing the packet.
1401 */
1402 if (stream->chan->tracefile_size > 0 &&
1403 (stream->tracefile_size_current + len) >
1404 stream->chan->tracefile_size) {
1405 ret = utils_rotate_stream_file(stream->chan->pathname,
1406 stream->name, stream->chan->tracefile_size,
1407 stream->chan->tracefile_count, stream->uid, stream->gid,
1408 stream->out_fd, &(stream->tracefile_count_current));
1409 if (ret < 0) {
1410 ERR("Rotating output file");
1411 goto end;
1412 }
1413 outfd = stream->out_fd = ret;
1414 }
1415 stream->tracefile_size_current += len;
1416 }
1417
1418 while (len > 0) {
1419 do {
1420 ret = write(outfd, mmap_base + mmap_offset, len);
1421 } while (ret < 0 && errno == EINTR);
1422 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1423 if (ret < 0) {
1424 /*
1425 * This is possible if the fd is closed on the other side (outfd)
1426 * or any write problem. It can be verbose a bit for a normal
1427 * execution if for instance the relayd is stopped abruptly. This
1428 * can happen so set this to a DBG statement.
1429 */
1430 DBG("Error in file write mmap");
1431 if (written == 0) {
1432 written = ret;
1433 }
1434 /* Socket operation failed. We consider the relayd dead */
1435 if (errno == EPIPE || errno == EINVAL) {
1436 relayd_hang_up = 1;
1437 goto write_error;
1438 }
1439 goto end;
1440 } else if (ret > len) {
1441 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1442 written += ret;
1443 goto end;
1444 } else {
1445 len -= ret;
1446 mmap_offset += ret;
1447 }
1448
1449 /* This call is useless on a socket so better save a syscall. */
1450 if (!relayd) {
1451 /* This won't block, but will start writeout asynchronously */
1452 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1453 SYNC_FILE_RANGE_WRITE);
1454 stream->out_fd_offset += ret;
1455 }
1456 written += ret;
1457 }
1458 lttng_consumer_sync_trace_file(stream, orig_offset);
1459
1460 write_error:
1461 /*
1462 * This is a special case that the relayd has closed its socket. Let's
1463 * cleanup the relayd object and all associated streams.
1464 */
1465 if (relayd && relayd_hang_up) {
1466 cleanup_relayd(relayd, ctx);
1467 }
1468
1469 end:
1470 /* Unlock only if ctrl socket used */
1471 if (relayd && stream->metadata_flag) {
1472 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1473 }
1474
1475 rcu_read_unlock();
1476 return written;
1477 }
1478
1479 /*
1480 * Splice the data from the ring buffer to the tracefile.
1481 *
1482 * It must be called with the stream lock held.
1483 *
1484 * Returns the number of bytes spliced.
1485 */
1486 ssize_t lttng_consumer_on_read_subbuffer_splice(
1487 struct lttng_consumer_local_data *ctx,
1488 struct lttng_consumer_stream *stream, unsigned long len,
1489 unsigned long padding)
1490 {
1491 ssize_t ret = 0, written = 0, ret_splice = 0;
1492 loff_t offset = 0;
1493 off_t orig_offset = stream->out_fd_offset;
1494 int fd = stream->wait_fd;
1495 /* Default is on the disk */
1496 int outfd = stream->out_fd;
1497 struct consumer_relayd_sock_pair *relayd = NULL;
1498 int *splice_pipe;
1499 unsigned int relayd_hang_up = 0;
1500
1501 switch (consumer_data.type) {
1502 case LTTNG_CONSUMER_KERNEL:
1503 break;
1504 case LTTNG_CONSUMER32_UST:
1505 case LTTNG_CONSUMER64_UST:
1506 /* Not supported for user space tracing */
1507 return -ENOSYS;
1508 default:
1509 ERR("Unknown consumer_data type");
1510 assert(0);
1511 }
1512
1513 /* RCU lock for the relayd pointer */
1514 rcu_read_lock();
1515
1516 /* Flag that the current stream if set for network streaming. */
1517 if (stream->net_seq_idx != -1) {
1518 relayd = consumer_find_relayd(stream->net_seq_idx);
1519 if (relayd == NULL) {
1520 goto end;
1521 }
1522 }
1523
1524 /*
1525 * Choose right pipe for splice. Metadata and trace data are handled by
1526 * different threads hence the use of two pipes in order not to race or
1527 * corrupt the written data.
1528 */
1529 if (stream->metadata_flag) {
1530 splice_pipe = ctx->consumer_splice_metadata_pipe;
1531 } else {
1532 splice_pipe = ctx->consumer_thread_pipe;
1533 }
1534
1535 /* Write metadata stream id before payload */
1536 if (relayd) {
1537 int total_len = len;
1538
1539 if (stream->metadata_flag) {
1540 /*
1541 * Lock the control socket for the complete duration of the function
1542 * since from this point on we will use the socket.
1543 */
1544 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1545
1546 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1547 padding);
1548 if (ret < 0) {
1549 written = ret;
1550 /* Socket operation failed. We consider the relayd dead */
1551 if (ret == -EBADF) {
1552 WARN("Remote relayd disconnected. Stopping");
1553 relayd_hang_up = 1;
1554 goto write_error;
1555 }
1556 goto end;
1557 }
1558
1559 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1560 }
1561
1562 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1563 if (ret >= 0) {
1564 /* Use the returned socket. */
1565 outfd = ret;
1566 } else {
1567 /* Socket operation failed. We consider the relayd dead */
1568 if (ret == -EBADF) {
1569 WARN("Remote relayd disconnected. Stopping");
1570 relayd_hang_up = 1;
1571 goto write_error;
1572 }
1573 goto end;
1574 }
1575 } else {
1576 /* No streaming, we have to set the len with the full padding */
1577 len += padding;
1578
1579 /*
1580 * Check if we need to change the tracefile before writing the packet.
1581 */
1582 if (stream->chan->tracefile_size > 0 &&
1583 (stream->tracefile_size_current + len) >
1584 stream->chan->tracefile_size) {
1585 ret = utils_rotate_stream_file(stream->chan->pathname,
1586 stream->name, stream->chan->tracefile_size,
1587 stream->chan->tracefile_count, stream->uid, stream->gid,
1588 stream->out_fd, &(stream->tracefile_count_current));
1589 if (ret < 0) {
1590 ERR("Rotating output file");
1591 goto end;
1592 }
1593 outfd = stream->out_fd = ret;
1594 }
1595 stream->tracefile_size_current += len;
1596 }
1597
1598 while (len > 0) {
1599 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1600 (unsigned long)offset, len, fd, splice_pipe[1]);
1601 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1602 SPLICE_F_MOVE | SPLICE_F_MORE);
1603 DBG("splice chan to pipe, ret %zd", ret_splice);
1604 if (ret_splice < 0) {
1605 PERROR("Error in relay splice");
1606 if (written == 0) {
1607 written = ret_splice;
1608 }
1609 ret = errno;
1610 goto splice_error;
1611 }
1612
1613 /* Handle stream on the relayd if the output is on the network */
1614 if (relayd) {
1615 if (stream->metadata_flag) {
1616 size_t metadata_payload_size =
1617 sizeof(struct lttcomm_relayd_metadata_payload);
1618
1619 /* Update counter to fit the spliced data */
1620 ret_splice += metadata_payload_size;
1621 len += metadata_payload_size;
1622 /*
1623 * We do this so the return value can match the len passed as
1624 * argument to this function.
