f69f0081a9cd77a38798c3dd745cd842cd4f4329
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
41
42 #include "consumer.h"
43
44 struct lttng_consumer_global_data consumer_data = {
45 .stream_count = 0,
46 .need_update = 1,
47 .type = LTTNG_CONSUMER_UNKNOWN,
48 };
49
50 /*
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
54 * polling threads.
55 */
56 volatile int consumer_quit;
57
58 /*
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
62 */
63 static struct lttng_ht *metadata_ht;
64 static struct lttng_ht *data_ht;
65
66 /*
67 * Notify a thread pipe to poll back again. This usually means that some global
68 * state has changed so we just send back the thread in a poll wait call.
69 */
70 static void notify_thread_pipe(int wpipe)
71 {
72 int ret;
73
74 do {
75 struct lttng_consumer_stream *null_stream = NULL;
76
77 ret = write(wpipe, &null_stream, sizeof(null_stream));
78 } while (ret < 0 && errno == EINTR);
79 }
80
81 /*
82 * Find a stream. The consumer_data.lock must be locked during this
83 * call.
84 */
85 static struct lttng_consumer_stream *consumer_find_stream(int key,
86 struct lttng_ht *ht)
87 {
88 struct lttng_ht_iter iter;
89 struct lttng_ht_node_ulong *node;
90 struct lttng_consumer_stream *stream = NULL;
91
92 assert(ht);
93
94 /* Negative keys are lookup failures */
95 if (key < 0) {
96 return NULL;
97 }
98
99 rcu_read_lock();
100
101 lttng_ht_lookup(ht, (void *)((unsigned long) key), &iter);
102 node = lttng_ht_iter_get_node_ulong(&iter);
103 if (node != NULL) {
104 stream = caa_container_of(node, struct lttng_consumer_stream, node);
105 }
106
107 rcu_read_unlock();
108
109 return stream;
110 }
111
112 void consumer_steal_stream_key(int key, struct lttng_ht *ht)
113 {
114 struct lttng_consumer_stream *stream;
115
116 rcu_read_lock();
117 stream = consumer_find_stream(key, ht);
118 if (stream) {
119 stream->key = -1;
120 /*
121 * We don't want the lookup to match, but we still need
122 * to iterate on this stream when iterating over the hash table. Just
123 * change the node key.
124 */
125 stream->node.key = -1;
126 }
127 rcu_read_unlock();
128 }
129
130 static struct lttng_consumer_channel *consumer_find_channel(int key)
131 {
132 struct lttng_ht_iter iter;
133 struct lttng_ht_node_ulong *node;
134 struct lttng_consumer_channel *channel = NULL;
135
136 /* Negative keys are lookup failures */
137 if (key < 0) {
138 return NULL;
139 }
140
141 rcu_read_lock();
142
143 lttng_ht_lookup(consumer_data.channel_ht, (void *)((unsigned long) key),
144 &iter);
145 node = lttng_ht_iter_get_node_ulong(&iter);
146 if (node != NULL) {
147 channel = caa_container_of(node, struct lttng_consumer_channel, node);
148 }
149
150 rcu_read_unlock();
151
152 return channel;
153 }
154
155 static void consumer_steal_channel_key(int key)
156 {
157 struct lttng_consumer_channel *channel;
158
159 rcu_read_lock();
160 channel = consumer_find_channel(key);
161 if (channel) {
162 channel->key = -1;
163 /*
164 * We don't want the lookup to match, but we still need
165 * to iterate on this channel when iterating over the hash table. Just
166 * change the node key.
167 */
168 channel->node.key = -1;
169 }
170 rcu_read_unlock();
171 }
172
173 static
174 void consumer_free_stream(struct rcu_head *head)
175 {
176 struct lttng_ht_node_ulong *node =
177 caa_container_of(head, struct lttng_ht_node_ulong, head);
178 struct lttng_consumer_stream *stream =
179 caa_container_of(node, struct lttng_consumer_stream, node);
180
181 free(stream);
182 }
183
184 /*
185 * RCU protected relayd socket pair free.
186 */
187 static void consumer_rcu_free_relayd(struct rcu_head *head)
188 {
189 struct lttng_ht_node_ulong *node =
190 caa_container_of(head, struct lttng_ht_node_ulong, head);
191 struct consumer_relayd_sock_pair *relayd =
192 caa_container_of(node, struct consumer_relayd_sock_pair, node);
193
194 /*
195 * Close all sockets. This is done in the call RCU since we don't want the
196 * socket fds to be reassigned thus potentially creating bad state of the
197 * relayd object.
198 *
199 * We do not have to lock the control socket mutex here since at this stage
200 * there is no one referencing to this relayd object.
201 */
202 (void) relayd_close(&relayd->control_sock);
203 (void) relayd_close(&relayd->data_sock);
204
205 free(relayd);
206 }
207
208 /*
209 * Destroy and free relayd socket pair object.
210 *
211 * This function MUST be called with the consumer_data lock acquired.
212 */
213 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
214 {
215 int ret;
216 struct lttng_ht_iter iter;
217
218 if (relayd == NULL) {
219 return;
220 }
221
222 DBG("Consumer destroy and close relayd socket pair");
223
224 iter.iter.node = &relayd->node.node;
225 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
226 if (ret != 0) {
227 /* We assume the relayd is being or is destroyed */
228 return;
229 }
230
231 /* RCU free() call */
232 call_rcu(&relayd->node.head, consumer_rcu_free_relayd);
233 }
234
235 /*
236 * Update the end point status of all streams having the given network sequence
237 * index (relayd index).
238 *
239 * It's atomically set without having the stream mutex locked which is fine
240 * because we handle the write/read race with a pipe wakeup for each thread.
241 */
242 static void update_endpoint_status_by_netidx(int net_seq_idx,
243 enum consumer_endpoint_status status)
244 {
245 struct lttng_ht_iter iter;
246 struct lttng_consumer_stream *stream;
247
248 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
249
250 rcu_read_lock();
251
252 /* Let's begin with metadata */
253 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
254 if (stream->net_seq_idx == net_seq_idx) {
255 uatomic_set(&stream->endpoint_status, status);
256 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
257 }
258 }
259
260 /* Follow up by the data streams */
261 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
262 if (stream->net_seq_idx == net_seq_idx) {
263 uatomic_set(&stream->endpoint_status, status);
264 DBG("Delete flag set to data stream %d", stream->wait_fd);
265 }
266 }
267 rcu_read_unlock();
268 }
269
270 /*
271 * Cleanup a relayd object by flagging every associated streams for deletion,
272 * destroying the object meaning removing it from the relayd hash table,
273 * closing the sockets and freeing the memory in a RCU call.
274 *
275 * If a local data context is available, notify the threads that the streams'
276 * state have changed.
277 */
278 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
279 struct lttng_consumer_local_data *ctx)
280 {
281 int netidx;
282
283 assert(relayd);
284
285 DBG("Cleaning up relayd sockets");
286
287 /* Save the net sequence index before destroying the object */
288 netidx = relayd->net_seq_idx;
289
290 /*
291 * Delete the relayd from the relayd hash table, close the sockets and free
292 * the object in a RCU call.
293 */
294 destroy_relayd(relayd);
295
296 /* Set inactive endpoint to all streams */
297 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
298
299 /*
300 * With a local data context, notify the threads that the streams' state
301 * have changed. The write() action on the pipe acts as an "implicit"
302 * memory barrier ordering the updates of the end point status from the
303 * read of this status which happens AFTER receiving this notify.
304 */
305 if (ctx) {
306 notify_thread_pipe(ctx->consumer_data_pipe[1]);
307 notify_thread_pipe(ctx->consumer_metadata_pipe[1]);
308 }
309 }
310
311 /*
312 * Flag a relayd socket pair for destruction. Destroy it if the refcount
313 * reaches zero.
314 *
315 * RCU read side lock MUST be aquired before calling this function.
316 */
317 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
318 {
319 assert(relayd);
320
321 /* Set destroy flag for this object */
322 uatomic_set(&relayd->destroy_flag, 1);
323
324 /* Destroy the relayd if refcount is 0 */
325 if (uatomic_read(&relayd->refcount) == 0) {
326 destroy_relayd(relayd);
327 }
328 }
329
330 /*
331 * Remove a stream from the global list protected by a mutex. This
332 * function is also responsible for freeing its data structures.
333 */
334 void consumer_del_stream(struct lttng_consumer_stream *stream,
335 struct lttng_ht *ht)
336 {
337 int ret;
338 struct lttng_ht_iter iter;
339 struct lttng_consumer_channel *free_chan = NULL;
340 struct consumer_relayd_sock_pair *relayd;
341
342 assert(stream);
343
344 DBG("Consumer del stream %d", stream->wait_fd);
345
346 if (ht == NULL) {
347 /* Means the stream was allocated but not successfully added */
348 goto free_stream;
349 }
350
351 pthread_mutex_lock(&stream->lock);
352 pthread_mutex_lock(&consumer_data.lock);
353
354 switch (consumer_data.type) {
355 case LTTNG_CONSUMER_KERNEL:
356 if (stream->mmap_base != NULL) {
357 ret = munmap(stream->mmap_base, stream->mmap_len);
358 if (ret != 0) {
359 PERROR("munmap");
360 }
361 }
362 break;
363 case LTTNG_CONSUMER32_UST:
364 case LTTNG_CONSUMER64_UST:
365 lttng_ustconsumer_del_stream(stream);
366 break;
367 default:
368 ERR("Unknown consumer_data type");
369 assert(0);
370 goto end;
371 }
372
373 rcu_read_lock();
374 iter.iter.node = &stream->node.node;
375 ret = lttng_ht_del(ht, &iter);
376 assert(!ret);
377
378 /* Remove node session id from the consumer_data stream ht */
379 iter.iter.node = &stream->node_session_id.node;
380 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
381 assert(!ret);
382 rcu_read_unlock();
383
384 assert(consumer_data.stream_count > 0);
385 consumer_data.stream_count--;
386
387 if (stream->out_fd >= 0) {
388 ret = close(stream->out_fd);
389 if (ret) {
390 PERROR("close");
391 }
392 }
393 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
394 ret = close(stream->wait_fd);
395 if (ret) {
396 PERROR("close");
397 }
398 }
399 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
400 ret = close(stream->shm_fd);
401 if (ret) {
402 PERROR("close");
403 }
404 }
405
406 /* Check and cleanup relayd */
407 rcu_read_lock();
408 relayd = consumer_find_relayd(stream->net_seq_idx);
409 if (relayd != NULL) {
410 uatomic_dec(&relayd->refcount);
411 assert(uatomic_read(&relayd->refcount) >= 0);
412
413 /* Closing streams requires to lock the control socket. */
414 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
415 ret = relayd_send_close_stream(&relayd->control_sock,
416 stream->relayd_stream_id,
417 stream->next_net_seq_num - 1);
418 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
419 if (ret < 0) {
420 DBG("Unable to close stream on the relayd. Continuing");
421 /*
422 * Continue here. There is nothing we can do for the relayd.
