Fix: miscellaneous memory handling fixes
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/index/index.h>
38 #include <common/kernel-ctl/kernel-ctl.h>
39 #include <common/sessiond-comm/relayd.h>
40 #include <common/sessiond-comm/sessiond-comm.h>
41 #include <common/kernel-consumer/kernel-consumer.h>
42 #include <common/relayd/relayd.h>
43 #include <common/ust-consumer/ust-consumer.h>
44 #include <common/consumer-timer.h>
45
46 #include "consumer.h"
47 #include "consumer-stream.h"
48 #include "consumer-testpoint.h"
49
50 struct lttng_consumer_global_data consumer_data = {
51 .stream_count = 0,
52 .need_update = 1,
53 .type = LTTNG_CONSUMER_UNKNOWN,
54 };
55
56 enum consumer_channel_action {
57 CONSUMER_CHANNEL_ADD,
58 CONSUMER_CHANNEL_DEL,
59 CONSUMER_CHANNEL_QUIT,
60 };
61
62 struct consumer_channel_msg {
63 enum consumer_channel_action action;
64 struct lttng_consumer_channel *chan; /* add */
65 uint64_t key; /* del */
66 };
67
68 /*
69 * Flag to inform the polling thread to quit when all fd hung up. Updated by
70 * the consumer_thread_receive_fds when it notices that all fds has hung up.
71 * Also updated by the signal handler (consumer_should_exit()). Read by the
72 * polling threads.
73 */
74 volatile int consumer_quit;
75
76 /*
77 * Global hash table containing respectively metadata and data streams. The
78 * stream element in this ht should only be updated by the metadata poll thread
79 * for the metadata and the data poll thread for the data.
80 */
81 static struct lttng_ht *metadata_ht;
82 static struct lttng_ht *data_ht;
83
84 /*
85 * Notify a thread lttng pipe to poll back again. This usually means that some
86 * global state has changed so we just send back the thread in a poll wait
87 * call.
88 */
89 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
90 {
91 struct lttng_consumer_stream *null_stream = NULL;
92
93 assert(pipe);
94
95 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
96 }
97
98 static void notify_health_quit_pipe(int *pipe)
99 {
100 ssize_t ret;
101
102 ret = lttng_write(pipe[1], "4", 1);
103 if (ret < 1) {
104 PERROR("write consumer health quit");
105 }
106 }
107
108 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
109 struct lttng_consumer_channel *chan,
110 uint64_t key,
111 enum consumer_channel_action action)
112 {
113 struct consumer_channel_msg msg;
114 ssize_t ret;
115
116 memset(&msg, 0, sizeof(msg));
117
118 msg.action = action;
119 msg.chan = chan;
120 msg.key = key;
121 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
122 if (ret < sizeof(msg)) {
123 PERROR("notify_channel_pipe write error");
124 }
125 }
126
127 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
128 uint64_t key)
129 {
130 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
131 }
132
133 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
134 struct lttng_consumer_channel **chan,
135 uint64_t *key,
136 enum consumer_channel_action *action)
137 {
138 struct consumer_channel_msg msg;
139 ssize_t ret;
140
141 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
142 if (ret < sizeof(msg)) {
143 ret = -1;
144 goto error;
145 }
146 *action = msg.action;
147 *chan = msg.chan;
148 *key = msg.key;
149 error:
150 return (int) ret;
151 }
152
153 /*
154 * Cleanup the stream list of a channel. Those streams are not yet globally
155 * visible
156 */
157 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
158 {
159 struct lttng_consumer_stream *stream, *stmp;
160
161 assert(channel);
162
163 /* Delete streams that might have been left in the stream list. */
164 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
165 send_node) {
166 cds_list_del(&stream->send_node);
167 /*
168 * Once a stream is added to this list, the buffers were created so we
169 * have a guarantee that this call will succeed. Setting the monitor
170 * mode to 0 so we don't lock nor try to delete the stream from the
171 * global hash table.
172 */
173 stream->monitor = 0;
174 consumer_stream_destroy(stream, NULL);
175 }
176 }
177
178 /*
179 * Find a stream. The consumer_data.lock must be locked during this
180 * call.
181 */
182 static struct lttng_consumer_stream *find_stream(uint64_t key,
183 struct lttng_ht *ht)
184 {
185 struct lttng_ht_iter iter;
186 struct lttng_ht_node_u64 *node;
187 struct lttng_consumer_stream *stream = NULL;
188
189 assert(ht);
190
191 /* -1ULL keys are lookup failures */
192 if (key == (uint64_t) -1ULL) {
193 return NULL;
194 }
195
196 rcu_read_lock();
197
198 lttng_ht_lookup(ht, &key, &iter);
199 node = lttng_ht_iter_get_node_u64(&iter);
200 if (node != NULL) {
201 stream = caa_container_of(node, struct lttng_consumer_stream, node);
202 }
203
204 rcu_read_unlock();
205
206 return stream;
207 }
208
209 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
210 {
211 struct lttng_consumer_stream *stream;
212
213 rcu_read_lock();
214 stream = find_stream(key, ht);
215 if (stream) {
216 stream->key = (uint64_t) -1ULL;
217 /*
218 * We don't want the lookup to match, but we still need
219 * to iterate on this stream when iterating over the hash table. Just
220 * change the node key.
221 */
222 stream->node.key = (uint64_t) -1ULL;
223 }
224 rcu_read_unlock();
225 }
226
227 /*
228 * Return a channel object for the given key.
229 *
230 * RCU read side lock MUST be acquired before calling this function and
231 * protects the channel ptr.
232 */
233 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
234 {
235 struct lttng_ht_iter iter;
236 struct lttng_ht_node_u64 *node;
237 struct lttng_consumer_channel *channel = NULL;
238
239 /* -1ULL keys are lookup failures */
240 if (key == (uint64_t) -1ULL) {
241 return NULL;
242 }
243
244 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
245 node = lttng_ht_iter_get_node_u64(&iter);
246 if (node != NULL) {
247 channel = caa_container_of(node, struct lttng_consumer_channel, node);
248 }
249
250 return channel;
251 }
252
253 /*
254 * There is a possibility that the consumer does not have enough time between
255 * the close of the channel on the session daemon and the cleanup in here thus
256 * once we have a channel add with an existing key, we know for sure that this
257 * channel will eventually get cleaned up by all streams being closed.
258 *
259 * This function just nullifies the already existing channel key.
260 */
261 static void steal_channel_key(uint64_t key)
262 {
263 struct lttng_consumer_channel *channel;
264
265 rcu_read_lock();
266 channel = consumer_find_channel(key);
267 if (channel) {
268 channel->key = (uint64_t) -1ULL;
269 /*
270 * We don't want the lookup to match, but we still need to iterate on
271 * this channel when iterating over the hash table. Just change the
272 * node key.
273 */
274 channel->node.key = (uint64_t) -1ULL;
275 }
276 rcu_read_unlock();
277 }
278
279 static void free_channel_rcu(struct rcu_head *head)
280 {
281 struct lttng_ht_node_u64 *node =
282 caa_container_of(head, struct lttng_ht_node_u64, head);
283 struct lttng_consumer_channel *channel =
284 caa_container_of(node, struct lttng_consumer_channel, node);
285
286 free(channel);
287 }
288
289 /*
290 * RCU protected relayd socket pair free.