1625 */
1626 written -= metadata_payload_size;
1627 }
1628 }
1629
1630 /* Splice data out */
1631 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1632 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1633 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1634 if (ret_splice < 0) {
1635 PERROR("Error in file splice");
1636 if (written == 0) {
1637 written = ret_splice;
1638 }
1639 /* Socket operation failed. We consider the relayd dead */
1640 if (errno == EBADF || errno == EPIPE) {
1641 WARN("Remote relayd disconnected. Stopping");
1642 relayd_hang_up = 1;
1643 goto write_error;
1644 }
1645 ret = errno;
1646 goto splice_error;
1647 } else if (ret_splice > len) {
1648 errno = EINVAL;
1649 PERROR("Wrote more data than requested %zd (len: %lu)",
1650 ret_splice, len);
1651 written += ret_splice;
1652 ret = errno;
1653 goto splice_error;
1654 }
1655 len -= ret_splice;
1656
1657 /* This call is useless on a socket so better save a syscall. */
1658 if (!relayd) {
1659 /* This won't block, but will start writeout asynchronously */
1660 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1661 SYNC_FILE_RANGE_WRITE);
1662 stream->out_fd_offset += ret_splice;
1663 }
1664 written += ret_splice;
1665 }
1666 lttng_consumer_sync_trace_file(stream, orig_offset);
1667
1668 ret = ret_splice;
1669
1670 goto end;
1671
1672 write_error:
1673 /*
1674 * This is a special case that the relayd has closed its socket. Let's
1675 * cleanup the relayd object and all associated streams.
1676 */
1677 if (relayd && relayd_hang_up) {
1678 cleanup_relayd(relayd, ctx);
1679 /* Skip splice error so the consumer does not fail */
1680 goto end;
1681 }
1682
1683 splice_error:
1684 /* send the appropriate error description to sessiond */
1685 switch (ret) {
1686 case EINVAL:
1687 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1688 break;
1689 case ENOMEM:
1690 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1691 break;
1692 case ESPIPE:
1693 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1694 break;
1695 }
1696
1697 end:
1698 if (relayd && stream->metadata_flag) {
1699 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1700 }
1701
1702 rcu_read_unlock();
1703 return written;
1704 }
1705
1706 /*
1707 * Take a snapshot for a specific fd
1708 *
1709 * Returns 0 on success, < 0 on error
1710 */
1711 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1712 {
1713 switch (consumer_data.type) {
1714 case LTTNG_CONSUMER_KERNEL:
1715 return lttng_kconsumer_take_snapshot(stream);
1716 case LTTNG_CONSUMER32_UST:
1717 case LTTNG_CONSUMER64_UST:
1718 return lttng_ustconsumer_take_snapshot(stream);
1719 default:
1720 ERR("Unknown consumer_data type");
1721 assert(0);
1722 return -ENOSYS;
1723 }
1724 }
1725
1726 /*
1727 * Get the produced position
1728 *
1729 * Returns 0 on success, < 0 on error
1730 */
1731 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1732 unsigned long *pos)
1733 {
1734 switch (consumer_data.type) {
1735 case LTTNG_CONSUMER_KERNEL:
1736 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1737 case LTTNG_CONSUMER32_UST:
1738 case LTTNG_CONSUMER64_UST:
1739 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1740 default:
1741 ERR("Unknown consumer_data type");
1742 assert(0);
1743 return -ENOSYS;
1744 }
1745 }
1746
1747 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1748 int sock, struct pollfd *consumer_sockpoll)
1749 {
1750 switch (consumer_data.type) {
1751 case LTTNG_CONSUMER_KERNEL:
1752 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1753 case LTTNG_CONSUMER32_UST:
1754 case LTTNG_CONSUMER64_UST:
1755 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1756 default:
1757 ERR("Unknown consumer_data type");
1758 assert(0);
1759 return -ENOSYS;
1760 }
1761 }
1762
1763 /*
1764 * Iterate over all streams of the hashtable and free them properly.
1765 *
1766 * WARNING: *MUST* be used with data stream only.
1767 */
1768 static void destroy_data_stream_ht(struct lttng_ht *ht)
1769 {
1770 struct lttng_ht_iter iter;
1771 struct lttng_consumer_stream *stream;
1772
1773 if (ht == NULL) {
1774 return;
1775 }
1776
1777 rcu_read_lock();
1778 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1779 /*
1780 * Ignore return value since we are currently cleaning up so any error
1781 * can't be handled.
1782 */
1783 (void) consumer_del_stream(stream, ht);
1784 }
1785 rcu_read_unlock();
1786
1787 lttng_ht_destroy(ht);
1788 }
1789
1790 /*
1791 * Iterate over all streams of the hashtable and free them properly.
1792 *
1793 * XXX: Should not be only for metadata stream or else use an other name.
1794 */
1795 static void destroy_stream_ht(struct lttng_ht *ht)
1796 {
1797 struct lttng_ht_iter iter;
1798 struct lttng_consumer_stream *stream;
1799
1800 if (ht == NULL) {
1801 return;
1802 }
1803
1804 rcu_read_lock();
1805 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1806 /*
1807 * Ignore return value since we are currently cleaning up so any error
1808 * can't be handled.
1809 */
1810 (void) consumer_del_metadata_stream(stream, ht);
1811 }
1812 rcu_read_unlock();
1813
1814 lttng_ht_destroy(ht);
1815 }
1816
1817 void lttng_consumer_close_metadata(void)
1818 {
1819 switch (consumer_data.type) {
1820 case LTTNG_CONSUMER_KERNEL:
1821 /*
1822 * The Kernel consumer has a different metadata scheme so we don't
1823 * close anything because the stream will be closed by the session
1824 * daemon.
1825 */
1826 break;
1827 case LTTNG_CONSUMER32_UST:
1828 case LTTNG_CONSUMER64_UST:
1829 /*
1830 * Close all metadata streams. The metadata hash table is passed and
1831 * this call iterates over it by closing all wakeup fd. This is safe
1832 * because at this point we are sure that the metadata producer is
1833 * either dead or blocked.
1834 */
1835 lttng_ustconsumer_close_metadata(metadata_ht);
1836 break;
1837 default:
1838 ERR("Unknown consumer_data type");
1839 assert(0);
1840 }
1841 }
1842
1843 /*
1844 * Clean up a metadata stream and free its memory.
1845 */
1846 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1847 struct lttng_ht *ht)
1848 {
1849 int ret;
1850 struct lttng_ht_iter iter;
1851 struct lttng_consumer_channel *free_chan = NULL;
1852 struct consumer_relayd_sock_pair *relayd;
1853
1854 assert(stream);
1855 /*
1856 * This call should NEVER receive regular stream. It must always be
1857 * metadata stream and this is crucial for data structure synchronization.
1858 */
1859 assert(stream->metadata_flag);
1860
1861 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1862
1863 if (ht == NULL) {
1864 /* Means the stream was allocated but not successfully added */
1865 goto free_stream_rcu;
1866 }
1867
1868 pthread_mutex_lock(&consumer_data.lock);
1869 pthread_mutex_lock(&stream->lock);
1870
1871 switch (consumer_data.type) {
1872 case LTTNG_CONSUMER_KERNEL:
1873 if (stream->mmap_base != NULL) {
1874 ret = munmap(stream->mmap_base, stream->mmap_len);
1875 if (ret != 0) {
1876 PERROR("munmap metadata stream");
1877 }
1878 }
1879 break;
1880 case LTTNG_CONSUMER32_UST:
1881 case LTTNG_CONSUMER64_UST:
1882 lttng_ustconsumer_del_stream(stream);
1883 break;
1884 default:
1885 ERR("Unknown consumer_data type");
1886 assert(0);
1887 goto end;
1888 }
1889
1890 rcu_read_lock();
1891 iter.iter.node = &stream->node.node;
1892 ret = lttng_ht_del(ht, &iter);
1893 assert(!ret);
1894
1895 iter.iter.node = &stream->node_channel_id.node;
1896 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1897 assert(!ret);
1898
1899 iter.iter.node = &stream->node_session_id.node;
1900 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1901 assert(!ret);
1902 rcu_read_unlock();
1903
1904 if (stream->out_fd >= 0) {
1905 ret = close(stream->out_fd);
1906 if (ret) {
1907 PERROR("close");
1908 }
1909 }
1910
1911 /* Check and cleanup relayd */
1912 rcu_read_lock();
1913 relayd = consumer_find_relayd(stream->net_seq_idx);
1914 if (relayd != NULL) {
1915 uatomic_dec(&relayd->refcount);
1916 assert(uatomic_read(&relayd->refcount) >= 0);
1917
1918 /* Closing streams requires to lock the control socket. */
1919 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1920 ret = relayd_send_close_stream(&relayd->control_sock,
1921 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1922 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1923 if (ret < 0) {
1924 DBG("Unable to close stream on the relayd. Continuing");
1925 /*
1926 * Continue here. There is nothing we can do for the relayd.