423 * Chances are that the relayd has closed the socket so we just
424 * continue cleaning up.
425 */
426 }
427
428 /* Both conditions are met, we destroy the relayd. */
429 if (uatomic_read(&relayd->refcount) == 0 &&
430 uatomic_read(&relayd->destroy_flag)) {
431 destroy_relayd(relayd);
432 }
433 }
434 rcu_read_unlock();
435
436 uatomic_dec(&stream->chan->refcount);
437 if (!uatomic_read(&stream->chan->refcount)
438 && !uatomic_read(&stream->chan->nb_init_streams)) {
439 free_chan = stream->chan;
440 }
441
442 end:
443 consumer_data.need_update = 1;
444 pthread_mutex_unlock(&consumer_data.lock);
445 pthread_mutex_unlock(&stream->lock);
446
447 if (free_chan) {
448 consumer_del_channel(free_chan);
449 }
450
451 free_stream:
452 call_rcu(&stream->node.head, consumer_free_stream);
453 }
454
455 struct lttng_consumer_stream *consumer_allocate_stream(
456 int channel_key, int stream_key,
457 int shm_fd, int wait_fd,
458 enum lttng_consumer_stream_state state,
459 uint64_t mmap_len,
460 enum lttng_event_output output,
461 const char *path_name,
462 uid_t uid,
463 gid_t gid,
464 int net_index,
465 int metadata_flag,
466 uint64_t session_id,
467 int *alloc_ret)
468 {
469 struct lttng_consumer_stream *stream;
470
471 stream = zmalloc(sizeof(*stream));
472 if (stream == NULL) {
473 PERROR("malloc struct lttng_consumer_stream");
474 *alloc_ret = -ENOMEM;
475 goto end;
476 }
477
478 /*
479 * Get stream's channel reference. Needed when adding the stream to the
480 * global hash table.
481 */
482 stream->chan = consumer_find_channel(channel_key);
483 if (!stream->chan) {
484 *alloc_ret = -ENOENT;
485 ERR("Unable to find channel for stream %d", stream_key);
486 goto error;
487 }
488
489 stream->key = stream_key;
490 stream->shm_fd = shm_fd;
491 stream->wait_fd = wait_fd;
492 stream->out_fd = -1;
493 stream->out_fd_offset = 0;
494 stream->state = state;
495 stream->mmap_len = mmap_len;
496 stream->mmap_base = NULL;
497 stream->output = output;
498 stream->uid = uid;
499 stream->gid = gid;
500 stream->net_seq_idx = net_index;
501 stream->metadata_flag = metadata_flag;
502 stream->session_id = session_id;
503 strncpy(stream->path_name, path_name, sizeof(stream->path_name));
504 stream->path_name[sizeof(stream->path_name) - 1] = '\0';
505 pthread_mutex_init(&stream->lock, NULL);
506
507 /*
508 * Index differently the metadata node because the thread is using an
509 * internal hash table to match streams in the metadata_ht to the epoll set
510 * file descriptor.
511 */
512 if (metadata_flag) {
513 lttng_ht_node_init_ulong(&stream->node, stream->wait_fd);
514 } else {
515 lttng_ht_node_init_ulong(&stream->node, stream->key);
516 }
517
518 /* Init session id node with the stream session id */
519 lttng_ht_node_init_ulong(&stream->node_session_id, stream->session_id);
520
521 /*
522 * The cpu number is needed before using any ustctl_* actions. Ignored for
523 * the kernel so the value does not matter.
524 */
525 pthread_mutex_lock(&consumer_data.lock);
526 stream->cpu = stream->chan->cpucount++;
527 pthread_mutex_unlock(&consumer_data.lock);
528
529 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
530 " out_fd %d, net_seq_idx %d, session_id %" PRIu64,
531 stream->path_name, stream->key, stream->shm_fd, stream->wait_fd,
532 (unsigned long long) stream->mmap_len, stream->out_fd,
533 stream->net_seq_idx, stream->session_id);
534 return stream;
535
536 error:
537 free(stream);
538 end:
539 return NULL;
540 }
541
542 /*
543 * Add a stream to the global list protected by a mutex.
544 */
545 static int consumer_add_stream(struct lttng_consumer_stream *stream,
546 struct lttng_ht *ht)
547 {
548 int ret = 0;
549 struct consumer_relayd_sock_pair *relayd;
550
551 assert(stream);
552 assert(ht);
553
554 DBG3("Adding consumer stream %d", stream->key);
555
556 pthread_mutex_lock(&consumer_data.lock);
557 pthread_mutex_lock(&stream->lock);
558 rcu_read_lock();
559
560 /* Steal stream identifier to avoid having streams with the same key */
561 consumer_steal_stream_key(stream->key, ht);
562
563 lttng_ht_add_unique_ulong(ht, &stream->node);
564
565 /*
566 * Add stream to the stream_list_ht of the consumer data. No need to steal
567 * the key since the HT does not use it and we allow to add redundant keys
568 * into this table.
569 */
570 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
571
572 /* Check and cleanup relayd */
573 relayd = consumer_find_relayd(stream->net_seq_idx);
574 if (relayd != NULL) {
575 uatomic_inc(&relayd->refcount);
576 }
577
578 /* Update channel refcount once added without error(s). */
579 uatomic_inc(&stream->chan->refcount);
580
581 /*
582 * When nb_init_streams reaches 0, we don't need to trigger any action in
583 * terms of destroying the associated channel, because the action that
584 * causes the count to become 0 also causes a stream to be added. The
585 * channel deletion will thus be triggered by the following removal of this
586 * stream.
587 */
588 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
589 uatomic_dec(&stream->chan->nb_init_streams);
590 }
591
592 /* Update consumer data once the node is inserted. */
593 consumer_data.stream_count++;
594 consumer_data.need_update = 1;
595
596 rcu_read_unlock();
597 pthread_mutex_unlock(&stream->lock);
598 pthread_mutex_unlock(&consumer_data.lock);
599
600 return ret;
601 }
602
603 /*
604 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
605 * be acquired before calling this.
606 */
607 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
608 {
609 int ret = 0;
610 struct lttng_ht_node_ulong *node;
611 struct lttng_ht_iter iter;
612
613 if (relayd == NULL) {
614 ret = -1;
615 goto end;
616 }
617
618 lttng_ht_lookup(consumer_data.relayd_ht,
619 (void *)((unsigned long) relayd->net_seq_idx), &iter);
620 node = lttng_ht_iter_get_node_ulong(&iter);
621 if (node != NULL) {
622 /* Relayd already exist. Ignore the insertion */
623 goto end;
624 }
625 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
626
627 end:
628 return ret;
629 }
630
631 /*
632 * Allocate and return a consumer relayd socket.
633 */
634 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
635 int net_seq_idx)
636 {
637 struct consumer_relayd_sock_pair *obj = NULL;
638
639 /* Negative net sequence index is a failure */
640 if (net_seq_idx < 0) {
641 goto error;
642 }
643
644 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
645 if (obj == NULL) {
646 PERROR("zmalloc relayd sock");
647 goto error;
648 }
649
650 obj->net_seq_idx = net_seq_idx;
651 obj->refcount = 0;
652 obj->destroy_flag = 0;
653 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
654 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
655
656 error:
657 return obj;
658 }
659
660 /*
661 * Find a relayd socket pair in the global consumer data.
662 *
663 * Return the object if found else NULL.
664 * RCU read-side lock must be held across this call and while using the
665 * returned object.
666 */
667 struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
668 {
669 struct lttng_ht_iter iter;
670 struct lttng_ht_node_ulong *node;
671 struct consumer_relayd_sock_pair *relayd = NULL;
672
673 /* Negative keys are lookup failures */
674 if (key < 0) {
675 goto error;
676 }
677
678 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
679 &iter);
680 node = lttng_ht_iter_get_node_ulong(&iter);
681 if (node != NULL) {
682 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
683 }
684
685 error:
686 return relayd;
687 }
688
689 /*
690 * Handle stream for relayd transmission if the stream applies for network
691 * streaming where the net sequence index is set.
692 *
693 * Return destination file descriptor or negative value on error.
694 */
695 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
696 size_t data_size, unsigned long padding,
697 struct consumer_relayd_sock_pair *relayd)
698 {
699 int outfd = -1, ret;
700 struct lttcomm_relayd_data_hdr data_hdr;
701
702 /* Safety net */
703 assert(stream);
704 assert(relayd);
705
706 /* Reset data header */
707 memset(&data_hdr, 0, sizeof(data_hdr));
708
709 if (stream->metadata_flag) {
710 /* Caller MUST acquire the relayd control socket lock */
711 ret = relayd_send_metadata(&relayd->control_sock, data_size);
712 if (ret < 0) {
713 goto error;
714 }
715
716 /* Metadata are always sent on the control socket. */
717 outfd = relayd->control_sock.fd;
718 } else {
719 /* Set header with stream information */
720 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
721 data_hdr.data_size = htobe32(data_size);
722 data_hdr.padding_size = htobe32(padding);
723 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num++);
724 /* Other fields are zeroed previously */
725
726 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
727 sizeof(data_hdr));
728 if (ret < 0) {
729 goto error;
730 }
731
732 /* Set to go on data socket */
733 outfd = relayd->data_sock.fd;
734 }
735
736 error:
737 return outfd;
738 }
739
740 static
741 void consumer_free_channel(struct rcu_head *head)
742 {
743 struct lttng_ht_node_ulong *node =
744 caa_container_of(head, struct lttng_ht_node_ulong, head);
745 struct lttng_consumer_channel *channel =
746 caa_container_of(node, struct lttng_consumer_channel, node);
747
748 free(channel);
749 }
750
751 /*
752 * Remove a channel from the global list protected by a mutex. This
753 * function is also responsible for freeing its data structures.