291 */
292 static void free_relayd_rcu(struct rcu_head *head)
293 {
294 struct lttng_ht_node_u64 *node =
295 caa_container_of(head, struct lttng_ht_node_u64, head);
296 struct consumer_relayd_sock_pair *relayd =
297 caa_container_of(node, struct consumer_relayd_sock_pair, node);
298
299 /*
300 * Close all sockets. This is done in the call RCU since we don't want the
301 * socket fds to be reassigned thus potentially creating bad state of the
302 * relayd object.
303 *
304 * We do not have to lock the control socket mutex here since at this stage
305 * there is no one referencing to this relayd object.
306 */
307 (void) relayd_close(&relayd->control_sock);
308 (void) relayd_close(&relayd->data_sock);
309
310 free(relayd);
311 }
312
313 /*
314 * Destroy and free relayd socket pair object.
315 */
316 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
317 {
318 int ret;
319 struct lttng_ht_iter iter;
320
321 if (relayd == NULL) {
322 return;
323 }
324
325 DBG("Consumer destroy and close relayd socket pair");
326
327 iter.iter.node = &relayd->node.node;
328 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
329 if (ret != 0) {
330 /* We assume the relayd is being or is destroyed */
331 return;
332 }
333
334 /* RCU free() call */
335 call_rcu(&relayd->node.head, free_relayd_rcu);
336 }
337
338 /*
339 * Remove a channel from the global list protected by a mutex. This function is
340 * also responsible for freeing its data structures.
341 */
342 void consumer_del_channel(struct lttng_consumer_channel *channel)
343 {
344 int ret;
345 struct lttng_ht_iter iter;
346
347 DBG("Consumer delete channel key %" PRIu64, channel->key);
348
349 pthread_mutex_lock(&consumer_data.lock);
350 pthread_mutex_lock(&channel->lock);
351
352 /* Destroy streams that might have been left in the stream list. */
353 clean_channel_stream_list(channel);
354
355 if (channel->live_timer_enabled == 1) {
356 consumer_timer_live_stop(channel);
357 }
358
359 switch (consumer_data.type) {
360 case LTTNG_CONSUMER_KERNEL:
361 break;
362 case LTTNG_CONSUMER32_UST:
363 case LTTNG_CONSUMER64_UST:
364 lttng_ustconsumer_del_channel(channel);
365 break;
366 default:
367 ERR("Unknown consumer_data type");
368 assert(0);
369 goto end;
370 }
371
372 rcu_read_lock();
373 iter.iter.node = &channel->node.node;
374 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
375 assert(!ret);
376 rcu_read_unlock();
377
378 call_rcu(&channel->node.head, free_channel_rcu);
379 end:
380 pthread_mutex_unlock(&channel->lock);
381 pthread_mutex_unlock(&consumer_data.lock);
382 }
383
384 /*
385 * Iterate over the relayd hash table and destroy each element. Finally,
386 * destroy the whole hash table.
387 */
388 static void cleanup_relayd_ht(void)
389 {
390 struct lttng_ht_iter iter;
391 struct consumer_relayd_sock_pair *relayd;
392
393 rcu_read_lock();
394
395 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
396 node.node) {
397 consumer_destroy_relayd(relayd);
398 }
399
400 rcu_read_unlock();
401
402 lttng_ht_destroy(consumer_data.relayd_ht);
403 }
404
405 /*
406 * Update the end point status of all streams having the given network sequence
407 * index (relayd index).
408 *
409 * It's atomically set without having the stream mutex locked which is fine
410 * because we handle the write/read race with a pipe wakeup for each thread.
411 */
412 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
413 enum consumer_endpoint_status status)
414 {
415 struct lttng_ht_iter iter;
416 struct lttng_consumer_stream *stream;
417
418 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
419
420 rcu_read_lock();
421
422 /* Let's begin with metadata */
423 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
424 if (stream->net_seq_idx == net_seq_idx) {
425 uatomic_set(&stream->endpoint_status, status);
426 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
427 }
428 }
429
430 /* Follow up by the data streams */
431 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
432 if (stream->net_seq_idx == net_seq_idx) {
433 uatomic_set(&stream->endpoint_status, status);
434 DBG("Delete flag set to data stream %d", stream->wait_fd);
435 }
436 }
437 rcu_read_unlock();
438 }
439
440 /*
441 * Cleanup a relayd object by flagging every associated streams for deletion,
442 * destroying the object meaning removing it from the relayd hash table,
443 * closing the sockets and freeing the memory in a RCU call.
444 *
445 * If a local data context is available, notify the threads that the streams'
446 * state have changed.
447 */
448 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
449 struct lttng_consumer_local_data *ctx)
450 {
451 uint64_t netidx;
452
453 assert(relayd);
454
455 DBG("Cleaning up relayd sockets");
456
457 /* Save the net sequence index before destroying the object */
458 netidx = relayd->net_seq_idx;
459
460 /*
461 * Delete the relayd from the relayd hash table, close the sockets and free
462 * the object in a RCU call.
463 */
464 consumer_destroy_relayd(relayd);
465
466 /* Set inactive endpoint to all streams */
467 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
468
469 /*
470 * With a local data context, notify the threads that the streams' state
471 * have changed. The write() action on the pipe acts as an "implicit"
472 * memory barrier ordering the updates of the end point status from the
473 * read of this status which happens AFTER receiving this notify.
474 */
475 if (ctx) {
476 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
477 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
478 }
479 }
480
481 /*
482 * Flag a relayd socket pair for destruction. Destroy it if the refcount
483 * reaches zero.
484 *
485 * RCU read side lock MUST be aquired before calling this function.
486 */
487 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
488 {
489 assert(relayd);
490
491 /* Set destroy flag for this object */
492 uatomic_set(&relayd->destroy_flag, 1);
493
494 /* Destroy the relayd if refcount is 0 */
495 if (uatomic_read(&relayd->refcount) == 0) {
496 consumer_destroy_relayd(relayd);
497 }
498 }
499
500 /*
501 * Completly destroy stream from every visiable data structure and the given
502 * hash table if one.
503 *
504 * One this call returns, the stream object is not longer usable nor visible.
505 */
506 void consumer_del_stream(struct lttng_consumer_stream *stream,
507 struct lttng_ht *ht)
508 {
509 consumer_stream_destroy(stream, ht);
510 }
511
512 /*
513 * XXX naming of del vs destroy is all mixed up.