1927 * Chances are that the relayd has closed the socket so we just
1928 * continue cleaning up.
1929 */
1930 }
1931
1932 /* Both conditions are met, we destroy the relayd. */
1933 if (uatomic_read(&relayd->refcount) == 0 &&
1934 uatomic_read(&relayd->destroy_flag)) {
1935 destroy_relayd(relayd);
1936 }
1937 }
1938 rcu_read_unlock();
1939
1940 /* Atomically decrement channel refcount since other threads can use it. */
1941 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1942 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1943 /* Go for channel deletion! */
1944 free_chan = stream->chan;
1945 }
1946
1947 end:
1948 pthread_mutex_unlock(&stream->lock);
1949 pthread_mutex_unlock(&consumer_data.lock);
1950
1951 if (free_chan) {
1952 consumer_del_channel(free_chan);
1953 }
1954
1955 free_stream_rcu:
1956 call_rcu(&stream->node.head, free_stream_rcu);
1957 }
1958
1959 /*
1960 * Action done with the metadata stream when adding it to the consumer internal
1961 * data structures to handle it.
1962 */
1963 static int add_metadata_stream(struct lttng_consumer_stream *stream,
1964 struct lttng_ht *ht)
1965 {
1966 int ret = 0;
1967 struct consumer_relayd_sock_pair *relayd;
1968 struct lttng_ht_iter iter;
1969 struct lttng_ht_node_u64 *node;
1970
1971 assert(stream);
1972 assert(ht);
1973
1974 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
1975
1976 pthread_mutex_lock(&consumer_data.lock);
1977 pthread_mutex_lock(&stream->lock);
1978
1979 /*
1980 * From here, refcounts are updated so be _careful_ when returning an error
1981 * after this point.
1982 */
1983
1984 rcu_read_lock();
1985
1986 /*
1987 * Lookup the stream just to make sure it does not exist in our internal
1988 * state. This should NEVER happen.
1989 */
1990 lttng_ht_lookup(ht, &stream->key, &iter);
1991 node = lttng_ht_iter_get_node_u64(&iter);
1992 assert(!node);
1993
1994 /* Find relayd and, if one is found, increment refcount. */
1995 relayd = consumer_find_relayd(stream->net_seq_idx);
1996 if (relayd != NULL) {
1997 uatomic_inc(&relayd->refcount);
1998 }
1999
2000 /* Update channel refcount once added without error(s). */
2001 uatomic_inc(&stream->chan->refcount);
2002
2003 /*
2004 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2005 * in terms of destroying the associated channel, because the action that
2006 * causes the count to become 0 also causes a stream to be added. The
2007 * channel deletion will thus be triggered by the following removal of this
2008 * stream.
2009 */
2010 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2011 /* Increment refcount before decrementing nb_init_stream_left */
2012 cmm_smp_wmb();
2013 uatomic_dec(&stream->chan->nb_init_stream_left);
2014 }
2015
2016 lttng_ht_add_unique_u64(ht, &stream->node);
2017
2018 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2019 &stream->node_channel_id);
2020
2021 /*
2022 * Add stream to the stream_list_ht of the consumer data. No need to steal
2023 * the key since the HT does not use it and we allow to add redundant keys
2024 * into this table.
2025 */
2026 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2027
2028 rcu_read_unlock();
2029
2030 pthread_mutex_unlock(&stream->lock);
2031 pthread_mutex_unlock(&consumer_data.lock);
2032 return ret;
2033 }
2034
2035 /*
2036 * Delete data stream that are flagged for deletion (endpoint_status).
2037 */
2038 static void validate_endpoint_status_data_stream(void)
2039 {
2040 struct lttng_ht_iter iter;
2041 struct lttng_consumer_stream *stream;
2042
2043 DBG("Consumer delete flagged data stream");
2044
2045 rcu_read_lock();
2046 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2047 /* Validate delete flag of the stream */
2048 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2049 continue;
2050 }
2051 /* Delete it right now */
2052 consumer_del_stream(stream, data_ht);
2053 }
2054 rcu_read_unlock();
2055 }
2056
2057 /*
2058 * Delete metadata stream that are flagged for deletion (endpoint_status).
2059 */
2060 static void validate_endpoint_status_metadata_stream(
2061 struct lttng_poll_event *pollset)
2062 {
2063 struct lttng_ht_iter iter;
2064 struct lttng_consumer_stream *stream;
2065
2066 DBG("Consumer delete flagged metadata stream");
2067
2068 assert(pollset);
2069
2070 rcu_read_lock();
2071 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2072 /* Validate delete flag of the stream */
2073 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2074 continue;
2075 }
2076 /*
2077 * Remove from pollset so the metadata thread can continue without
2078 * blocking on a deleted stream.
2079 */
2080 lttng_poll_del(pollset, stream->wait_fd);
2081
2082 /* Delete it right now */
2083 consumer_del_metadata_stream(stream, metadata_ht);
2084 }
2085 rcu_read_unlock();
2086 }
2087
2088 /*
2089 * Thread polls on metadata file descriptor and write them on disk or on the
2090 * network.
2091 */
2092 void *consumer_thread_metadata_poll(void *data)
2093 {
2094 int ret, i, pollfd;
2095 uint32_t revents, nb_fd;
2096 struct lttng_consumer_stream *stream = NULL;
2097 struct lttng_ht_iter iter;
2098 struct lttng_ht_node_u64 *node;
2099 struct lttng_poll_event events;
2100 struct lttng_consumer_local_data *ctx = data;
2101 ssize_t len;
2102
2103 rcu_register_thread();
2104
2105 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2106 if (!metadata_ht) {
2107 /* ENOMEM at this point. Better to bail out. */
2108 goto end_ht;
2109 }
2110
2111 DBG("Thread metadata poll started");
2112
2113 /* Size is set to 1 for the consumer_metadata pipe */
2114 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2115 if (ret < 0) {
2116 ERR("Poll set creation failed");
2117 goto end_poll;
2118 }
2119
2120 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
2121 if (ret < 0) {
2122 goto end;
2123 }
2124
2125 /* Main loop */
2126 DBG("Metadata main loop started");
2127
2128 while (1) {
2129 /* Only the metadata pipe is set */
2130 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2131 goto end;
2132 }
2133
2134 restart:
2135 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2136 ret = lttng_poll_wait(&events, -1);
2137 DBG("Metadata event catched in thread");
2138 if (ret < 0) {
2139 if (errno == EINTR) {
2140 ERR("Poll EINTR catched");
2141 goto restart;
2142 }
2143 goto error;
2144 }
2145
2146 nb_fd = ret;
2147
2148 /* From here, the event is a metadata wait fd */
2149 for (i = 0; i < nb_fd; i++) {
2150 revents = LTTNG_POLL_GETEV(&events, i);
2151 pollfd = LTTNG_POLL_GETFD(&events, i);
2152
2153 /* Just don't waste time if no returned events for the fd */
2154 if (!revents) {
2155 continue;
2156 }
2157
2158 if (pollfd == ctx->consumer_metadata_pipe[0]) {
2159 if (revents & (LPOLLERR | LPOLLHUP )) {
2160 DBG("Metadata thread pipe hung up");
2161 /*
2162 * Remove the pipe from the poll set and continue the loop
2163 * since their might be data to consume.