754 */
755 void consumer_del_channel(struct lttng_consumer_channel *channel)
756 {
757 int ret;
758 struct lttng_ht_iter iter;
759
760 pthread_mutex_lock(&consumer_data.lock);
761
762 switch (consumer_data.type) {
763 case LTTNG_CONSUMER_KERNEL:
764 break;
765 case LTTNG_CONSUMER32_UST:
766 case LTTNG_CONSUMER64_UST:
767 lttng_ustconsumer_del_channel(channel);
768 break;
769 default:
770 ERR("Unknown consumer_data type");
771 assert(0);
772 goto end;
773 }
774
775 rcu_read_lock();
776 iter.iter.node = &channel->node.node;
777 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
778 assert(!ret);
779 rcu_read_unlock();
780
781 if (channel->mmap_base != NULL) {
782 ret = munmap(channel->mmap_base, channel->mmap_len);
783 if (ret != 0) {
784 PERROR("munmap");
785 }
786 }
787 if (channel->wait_fd >= 0 && !channel->wait_fd_is_copy) {
788 ret = close(channel->wait_fd);
789 if (ret) {
790 PERROR("close");
791 }
792 }
793 if (channel->shm_fd >= 0 && channel->wait_fd != channel->shm_fd) {
794 ret = close(channel->shm_fd);
795 if (ret) {
796 PERROR("close");
797 }
798 }
799
800 call_rcu(&channel->node.head, consumer_free_channel);
801 end:
802 pthread_mutex_unlock(&consumer_data.lock);
803 }
804
805 struct lttng_consumer_channel *consumer_allocate_channel(
806 int channel_key,
807 int shm_fd, int wait_fd,
808 uint64_t mmap_len,
809 uint64_t max_sb_size,
810 unsigned int nb_init_streams)
811 {
812 struct lttng_consumer_channel *channel;
813 int ret;
814
815 channel = zmalloc(sizeof(*channel));
816 if (channel == NULL) {
817 PERROR("malloc struct lttng_consumer_channel");
818 goto end;
819 }
820 channel->key = channel_key;
821 channel->shm_fd = shm_fd;
822 channel->wait_fd = wait_fd;
823 channel->mmap_len = mmap_len;
824 channel->max_sb_size = max_sb_size;
825 channel->refcount = 0;
826 channel->nb_init_streams = nb_init_streams;
827 lttng_ht_node_init_ulong(&channel->node, channel->key);
828
829 switch (consumer_data.type) {
830 case LTTNG_CONSUMER_KERNEL:
831 channel->mmap_base = NULL;
832 channel->mmap_len = 0;
833 break;
834 case LTTNG_CONSUMER32_UST:
835 case LTTNG_CONSUMER64_UST:
836 ret = lttng_ustconsumer_allocate_channel(channel);
837 if (ret) {
838 free(channel);
839 return NULL;
840 }
841 break;
842 default:
843 ERR("Unknown consumer_data type");
844 assert(0);
845 goto end;
846 }
847 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
848 channel->key, channel->shm_fd, channel->wait_fd,
849 (unsigned long long) channel->mmap_len,
850 (unsigned long long) channel->max_sb_size);
851 end:
852 return channel;
853 }
854
855 /*
856 * Add a channel to the global list protected by a mutex.
857 */
858 int consumer_add_channel(struct lttng_consumer_channel *channel)
859 {
860 struct lttng_ht_node_ulong *node;
861 struct lttng_ht_iter iter;
862
863 pthread_mutex_lock(&consumer_data.lock);
864 /* Steal channel identifier, for UST */
865 consumer_steal_channel_key(channel->key);
866 rcu_read_lock();
867
868 lttng_ht_lookup(consumer_data.channel_ht,
869 (void *)((unsigned long) channel->key), &iter);
870 node = lttng_ht_iter_get_node_ulong(&iter);
871 if (node != NULL) {
872 /* Channel already exist. Ignore the insertion */
873 goto end;
874 }
875
876 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
877
878 end:
879 rcu_read_unlock();
880 pthread_mutex_unlock(&consumer_data.lock);
881
882 return 0;
883 }
884
885 /*
886 * Allocate the pollfd structure and the local view of the out fds to avoid
887 * doing a lookup in the linked list and concurrency issues when writing is
888 * needed. Called with consumer_data.lock held.
889 *
890 * Returns the number of fds in the structures.
891 */
892 static int consumer_update_poll_array(
893 struct lttng_consumer_local_data *ctx, struct pollfd **pollfd,
894 struct lttng_consumer_stream **local_stream, struct lttng_ht *ht)
895 {
896 int i = 0;
897 struct lttng_ht_iter iter;
898 struct lttng_consumer_stream *stream;
899
900 DBG("Updating poll fd array");
901 rcu_read_lock();
902 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
903 /*
904 * Only active streams with an active end point can be added to the
905 * poll set and local stream storage of the thread.
906 *
907 * There is a potential race here for endpoint_status to be updated
908 * just after the check. However, this is OK since the stream(s) will
909 * be deleted once the thread is notified that the end point state has
910 * changed where this function will be called back again.
911 */
912 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
913 stream->endpoint_status) {
914 continue;
915 }
916 DBG("Active FD %d", stream->wait_fd);
917 (*pollfd)[i].fd = stream->wait_fd;
918 (*pollfd)[i].events = POLLIN | POLLPRI;
919 local_stream[i] = stream;
920 i++;
921 }
922 rcu_read_unlock();
923
924 /*
925 * Insert the consumer_data_pipe at the end of the array and don't
926 * increment i so nb_fd is the number of real FD.
927 */
928 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
929 (*pollfd)[i].events = POLLIN | POLLPRI;
930 return i;
931 }
932
933 /*
934 * Poll on the should_quit pipe and the command socket return -1 on error and
935 * should exit, 0 if data is available on the command socket
936 */
937 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
938 {
939 int num_rdy;
940
941 restart:
942 num_rdy = poll(consumer_sockpoll, 2, -1);
943 if (num_rdy == -1) {
944 /*
945 * Restart interrupted system call.
946 */
947 if (errno == EINTR) {
948 goto restart;
949 }
950 PERROR("Poll error");
951 goto exit;
952 }
953 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
954 DBG("consumer_should_quit wake up");
955 goto exit;
956 }
957 return 0;
958
959 exit:
960 return -1;
961 }
962
963 /*
964 * Set the error socket.
965 */
966 void lttng_consumer_set_error_sock(
967 struct lttng_consumer_local_data *ctx, int sock)
968 {
969 ctx->consumer_error_socket = sock;
970 }
971
972 /*
973 * Set the command socket path.
974 */
975 void lttng_consumer_set_command_sock_path(
976 struct lttng_consumer_local_data *ctx, char *sock)
977 {
978 ctx->consumer_command_sock_path = sock;
979 }
980
981 /*
982 * Send return code to the session daemon.
983 * If the socket is not defined, we return 0, it is not a fatal error
984 */
985 int lttng_consumer_send_error(
986 struct lttng_consumer_local_data *ctx, int cmd)
987 {
988 if (ctx->consumer_error_socket > 0) {
989 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
990 sizeof(enum lttcomm_sessiond_command));
991 }
992
993 return 0;
994 }
995
996 /*
997 * Close all the tracefiles and stream fds, should be called when all instances
998 * are destroyed.
999 */
1000 void lttng_consumer_cleanup(void)
1001 {
1002 struct lttng_ht_iter iter;
1003 struct lttng_ht_node_ulong *node;
1004
1005 rcu_read_lock();
1006
1007 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, node,
1008 node) {
1009 struct lttng_consumer_channel *channel =
1010 caa_container_of(node, struct lttng_consumer_channel, node);
1011 consumer_del_channel(channel);
1012 }
1013
1014 rcu_read_unlock();
1015
1016 lttng_ht_destroy(consumer_data.channel_ht);
1017 }
1018
1019 /*
1020 * Called from signal handler.
1021 */
1022 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1023 {
1024 int ret;
1025 consumer_quit = 1;
1026 do {
1027 ret = write(ctx->consumer_should_quit[1], "4", 1);
1028 } while (ret < 0 && errno == EINTR);
1029 if (ret < 0) {
1030 PERROR("write consumer quit");
1031 }
1032
1033 DBG("Consumer flag that it should quit");
1034 }
1035
1036 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1037 off_t orig_offset)
1038 {
1039 int outfd = stream->out_fd;
1040
1041 /*
1042 * This does a blocking write-and-wait on any page that belongs to the
1043 * subbuffer prior to the one we just wrote.
1044 * Don't care about error values, as these are just hints and ways to
1045 * limit the amount of page cache used.
1046 */
1047 if (orig_offset < stream->chan->max_sb_size) {
1048 return;
1049 }
1050 lttng_sync_file_range(outfd, orig_offset - stream->chan->max_sb_size,
1051 stream->chan->max_sb_size,
1052 SYNC_FILE_RANGE_WAIT_BEFORE
1053 | SYNC_FILE_RANGE_WRITE
1054 | SYNC_FILE_RANGE_WAIT_AFTER);
1055 /*
1056 * Give hints to the kernel about how we access the file:
1057 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1058 * we write it.
1059 *
1060 * We need to call fadvise again after the file grows because the
1061 * kernel does not seem to apply fadvise to non-existing parts of the
1062 * file.
1063 *
1064 * Call fadvise _after_ having waited for the page writeback to
1065 * complete because the dirty page writeback semantic is not well
1066 * defined. So it can be expected to lead to lower throughput in
1067 * streaming.
1068 */
1069 posix_fadvise(outfd, orig_offset - stream->chan->max_sb_size,
1070 stream->chan->max_sb_size, POSIX_FADV_DONTNEED);
1071 }
1072
1073 /*
1074 * Initialise the necessary environnement :
1075 * - create a new context
1076 * - create the poll_pipe
1077 * - create the should_quit pipe (for signal handler)
1078 * - create the thread pipe (for splice)
1079 *
1080 * Takes a function pointer as argument, this function is called when data is
1081 * available on a buffer. This function is responsible to do the
1082 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1083 * buffer configuration and then kernctl_put_next_subbuf at the end.
1084 *
1085 * Returns a pointer to the new context or NULL on error.