514 */
515 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
516 {
517 consumer_stream_destroy(stream, data_ht);
518 }
519
520 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
521 {
522 consumer_stream_destroy(stream, metadata_ht);
523 }
524
525 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
526 uint64_t stream_key,
527 enum lttng_consumer_stream_state state,
528 const char *channel_name,
529 uid_t uid,
530 gid_t gid,
531 uint64_t relayd_id,
532 uint64_t session_id,
533 int cpu,
534 int *alloc_ret,
535 enum consumer_channel_type type,
536 unsigned int monitor)
537 {
538 int ret;
539 struct lttng_consumer_stream *stream;
540
541 stream = zmalloc(sizeof(*stream));
542 if (stream == NULL) {
543 PERROR("malloc struct lttng_consumer_stream");
544 ret = -ENOMEM;
545 goto end;
546 }
547
548 rcu_read_lock();
549
550 stream->key = stream_key;
551 stream->out_fd = -1;
552 stream->out_fd_offset = 0;
553 stream->output_written = 0;
554 stream->state = state;
555 stream->uid = uid;
556 stream->gid = gid;
557 stream->net_seq_idx = relayd_id;
558 stream->session_id = session_id;
559 stream->monitor = monitor;
560 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
561 stream->index_fd = -1;
562 pthread_mutex_init(&stream->lock, NULL);
563
564 /* If channel is the metadata, flag this stream as metadata. */
565 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
566 stream->metadata_flag = 1;
567 /* Metadata is flat out. */
568 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
569 /* Live rendez-vous point. */
570 pthread_cond_init(&stream->metadata_rdv, NULL);
571 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
572 } else {
573 /* Format stream name to <channel_name>_<cpu_number> */
574 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
575 channel_name, cpu);
576 if (ret < 0) {
577 PERROR("snprintf stream name");
578 goto error;
579 }
580 }
581
582 /* Key is always the wait_fd for streams. */
583 lttng_ht_node_init_u64(&stream->node, stream->key);
584
585 /* Init node per channel id key */
586 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
587
588 /* Init session id node with the stream session id */
589 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
590
591 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
592 " relayd_id %" PRIu64 ", session_id %" PRIu64,
593 stream->name, stream->key, channel_key,
594 stream->net_seq_idx, stream->session_id);
595
596 rcu_read_unlock();
597 return stream;
598
599 error:
600 rcu_read_unlock();
601 free(stream);
602 end:
603 if (alloc_ret) {
604 *alloc_ret = ret;
605 }
606 return NULL;
607 }
608
609 /*
610 * Add a stream to the global list protected by a mutex.
611 */
612 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
613 {
614 struct lttng_ht *ht = data_ht;
615 int ret = 0;
616
617 assert(stream);
618 assert(ht);
619
620 DBG3("Adding consumer stream %" PRIu64, stream->key);
621
622 pthread_mutex_lock(&consumer_data.lock);
623 pthread_mutex_lock(&stream->chan->lock);
624 pthread_mutex_lock(&stream->chan->timer_lock);
625 pthread_mutex_lock(&stream->lock);
626 rcu_read_lock();
627
628 /* Steal stream identifier to avoid having streams with the same key */
629 steal_stream_key(stream->key, ht);
630
631 lttng_ht_add_unique_u64(ht, &stream->node);
632
633 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
634 &stream->node_channel_id);
635
636 /*
637 * Add stream to the stream_list_ht of the consumer data. No need to steal
638 * the key since the HT does not use it and we allow to add redundant keys
639 * into this table.
640 */
641 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
642
643 /*
644 * When nb_init_stream_left reaches 0, we don't need to trigger any action
645 * in terms of destroying the associated channel, because the action that
646 * causes the count to become 0 also causes a stream to be added. The
647 * channel deletion will thus be triggered by the following removal of this
648 * stream.
649 */
650 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
651 /* Increment refcount before decrementing nb_init_stream_left */
652 cmm_smp_wmb();
653 uatomic_dec(&stream->chan->nb_init_stream_left);
654 }
655
656 /* Update consumer data once the node is inserted. */
657 consumer_data.stream_count++;
658 consumer_data.need_update = 1;
659
660 rcu_read_unlock();
661 pthread_mutex_unlock(&stream->lock);
662 pthread_mutex_unlock(&stream->chan->timer_lock);
663 pthread_mutex_unlock(&stream->chan->lock);
664 pthread_mutex_unlock(&consumer_data.lock);
665
666 return ret;
667 }
668
669 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
670 {
671 consumer_del_stream(stream, data_ht);
672 }
673
674 /*
675 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
676 * be acquired before calling this.
677 */
678 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
679 {
680 int ret = 0;
681 struct lttng_ht_node_u64 *node;
682 struct lttng_ht_iter iter;
683
684 assert(relayd);
685
686 lttng_ht_lookup(consumer_data.relayd_ht,
687 &relayd->net_seq_idx, &iter);
688 node = lttng_ht_iter_get_node_u64(&iter);
689 if (node != NULL) {
690 goto end;
691 }
692 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
693
694 end:
695 return ret;
696 }
697
698 /*
699 * Allocate and return a consumer relayd socket.
700 */
701 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
702 uint64_t net_seq_idx)
703 {
704 struct consumer_relayd_sock_pair *obj = NULL;
705
706 /* net sequence index of -1 is a failure */
707 if (net_seq_idx == (uint64_t) -1ULL) {
708 goto error;
709 }
710
711 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
712 if (obj == NULL) {
713 PERROR("zmalloc relayd sock");
714 goto error;
715 }
716
717 obj->net_seq_idx = net_seq_idx;
718 obj->refcount = 0;
719 obj->destroy_flag = 0;
720 obj->control_sock.sock.fd = -1;
721 obj->data_sock.sock.fd = -1;
722 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
723 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
724
725 error:
726 return obj;
727 }
728
729 /*
730 * Find a relayd socket pair in the global consumer data.
731 *
732 * Return the object if found else NULL.
733 * RCU read-side lock must be held across this call and while using the
734 * returned object.