2164 */
2165 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
2166 ret = close(ctx->consumer_metadata_pipe[0]);
2167 if (ret < 0) {
2168 PERROR("close metadata pipe");
2169 }
2170 continue;
2171 } else if (revents & LPOLLIN) {
2172 do {
2173 /* Get the stream pointer received */
2174 ret = read(pollfd, &stream, sizeof(stream));
2175 } while (ret < 0 && errno == EINTR);
2176 if (ret < 0 ||
2177 ret < sizeof(struct lttng_consumer_stream *)) {
2178 PERROR("read metadata stream");
2179 /*
2180 * Let's continue here and hope we can still work
2181 * without stopping the consumer. XXX: Should we?
2182 */
2183 continue;
2184 }
2185
2186 /* A NULL stream means that the state has changed. */
2187 if (stream == NULL) {
2188 /* Check for deleted streams. */
2189 validate_endpoint_status_metadata_stream(&events);
2190 goto restart;
2191 }
2192
2193 DBG("Adding metadata stream %d to poll set",
2194 stream->wait_fd);
2195
2196 ret = add_metadata_stream(stream, metadata_ht);
2197 if (ret) {
2198 ERR("Unable to add metadata stream");
2199 /* Stream was not setup properly. Continuing. */
2200 consumer_del_metadata_stream(stream, NULL);
2201 continue;
2202 }
2203
2204 /* Add metadata stream to the global poll events list */
2205 lttng_poll_add(&events, stream->wait_fd,
2206 LPOLLIN | LPOLLPRI);
2207 }
2208
2209 /* Handle other stream */
2210 continue;
2211 }
2212
2213 rcu_read_lock();
2214 {
2215 uint64_t tmp_id = (uint64_t) pollfd;
2216
2217 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2218 }
2219 node = lttng_ht_iter_get_node_u64(&iter);
2220 assert(node);
2221
2222 stream = caa_container_of(node, struct lttng_consumer_stream,
2223 node);
2224
2225 /* Check for error event */
2226 if (revents & (LPOLLERR | LPOLLHUP)) {
2227 DBG("Metadata fd %d is hup|err.", pollfd);
2228 if (!stream->hangup_flush_done
2229 && (consumer_data.type == LTTNG_CONSUMER32_UST
2230 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2231 DBG("Attempting to flush and consume the UST buffers");
2232 lttng_ustconsumer_on_stream_hangup(stream);
2233
2234 /* We just flushed the stream now read it. */
2235 do {
2236 len = ctx->on_buffer_ready(stream, ctx);
2237 /*
2238 * We don't check the return value here since if we get
2239 * a negative len, it means an error occured thus we
2240 * simply remove it from the poll set and free the
2241 * stream.
2242 */
2243 } while (len > 0);
2244 }
2245
2246 lttng_poll_del(&events, stream->wait_fd);
2247 /*
2248 * This call update the channel states, closes file descriptors
2249 * and securely free the stream.
2250 */
2251 consumer_del_metadata_stream(stream, metadata_ht);
2252 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2253 /* Get the data out of the metadata file descriptor */
2254 DBG("Metadata available on fd %d", pollfd);
2255 assert(stream->wait_fd == pollfd);
2256
2257 len = ctx->on_buffer_ready(stream, ctx);
2258 /* It's ok to have an unavailable sub-buffer */
2259 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2260 /* Clean up stream from consumer and free it. */
2261 lttng_poll_del(&events, stream->wait_fd);
2262 consumer_del_metadata_stream(stream, metadata_ht);
2263 } else if (len > 0) {
2264 stream->data_read = 1;
2265 }
2266 }
2267
2268 /* Release RCU lock for the stream looked up */
2269 rcu_read_unlock();
2270 }
2271 }
2272
2273 error:
2274 end:
2275 DBG("Metadata poll thread exiting");
2276
2277 lttng_poll_clean(&events);
2278 end_poll:
2279 destroy_stream_ht(metadata_ht);
2280 end_ht:
2281 rcu_unregister_thread();
2282 return NULL;
2283 }
2284
2285 /*
2286 * This thread polls the fds in the set to consume the data and write
2287 * it to tracefile if necessary.
2288 */
2289 void *consumer_thread_data_poll(void *data)
2290 {
2291 int num_rdy, num_hup, high_prio, ret, i;
2292 struct pollfd *pollfd = NULL;
2293 /* local view of the streams */
2294 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2295 /* local view of consumer_data.fds_count */
2296 int nb_fd = 0;
2297 struct lttng_consumer_local_data *ctx = data;
2298 ssize_t len;
2299
2300 rcu_register_thread();
2301
2302 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2303 if (data_ht == NULL) {
2304 /* ENOMEM at this point. Better to bail out. */
2305 goto end;
2306 }
2307
2308 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2309
2310 while (1) {
2311 high_prio = 0;
2312 num_hup = 0;
2313
2314 /*
2315 * the fds set has been updated, we need to update our
2316 * local array as well
2317 */
2318 pthread_mutex_lock(&consumer_data.lock);
2319 if (consumer_data.need_update) {
2320 free(pollfd);
2321 pollfd = NULL;
2322
2323 free(local_stream);
2324 local_stream = NULL;
2325
2326 /* allocate for all fds + 1 for the consumer_data_pipe */
2327 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2328 if (pollfd == NULL) {
2329 PERROR("pollfd malloc");
2330 pthread_mutex_unlock(&consumer_data.lock);
2331 goto end;
2332 }
2333
2334 /* allocate for all fds + 1 for the consumer_data_pipe */
2335 local_stream = zmalloc((consumer_data.stream_count + 1) *
2336 sizeof(struct lttng_consumer_stream));
2337 if (local_stream == NULL) {
2338 PERROR("local_stream malloc");
2339 pthread_mutex_unlock(&consumer_data.lock);
2340 goto end;
2341 }
2342 ret = update_poll_array(ctx, &pollfd, local_stream,
2343 data_ht);
2344 if (ret < 0) {
2345 ERR("Error in allocating pollfd or local_outfds");
2346 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2347 pthread_mutex_unlock(&consumer_data.lock);
2348 goto end;
2349 }
2350 nb_fd = ret;
2351 consumer_data.need_update = 0;
2352 }
2353 pthread_mutex_unlock(&consumer_data.lock);
2354
2355 /* No FDs and consumer_quit, consumer_cleanup the thread */
2356 if (nb_fd == 0 && consumer_quit == 1) {
2357 goto end;
2358 }
2359 /* poll on the array of fds */
2360 restart:
2361 DBG("polling on %d fd", nb_fd + 1);
2362 num_rdy = poll(pollfd, nb_fd + 1, -1);
2363 DBG("poll num_rdy : %d", num_rdy);
2364 if (num_rdy == -1) {
2365 /*
2366 * Restart interrupted system call.
2367 */
2368 if (errno == EINTR) {
2369 goto restart;
2370 }
2371 PERROR("Poll error");
2372 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2373 goto end;
2374 } else if (num_rdy == 0) {
2375 DBG("Polling thread timed out");
2376 goto end;
2377 }
2378
2379 /*
2380 * If the consumer_data_pipe triggered poll go directly to the
2381 * beginning of the loop to update the array. We want to prioritize
2382 * array update over low-priority reads.