1086 */
1087 struct lttng_consumer_local_data *lttng_consumer_create(
1088 enum lttng_consumer_type type,
1089 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1090 struct lttng_consumer_local_data *ctx),
1091 int (*recv_channel)(struct lttng_consumer_channel *channel),
1092 int (*recv_stream)(struct lttng_consumer_stream *stream),
1093 int (*update_stream)(int stream_key, uint32_t state))
1094 {
1095 int ret, i;
1096 struct lttng_consumer_local_data *ctx;
1097
1098 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1099 consumer_data.type == type);
1100 consumer_data.type = type;
1101
1102 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1103 if (ctx == NULL) {
1104 PERROR("allocating context");
1105 goto error;
1106 }
1107
1108 ctx->consumer_error_socket = -1;
1109 /* assign the callbacks */
1110 ctx->on_buffer_ready = buffer_ready;
1111 ctx->on_recv_channel = recv_channel;
1112 ctx->on_recv_stream = recv_stream;
1113 ctx->on_update_stream = update_stream;
1114
1115 ret = pipe(ctx->consumer_data_pipe);
1116 if (ret < 0) {
1117 PERROR("Error creating poll pipe");
1118 goto error_poll_pipe;
1119 }
1120
1121 /* set read end of the pipe to non-blocking */
1122 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1123 if (ret < 0) {
1124 PERROR("fcntl O_NONBLOCK");
1125 goto error_poll_fcntl;
1126 }
1127
1128 /* set write end of the pipe to non-blocking */
1129 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1130 if (ret < 0) {
1131 PERROR("fcntl O_NONBLOCK");
1132 goto error_poll_fcntl;
1133 }
1134
1135 ret = pipe(ctx->consumer_should_quit);
1136 if (ret < 0) {
1137 PERROR("Error creating recv pipe");
1138 goto error_quit_pipe;
1139 }
1140
1141 ret = pipe(ctx->consumer_thread_pipe);
1142 if (ret < 0) {
1143 PERROR("Error creating thread pipe");
1144 goto error_thread_pipe;
1145 }
1146
1147 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1148 if (ret < 0) {
1149 goto error_metadata_pipe;
1150 }
1151
1152 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1153 if (ret < 0) {
1154 goto error_splice_pipe;
1155 }
1156
1157 return ctx;
1158
1159 error_splice_pipe:
1160 utils_close_pipe(ctx->consumer_metadata_pipe);
1161 error_metadata_pipe:
1162 utils_close_pipe(ctx->consumer_thread_pipe);
1163 error_thread_pipe:
1164 for (i = 0; i < 2; i++) {
1165 int err;
1166
1167 err = close(ctx->consumer_should_quit[i]);
1168 if (err) {
1169 PERROR("close");
1170 }
1171 }
1172 error_poll_fcntl:
1173 error_quit_pipe:
1174 for (i = 0; i < 2; i++) {
1175 int err;
1176
1177 err = close(ctx->consumer_data_pipe[i]);
1178 if (err) {
1179 PERROR("close");
1180 }
1181 }
1182 error_poll_pipe:
1183 free(ctx);
1184 error:
1185 return NULL;
1186 }
1187
1188 /*
1189 * Close all fds associated with the instance and free the context.
1190 */
1191 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1192 {
1193 int ret;
1194
1195 DBG("Consumer destroying it. Closing everything.");
1196
1197 ret = close(ctx->consumer_error_socket);
1198 if (ret) {
1199 PERROR("close");
1200 }
1201 ret = close(ctx->consumer_thread_pipe[0]);
1202 if (ret) {
1203 PERROR("close");
1204 }
1205 ret = close(ctx->consumer_thread_pipe[1]);
1206 if (ret) {
1207 PERROR("close");
1208 }
1209 ret = close(ctx->consumer_data_pipe[0]);
1210 if (ret) {
1211 PERROR("close");
1212 }
1213 ret = close(ctx->consumer_data_pipe[1]);
1214 if (ret) {
1215 PERROR("close");
1216 }
1217 ret = close(ctx->consumer_should_quit[0]);
1218 if (ret) {
1219 PERROR("close");
1220 }
1221 ret = close(ctx->consumer_should_quit[1]);
1222 if (ret) {
1223 PERROR("close");
1224 }
1225 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1226
1227 unlink(ctx->consumer_command_sock_path);
1228 free(ctx);
1229 }
1230
1231 /*
1232 * Write the metadata stream id on the specified file descriptor.
1233 */
1234 static int write_relayd_metadata_id(int fd,
1235 struct lttng_consumer_stream *stream,
1236 struct consumer_relayd_sock_pair *relayd,
1237 unsigned long padding)
1238 {
1239 int ret;
1240 struct lttcomm_relayd_metadata_payload hdr;
1241
1242 hdr.stream_id = htobe64(stream->relayd_stream_id);
1243 hdr.padding_size = htobe32(padding);
1244 do {
1245 ret = write(fd, (void *) &hdr, sizeof(hdr));
1246 } while (ret < 0 && errno == EINTR);
1247 if (ret < 0) {
1248 PERROR("write metadata stream id");
1249 goto end;
1250 }
1251 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1252 stream->relayd_stream_id, padding);
1253
1254 end:
1255 return ret;
1256 }
1257
1258 /*
1259 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1260 * core function for writing trace buffers to either the local filesystem or
1261 * the network.
1262 *
1263 * Careful review MUST be put if any changes occur!
1264 *
1265 * Returns the number of bytes written
1266 */
1267 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1268 struct lttng_consumer_local_data *ctx,
1269 struct lttng_consumer_stream *stream, unsigned long len,
1270 unsigned long padding)
1271 {
1272 unsigned long mmap_offset;
1273 ssize_t ret = 0, written = 0;
1274 off_t orig_offset = stream->out_fd_offset;
1275 /* Default is on the disk */
1276 int outfd = stream->out_fd;
1277 struct consumer_relayd_sock_pair *relayd = NULL;
1278 unsigned int relayd_hang_up = 0;
1279
1280 /* RCU lock for the relayd pointer */
1281 rcu_read_lock();
1282
1283 pthread_mutex_lock(&stream->lock);
1284
1285 /* Flag that the current stream if set for network streaming. */
1286 if (stream->net_seq_idx != -1) {
1287 relayd = consumer_find_relayd(stream->net_seq_idx);
1288 if (relayd == NULL) {
1289 goto end;
1290 }
1291 }
1292
1293 /* get the offset inside the fd to mmap */
1294 switch (consumer_data.type) {
1295 case LTTNG_CONSUMER_KERNEL:
1296 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1297 break;
1298 case LTTNG_CONSUMER32_UST:
1299 case LTTNG_CONSUMER64_UST:
1300 ret = lttng_ustctl_get_mmap_read_offset(stream->chan->handle,
1301 stream->buf, &mmap_offset);
1302 break;
1303 default:
1304 ERR("Unknown consumer_data type");
1305 assert(0);
1306 }
1307 if (ret != 0) {
1308 errno = -ret;
1309 PERROR("tracer ctl get_mmap_read_offset");
1310 written = ret;
1311 goto end;
1312 }
1313
1314 /* Handle stream on the relayd if the output is on the network */
1315 if (relayd) {
1316 unsigned long netlen = len;
1317
1318 /*
1319 * Lock the control socket for the complete duration of the function
1320 * since from this point on we will use the socket.
1321 */
1322 if (stream->metadata_flag) {
1323 /* Metadata requires the control socket. */
1324 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1325 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1326 }
1327
1328 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1329 if (ret >= 0) {
1330 /* Use the returned socket. */
1331 outfd = ret;
1332
1333 /* Write metadata stream id before payload */
1334 if (stream->metadata_flag) {
1335 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1336 if (ret < 0) {
1337 written = ret;
1338 /* Socket operation failed. We consider the relayd dead */
1339 if (ret == -EPIPE || ret == -EINVAL) {
1340 relayd_hang_up = 1;
1341 goto write_error;
1342 }
1343 goto end;
1344 }
1345 }
1346 } else {
1347 /* Socket operation failed. We consider the relayd dead */
1348 if (ret == -EPIPE || ret == -EINVAL) {
1349 relayd_hang_up = 1;
1350 goto write_error;
1351 }
1352 /* Else, use the default set before which is the filesystem. */
1353 }
1354 } else {
1355 /* No streaming, we have to set the len with the full padding */
1356 len += padding;
1357 }
1358
1359 while (len > 0) {
1360 do {
1361 ret = write(outfd, stream->mmap_base + mmap_offset, len);
1362 } while (ret < 0 && errno == EINTR);
1363 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1364 if (ret < 0) {
1365 PERROR("Error in file write");
1366 if (written == 0) {
1367 written = ret;
1368 }
1369 /* Socket operation failed. We consider the relayd dead */
1370 if (errno == EPIPE || errno == EINVAL) {
1371 relayd_hang_up = 1;
1372 goto write_error;
1373 }
1374 goto end;
1375 } else if (ret > len) {
1376 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1377 written += ret;
1378 goto end;
1379 } else {
1380 len -= ret;
1381 mmap_offset += ret;
1382 }
1383
1384 /* This call is useless on a socket so better save a syscall. */
1385 if (!relayd) {
1386 /* This won't block, but will start writeout asynchronously */
1387 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1388 SYNC_FILE_RANGE_WRITE);
1389 stream->out_fd_offset += ret;
1390 }
1391 written += ret;
1392 }
1393 lttng_consumer_sync_trace_file(stream, orig_offset);
1394
1395 write_error:
1396 /*
1397 * This is a special case that the relayd has closed its socket. Let's
1398 * cleanup the relayd object and all associated streams.
1399 */
1400 if (relayd && relayd_hang_up) {
1401 cleanup_relayd(relayd, ctx);
1402 }
1403
1404 end:
1405 /* Unlock only if ctrl socket used */
1406 if (relayd && stream->metadata_flag) {
1407 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1408 }
1409 pthread_mutex_unlock(&stream->lock);
1410
1411 rcu_read_unlock();
1412 return written;
1413 }
1414
1415 /*
1416 * Splice the data from the ring buffer to the tracefile.
1417 *
1418 * Returns the number of bytes spliced.
1419 */
1420 ssize_t lttng_consumer_on_read_subbuffer_splice(
1421 struct lttng_consumer_local_data *ctx,
1422 struct lttng_consumer_stream *stream, unsigned long len,
1423 unsigned long padding)
1424 {
1425 ssize_t ret = 0, written = 0, ret_splice = 0;
1426 loff_t offset = 0;
1427 off_t orig_offset = stream->out_fd_offset;
1428 int fd = stream->wait_fd;
1429 /* Default is on the disk */
1430 int outfd = stream->out_fd;
1431 struct consumer_relayd_sock_pair *relayd = NULL;
1432 int *splice_pipe;
1433 unsigned int relayd_hang_up = 0;
1434
1435 switch (consumer_data.type) {
1436 case LTTNG_CONSUMER_KERNEL:
1437 break;
1438 case LTTNG_CONSUMER32_UST:
1439 case LTTNG_CONSUMER64_UST:
1440 /* Not supported for user space tracing */
1441 return -ENOSYS;
1442 default:
1443 ERR("Unknown consumer_data type");
1444 assert(0);
1445 }
1446
1447 /* RCU lock for the relayd pointer */
1448 rcu_read_lock();
1449
1450 pthread_mutex_lock(&stream->lock);
1451
1452 /* Flag that the current stream if set for network streaming. */
1453 if (stream->net_seq_idx != -1) {
1454 relayd = consumer_find_relayd(stream->net_seq_idx);
1455 if (relayd == NULL) {
1456 goto end;
1457 }
1458 }
1459
1460 /*
1461 * Choose right pipe for splice. Metadata and trace data are handled by
1462 * different threads hence the use of two pipes in order not to race or
1463 * corrupt the written data.