735 */
736 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
737 {
738 struct lttng_ht_iter iter;
739 struct lttng_ht_node_u64 *node;
740 struct consumer_relayd_sock_pair *relayd = NULL;
741
742 /* Negative keys are lookup failures */
743 if (key == (uint64_t) -1ULL) {
744 goto error;
745 }
746
747 lttng_ht_lookup(consumer_data.relayd_ht, &key,
748 &iter);
749 node = lttng_ht_iter_get_node_u64(&iter);
750 if (node != NULL) {
751 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
752 }
753
754 error:
755 return relayd;
756 }
757
758 /*
759 * Find a relayd and send the stream
760 *
761 * Returns 0 on success, < 0 on error
762 */
763 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
764 char *path)
765 {
766 int ret = 0;
767 struct consumer_relayd_sock_pair *relayd;
768
769 assert(stream);
770 assert(stream->net_seq_idx != -1ULL);
771 assert(path);
772
773 /* The stream is not metadata. Get relayd reference if exists. */
774 rcu_read_lock();
775 relayd = consumer_find_relayd(stream->net_seq_idx);
776 if (relayd != NULL) {
777 /* Add stream on the relayd */
778 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
779 ret = relayd_add_stream(&relayd->control_sock, stream->name,
780 path, &stream->relayd_stream_id,
781 stream->chan->tracefile_size, stream->chan->tracefile_count);
782 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
783 if (ret < 0) {
784 goto end;
785 }
786
787 uatomic_inc(&relayd->refcount);
788 stream->sent_to_relayd = 1;
789 } else {
790 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
791 stream->key, stream->net_seq_idx);
792 ret = -1;
793 goto end;
794 }
795
796 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
797 stream->name, stream->key, stream->net_seq_idx);
798
799 end:
800 rcu_read_unlock();
801 return ret;
802 }
803
804 /*
805 * Find a relayd and send the streams sent message
806 *
807 * Returns 0 on success, < 0 on error
808 */
809 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
810 {
811 int ret = 0;
812 struct consumer_relayd_sock_pair *relayd;
813
814 assert(net_seq_idx != -1ULL);
815
816 /* The stream is not metadata. Get relayd reference if exists. */
817 rcu_read_lock();
818 relayd = consumer_find_relayd(net_seq_idx);
819 if (relayd != NULL) {
820 /* Add stream on the relayd */
821 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
822 ret = relayd_streams_sent(&relayd->control_sock);
823 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
824 if (ret < 0) {
825 goto end;
826 }
827 } else {
828 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
829 net_seq_idx);
830 ret = -1;
831 goto end;
832 }
833
834 ret = 0;
835 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
836
837 end:
838 rcu_read_unlock();
839 return ret;
840 }
841
842 /*
843 * Find a relayd and close the stream
844 */
845 void close_relayd_stream(struct lttng_consumer_stream *stream)
846 {
847 struct consumer_relayd_sock_pair *relayd;
848
849 /* The stream is not metadata. Get relayd reference if exists. */
850 rcu_read_lock();
851 relayd = consumer_find_relayd(stream->net_seq_idx);
852 if (relayd) {
853 consumer_stream_relayd_close(stream, relayd);
854 }
855 rcu_read_unlock();
856 }
857
858 /*
859 * Handle stream for relayd transmission if the stream applies for network
860 * streaming where the net sequence index is set.
861 *
862 * Return destination file descriptor or negative value on error.
863 */
864 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
865 size_t data_size, unsigned long padding,
866 struct consumer_relayd_sock_pair *relayd)
867 {
868 int outfd = -1, ret;
869 struct lttcomm_relayd_data_hdr data_hdr;
870
871 /* Safety net */
872 assert(stream);
873 assert(relayd);
874
875 /* Reset data header */
876 memset(&data_hdr, 0, sizeof(data_hdr));
877
878 if (stream->metadata_flag) {
879 /* Caller MUST acquire the relayd control socket lock */
880 ret = relayd_send_metadata(&relayd->control_sock, data_size);
881 if (ret < 0) {
882 goto error;
883 }
884
885 /* Metadata are always sent on the control socket. */
886 outfd = relayd->control_sock.sock.fd;
887 } else {
888 /* Set header with stream information */
889 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
890 data_hdr.data_size = htobe32(data_size);
891 data_hdr.padding_size = htobe32(padding);
892 /*
893 * Note that net_seq_num below is assigned with the *current* value of
894 * next_net_seq_num and only after that the next_net_seq_num will be
895 * increment. This is why when issuing a command on the relayd using
896 * this next value, 1 should always be substracted in order to compare
897 * the last seen sequence number on the relayd side to the last sent.
898 */
899 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
900 /* Other fields are zeroed previously */
901
902 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
903 sizeof(data_hdr));
904 if (ret < 0) {
905 goto error;
906 }
907
908 ++stream->next_net_seq_num;
909
910 /* Set to go on data socket */
911 outfd = relayd->data_sock.sock.fd;
912 }
913
914 error:
915 return outfd;
916 }
917
918 /*
919 * Allocate and return a new lttng_consumer_channel object using the given key
920 * to initialize the hash table node.
921 *
922 * On error, return NULL.
923 */
924 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
925 uint64_t session_id,
926 const char *pathname,
927 const char *name,
928 uid_t uid,
929 gid_t gid,
930 uint64_t relayd_id,
931 enum lttng_event_output output,
932 uint64_t tracefile_size,
933 uint64_t tracefile_count,
934 uint64_t session_id_per_pid,
935 unsigned int monitor,
936 unsigned int live_timer_interval)
937 {
938 struct lttng_consumer_channel *channel;
939
940 channel = zmalloc(sizeof(*channel));
941 if (channel == NULL) {
942 PERROR("malloc struct lttng_consumer_channel");
943 goto end;
944 }
945
946 channel->key = key;
947 channel->refcount = 0;
948 channel->session_id = session_id;
949 channel->session_id_per_pid = session_id_per_pid;
950 channel->uid = uid;
951 channel->gid = gid;
952 channel->relayd_id = relayd_id;
953 channel->tracefile_size = tracefile_size;
954 channel->tracefile_count = tracefile_count;
955 channel->monitor = monitor;
956 channel->live_timer_interval = live_timer_interval;
957 pthread_mutex_init(&channel->lock, NULL);
958 pthread_mutex_init(&channel->timer_lock, NULL);
959
960 switch (output) {
961 case LTTNG_EVENT_SPLICE:
962 channel->output = CONSUMER_CHANNEL_SPLICE;
963 break;
964 case LTTNG_EVENT_MMAP:
965 channel->output = CONSUMER_CHANNEL_MMAP;
966 break;
967 default:
968 assert(0);
969 free(channel);
970 channel = NULL;
971 goto end;
972 }
973
974 /*
975 * In monitor mode, the streams associated with the channel will be put in
976 * a special list ONLY owned by this channel. So, the refcount is set to 1
977 * here meaning that the channel itself has streams that are referenced.
978 *
979 * On a channel deletion, once the channel is no longer visible, the
980 * refcount is decremented and checked for a zero value to delete it. With
981 * streams in no monitor mode, it will now be safe to destroy the channel.
982 */
983 if (!channel->monitor) {
984 channel->refcount = 1;
985 }
986
987 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
988 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
989
990 strncpy(channel->name, name, sizeof(channel->name));
991 channel->name[sizeof(channel->name) - 1] = '\0';
992
993 lttng_ht_node_init_u64(&channel->node, channel->key);
994
995 channel->wait_fd = -1;
996
997 CDS_INIT_LIST_HEAD(&channel->streams.head);
998
999 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1000
1001 end:
1002 return channel;
1003 }
1004
1005 /*
1006 * Add a channel to the global list protected by a mutex.
1007 *
1008 * Always return 0 indicating success.
1009 */
1010 int consumer_add_channel(struct lttng_consumer_channel *channel,
1011 struct lttng_consumer_local_data *ctx)
1012 {
1013 pthread_mutex_lock(&consumer_data.lock);
1014 pthread_mutex_lock(&channel->lock);
1015 pthread_mutex_lock(&channel->timer_lock);
1016
1017 /*
1018 * This gives us a guarantee that the channel we are about to add to the
1019 * channel hash table will be unique. See this function comment on the why
1020 * we need to steel the channel key at this stage.
1021 */
1022 steal_channel_key(channel->key);
1023
1024 rcu_read_lock();
1025 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1026 rcu_read_unlock();
1027
1028 pthread_mutex_unlock(&channel->timer_lock);
1029 pthread_mutex_unlock(&channel->lock);
1030 pthread_mutex_unlock(&consumer_data.lock);
1031
1032 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1033 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1034 }
1035
1036 return 0;
1037 }
1038
1039 /*
1040 * Allocate the pollfd structure and the local view of the out fds to avoid
1041 * doing a lookup in the linked list and concurrency issues when writing is
1042 * needed. Called with consumer_data.lock held.