2383 */
2384 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2385 ssize_t pipe_readlen;
2386
2387 DBG("consumer_data_pipe wake up");
2388 /* Consume 1 byte of pipe data */
2389 do {
2390 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2391 sizeof(new_stream));
2392 } while (pipe_readlen == -1 && errno == EINTR);
2393 if (pipe_readlen < 0) {
2394 PERROR("read consumer data pipe");
2395 /* Continue so we can at least handle the current stream(s). */
2396 continue;
2397 }
2398
2399 /*
2400 * If the stream is NULL, just ignore it. It's also possible that
2401 * the sessiond poll thread changed the consumer_quit state and is
2402 * waking us up to test it.
2403 */
2404 if (new_stream == NULL) {
2405 validate_endpoint_status_data_stream();
2406 continue;
2407 }
2408
2409 ret = add_stream(new_stream, data_ht);
2410 if (ret) {
2411 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2412 new_stream->key);
2413 /*
2414 * At this point, if the add_stream fails, it is not in the
2415 * hash table thus passing the NULL value here.
2416 */
2417 consumer_del_stream(new_stream, NULL);
2418 }
2419
2420 /* Continue to update the local streams and handle prio ones */
2421 continue;
2422 }
2423
2424 /* Take care of high priority channels first. */
2425 for (i = 0; i < nb_fd; i++) {
2426 if (local_stream[i] == NULL) {
2427 continue;
2428 }
2429 if (pollfd[i].revents & POLLPRI) {
2430 DBG("Urgent read on fd %d", pollfd[i].fd);
2431 high_prio = 1;
2432 len = ctx->on_buffer_ready(local_stream[i], ctx);
2433 /* it's ok to have an unavailable sub-buffer */
2434 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2435 /* Clean the stream and free it. */
2436 consumer_del_stream(local_stream[i], data_ht);
2437 local_stream[i] = NULL;
2438 } else if (len > 0) {
2439 local_stream[i]->data_read = 1;
2440 }
2441 }
2442 }
2443
2444 /*
2445 * If we read high prio channel in this loop, try again
2446 * for more high prio data.
2447 */
2448 if (high_prio) {
2449 continue;
2450 }
2451
2452 /* Take care of low priority channels. */
2453 for (i = 0; i < nb_fd; i++) {
2454 if (local_stream[i] == NULL) {
2455 continue;
2456 }
2457 if ((pollfd[i].revents & POLLIN) ||
2458 local_stream[i]->hangup_flush_done) {
2459 DBG("Normal read on fd %d", pollfd[i].fd);
2460 len = ctx->on_buffer_ready(local_stream[i], ctx);
2461 /* it's ok to have an unavailable sub-buffer */
2462 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2463 /* Clean the stream and free it. */
2464 consumer_del_stream(local_stream[i], data_ht);
2465 local_stream[i] = NULL;
2466 } else if (len > 0) {
2467 local_stream[i]->data_read = 1;
2468 }
2469 }
2470 }
2471
2472 /* Handle hangup and errors */
2473 for (i = 0; i < nb_fd; i++) {
2474 if (local_stream[i] == NULL) {
2475 continue;
2476 }
2477 if (!local_stream[i]->hangup_flush_done
2478 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2479 && (consumer_data.type == LTTNG_CONSUMER32_UST
2480 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2481 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2482 pollfd[i].fd);
2483 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2484 /* Attempt read again, for the data we just flushed. */
2485 local_stream[i]->data_read = 1;
2486 }
2487 /*
2488 * If the poll flag is HUP/ERR/NVAL and we have
2489 * read no data in this pass, we can remove the
2490 * stream from its hash table.
2491 */
2492 if ((pollfd[i].revents & POLLHUP)) {
2493 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2494 if (!local_stream[i]->data_read) {
2495 consumer_del_stream(local_stream[i], data_ht);
2496 local_stream[i] = NULL;
2497 num_hup++;
2498 }
2499 } else if (pollfd[i].revents & POLLERR) {
2500 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2501 if (!local_stream[i]->data_read) {
2502 consumer_del_stream(local_stream[i], data_ht);
2503 local_stream[i] = NULL;
2504 num_hup++;
2505 }
2506 } else if (pollfd[i].revents & POLLNVAL) {
2507 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2508 if (!local_stream[i]->data_read) {
2509 consumer_del_stream(local_stream[i], data_ht);
2510 local_stream[i] = NULL;
2511 num_hup++;
2512 }
2513 }
2514 if (local_stream[i] != NULL) {
2515 local_stream[i]->data_read = 0;
2516 }
2517 }
2518 }
2519 end:
2520 DBG("polling thread exiting");
2521 free(pollfd);
2522 free(local_stream);
2523
2524 /*
2525 * Close the write side of the pipe so epoll_wait() in
2526 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2527 * read side of the pipe. If we close them both, epoll_wait strangely does
2528 * not return and could create a endless wait period if the pipe is the
2529 * only tracked fd in the poll set. The thread will take care of closing
2530 * the read side.
2531 */
2532 ret = close(ctx->consumer_metadata_pipe[1]);
2533 if (ret < 0) {
2534 PERROR("close data pipe");
2535 }
2536
2537 destroy_data_stream_ht(data_ht);
2538
2539 rcu_unregister_thread();
2540 return NULL;
2541 }
2542
2543 /*
2544 * Close wake-up end of each stream belonging to the channel. This will
2545 * allow the poll() on the stream read-side to detect when the
2546 * write-side (application) finally closes them.
2547 */
2548 static
2549 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2550 {
2551 struct lttng_ht *ht;
2552 struct lttng_consumer_stream *stream;
2553 struct lttng_ht_iter iter;
2554
2555 ht = consumer_data.stream_per_chan_id_ht;
2556
2557 rcu_read_lock();
2558 cds_lfht_for_each_entry_duplicate(ht->ht,
2559 ht->hash_fct(&channel->key, lttng_ht_seed),
2560 ht->match_fct, &channel->key,
2561 &iter.iter, stream, node_channel_id.node) {
2562 /*
2563 * Protect against teardown with mutex.
2564 */
2565 pthread_mutex_lock(&stream->lock);
2566 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2567 goto next;
2568 }
2569 switch (consumer_data.type) {
2570 case LTTNG_CONSUMER_KERNEL:
2571 break;
2572 case LTTNG_CONSUMER32_UST:
2573 case LTTNG_CONSUMER64_UST:
2574 /*
2575 * Note: a mutex is taken internally within
2576 * liblttng-ust-ctl to protect timer wakeup_fd
2577 * use from concurrent close.
2578 */
2579 lttng_ustconsumer_close_stream_wakeup(stream);
2580 break;
2581 default:
2582 ERR("Unknown consumer_data type");
2583 assert(0);
2584 }
2585 next:
2586 pthread_mutex_unlock(&stream->lock);
2587 }
2588 rcu_read_unlock();
2589 }
2590
2591 static void destroy_channel_ht(struct lttng_ht *ht)
2592 {
2593 struct lttng_ht_iter iter;
2594 struct lttng_consumer_channel *channel;
2595 int ret;
2596
2597 if (ht == NULL) {
2598 return;
2599 }
2600
2601 rcu_read_lock();
2602 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2603 ret = lttng_ht_del(ht, &iter);
2604 assert(ret != 0);
2605 }
2606 rcu_read_unlock();
2607
2608 lttng_ht_destroy(ht);
2609 }
2610
2611 /*
2612 * This thread polls the channel fds to detect when they are being
2613 * closed. It closes all related streams if the channel is detected as
2614 * closed. It is currently only used as a shim layer for UST because the
2615 * consumerd needs to keep the per-stream wakeup end of pipes open for
2616 * periodical flush.