1464 */
1465 if (stream->metadata_flag) {
1466 splice_pipe = ctx->consumer_splice_metadata_pipe;
1467 } else {
1468 splice_pipe = ctx->consumer_thread_pipe;
1469 }
1470
1471 /* Write metadata stream id before payload */
1472 if (relayd) {
1473 int total_len = len;
1474
1475 if (stream->metadata_flag) {
1476 /*
1477 * Lock the control socket for the complete duration of the function
1478 * since from this point on we will use the socket.
1479 */
1480 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1481
1482 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1483 padding);
1484 if (ret < 0) {
1485 written = ret;
1486 /* Socket operation failed. We consider the relayd dead */
1487 if (ret == -EBADF) {
1488 WARN("Remote relayd disconnected. Stopping");
1489 relayd_hang_up = 1;
1490 goto write_error;
1491 }
1492 goto end;
1493 }
1494
1495 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1496 }
1497
1498 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1499 if (ret >= 0) {
1500 /* Use the returned socket. */
1501 outfd = ret;
1502 } else {
1503 /* Socket operation failed. We consider the relayd dead */
1504 if (ret == -EBADF) {
1505 WARN("Remote relayd disconnected. Stopping");
1506 relayd_hang_up = 1;
1507 goto write_error;
1508 }
1509 goto end;
1510 }
1511 } else {
1512 /* No streaming, we have to set the len with the full padding */
1513 len += padding;
1514 }
1515
1516 while (len > 0) {
1517 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1518 (unsigned long)offset, len, fd, splice_pipe[1]);
1519 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1520 SPLICE_F_MOVE | SPLICE_F_MORE);
1521 DBG("splice chan to pipe, ret %zd", ret_splice);
1522 if (ret_splice < 0) {
1523 PERROR("Error in relay splice");
1524 if (written == 0) {
1525 written = ret_splice;
1526 }
1527 ret = errno;
1528 goto splice_error;
1529 }
1530
1531 /* Handle stream on the relayd if the output is on the network */
1532 if (relayd) {
1533 if (stream->metadata_flag) {
1534 size_t metadata_payload_size =
1535 sizeof(struct lttcomm_relayd_metadata_payload);
1536
1537 /* Update counter to fit the spliced data */
1538 ret_splice += metadata_payload_size;
1539 len += metadata_payload_size;
1540 /*
1541 * We do this so the return value can match the len passed as
1542 * argument to this function.
1543 */
1544 written -= metadata_payload_size;
1545 }
1546 }
1547
1548 /* Splice data out */
1549 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1550 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1551 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1552 if (ret_splice < 0) {
1553 PERROR("Error in file splice");
1554 if (written == 0) {
1555 written = ret_splice;
1556 }
1557 /* Socket operation failed. We consider the relayd dead */
1558 if (errno == EBADF || errno == EPIPE) {
1559 WARN("Remote relayd disconnected. Stopping");
1560 relayd_hang_up = 1;
1561 goto write_error;
1562 }
1563 ret = errno;
1564 goto splice_error;
1565 } else if (ret_splice > len) {
1566 errno = EINVAL;
1567 PERROR("Wrote more data than requested %zd (len: %lu)",
1568 ret_splice, len);
1569 written += ret_splice;
1570 ret = errno;
1571 goto splice_error;
1572 }
1573 len -= ret_splice;
1574
1575 /* This call is useless on a socket so better save a syscall. */
1576 if (!relayd) {
1577 /* This won't block, but will start writeout asynchronously */
1578 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1579 SYNC_FILE_RANGE_WRITE);
1580 stream->out_fd_offset += ret_splice;
1581 }
1582 written += ret_splice;
1583 }
1584 lttng_consumer_sync_trace_file(stream, orig_offset);
1585
1586 ret = ret_splice;
1587
1588 goto end;
1589
1590 write_error:
1591 /*
1592 * This is a special case that the relayd has closed its socket. Let's
1593 * cleanup the relayd object and all associated streams.
1594 */
1595 if (relayd && relayd_hang_up) {
1596 cleanup_relayd(relayd, ctx);
1597 /* Skip splice error so the consumer does not fail */
1598 goto end;
1599 }
1600
1601 splice_error:
1602 /* send the appropriate error description to sessiond */
1603 switch (ret) {
1604 case EINVAL:
1605 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1606 break;
1607 case ENOMEM:
1608 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1609 break;
1610 case ESPIPE:
1611 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1612 break;
1613 }
1614
1615 end:
1616 if (relayd && stream->metadata_flag) {
1617 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1618 }
1619 pthread_mutex_unlock(&stream->lock);
1620
1621 rcu_read_unlock();
1622 return written;
1623 }
1624
1625 /*
1626 * Take a snapshot for a specific fd
1627 *
1628 * Returns 0 on success, < 0 on error
1629 */
1630 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data *ctx,
1631 struct lttng_consumer_stream *stream)
1632 {
1633 switch (consumer_data.type) {
1634 case LTTNG_CONSUMER_KERNEL:
1635 return lttng_kconsumer_take_snapshot(ctx, stream);
1636 case LTTNG_CONSUMER32_UST:
1637 case LTTNG_CONSUMER64_UST:
1638 return lttng_ustconsumer_take_snapshot(ctx, stream);
1639 default:
1640 ERR("Unknown consumer_data type");
1641 assert(0);
1642 return -ENOSYS;
1643 }
1644
1645 }
1646
1647 /*
1648 * Get the produced position
1649 *
1650 * Returns 0 on success, < 0 on error
1651 */
1652 int lttng_consumer_get_produced_snapshot(
1653 struct lttng_consumer_local_data *ctx,
1654 struct lttng_consumer_stream *stream,
1655 unsigned long *pos)
1656 {
1657 switch (consumer_data.type) {
1658 case LTTNG_CONSUMER_KERNEL:
1659 return lttng_kconsumer_get_produced_snapshot(ctx, stream, pos);
1660 case LTTNG_CONSUMER32_UST:
1661 case LTTNG_CONSUMER64_UST:
1662 return lttng_ustconsumer_get_produced_snapshot(ctx, stream, pos);
1663 default:
1664 ERR("Unknown consumer_data type");
1665 assert(0);
1666 return -ENOSYS;
1667 }
1668 }
1669
1670 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1671 int sock, struct pollfd *consumer_sockpoll)
1672 {
1673 switch (consumer_data.type) {
1674 case LTTNG_CONSUMER_KERNEL:
1675 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1676 case LTTNG_CONSUMER32_UST:
1677 case LTTNG_CONSUMER64_UST:
1678 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1679 default:
1680 ERR("Unknown consumer_data type");
1681 assert(0);
1682 return -ENOSYS;
1683 }
1684 }
1685
1686 /*
1687 * Iterate over all streams of the hashtable and free them properly.
1688 *
1689 * WARNING: *MUST* be used with data stream only.
1690 */
1691 static void destroy_data_stream_ht(struct lttng_ht *ht)
1692 {
1693 int ret;
1694 struct lttng_ht_iter iter;
1695 struct lttng_consumer_stream *stream;
1696
1697 if (ht == NULL) {
1698 return;
1699 }
1700
1701 rcu_read_lock();
1702 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1703 ret = lttng_ht_del(ht, &iter);
1704 assert(!ret);
1705
1706 call_rcu(&stream->node.head, consumer_free_stream);
1707 }
1708 rcu_read_unlock();
1709
1710 lttng_ht_destroy(ht);
1711 }
1712
1713 /*
1714 * Iterate over all streams of the hashtable and free them properly.
1715 *
1716 * XXX: Should not be only for metadata stream or else use an other name.
1717 */
1718 static void destroy_stream_ht(struct lttng_ht *ht)
1719 {
1720 int ret;
1721 struct lttng_ht_iter iter;
1722 struct lttng_consumer_stream *stream;
1723
1724 if (ht == NULL) {
1725 return;
1726 }
1727
1728 rcu_read_lock();
1729 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1730 ret = lttng_ht_del(ht, &iter);
1731 assert(!ret);
1732
1733 call_rcu(&stream->node.head, consumer_free_stream);
1734 }
1735 rcu_read_unlock();
1736
1737 lttng_ht_destroy(ht);
1738 }
1739
1740 /*
1741 * Clean up a metadata stream and free its memory.
1742 */
1743 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1744 struct lttng_ht *ht)
1745 {
1746 int ret;
1747 struct lttng_ht_iter iter;
1748 struct lttng_consumer_channel *free_chan = NULL;
1749 struct consumer_relayd_sock_pair *relayd;
1750
1751 assert(stream);
1752 /*
1753 * This call should NEVER receive regular stream. It must always be
1754 * metadata stream and this is crucial for data structure synchronization.
1755 */
1756 assert(stream->metadata_flag);
1757
1758 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1759
1760 if (ht == NULL) {
1761 /* Means the stream was allocated but not successfully added */
1762 goto free_stream;
1763 }
1764
1765 pthread_mutex_lock(&stream->lock);
1766
1767 pthread_mutex_lock(&consumer_data.lock);
1768 switch (consumer_data.type) {
1769 case LTTNG_CONSUMER_KERNEL:
1770 if (stream->mmap_base != NULL) {
1771 ret = munmap(stream->mmap_base, stream->mmap_len);
1772 if (ret != 0) {
1773 PERROR("munmap metadata stream");
1774 }
1775 }
1776 break;
1777 case LTTNG_CONSUMER32_UST:
1778 case LTTNG_CONSUMER64_UST:
1779 lttng_ustconsumer_del_stream(stream);
1780 break;
1781 default:
1782 ERR("Unknown consumer_data type");
1783 assert(0);
1784 goto end;
1785 }
1786
1787 rcu_read_lock();
1788 iter.iter.node = &stream->node.node;
1789 ret = lttng_ht_del(ht, &iter);
1790 assert(!ret);
1791
1792 /* Remove node session id from the consumer_data stream ht */
1793 iter.iter.node = &stream->node_session_id.node;
1794 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1795 assert(!ret);
1796 rcu_read_unlock();
1797
1798 if (stream->out_fd >= 0) {
1799 ret = close(stream->out_fd);
1800 if (ret) {
1801 PERROR("close");
1802 }
1803 }
1804
1805 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
1806 ret = close(stream->wait_fd);
1807 if (ret) {
1808 PERROR("close");
1809 }
1810 }
1811
1812 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
1813 ret = close(stream->shm_fd);
1814 if (ret) {
1815 PERROR("close");
1816 }
1817 }
1818
1819 /* Check and cleanup relayd */
1820 rcu_read_lock();
1821 relayd = consumer_find_relayd(stream->net_seq_idx);
1822 if (relayd != NULL) {
1823 uatomic_dec(&relayd->refcount);
1824 assert(uatomic_read(&relayd->refcount) >= 0);
1825
1826 /* Closing streams requires to lock the control socket. */
1827 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1828 ret = relayd_send_close_stream(&relayd->control_sock,
1829 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1830 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1831 if (ret < 0) {
1832 DBG("Unable to close stream on the relayd. Continuing");
1833 /*
1834 * Continue here. There is nothing we can do for the relayd.