1043 *
1044 * Returns the number of fds in the structures.
1045 */
1046 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1047 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1048 struct lttng_ht *ht)
1049 {
1050 int i = 0;
1051 struct lttng_ht_iter iter;
1052 struct lttng_consumer_stream *stream;
1053
1054 assert(ctx);
1055 assert(ht);
1056 assert(pollfd);
1057 assert(local_stream);
1058
1059 DBG("Updating poll fd array");
1060 rcu_read_lock();
1061 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1062 /*
1063 * Only active streams with an active end point can be added to the
1064 * poll set and local stream storage of the thread.
1065 *
1066 * There is a potential race here for endpoint_status to be updated
1067 * just after the check. However, this is OK since the stream(s) will
1068 * be deleted once the thread is notified that the end point state has
1069 * changed where this function will be called back again.
1070 */
1071 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1072 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1073 continue;
1074 }
1075 /*
1076 * This clobbers way too much the debug output. Uncomment that if you
1077 * need it for debugging purposes.
1078 *
1079 * DBG("Active FD %d", stream->wait_fd);
1080 */
1081 (*pollfd)[i].fd = stream->wait_fd;
1082 (*pollfd)[i].events = POLLIN | POLLPRI;
1083 local_stream[i] = stream;
1084 i++;
1085 }
1086 rcu_read_unlock();
1087
1088 /*
1089 * Insert the consumer_data_pipe at the end of the array and don't
1090 * increment i so nb_fd is the number of real FD.
1091 */
1092 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1093 (*pollfd)[i].events = POLLIN | POLLPRI;
1094 return i;
1095 }
1096
1097 /*
1098 * Poll on the should_quit pipe and the command socket return -1 on error and
1099 * should exit, 0 if data is available on the command socket
1100 */
1101 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1102 {
1103 int num_rdy;
1104
1105 restart:
1106 num_rdy = poll(consumer_sockpoll, 2, -1);
1107 if (num_rdy == -1) {
1108 /*
1109 * Restart interrupted system call.
1110 */
1111 if (errno == EINTR) {
1112 goto restart;
1113 }
1114 PERROR("Poll error");
1115 goto exit;
1116 }
1117 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1118 DBG("consumer_should_quit wake up");
1119 goto exit;
1120 }
1121 return 0;
1122
1123 exit:
1124 return -1;
1125 }
1126
1127 /*
1128 * Set the error socket.
1129 */
1130 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1131 int sock)
1132 {
1133 ctx->consumer_error_socket = sock;
1134 }
1135
1136 /*
1137 * Set the command socket path.
1138 */
1139 void lttng_consumer_set_command_sock_path(
1140 struct lttng_consumer_local_data *ctx, char *sock)
1141 {
1142 ctx->consumer_command_sock_path = sock;
1143 }
1144
1145 /*
1146 * Send return code to the session daemon.
1147 * If the socket is not defined, we return 0, it is not a fatal error
1148 */
1149 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1150 {
1151 if (ctx->consumer_error_socket > 0) {
1152 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1153 sizeof(enum lttcomm_sessiond_command));
1154 }
1155
1156 return 0;
1157 }
1158
1159 /*
1160 * Close all the tracefiles and stream fds and MUST be called when all
1161 * instances are destroyed i.e. when all threads were joined and are ended.
1162 */
1163 void lttng_consumer_cleanup(void)
1164 {
1165 struct lttng_ht_iter iter;
1166 struct lttng_consumer_channel *channel;
1167
1168 rcu_read_lock();
1169
1170 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1171 node.node) {
1172 consumer_del_channel(channel);
1173 }
1174
1175 rcu_read_unlock();
1176
1177 lttng_ht_destroy(consumer_data.channel_ht);
1178
1179 cleanup_relayd_ht();
1180
1181 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1182
1183 /*
1184 * This HT contains streams that are freed by either the metadata thread or
1185 * the data thread so we do *nothing* on the hash table and simply destroy
1186 * it.
1187 */
1188 lttng_ht_destroy(consumer_data.stream_list_ht);
1189 }
1190
1191 /*
1192 * Called from signal handler.
1193 */
1194 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1195 {
1196 ssize_t ret;
1197
1198 consumer_quit = 1;
1199 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1200 if (ret < 1) {
1201 PERROR("write consumer quit");
1202 }
1203
1204 DBG("Consumer flag that it should quit");
1205 }
1206
1207 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1208 off_t orig_offset)
1209 {
1210 int outfd = stream->out_fd;
1211
1212 /*
1213 * This does a blocking write-and-wait on any page that belongs to the
1214 * subbuffer prior to the one we just wrote.
1215 * Don't care about error values, as these are just hints and ways to
1216 * limit the amount of page cache used.
1217 */
1218 if (orig_offset < stream->max_sb_size) {
1219 return;
1220 }
1221 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1222 stream->max_sb_size,
1223 SYNC_FILE_RANGE_WAIT_BEFORE
1224 | SYNC_FILE_RANGE_WRITE
1225 | SYNC_FILE_RANGE_WAIT_AFTER);
1226 /*
1227 * Give hints to the kernel about how we access the file:
1228 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1229 * we write it.
1230 *
1231 * We need to call fadvise again after the file grows because the
1232 * kernel does not seem to apply fadvise to non-existing parts of the
1233 * file.
1234 *
1235 * Call fadvise _after_ having waited for the page writeback to
1236 * complete because the dirty page writeback semantic is not well
1237 * defined. So it can be expected to lead to lower throughput in
1238 * streaming.
1239 */
1240 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1241 stream->max_sb_size, POSIX_FADV_DONTNEED);
1242 }
1243
1244 /*
1245 * Initialise the necessary environnement :
1246 * - create a new context
1247 * - create the poll_pipe
1248 * - create the should_quit pipe (for signal handler)
1249 * - create the thread pipe (for splice)
1250 *
1251 * Takes a function pointer as argument, this function is called when data is
1252 * available on a buffer. This function is responsible to do the
1253 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1254 * buffer configuration and then kernctl_put_next_subbuf at the end.
1255 *
1256 * Returns a pointer to the new context or NULL on error.