2617 */
2618 void *consumer_thread_channel_poll(void *data)
2619 {
2620 int ret, i, pollfd;
2621 uint32_t revents, nb_fd;
2622 struct lttng_consumer_channel *chan = NULL;
2623 struct lttng_ht_iter iter;
2624 struct lttng_ht_node_u64 *node;
2625 struct lttng_poll_event events;
2626 struct lttng_consumer_local_data *ctx = data;
2627 struct lttng_ht *channel_ht;
2628
2629 rcu_register_thread();
2630
2631 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2632 if (!channel_ht) {
2633 /* ENOMEM at this point. Better to bail out. */
2634 goto end_ht;
2635 }
2636
2637 DBG("Thread channel poll started");
2638
2639 /* Size is set to 1 for the consumer_channel pipe */
2640 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2641 if (ret < 0) {
2642 ERR("Poll set creation failed");
2643 goto end_poll;
2644 }
2645
2646 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2647 if (ret < 0) {
2648 goto end;
2649 }
2650
2651 /* Main loop */
2652 DBG("Channel main loop started");
2653
2654 while (1) {
2655 /* Only the channel pipe is set */
2656 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2657 goto end;
2658 }
2659
2660 restart:
2661 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2662 ret = lttng_poll_wait(&events, -1);
2663 DBG("Channel event catched in thread");
2664 if (ret < 0) {
2665 if (errno == EINTR) {
2666 ERR("Poll EINTR catched");
2667 goto restart;
2668 }
2669 goto end;
2670 }
2671
2672 nb_fd = ret;
2673
2674 /* From here, the event is a channel wait fd */
2675 for (i = 0; i < nb_fd; i++) {
2676 revents = LTTNG_POLL_GETEV(&events, i);
2677 pollfd = LTTNG_POLL_GETFD(&events, i);
2678
2679 /* Just don't waste time if no returned events for the fd */
2680 if (!revents) {
2681 continue;
2682 }
2683 if (pollfd == ctx->consumer_channel_pipe[0]) {
2684 if (revents & (LPOLLERR | LPOLLHUP)) {
2685 DBG("Channel thread pipe hung up");
2686 /*
2687 * Remove the pipe from the poll set and continue the loop
2688 * since their might be data to consume.
2689 */
2690 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2691 continue;
2692 } else if (revents & LPOLLIN) {
2693 enum consumer_channel_action action;
2694
2695 ret = read_channel_pipe(ctx, &chan, &action);
2696 if (ret <= 0) {
2697 ERR("Error reading channel pipe");
2698 continue;
2699 }
2700
2701 switch (action) {
2702 case CONSUMER_CHANNEL_ADD:
2703 DBG("Adding channel %d to poll set",
2704 chan->wait_fd);
2705
2706 lttng_ht_node_init_u64(&chan->wait_fd_node,
2707 chan->wait_fd);
2708 lttng_ht_add_unique_u64(channel_ht,
2709 &chan->wait_fd_node);
2710 /* Add channel to the global poll events list */
2711 lttng_poll_add(&events, chan->wait_fd,
2712 LPOLLIN | LPOLLPRI);
2713 break;
2714 case CONSUMER_CHANNEL_QUIT:
2715 /*
2716 * Remove the pipe from the poll set and continue the loop
2717 * since their might be data to consume.
2718 */
2719 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2720 continue;
2721 default:
2722 ERR("Unknown action");
2723 break;
2724 }
2725 }
2726
2727 /* Handle other stream */
2728 continue;
2729 }
2730
2731 rcu_read_lock();
2732 {
2733 uint64_t tmp_id = (uint64_t) pollfd;
2734
2735 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2736 }
2737 node = lttng_ht_iter_get_node_u64(&iter);
2738 assert(node);
2739
2740 chan = caa_container_of(node, struct lttng_consumer_channel,
2741 wait_fd_node);
2742
2743 /* Check for error event */
2744 if (revents & (LPOLLERR | LPOLLHUP)) {
2745 DBG("Channel fd %d is hup|err.", pollfd);
2746
2747 lttng_poll_del(&events, chan->wait_fd);
2748 ret = lttng_ht_del(channel_ht, &iter);
2749 assert(ret == 0);
2750 consumer_close_channel_streams(chan);
2751
2752 /* Release our own refcount */
2753 if (!uatomic_sub_return(&chan->refcount, 1)
2754 && !uatomic_read(&chan->nb_init_stream_left)) {
2755 consumer_del_channel(chan);
2756 }
2757 }
2758
2759 /* Release RCU lock for the channel looked up */
2760 rcu_read_unlock();
2761 }
2762 }
2763
2764 end:
2765 lttng_poll_clean(&events);
2766 end_poll:
2767 destroy_channel_ht(channel_ht);
2768 end_ht:
2769 DBG("Channel poll thread exiting");
2770 rcu_unregister_thread();
2771 return NULL;
2772 }
2773
2774 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2775 struct pollfd *sockpoll, int client_socket)
2776 {
2777 int ret;
2778
2779 assert(ctx);
2780 assert(sockpoll);
2781
2782 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2783 ret = -1;
2784 goto error;
2785 }
2786 DBG("Metadata connection on client_socket");
2787
2788 /* Blocking call, waiting for transmission */
2789 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2790 if (ctx->consumer_metadata_socket < 0) {
2791 WARN("On accept metadata");
2792 ret = -1;
2793 goto error;
2794 }
2795 ret = 0;
2796
2797 error:
2798 return ret;
2799 }
2800
2801 /*
2802 * This thread listens on the consumerd socket and receives the file
2803 * descriptors from the session daemon.
2804 */
2805 void *consumer_thread_sessiond_poll(void *data)
2806 {
2807 int sock = -1, client_socket, ret;
2808 /*
2809 * structure to poll for incoming data on communication socket avoids
2810 * making blocking sockets.
2811 */
2812 struct pollfd consumer_sockpoll[2];
2813 struct lttng_consumer_local_data *ctx = data;
2814
2815 rcu_register_thread();
2816
2817 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2818 unlink(ctx->consumer_command_sock_path);
2819 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2820 if (client_socket < 0) {
2821 ERR("Cannot create command socket");
2822 goto end;
2823 }
2824
2825 ret = lttcomm_listen_unix_sock(client_socket);
2826 if (ret < 0) {
2827 goto end;
2828 }
2829
2830 DBG("Sending ready command to lttng-sessiond");
2831 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2832 /* return < 0 on error, but == 0 is not fatal */
2833 if (ret < 0) {
2834 ERR("Error sending ready command to lttng-sessiond");
2835 goto end;
2836 }
2837
2838 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2839 if (ret < 0) {
2840 PERROR("fcntl O_NONBLOCK");
2841 goto end;
2842 }
2843
2844 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2845 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2846 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2847 consumer_sockpoll[1].fd = client_socket;
2848 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2849
2850 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2851 goto end;
2852 }
2853 DBG("Connection on client_socket");
2854
2855 /* Blocking call, waiting for transmission */
2856 sock = lttcomm_accept_unix_sock(client_socket);
2857 if (sock < 0) {
2858 WARN("On accept");
2859 goto end;
2860 }
2861 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2862 if (ret < 0) {
2863 PERROR("fcntl O_NONBLOCK");
2864 goto end;
2865 }
2866
2867 /*
2868 * Setup metadata socket which is the second socket connection on the
2869 * command unix socket.