1835 * Chances are that the relayd has closed the socket so we just
1836 * continue cleaning up.
1837 */
1838 }
1839
1840 /* Both conditions are met, we destroy the relayd. */
1841 if (uatomic_read(&relayd->refcount) == 0 &&
1842 uatomic_read(&relayd->destroy_flag)) {
1843 destroy_relayd(relayd);
1844 }
1845 }
1846 rcu_read_unlock();
1847
1848 /* Atomically decrement channel refcount since other threads can use it. */
1849 uatomic_dec(&stream->chan->refcount);
1850 if (!uatomic_read(&stream->chan->refcount)
1851 && !uatomic_read(&stream->chan->nb_init_streams)) {
1852 /* Go for channel deletion! */
1853 free_chan = stream->chan;
1854 }
1855
1856 end:
1857 pthread_mutex_unlock(&consumer_data.lock);
1858 pthread_mutex_unlock(&stream->lock);
1859
1860 if (free_chan) {
1861 consumer_del_channel(free_chan);
1862 }
1863
1864 free_stream:
1865 call_rcu(&stream->node.head, consumer_free_stream);
1866 }
1867
1868 /*
1869 * Action done with the metadata stream when adding it to the consumer internal
1870 * data structures to handle it.
1871 */
1872 static int consumer_add_metadata_stream(struct lttng_consumer_stream *stream,
1873 struct lttng_ht *ht)
1874 {
1875 int ret = 0;
1876 struct consumer_relayd_sock_pair *relayd;
1877
1878 assert(stream);
1879 assert(ht);
1880
1881 DBG3("Adding metadata stream %d to hash table", stream->wait_fd);
1882
1883 pthread_mutex_lock(&consumer_data.lock);
1884 pthread_mutex_lock(&stream->lock);
1885
1886 /*
1887 * From here, refcounts are updated so be _careful_ when returning an error
1888 * after this point.
1889 */
1890
1891 rcu_read_lock();
1892 /* Find relayd and, if one is found, increment refcount. */
1893 relayd = consumer_find_relayd(stream->net_seq_idx);
1894 if (relayd != NULL) {
1895 uatomic_inc(&relayd->refcount);
1896 }
1897
1898 /* Update channel refcount once added without error(s). */
1899 uatomic_inc(&stream->chan->refcount);
1900
1901 /*
1902 * When nb_init_streams reaches 0, we don't need to trigger any action in
1903 * terms of destroying the associated channel, because the action that
1904 * causes the count to become 0 also causes a stream to be added. The
1905 * channel deletion will thus be triggered by the following removal of this
1906 * stream.
1907 */
1908 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
1909 uatomic_dec(&stream->chan->nb_init_streams);
1910 }
1911
1912 /* Steal stream identifier to avoid having streams with the same key */
1913 consumer_steal_stream_key(stream->key, ht);
1914
1915 lttng_ht_add_unique_ulong(ht, &stream->node);
1916
1917 /*
1918 * Add stream to the stream_list_ht of the consumer data. No need to steal
1919 * the key since the HT does not use it and we allow to add redundant keys
1920 * into this table.
1921 */
1922 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
1923
1924 rcu_read_unlock();
1925
1926 pthread_mutex_unlock(&stream->lock);
1927 pthread_mutex_unlock(&consumer_data.lock);
1928 return ret;
1929 }
1930
1931 /*
1932 * Delete data stream that are flagged for deletion (endpoint_status).
1933 */
1934 static void validate_endpoint_status_data_stream(void)
1935 {
1936 struct lttng_ht_iter iter;
1937 struct lttng_consumer_stream *stream;
1938
1939 DBG("Consumer delete flagged data stream");
1940
1941 rcu_read_lock();
1942 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
1943 /* Validate delete flag of the stream */
1944 if (stream->endpoint_status != CONSUMER_ENDPOINT_INACTIVE) {
1945 continue;
1946 }
1947 /* Delete it right now */
1948 consumer_del_stream(stream, data_ht);
1949 }
1950 rcu_read_unlock();
1951 }
1952
1953 /*
1954 * Delete metadata stream that are flagged for deletion (endpoint_status).
1955 */
1956 static void validate_endpoint_status_metadata_stream(
1957 struct lttng_poll_event *pollset)
1958 {
1959 struct lttng_ht_iter iter;
1960 struct lttng_consumer_stream *stream;
1961
1962 DBG("Consumer delete flagged metadata stream");
1963
1964 assert(pollset);
1965
1966 rcu_read_lock();
1967 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
1968 /* Validate delete flag of the stream */
1969 if (!stream->endpoint_status) {
1970 continue;
1971 }
1972 /*
1973 * Remove from pollset so the metadata thread can continue without
1974 * blocking on a deleted stream.
1975 */
1976 lttng_poll_del(pollset, stream->wait_fd);
1977
1978 /* Delete it right now */
1979 consumer_del_metadata_stream(stream, metadata_ht);
1980 }
1981 rcu_read_unlock();
1982 }
1983
1984 /*
1985 * Thread polls on metadata file descriptor and write them on disk or on the
1986 * network.
1987 */
1988 void *consumer_thread_metadata_poll(void *data)
1989 {
1990 int ret, i, pollfd;
1991 uint32_t revents, nb_fd;
1992 struct lttng_consumer_stream *stream = NULL;
1993 struct lttng_ht_iter iter;
1994 struct lttng_ht_node_ulong *node;
1995 struct lttng_poll_event events;
1996 struct lttng_consumer_local_data *ctx = data;
1997 ssize_t len;
1998
1999 rcu_register_thread();
2000
2001 DBG("Thread metadata poll started");
2002
2003 /* Size is set to 1 for the consumer_metadata pipe */
2004 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2005 if (ret < 0) {
2006 ERR("Poll set creation failed");
2007 goto end;
2008 }
2009
2010 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
2011 if (ret < 0) {
2012 goto end;
2013 }
2014
2015 /* Main loop */
2016 DBG("Metadata main loop started");
2017
2018 while (1) {
2019 lttng_poll_reset(&events);
2020
2021 nb_fd = LTTNG_POLL_GETNB(&events);
2022
2023 /* Only the metadata pipe is set */
2024 if (nb_fd == 0 && consumer_quit == 1) {
2025 goto end;
2026 }
2027
2028 restart:
2029 DBG("Metadata poll wait with %d fd(s)", nb_fd);
2030 ret = lttng_poll_wait(&events, -1);
2031 DBG("Metadata event catched in thread");
2032 if (ret < 0) {
2033 if (errno == EINTR) {
2034 ERR("Poll EINTR catched");
2035 goto restart;
2036 }
2037 goto error;
2038 }
2039
2040 /* From here, the event is a metadata wait fd */
2041 for (i = 0; i < nb_fd; i++) {
2042 revents = LTTNG_POLL_GETEV(&events, i);
2043 pollfd = LTTNG_POLL_GETFD(&events, i);
2044
2045 /* Just don't waste time if no returned events for the fd */
2046 if (!revents) {
2047 continue;
2048 }
2049
2050 if (pollfd == ctx->consumer_metadata_pipe[0]) {
2051 if (revents & (LPOLLERR | LPOLLHUP )) {
2052 DBG("Metadata thread pipe hung up");
2053 /*
2054 * Remove the pipe from the poll set and continue the loop
2055 * since their might be data to consume.
2056 */
2057 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
2058 ret = close(ctx->consumer_metadata_pipe[0]);
2059 if (ret < 0) {
2060 PERROR("close metadata pipe");
2061 }
2062 continue;
2063 } else if (revents & LPOLLIN) {
2064 do {
2065 /* Get the stream pointer received */
2066 ret = read(pollfd, &stream, sizeof(stream));
2067 } while (ret < 0 && errno == EINTR);
2068 if (ret < 0 ||
2069 ret < sizeof(struct lttng_consumer_stream *)) {
2070 PERROR("read metadata stream");
2071 /*
2072 * Let's continue here and hope we can still work
2073 * without stopping the consumer. XXX: Should we?
2074 */
2075 continue;
2076 }
2077
2078 /* A NULL stream means that the state has changed. */
2079 if (stream == NULL) {
2080 /* Check for deleted streams. */
2081 validate_endpoint_status_metadata_stream(&events);
2082 continue;
2083 }
2084
2085 DBG("Adding metadata stream %d to poll set",
2086 stream->wait_fd);
2087
2088 ret = consumer_add_metadata_stream(stream, metadata_ht);
2089 if (ret) {
2090 ERR("Unable to add metadata stream");
2091 /* Stream was not setup properly. Continuing. */
2092 consumer_del_metadata_stream(stream, NULL);
2093 continue;
2094 }
2095
2096 /* Add metadata stream to the global poll events list */
2097 lttng_poll_add(&events, stream->wait_fd,
2098 LPOLLIN | LPOLLPRI);
2099 }
2100
2101 /* Handle other stream */
2102 continue;
2103 }
2104
2105 rcu_read_lock();
2106 lttng_ht_lookup(metadata_ht, (void *)((unsigned long) pollfd),
2107 &iter);
2108 node = lttng_ht_iter_get_node_ulong(&iter);
2109 assert(node);
2110
2111 stream = caa_container_of(node, struct lttng_consumer_stream,
2112 node);
2113
2114 /* Check for error event */
2115 if (revents & (LPOLLERR | LPOLLHUP)) {
2116 DBG("Metadata fd %d is hup|err.", pollfd);
2117 if (!stream->hangup_flush_done
2118 && (consumer_data.type == LTTNG_CONSUMER32_UST
2119 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2120 DBG("Attempting to flush and consume the UST buffers");
2121 lttng_ustconsumer_on_stream_hangup(stream);
2122
2123 /* We just flushed the stream now read it. */
2124 do {
2125 len = ctx->on_buffer_ready(stream, ctx);
2126 /*
2127 * We don't check the return value here since if we get
2128 * a negative len, it means an error occured thus we
2129 * simply remove it from the poll set and free the
2130 * stream.
2131 */
2132 } while (len > 0);
2133 }
2134
2135 lttng_poll_del(&events, stream->wait_fd);
2136 /*
2137 * This call update the channel states, closes file descriptors
2138 * and securely free the stream.