1257 */
1258 struct lttng_consumer_local_data *lttng_consumer_create(
1259 enum lttng_consumer_type type,
1260 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1261 struct lttng_consumer_local_data *ctx),
1262 int (*recv_channel)(struct lttng_consumer_channel *channel),
1263 int (*recv_stream)(struct lttng_consumer_stream *stream),
1264 int (*update_stream)(uint64_t stream_key, uint32_t state))
1265 {
1266 int ret;
1267 struct lttng_consumer_local_data *ctx;
1268
1269 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1270 consumer_data.type == type);
1271 consumer_data.type = type;
1272
1273 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1274 if (ctx == NULL) {
1275 PERROR("allocating context");
1276 goto error;
1277 }
1278
1279 ctx->consumer_error_socket = -1;
1280 ctx->consumer_metadata_socket = -1;
1281 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1282 /* assign the callbacks */
1283 ctx->on_buffer_ready = buffer_ready;
1284 ctx->on_recv_channel = recv_channel;
1285 ctx->on_recv_stream = recv_stream;
1286 ctx->on_update_stream = update_stream;
1287
1288 ctx->consumer_data_pipe = lttng_pipe_open(0);
1289 if (!ctx->consumer_data_pipe) {
1290 goto error_poll_pipe;
1291 }
1292
1293 ret = pipe(ctx->consumer_should_quit);
1294 if (ret < 0) {
1295 PERROR("Error creating recv pipe");
1296 goto error_quit_pipe;
1297 }
1298
1299 ret = pipe(ctx->consumer_thread_pipe);
1300 if (ret < 0) {
1301 PERROR("Error creating thread pipe");
1302 goto error_thread_pipe;
1303 }
1304
1305 ret = pipe(ctx->consumer_channel_pipe);
1306 if (ret < 0) {
1307 PERROR("Error creating channel pipe");
1308 goto error_channel_pipe;
1309 }
1310
1311 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1312 if (!ctx->consumer_metadata_pipe) {
1313 goto error_metadata_pipe;
1314 }
1315
1316 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1317 if (ret < 0) {
1318 goto error_splice_pipe;
1319 }
1320
1321 return ctx;
1322
1323 error_splice_pipe:
1324 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1325 error_metadata_pipe:
1326 utils_close_pipe(ctx->consumer_channel_pipe);
1327 error_channel_pipe:
1328 utils_close_pipe(ctx->consumer_thread_pipe);
1329 error_thread_pipe:
1330 utils_close_pipe(ctx->consumer_should_quit);
1331 error_quit_pipe:
1332 lttng_pipe_destroy(ctx->consumer_data_pipe);
1333 error_poll_pipe:
1334 free(ctx);
1335 error:
1336 return NULL;
1337 }
1338
1339 /*
1340 * Iterate over all streams of the hashtable and free them properly.
1341 */
1342 static void destroy_data_stream_ht(struct lttng_ht *ht)
1343 {
1344 struct lttng_ht_iter iter;
1345 struct lttng_consumer_stream *stream;
1346
1347 if (ht == NULL) {
1348 return;
1349 }
1350
1351 rcu_read_lock();
1352 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1353 /*
1354 * Ignore return value since we are currently cleaning up so any error
1355 * can't be handled.
1356 */
1357 (void) consumer_del_stream(stream, ht);
1358 }
1359 rcu_read_unlock();
1360
1361 lttng_ht_destroy(ht);
1362 }
1363
1364 /*
1365 * Iterate over all streams of the metadata hashtable and free them
1366 * properly.
1367 */
1368 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1369 {
1370 struct lttng_ht_iter iter;
1371 struct lttng_consumer_stream *stream;
1372
1373 if (ht == NULL) {
1374 return;
1375 }
1376
1377 rcu_read_lock();
1378 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1379 /*
1380 * Ignore return value since we are currently cleaning up so any error
1381 * can't be handled.
1382 */
1383 (void) consumer_del_metadata_stream(stream, ht);
1384 }
1385 rcu_read_unlock();
1386
1387 lttng_ht_destroy(ht);
1388 }
1389
1390 /*
1391 * Close all fds associated with the instance and free the context.
1392 */
1393 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1394 {
1395 int ret;
1396
1397 DBG("Consumer destroying it. Closing everything.");
1398
1399 destroy_data_stream_ht(data_ht);
1400 destroy_metadata_stream_ht(metadata_ht);
1401
1402 ret = close(ctx->consumer_error_socket);
1403 if (ret) {
1404 PERROR("close");
1405 }
1406 ret = close(ctx->consumer_metadata_socket);
1407 if (ret) {
1408 PERROR("close");
1409 }
1410 utils_close_pipe(ctx->consumer_thread_pipe);
1411 utils_close_pipe(ctx->consumer_channel_pipe);
1412 lttng_pipe_destroy(ctx->consumer_data_pipe);
1413 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1414 utils_close_pipe(ctx->consumer_should_quit);
1415 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1416
1417 unlink(ctx->consumer_command_sock_path);
1418 free(ctx);
1419 }
1420
1421 /*
1422 * Write the metadata stream id on the specified file descriptor.
1423 */
1424 static int write_relayd_metadata_id(int fd,
1425 struct lttng_consumer_stream *stream,
1426 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1427 {
1428 ssize_t ret;
1429 struct lttcomm_relayd_metadata_payload hdr;
1430
1431 hdr.stream_id = htobe64(stream->relayd_stream_id);
1432 hdr.padding_size = htobe32(padding);
1433 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1434 if (ret < sizeof(hdr)) {
1435 /*
1436 * This error means that the fd's end is closed so ignore the perror
1437 * not to clubber the error output since this can happen in a normal
1438 * code path.
1439 */
1440 if (errno != EPIPE) {
1441 PERROR("write metadata stream id");
1442 }
1443 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1444 /*
1445 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1446 * handle writting the missing part so report that as an error and
1447 * don't lie to the caller.
1448 */
1449 ret = -1;
1450 goto end;
1451 }
1452 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1453 stream->relayd_stream_id, padding);
1454
1455 end:
1456 return (int) ret;
1457 }
1458
1459 /*
1460 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1461 * core function for writing trace buffers to either the local filesystem or
1462 * the network.
1463 *
1464 * It must be called with the stream lock held.
1465 *
1466 * Careful review MUST be put if any changes occur!
1467 *
1468 * Returns the number of bytes written
1469 */
1470 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1471 struct lttng_consumer_local_data *ctx,
1472 struct lttng_consumer_stream *stream, unsigned long len,
1473 unsigned long padding,
1474 struct ctf_packet_index *index)
1475 {
1476 unsigned long mmap_offset;
1477 void *mmap_base;
1478 ssize_t ret = 0;
1479 off_t orig_offset = stream->out_fd_offset;
1480 /* Default is on the disk */
1481 int outfd = stream->out_fd;
1482 struct consumer_relayd_sock_pair *relayd = NULL;
1483 unsigned int relayd_hang_up = 0;
1484
1485 /* RCU lock for the relayd pointer */
1486 rcu_read_lock();
1487
1488 /* Flag that the current stream if set for network streaming. */
1489 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1490 relayd = consumer_find_relayd(stream->net_seq_idx);
1491 if (relayd == NULL) {
1492 ret = -EPIPE;
1493 goto end;
1494 }
1495 }
1496
1497 /* get the offset inside the fd to mmap */
1498 switch (consumer_data.type) {
1499 case LTTNG_CONSUMER_KERNEL:
1500 mmap_base = stream->mmap_base;
1501 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1502 if (ret < 0) {
1503 ret = -errno;
1504 PERROR("tracer ctl get_mmap_read_offset");
1505 goto end;
1506 }
1507 break;
1508 case LTTNG_CONSUMER32_UST:
1509 case LTTNG_CONSUMER64_UST:
1510 mmap_base = lttng_ustctl_get_mmap_base(stream);
1511 if (!mmap_base) {
1512 ERR("read mmap get mmap base for stream %s", stream->name);
1513 ret = -EPERM;
1514 goto end;
1515 }
1516 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1517 if (ret != 0) {
1518 PERROR("tracer ctl get_mmap_read_offset");
1519 ret = -EINVAL;
1520 goto end;
1521 }
1522 break;
1523 default:
1524 ERR("Unknown consumer_data type");
1525 assert(0);
1526 }
1527
1528 /* Handle stream on the relayd if the output is on the network */
1529 if (relayd) {
1530 unsigned long netlen = len;
1531
1532 /*
1533 * Lock the control socket for the complete duration of the function
1534 * since from this point on we will use the socket.