2870 */
2871 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2872 if (ret < 0) {
2873 goto end;
2874 }
2875
2876 /* This socket is not useful anymore. */
2877 ret = close(client_socket);
2878 if (ret < 0) {
2879 PERROR("close client_socket");
2880 }
2881 client_socket = -1;
2882
2883 /* update the polling structure to poll on the established socket */
2884 consumer_sockpoll[1].fd = sock;
2885 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2886
2887 while (1) {
2888 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2889 goto end;
2890 }
2891 DBG("Incoming command on sock");
2892 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2893 if (ret == -ENOENT) {
2894 DBG("Received STOP command");
2895 goto end;
2896 }
2897 if (ret <= 0) {
2898 /*
2899 * This could simply be a session daemon quitting. Don't output
2900 * ERR() here.
2901 */
2902 DBG("Communication interrupted on command socket");
2903 goto end;
2904 }
2905 if (consumer_quit) {
2906 DBG("consumer_thread_receive_fds received quit from signal");
2907 goto end;
2908 }
2909 DBG("received command on sock");
2910 }
2911 end:
2912 DBG("Consumer thread sessiond poll exiting");
2913
2914 /*
2915 * Close metadata streams since the producer is the session daemon which
2916 * just died.
2917 *
2918 * NOTE: for now, this only applies to the UST tracer.
2919 */
2920 lttng_consumer_close_metadata();
2921
2922 /*
2923 * when all fds have hung up, the polling thread
2924 * can exit cleanly
2925 */
2926 consumer_quit = 1;
2927
2928 /*
2929 * Notify the data poll thread to poll back again and test the
2930 * consumer_quit state that we just set so to quit gracefully.
2931 */
2932 notify_thread_pipe(ctx->consumer_data_pipe[1]);
2933
2934 notify_channel_pipe(ctx, NULL, CONSUMER_CHANNEL_QUIT);
2935
2936 /* Cleaning up possibly open sockets. */
2937 if (sock >= 0) {
2938 ret = close(sock);
2939 if (ret < 0) {
2940 PERROR("close sock sessiond poll");
2941 }
2942 }
2943 if (client_socket >= 0) {
2944 ret = close(sock);
2945 if (ret < 0) {
2946 PERROR("close client_socket sessiond poll");
2947 }
2948 }
2949
2950 rcu_unregister_thread();
2951 return NULL;
2952 }
2953
2954 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2955 struct lttng_consumer_local_data *ctx)
2956 {
2957 ssize_t ret;
2958
2959 pthread_mutex_lock(&stream->lock);
2960
2961 switch (consumer_data.type) {
2962 case LTTNG_CONSUMER_KERNEL:
2963 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2964 break;
2965 case LTTNG_CONSUMER32_UST:
2966 case LTTNG_CONSUMER64_UST:
2967 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
2968 break;
2969 default:
2970 ERR("Unknown consumer_data type");
2971 assert(0);
2972 ret = -ENOSYS;
2973 break;
2974 }
2975
2976 pthread_mutex_unlock(&stream->lock);
2977 return ret;
2978 }
2979
2980 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2981 {
2982 switch (consumer_data.type) {
2983 case LTTNG_CONSUMER_KERNEL:
2984 return lttng_kconsumer_on_recv_stream(stream);
2985 case LTTNG_CONSUMER32_UST:
2986 case LTTNG_CONSUMER64_UST:
2987 return lttng_ustconsumer_on_recv_stream(stream);
2988 default:
2989 ERR("Unknown consumer_data type");
2990 assert(0);
2991 return -ENOSYS;
2992 }
2993 }
2994
2995 /*
2996 * Allocate and set consumer data hash tables.
2997 */
2998 void lttng_consumer_init(void)
2999 {
3000 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3001 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3002 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3003 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3004 }
3005
3006 /*
3007 * Process the ADD_RELAYD command receive by a consumer.
3008 *
3009 * This will create a relayd socket pair and add it to the relayd hash table.
3010 * The caller MUST acquire a RCU read side lock before calling it.
3011 */
3012 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
3013 struct lttng_consumer_local_data *ctx, int sock,
3014 struct pollfd *consumer_sockpoll,
3015 struct lttcomm_relayd_sock *relayd_sock, unsigned int sessiond_id)
3016 {
3017 int fd = -1, ret = -1, relayd_created = 0;
3018 enum lttng_error_code ret_code = LTTNG_OK;
3019 struct consumer_relayd_sock_pair *relayd = NULL;
3020
3021 assert(ctx);
3022 assert(relayd_sock);
3023
3024 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
3025
3026 /* First send a status message before receiving the fds. */
3027 ret = consumer_send_status_msg(sock, ret_code);
3028 if (ret < 0) {
3029 /* Somehow, the session daemon is not responding anymore. */
3030 goto error;
3031 }
3032
3033 /* Get relayd reference if exists. */
3034 relayd = consumer_find_relayd(net_seq_idx);
3035 if (relayd == NULL) {
3036 /* Not found. Allocate one. */
3037 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3038 if (relayd == NULL) {
3039 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
3040 ret = -1;
3041 goto error;
3042 }
3043 relayd->sessiond_session_id = (uint64_t) sessiond_id;
3044 relayd_created = 1;
3045 }
3046
3047 /* Poll on consumer socket. */
3048 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3049 ret = -EINTR;
3050 goto error;
3051 }
3052
3053 /* Get relayd socket from session daemon */
3054 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3055 if (ret != sizeof(fd)) {
3056 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3057 ret = -1;
3058 fd = -1; /* Just in case it gets set with an invalid value. */
3059 goto error_close;
3060 }
3061
3062 /* We have the fds without error. Send status back. */
3063 ret = consumer_send_status_msg(sock, ret_code);
3064 if (ret < 0) {
3065 /* Somehow, the session daemon is not responding anymore. */
3066 goto error;
3067 }
3068
3069 /* Copy socket information and received FD */
3070 switch (sock_type) {
3071 case LTTNG_STREAM_CONTROL:
3072 /* Copy received lttcomm socket */
3073 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3074 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3075 /* Immediately try to close the created socket if valid. */
3076 if (relayd->control_sock.sock.fd >= 0) {
3077 if (close(relayd->control_sock.sock.fd)) {
3078 PERROR("close relayd control socket");
3079 }
3080 }
3081 /* Handle create_sock error. */
3082 if (ret < 0) {
3083 goto error;
3084 }
3085
3086 /* Assign new file descriptor */
3087 relayd->control_sock.sock.fd = fd;
3088 /* Assign version values. */
3089 relayd->control_sock.major = relayd_sock->major;
3090 relayd->control_sock.minor = relayd_sock->minor;
3091
3092 /*
3093 * Create a session on the relayd and store the returned id. Lock the
3094 * control socket mutex if the relayd was NOT created before.
3095 */
3096 if (!relayd_created) {
3097 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3098 }
3099 ret = relayd_create_session(&relayd->control_sock,
3100 &relayd->relayd_session_id);
3101 if (!relayd_created) {
3102 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3103 }
3104 if (ret < 0) {
3105 /*
3106 * Close all sockets of a relayd object. It will be freed if it was
3107 * created at the error code path or else it will be garbage
3108 * collect.
3109 */
3110 (void) relayd_close(&relayd->control_sock);
3111 (void) relayd_close(&relayd->data_sock);
3112 goto error;
3113 }
3114
3115 break;
3116 case LTTNG_STREAM_DATA:
3117 /* Copy received lttcomm socket */
3118 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3119 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3120 /* Immediately try to close the created socket if valid. */
3121 if (relayd->data_sock.sock.fd >= 0) {
3122 if (close(relayd->data_sock.sock.fd)) {
3123 PERROR("close relayd data socket");
3124 }
3125 }
3126 /* Handle create_sock error. */
3127 if (ret < 0) {
3128 goto error;
3129 }
3130
3131 /* Assign new file descriptor */
3132 relayd->data_sock.sock.fd = fd;
3133 /* Assign version values. */
3134 relayd->data_sock.major = relayd_sock->major;
3135 relayd->data_sock.minor = relayd_sock->minor;
3136 break;
3137 default:
3138 ERR("Unknown relayd socket type (%d)", sock_type);
3139 ret = -1;
3140 goto error;
3141 }
3142
3143 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3144 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3145 relayd->net_seq_idx, fd);
3146
3147 /*
3148 * Add relayd socket pair to consumer data hashtable. If object already
3149 * exists or on error, the function gracefully returns.