2139 */
2140 consumer_del_metadata_stream(stream, metadata_ht);
2141 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2142 /* Get the data out of the metadata file descriptor */
2143 DBG("Metadata available on fd %d", pollfd);
2144 assert(stream->wait_fd == pollfd);
2145
2146 len = ctx->on_buffer_ready(stream, ctx);
2147 /* It's ok to have an unavailable sub-buffer */
2148 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2149 /* Clean up stream from consumer and free it. */
2150 lttng_poll_del(&events, stream->wait_fd);
2151 consumer_del_metadata_stream(stream, metadata_ht);
2152 } else if (len > 0) {
2153 stream->data_read = 1;
2154 }
2155 }
2156
2157 /* Release RCU lock for the stream looked up */
2158 rcu_read_unlock();
2159 }
2160 }
2161
2162 error:
2163 end:
2164 DBG("Metadata poll thread exiting");
2165 lttng_poll_clean(&events);
2166
2167 if (metadata_ht) {
2168 destroy_stream_ht(metadata_ht);
2169 }
2170
2171 rcu_unregister_thread();
2172 return NULL;
2173 }
2174
2175 /*
2176 * This thread polls the fds in the set to consume the data and write
2177 * it to tracefile if necessary.
2178 */
2179 void *consumer_thread_data_poll(void *data)
2180 {
2181 int num_rdy, num_hup, high_prio, ret, i;
2182 struct pollfd *pollfd = NULL;
2183 /* local view of the streams */
2184 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2185 /* local view of consumer_data.fds_count */
2186 int nb_fd = 0;
2187 struct lttng_consumer_local_data *ctx = data;
2188 ssize_t len;
2189
2190 rcu_register_thread();
2191
2192 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2193 if (data_ht == NULL) {
2194 goto end;
2195 }
2196
2197 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2198
2199 while (1) {
2200 high_prio = 0;
2201 num_hup = 0;
2202
2203 /*
2204 * the fds set has been updated, we need to update our
2205 * local array as well
2206 */
2207 pthread_mutex_lock(&consumer_data.lock);
2208 if (consumer_data.need_update) {
2209 if (pollfd != NULL) {
2210 free(pollfd);
2211 pollfd = NULL;
2212 }
2213 if (local_stream != NULL) {
2214 free(local_stream);
2215 local_stream = NULL;
2216 }
2217
2218 /* allocate for all fds + 1 for the consumer_data_pipe */
2219 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2220 if (pollfd == NULL) {
2221 PERROR("pollfd malloc");
2222 pthread_mutex_unlock(&consumer_data.lock);
2223 goto end;
2224 }
2225
2226 /* allocate for all fds + 1 for the consumer_data_pipe */
2227 local_stream = zmalloc((consumer_data.stream_count + 1) *
2228 sizeof(struct lttng_consumer_stream));
2229 if (local_stream == NULL) {
2230 PERROR("local_stream malloc");
2231 pthread_mutex_unlock(&consumer_data.lock);
2232 goto end;
2233 }
2234 ret = consumer_update_poll_array(ctx, &pollfd, local_stream,
2235 data_ht);
2236 if (ret < 0) {
2237 ERR("Error in allocating pollfd or local_outfds");
2238 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2239 pthread_mutex_unlock(&consumer_data.lock);
2240 goto end;
2241 }
2242 nb_fd = ret;
2243 consumer_data.need_update = 0;
2244 }
2245 pthread_mutex_unlock(&consumer_data.lock);
2246
2247 /* No FDs and consumer_quit, consumer_cleanup the thread */
2248 if (nb_fd == 0 && consumer_quit == 1) {
2249 goto end;
2250 }
2251 /* poll on the array of fds */
2252 restart:
2253 DBG("polling on %d fd", nb_fd + 1);
2254 num_rdy = poll(pollfd, nb_fd + 1, -1);
2255 DBG("poll num_rdy : %d", num_rdy);
2256 if (num_rdy == -1) {
2257 /*
2258 * Restart interrupted system call.
2259 */
2260 if (errno == EINTR) {
2261 goto restart;
2262 }
2263 PERROR("Poll error");
2264 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2265 goto end;
2266 } else if (num_rdy == 0) {
2267 DBG("Polling thread timed out");
2268 goto end;
2269 }
2270
2271 /*
2272 * If the consumer_data_pipe triggered poll go directly to the
2273 * beginning of the loop to update the array. We want to prioritize
2274 * array update over low-priority reads.
2275 */
2276 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2277 size_t pipe_readlen;
2278
2279 DBG("consumer_data_pipe wake up");
2280 /* Consume 1 byte of pipe data */
2281 do {
2282 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2283 sizeof(new_stream));
2284 } while (pipe_readlen == -1 && errno == EINTR);
2285
2286 /*
2287 * If the stream is NULL, just ignore it. It's also possible that
2288 * the sessiond poll thread changed the consumer_quit state and is
2289 * waking us up to test it.
2290 */
2291 if (new_stream == NULL) {
2292 validate_endpoint_status_data_stream();
2293 continue;
2294 }
2295
2296 ret = consumer_add_stream(new_stream, data_ht);
2297 if (ret) {
2298 ERR("Consumer add stream %d failed. Continuing",
2299 new_stream->key);
2300 /*
2301 * At this point, if the add_stream fails, it is not in the
2302 * hash table thus passing the NULL value here.
2303 */
2304 consumer_del_stream(new_stream, NULL);
2305 }
2306
2307 /* Continue to update the local streams and handle prio ones */
2308 continue;
2309 }
2310
2311 /* Take care of high priority channels first. */
2312 for (i = 0; i < nb_fd; i++) {
2313 if (local_stream[i] == NULL) {
2314 continue;
2315 }
2316 if (pollfd[i].revents & POLLPRI) {
2317 DBG("Urgent read on fd %d", pollfd[i].fd);
2318 high_prio = 1;
2319 len = ctx->on_buffer_ready(local_stream[i], ctx);
2320 /* it's ok to have an unavailable sub-buffer */
2321 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2322 /* Clean the stream and free it. */
2323 consumer_del_stream(local_stream[i], data_ht);
2324 local_stream[i] = NULL;
2325 } else if (len > 0) {
2326 local_stream[i]->data_read = 1;
2327 }
2328 }
2329 }
2330
2331 /*
2332 * If we read high prio channel in this loop, try again
2333 * for more high prio data.
2334 */
2335 if (high_prio) {
2336 continue;
2337 }
2338
2339 /* Take care of low priority channels. */
2340 for (i = 0; i < nb_fd; i++) {
2341 if (local_stream[i] == NULL) {
2342 continue;
2343 }
2344 if ((pollfd[i].revents & POLLIN) ||
2345 local_stream[i]->hangup_flush_done) {
2346 DBG("Normal read on fd %d", pollfd[i].fd);
2347 len = ctx->on_buffer_ready(local_stream[i], ctx);
2348 /* it's ok to have an unavailable sub-buffer */
2349 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2350 /* Clean the stream and free it. */
2351 consumer_del_stream(local_stream[i], data_ht);
2352 local_stream[i] = NULL;
2353 } else if (len > 0) {
2354 local_stream[i]->data_read = 1;
2355 }
2356 }
2357 }
2358
2359 /* Handle hangup and errors */
2360 for (i = 0; i < nb_fd; i++) {
2361 if (local_stream[i] == NULL) {
2362 continue;
2363 }
2364 if (!local_stream[i]->hangup_flush_done
2365 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2366 && (consumer_data.type == LTTNG_CONSUMER32_UST
2367 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2368 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2369 pollfd[i].fd);
2370 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2371 /* Attempt read again, for the data we just flushed. */
2372 local_stream[i]->data_read = 1;
2373 }
2374 /*
2375 * If the poll flag is HUP/ERR/NVAL and we have
2376 * read no data in this pass, we can remove the
2377 * stream from its hash table.
2378 */
2379 if ((pollfd[i].revents & POLLHUP)) {
2380 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2381 if (!local_stream[i]->data_read) {
2382 consumer_del_stream(local_stream[i], data_ht);
2383 local_stream[i] = NULL;
2384 num_hup++;
2385 }
2386 } else if (pollfd[i].revents & POLLERR) {
2387 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2388 if (!local_stream[i]->data_read) {
2389 consumer_del_stream(local_stream[i], data_ht);
2390 local_stream[i] = NULL;
2391 num_hup++;
2392 }
2393 } else if (pollfd[i].revents & POLLNVAL) {
2394 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2395 if (!local_stream[i]->data_read) {
2396 consumer_del_stream(local_stream[i], data_ht);
2397 local_stream[i] = NULL;
2398 num_hup++;
2399 }
2400 }
2401 if (local_stream[i] != NULL) {
2402 local_stream[i]->data_read = 0;
2403 }
2404 }
2405 }
2406 end:
2407 DBG("polling thread exiting");
2408 if (pollfd != NULL) {
2409 free(pollfd);
2410 pollfd = NULL;
2411 }
2412 if (local_stream != NULL) {
2413 free(local_stream);
2414 local_stream = NULL;
2415 }
2416
2417 /*
2418 * Close the write side of the pipe so epoll_wait() in
2419 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2420 * read side of the pipe. If we close them both, epoll_wait strangely does
2421 * not return and could create a endless wait period if the pipe is the
2422 * only tracked fd in the poll set. The thread will take care of closing
2423 * the read side.
2424 */
2425 ret = close(ctx->consumer_metadata_pipe[1]);
2426 if (ret < 0) {
2427 PERROR("close data pipe");
2428 }
2429
2430 if (data_ht) {
2431 destroy_data_stream_ht(data_ht);
2432 }
2433
2434 rcu_unregister_thread();
2435 return NULL;
2436 }
2437
2438 /*
2439 * This thread listens on the consumerd socket and receives the file
2440 * descriptors from the session daemon.
2441 */
2442 void *consumer_thread_sessiond_poll(void *data)
2443 {
2444 int sock, client_socket, ret;
2445 /*
2446 * structure to poll for incoming data on communication socket avoids
2447 * making blocking sockets.
2448 */
2449 struct pollfd consumer_sockpoll[2];
2450 struct lttng_consumer_local_data *ctx = data;
2451
2452 rcu_register_thread();
2453
2454 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2455 unlink(ctx->consumer_command_sock_path);
2456 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2457 if (client_socket < 0) {
2458 ERR("Cannot create command socket");
2459 goto end;
2460 }
2461
2462 ret = lttcomm_listen_unix_sock(client_socket);
2463 if (ret < 0) {
2464 goto end;
2465 }
2466
2467 DBG("Sending ready command to lttng-sessiond");
2468 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2469 /* return < 0 on error, but == 0 is not fatal */
2470 if (ret < 0) {
2471 ERR("Error sending ready command to lttng-sessiond");
2472 goto end;
2473 }
2474
2475 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2476 if (ret < 0) {
2477 PERROR("fcntl O_NONBLOCK");
2478 goto end;
2479 }
2480
2481 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2482 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2483 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2484 consumer_sockpoll[1].fd = client_socket;
2485 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2486
2487 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2488 goto end;
2489 }
2490 DBG("Connection on client_socket");
2491
2492 /* Blocking call, waiting for transmission */
2493 sock = lttcomm_accept_unix_sock(client_socket);
2494 if (sock <= 0) {
2495 WARN("On accept");
2496 goto end;
2497 }
2498 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2499 if (ret < 0) {
2500 PERROR("fcntl O_NONBLOCK");
2501 goto end;
2502 }
2503
2504 /* update the polling structure to poll on the established socket */
2505 consumer_sockpoll[1].fd = sock;
2506 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2507
2508 while (1) {
2509 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2510 goto end;
2511 }
2512 DBG("Incoming command on sock");
2513 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2514 if (ret == -ENOENT) {
2515 DBG("Received STOP command");
2516 goto end;
2517 }
2518 if (ret <= 0) {
2519 /*
2520 * This could simply be a session daemon quitting. Don't output
2521 * ERR() here.