1535 */
1536 if (stream->metadata_flag) {
1537 /* Metadata requires the control socket. */
1538 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1539 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1540 }
1541
1542 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1543 if (ret < 0) {
1544 relayd_hang_up = 1;
1545 goto write_error;
1546 }
1547 /* Use the returned socket. */
1548 outfd = ret;
1549
1550 /* Write metadata stream id before payload */
1551 if (stream->metadata_flag) {
1552 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1553 if (ret < 0) {
1554 relayd_hang_up = 1;
1555 goto write_error;
1556 }
1557 }
1558 } else {
1559 /* No streaming, we have to set the len with the full padding */
1560 len += padding;
1561
1562 /*
1563 * Check if we need to change the tracefile before writing the packet.
1564 */
1565 if (stream->chan->tracefile_size > 0 &&
1566 (stream->tracefile_size_current + len) >
1567 stream->chan->tracefile_size) {
1568 ret = utils_rotate_stream_file(stream->chan->pathname,
1569 stream->name, stream->chan->tracefile_size,
1570 stream->chan->tracefile_count, stream->uid, stream->gid,
1571 stream->out_fd, &(stream->tracefile_count_current),
1572 &stream->out_fd);
1573 if (ret < 0) {
1574 ERR("Rotating output file");
1575 goto end;
1576 }
1577 outfd = stream->out_fd;
1578
1579 if (stream->index_fd >= 0) {
1580 ret = index_create_file(stream->chan->pathname,
1581 stream->name, stream->uid, stream->gid,
1582 stream->chan->tracefile_size,
1583 stream->tracefile_count_current);
1584 if (ret < 0) {
1585 goto end;
1586 }
1587 stream->index_fd = ret;
1588 }
1589
1590 /* Reset current size because we just perform a rotation. */
1591 stream->tracefile_size_current = 0;
1592 stream->out_fd_offset = 0;
1593 orig_offset = 0;
1594 }
1595 stream->tracefile_size_current += len;
1596 if (index) {
1597 index->offset = htobe64(stream->out_fd_offset);
1598 }
1599 }
1600
1601 /*
1602 * This call guarantee that len or less is returned. It's impossible to
1603 * receive a ret value that is bigger than len.
1604 */
1605 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1606 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1607 if (ret < 0 || ((size_t) ret != len)) {
1608 /*
1609 * Report error to caller if nothing was written else at least send the
1610 * amount written.
1611 */
1612 if (ret < 0) {
1613 ret = -errno;
1614 }
1615 relayd_hang_up = 1;
1616
1617 /* Socket operation failed. We consider the relayd dead */
1618 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1619 /*
1620 * This is possible if the fd is closed on the other side
1621 * (outfd) or any write problem. It can be verbose a bit for a
1622 * normal execution if for instance the relayd is stopped
1623 * abruptly. This can happen so set this to a DBG statement.
1624 */
1625 DBG("Consumer mmap write detected relayd hang up");
1626 } else {
1627 /* Unhandled error, print it and stop function right now. */
1628 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1629 }
1630 goto write_error;
1631 }
1632 stream->output_written += ret;
1633
1634 /* This call is useless on a socket so better save a syscall. */
1635 if (!relayd) {
1636 /* This won't block, but will start writeout asynchronously */
1637 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1638 SYNC_FILE_RANGE_WRITE);
1639 stream->out_fd_offset += len;
1640 }
1641 lttng_consumer_sync_trace_file(stream, orig_offset);
1642
1643 write_error:
1644 /*
1645 * This is a special case that the relayd has closed its socket. Let's
1646 * cleanup the relayd object and all associated streams.
1647 */
1648 if (relayd && relayd_hang_up) {
1649 cleanup_relayd(relayd, ctx);
1650 }
1651
1652 end:
1653 /* Unlock only if ctrl socket used */
1654 if (relayd && stream->metadata_flag) {
1655 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1656 }
1657
1658 rcu_read_unlock();
1659 return ret;
1660 }
1661
1662 /*
1663 * Splice the data from the ring buffer to the tracefile.
1664 *
1665 * It must be called with the stream lock held.
1666 *
1667 * Returns the number of bytes spliced.
1668 */
1669 ssize_t lttng_consumer_on_read_subbuffer_splice(
1670 struct lttng_consumer_local_data *ctx,
1671 struct lttng_consumer_stream *stream, unsigned long len,
1672 unsigned long padding,
1673 struct ctf_packet_index *index)
1674 {
1675 ssize_t ret = 0, written = 0, ret_splice = 0;
1676 loff_t offset = 0;
1677 off_t orig_offset = stream->out_fd_offset;
1678 int fd = stream->wait_fd;
1679 /* Default is on the disk */
1680 int outfd = stream->out_fd;
1681 struct consumer_relayd_sock_pair *relayd = NULL;
1682 int *splice_pipe;
1683 unsigned int relayd_hang_up = 0;
1684
1685 switch (consumer_data.type) {
1686 case LTTNG_CONSUMER_KERNEL:
1687 break;
1688 case LTTNG_CONSUMER32_UST:
1689 case LTTNG_CONSUMER64_UST:
1690 /* Not supported for user space tracing */
1691 return -ENOSYS;
1692 default:
1693 ERR("Unknown consumer_data type");
1694 assert(0);
1695 }
1696
1697 /* RCU lock for the relayd pointer */
1698 rcu_read_lock();
1699
1700 /* Flag that the current stream if set for network streaming. */
1701 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1702 relayd = consumer_find_relayd(stream->net_seq_idx);
1703 if (relayd == NULL) {
1704 written = -ret;
1705 goto end;
1706 }
1707 }
1708
1709 /*
1710 * Choose right pipe for splice. Metadata and trace data are handled by
1711 * different threads hence the use of two pipes in order not to race or
1712 * corrupt the written data.
1713 */
1714 if (stream->metadata_flag) {
1715 splice_pipe = ctx->consumer_splice_metadata_pipe;
1716 } else {
1717 splice_pipe = ctx->consumer_thread_pipe;
1718 }
1719
1720 /* Write metadata stream id before payload */
1721 if (relayd) {
1722 unsigned long total_len = len;
1723
1724 if (stream->metadata_flag) {
1725 /*
1726 * Lock the control socket for the complete duration of the function
1727 * since from this point on we will use the socket.