3150 */
3151 add_relayd(relayd);
3152
3153 /* All good! */
3154 return 0;
3155
3156 error:
3157 /* Close received socket if valid. */
3158 if (fd >= 0) {
3159 if (close(fd)) {
3160 PERROR("close received socket");
3161 }
3162 }
3163
3164 error_close:
3165 if (relayd_created) {
3166 free(relayd);
3167 }
3168
3169 return ret;
3170 }
3171
3172 /*
3173 * Try to lock the stream mutex.
3174 *
3175 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3176 */
3177 static int stream_try_lock(struct lttng_consumer_stream *stream)
3178 {
3179 int ret;
3180
3181 assert(stream);
3182
3183 /*
3184 * Try to lock the stream mutex. On failure, we know that the stream is
3185 * being used else where hence there is data still being extracted.
3186 */
3187 ret = pthread_mutex_trylock(&stream->lock);
3188 if (ret) {
3189 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3190 ret = 0;
3191 goto end;
3192 }
3193
3194 ret = 1;
3195
3196 end:
3197 return ret;
3198 }
3199
3200 /*
3201 * Search for a relayd associated to the session id and return the reference.
3202 *
3203 * A rcu read side lock MUST be acquire before calling this function and locked
3204 * until the relayd object is no longer necessary.
3205 */
3206 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3207 {
3208 struct lttng_ht_iter iter;
3209 struct consumer_relayd_sock_pair *relayd = NULL;
3210
3211 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3212 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3213 node.node) {
3214 /*
3215 * Check by sessiond id which is unique here where the relayd session
3216 * id might not be when having multiple relayd.
3217 */
3218 if (relayd->sessiond_session_id == id) {
3219 /* Found the relayd. There can be only one per id. */
3220 goto found;
3221 }
3222 }
3223
3224 return NULL;
3225
3226 found:
3227 return relayd;
3228 }
3229
3230 /*
3231 * Check if for a given session id there is still data needed to be extract
3232 * from the buffers.
3233 *
3234 * Return 1 if data is pending or else 0 meaning ready to be read.
3235 */
3236 int consumer_data_pending(uint64_t id)
3237 {
3238 int ret;
3239 struct lttng_ht_iter iter;
3240 struct lttng_ht *ht;
3241 struct lttng_consumer_stream *stream;
3242 struct consumer_relayd_sock_pair *relayd = NULL;
3243 int (*data_pending)(struct lttng_consumer_stream *);
3244
3245 DBG("Consumer data pending command on session id %" PRIu64, id);
3246
3247 rcu_read_lock();
3248 pthread_mutex_lock(&consumer_data.lock);
3249
3250 switch (consumer_data.type) {
3251 case LTTNG_CONSUMER_KERNEL:
3252 data_pending = lttng_kconsumer_data_pending;
3253 break;
3254 case LTTNG_CONSUMER32_UST:
3255 case LTTNG_CONSUMER64_UST:
3256 data_pending = lttng_ustconsumer_data_pending;
3257 break;
3258 default:
3259 ERR("Unknown consumer data type");
3260 assert(0);
3261 }
3262
3263 /* Ease our life a bit */
3264 ht = consumer_data.stream_list_ht;
3265
3266 relayd = find_relayd_by_session_id(id);
3267 if (relayd) {
3268 /* Send init command for data pending. */
3269 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3270 ret = relayd_begin_data_pending(&relayd->control_sock,
3271 relayd->relayd_session_id);
3272 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3273 if (ret < 0) {
3274 /* Communication error thus the relayd so no data pending. */
3275 goto data_not_pending;
3276 }
3277 }
3278
3279 cds_lfht_for_each_entry_duplicate(ht->ht,
3280 ht->hash_fct(&id, lttng_ht_seed),
3281 ht->match_fct, &id,
3282 &iter.iter, stream, node_session_id.node) {
3283 /* If this call fails, the stream is being used hence data pending. */
3284 ret = stream_try_lock(stream);
3285 if (!ret) {
3286 goto data_pending;
3287 }
3288
3289 /*
3290 * A removed node from the hash table indicates that the stream has
3291 * been deleted thus having a guarantee that the buffers are closed
3292 * on the consumer side. However, data can still be transmitted
3293 * over the network so don't skip the relayd check.
3294 */
3295 ret = cds_lfht_is_node_deleted(&stream->node.node);
3296 if (!ret) {
3297 /* Check the stream if there is data in the buffers. */
3298 ret = data_pending(stream);
3299 if (ret == 1) {
3300 pthread_mutex_unlock(&stream->lock);
3301 goto data_pending;
3302 }
3303 }
3304
3305 /* Relayd check */
3306 if (relayd) {
3307 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3308 if (stream->metadata_flag) {
3309 ret = relayd_quiescent_control(&relayd->control_sock,
3310 stream->relayd_stream_id);
3311 } else {
3312 ret = relayd_data_pending(&relayd->control_sock,
3313 stream->relayd_stream_id,
3314 stream->next_net_seq_num - 1);
3315 }
3316 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3317 if (ret == 1) {
3318 pthread_mutex_unlock(&stream->lock);
3319 goto data_pending;
3320 }
3321 }
3322 pthread_mutex_unlock(&stream->lock);
3323 }
3324
3325 if (relayd) {
3326 unsigned int is_data_inflight = 0;
3327
3328 /* Send init command for data pending. */
3329 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3330 ret = relayd_end_data_pending(&relayd->control_sock,
3331 relayd->relayd_session_id, &is_data_inflight);
3332 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3333 if (ret < 0) {
3334 goto data_not_pending;
3335 }
3336 if (is_data_inflight) {
3337 goto data_pending;
3338 }
3339 }
3340
3341 /*
3342 * Finding _no_ node in the hash table and no inflight data means that the
3343 * stream(s) have been removed thus data is guaranteed to be available for
3344 * analysis from the trace files.
3345 */
3346
3347 data_not_pending:
3348 /* Data is available to be read by a viewer. */
3349 pthread_mutex_unlock(&consumer_data.lock);
3350 rcu_read_unlock();
3351 return 0;
3352
3353 data_pending:
3354 /* Data is still being extracted from buffers. */
3355 pthread_mutex_unlock(&consumer_data.lock);
3356 rcu_read_unlock();
3357 return 1;
3358 }
3359
3360 /*
3361 * Send a ret code status message to the sessiond daemon.
3362 *
3363 * Return the sendmsg() return value.
3364 */
3365 int consumer_send_status_msg(int sock, int ret_code)
3366 {
3367 struct lttcomm_consumer_status_msg msg;
3368
3369 msg.ret_code = ret_code;
3370
3371 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3372 }
3373
3374 /*
3375 * Send a channel status message to the sessiond daemon.
3376 *
3377 * Return the sendmsg() return value.
3378 */
3379 int consumer_send_status_channel(int sock,
3380 struct lttng_consumer_channel *channel)
3381 {
3382 struct lttcomm_consumer_status_channel msg;
3383
3384 assert(sock >= 0);
3385
3386 if (!channel) {
3387 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3388 } else {
3389 msg.ret_code = LTTNG_OK;
3390 msg.key = channel->key;
3391 msg.stream_count = channel->streams.count;
3392 }
3393
3394 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3395 }
This page took 0.150803 seconds and 5 git commands to generate.