2522 */
2523 DBG("Communication interrupted on command socket");
2524 goto end;
2525 }
2526 if (consumer_quit) {
2527 DBG("consumer_thread_receive_fds received quit from signal");
2528 goto end;
2529 }
2530 DBG("received fds on sock");
2531 }
2532 end:
2533 DBG("consumer_thread_receive_fds exiting");
2534
2535 /*
2536 * when all fds have hung up, the polling thread
2537 * can exit cleanly
2538 */
2539 consumer_quit = 1;
2540
2541 /*
2542 * Notify the data poll thread to poll back again and test the
2543 * consumer_quit state that we just set so to quit gracefully.
2544 */
2545 notify_thread_pipe(ctx->consumer_data_pipe[1]);
2546
2547 rcu_unregister_thread();
2548 return NULL;
2549 }
2550
2551 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2552 struct lttng_consumer_local_data *ctx)
2553 {
2554 switch (consumer_data.type) {
2555 case LTTNG_CONSUMER_KERNEL:
2556 return lttng_kconsumer_read_subbuffer(stream, ctx);
2557 case LTTNG_CONSUMER32_UST:
2558 case LTTNG_CONSUMER64_UST:
2559 return lttng_ustconsumer_read_subbuffer(stream, ctx);
2560 default:
2561 ERR("Unknown consumer_data type");
2562 assert(0);
2563 return -ENOSYS;
2564 }
2565 }
2566
2567 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2568 {
2569 switch (consumer_data.type) {
2570 case LTTNG_CONSUMER_KERNEL:
2571 return lttng_kconsumer_on_recv_stream(stream);
2572 case LTTNG_CONSUMER32_UST:
2573 case LTTNG_CONSUMER64_UST:
2574 return lttng_ustconsumer_on_recv_stream(stream);
2575 default:
2576 ERR("Unknown consumer_data type");
2577 assert(0);
2578 return -ENOSYS;
2579 }
2580 }
2581
2582 /*
2583 * Allocate and set consumer data hash tables.
2584 */
2585 void lttng_consumer_init(void)
2586 {
2587 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2588 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2589 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2590
2591 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2592 assert(metadata_ht);
2593 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2594 assert(data_ht);
2595 }
2596
2597 /*
2598 * Process the ADD_RELAYD command receive by a consumer.
2599 *
2600 * This will create a relayd socket pair and add it to the relayd hash table.
2601 * The caller MUST acquire a RCU read side lock before calling it.
2602 */
2603 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
2604 struct lttng_consumer_local_data *ctx, int sock,
2605 struct pollfd *consumer_sockpoll, struct lttcomm_sock *relayd_sock)
2606 {
2607 int fd, ret = -1;
2608 struct consumer_relayd_sock_pair *relayd;
2609
2610 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
2611
2612 /* Get relayd reference if exists. */
2613 relayd = consumer_find_relayd(net_seq_idx);
2614 if (relayd == NULL) {
2615 /* Not found. Allocate one. */
2616 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
2617 if (relayd == NULL) {
2618 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
2619 goto error;
2620 }
2621 }
2622
2623 /* Poll on consumer socket. */
2624 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2625 ret = -EINTR;
2626 goto error;
2627 }
2628
2629 /* Get relayd socket from session daemon */
2630 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
2631 if (ret != sizeof(fd)) {
2632 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
2633 ret = -1;
2634 goto error;
2635 }
2636
2637 /* Copy socket information and received FD */
2638 switch (sock_type) {
2639 case LTTNG_STREAM_CONTROL:
2640 /* Copy received lttcomm socket */
2641 lttcomm_copy_sock(&relayd->control_sock, relayd_sock);
2642 ret = lttcomm_create_sock(&relayd->control_sock);
2643 if (ret < 0) {
2644 goto error;
2645 }
2646
2647 /* Close the created socket fd which is useless */
2648 ret = close(relayd->control_sock.fd);
2649 if (ret < 0) {
2650 PERROR("close relayd control socket");
2651 }
2652
2653 /* Assign new file descriptor */
2654 relayd->control_sock.fd = fd;
2655 break;
2656 case LTTNG_STREAM_DATA:
2657 /* Copy received lttcomm socket */
2658 lttcomm_copy_sock(&relayd->data_sock, relayd_sock);
2659 ret = lttcomm_create_sock(&relayd->data_sock);
2660 if (ret < 0) {
2661 goto error;
2662 }
2663
2664 /* Close the created socket fd which is useless */
2665 ret = close(relayd->data_sock.fd);
2666 if (ret < 0) {
2667 PERROR("close relayd control socket");
2668 }
2669
2670 /* Assign new file descriptor */
2671 relayd->data_sock.fd = fd;
2672 break;
2673 default:
2674 ERR("Unknown relayd socket type (%d)", sock_type);
2675 goto error;
2676 }
2677
2678 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2679 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
2680 relayd->net_seq_idx, fd);
2681
2682 /*
2683 * Add relayd socket pair to consumer data hashtable. If object already
2684 * exists or on error, the function gracefully returns.
2685 */
2686 add_relayd(relayd);
2687
2688 /* All good! */
2689 ret = 0;
2690
2691 error:
2692 return ret;
2693 }
2694
2695 /*
2696 * Try to lock the stream mutex.
2697 *
2698 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2699 */
2700 static int stream_try_lock(struct lttng_consumer_stream *stream)
2701 {
2702 int ret;
2703
2704 assert(stream);
2705
2706 /*
2707 * Try to lock the stream mutex. On failure, we know that the stream is
2708 * being used else where hence there is data still being extracted.
2709 */
2710 ret = pthread_mutex_trylock(&stream->lock);
2711 if (ret) {
2712 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2713 ret = 0;
2714 goto end;
2715 }
2716
2717 ret = 1;
2718
2719 end:
2720 return ret;
2721 }
2722
2723 /*
2724 * Check if for a given session id there is still data needed to be extract
2725 * from the buffers.
2726 *
2727 * Return 1 if data is pending or else 0 meaning ready to be read.
2728 */
2729 int consumer_data_pending(uint64_t id)
2730 {
2731 int ret;
2732 struct lttng_ht_iter iter;
2733 struct lttng_ht *ht;
2734 struct lttng_consumer_stream *stream;
2735 struct consumer_relayd_sock_pair *relayd;
2736 int (*data_pending)(struct lttng_consumer_stream *);
2737
2738 DBG("Consumer data pending command on session id %" PRIu64, id);
2739
2740 rcu_read_lock();
2741 pthread_mutex_lock(&consumer_data.lock);
2742
2743 switch (consumer_data.type) {
2744 case LTTNG_CONSUMER_KERNEL:
2745 data_pending = lttng_kconsumer_data_pending;
2746 break;
2747 case LTTNG_CONSUMER32_UST:
2748 case LTTNG_CONSUMER64_UST:
2749 data_pending = lttng_ustconsumer_data_pending;
2750 break;
2751 default:
2752 ERR("Unknown consumer data type");
2753 assert(0);
2754 }
2755
2756 /* Ease our life a bit */
2757 ht = consumer_data.stream_list_ht;
2758
2759 cds_lfht_for_each_entry_duplicate(ht->ht,
2760 ht->hash_fct((void *)((unsigned long) id), lttng_ht_seed),
2761 ht->match_fct, (void *)((unsigned long) id),
2762 &iter.iter, stream, node_session_id.node) {
2763 /* If this call fails, the stream is being used hence data pending. */
2764 ret = stream_try_lock(stream);
2765 if (!ret) {
2766 goto data_not_pending;
2767 }
2768
2769 /*
2770 * A removed node from the hash table indicates that the stream has
2771 * been deleted thus having a guarantee that the buffers are closed
2772 * on the consumer side. However, data can still be transmitted
2773 * over the network so don't skip the relayd check.
2774 */
2775 ret = cds_lfht_is_node_deleted(&stream->node.node);
2776 if (!ret) {
2777 /* Check the stream if there is data in the buffers. */
2778 ret = data_pending(stream);
2779 if (ret == 1) {
2780 pthread_mutex_unlock(&stream->lock);
2781 goto data_not_pending;
2782 }
2783 }
2784
2785 /* Relayd check */
2786 if (stream->net_seq_idx != -1) {
2787 relayd = consumer_find_relayd(stream->net_seq_idx);
2788 if (!relayd) {
2789 /*
2790 * At this point, if the relayd object is not available for the
2791 * given stream, it is because the relayd is being cleaned up
2792 * so every stream associated with it (for a session id value)
2793 * are or will be marked for deletion hence no data pending.
2794 */
2795 pthread_mutex_unlock(&stream->lock);
2796 goto data_not_pending;
2797 }
2798
2799 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2800 if (stream->metadata_flag) {
2801 ret = relayd_quiescent_control(&relayd->control_sock);
2802 } else {
2803 ret = relayd_data_pending(&relayd->control_sock,
2804 stream->relayd_stream_id, stream->next_net_seq_num);
2805 }
2806 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2807 if (ret == 1) {
2808 pthread_mutex_unlock(&stream->lock);
2809 goto data_not_pending;
2810 }
2811 }
2812 pthread_mutex_unlock(&stream->lock);
2813 }
2814
2815 /*
2816 * Finding _no_ node in the hash table means that the stream(s) have been
2817 * removed thus data is guaranteed to be available for analysis from the
2818 * trace files. This is *only* true for local consumer and not network
2819 * streaming.
2820 */
2821
2822 /* Data is available to be read by a viewer. */
2823 pthread_mutex_unlock(&consumer_data.lock);
2824 rcu_read_unlock();
2825 return 0;
2826
2827 data_not_pending:
2828 /* Data is still being extracted from buffers. */
2829 pthread_mutex_unlock(&consumer_data.lock);
2830 rcu_read_unlock();
2831 return 1;
2832 }
This page took 0.129418 seconds and 4 git commands to generate.