1728 */
1729 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1730
1731 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1732 padding);
1733 if (ret < 0) {
1734 written = ret;
1735 relayd_hang_up = 1;
1736 goto write_error;
1737 }
1738
1739 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1740 }
1741
1742 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1743 if (ret < 0) {
1744 written = ret;
1745 relayd_hang_up = 1;
1746 goto write_error;
1747 }
1748 /* Use the returned socket. */
1749 outfd = ret;
1750 } else {
1751 /* No streaming, we have to set the len with the full padding */
1752 len += padding;
1753
1754 /*
1755 * Check if we need to change the tracefile before writing the packet.
1756 */
1757 if (stream->chan->tracefile_size > 0 &&
1758 (stream->tracefile_size_current + len) >
1759 stream->chan->tracefile_size) {
1760 ret = utils_rotate_stream_file(stream->chan->pathname,
1761 stream->name, stream->chan->tracefile_size,
1762 stream->chan->tracefile_count, stream->uid, stream->gid,
1763 stream->out_fd, &(stream->tracefile_count_current),
1764 &stream->out_fd);
1765 if (ret < 0) {
1766 written = ret;
1767 ERR("Rotating output file");
1768 goto end;
1769 }
1770 outfd = stream->out_fd;
1771
1772 if (stream->index_fd >= 0) {
1773 ret = index_create_file(stream->chan->pathname,
1774 stream->name, stream->uid, stream->gid,
1775 stream->chan->tracefile_size,
1776 stream->tracefile_count_current);
1777 if (ret < 0) {
1778 written = ret;
1779 goto end;
1780 }
1781 stream->index_fd = ret;
1782 }
1783
1784 /* Reset current size because we just perform a rotation. */
1785 stream->tracefile_size_current = 0;
1786 stream->out_fd_offset = 0;
1787 orig_offset = 0;
1788 }
1789 stream->tracefile_size_current += len;
1790 index->offset = htobe64(stream->out_fd_offset);
1791 }
1792
1793 while (len > 0) {
1794 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1795 (unsigned long)offset, len, fd, splice_pipe[1]);
1796 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1797 SPLICE_F_MOVE | SPLICE_F_MORE);
1798 DBG("splice chan to pipe, ret %zd", ret_splice);
1799 if (ret_splice < 0) {
1800 ret = errno;
1801 written = -ret;
1802 PERROR("Error in relay splice");
1803 goto splice_error;
1804 }
1805
1806 /* Handle stream on the relayd if the output is on the network */
1807 if (relayd && stream->metadata_flag) {
1808 size_t metadata_payload_size =
1809 sizeof(struct lttcomm_relayd_metadata_payload);
1810
1811 /* Update counter to fit the spliced data */
1812 ret_splice += metadata_payload_size;
1813 len += metadata_payload_size;
1814 /*
1815 * We do this so the return value can match the len passed as
1816 * argument to this function.
1817 */
1818 written -= metadata_payload_size;
1819 }
1820
1821 /* Splice data out */
1822 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1823 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1824 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1825 if (ret_splice < 0) {
1826 ret = errno;
1827 written = -ret;
1828 relayd_hang_up = 1;
1829 goto write_error;
1830 } else if (ret_splice > len) {
1831 /*
1832 * We don't expect this code path to be executed but you never know
1833 * so this is an extra protection agains a buggy splice().
1834 */
1835 ret = errno;
1836 written += ret_splice;
1837 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1838 len);
1839 goto splice_error;
1840 } else {
1841 /* All good, update current len and continue. */
1842 len -= ret_splice;
1843 }
1844
1845 /* This call is useless on a socket so better save a syscall. */
1846 if (!relayd) {
1847 /* This won't block, but will start writeout asynchronously */
1848 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1849 SYNC_FILE_RANGE_WRITE);
1850 stream->out_fd_offset += ret_splice;
1851 }
1852 stream->output_written += ret_splice;
1853 written += ret_splice;
1854 }
1855 lttng_consumer_sync_trace_file(stream, orig_offset);
1856 goto end;
1857
1858 write_error:
1859 /*
1860 * This is a special case that the relayd has closed its socket. Let's
1861 * cleanup the relayd object and all associated streams.
1862 */
1863 if (relayd && relayd_hang_up) {
1864 cleanup_relayd(relayd, ctx);
1865 /* Skip splice error so the consumer does not fail */
1866 goto end;
1867 }
1868
1869 splice_error:
1870 /* send the appropriate error description to sessiond */
1871 switch (ret) {
1872 case EINVAL:
1873 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1874 break;
1875 case ENOMEM:
1876 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1877 break;
1878 case ESPIPE:
1879 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1880 break;
1881 }
1882
1883 end:
1884 if (relayd && stream->metadata_flag) {
1885 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1886 }
1887
1888 rcu_read_unlock();
1889 return written;
1890 }
1891
1892 /*
1893 * Take a snapshot for a specific fd
1894 *
1895 * Returns 0 on success, < 0 on error
1896 */
1897 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1898 {
1899 switch (consumer_data.type) {
1900 case LTTNG_CONSUMER_KERNEL:
1901 return lttng_kconsumer_take_snapshot(stream);
1902 case LTTNG_CONSUMER32_UST:
1903 case LTTNG_CONSUMER64_UST:
1904 return lttng_ustconsumer_take_snapshot(stream);
1905 default:
1906 ERR("Unknown consumer_data type");
1907 assert(0);
1908 return -ENOSYS;
1909 }
1910 }
1911
1912 /*
1913 * Get the produced position
1914 *
1915 * Returns 0 on success, < 0 on error
1916 */
1917 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1918 unsigned long *pos)
1919 {
1920 switch (consumer_data.type) {
1921 case LTTNG_CONSUMER_KERNEL:
1922 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1923 case LTTNG_CONSUMER32_UST:
1924 case LTTNG_CONSUMER64_UST:
1925 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1926 default:
1927 ERR("Unknown consumer_data type");
1928 assert(0);
1929 return -ENOSYS;
1930 }
1931 }
1932
1933 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1934 int sock, struct pollfd *consumer_sockpoll)
1935 {
1936 switch (consumer_data.type) {
1937 case LTTNG_CONSUMER_KERNEL:
1938 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1939 case LTTNG_CONSUMER32_UST:
1940 case LTTNG_CONSUMER64_UST:
1941 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1942 default:
1943 ERR("Unknown consumer_data type");
1944 assert(0);
1945 return -ENOSYS;
1946 }
1947 }
1948
1949 void lttng_consumer_close_all_metadata(void)
1950 {
1951 switch (consumer_data.type) {
1952 case LTTNG_CONSUMER_KERNEL:
1953 /*
1954 * The Kernel consumer has a different metadata scheme so we don't
1955 * close anything because the stream will be closed by the session
1956 * daemon.
1957 */
1958 break;
1959 case LTTNG_CONSUMER32_UST:
1960 case LTTNG_CONSUMER64_UST:
1961 /*
1962 * Close all metadata streams. The metadata hash table is passed and
1963 * this call iterates over it by closing all wakeup fd. This is safe
1964 * because at this point we are sure that the metadata producer is
1965 * either dead or blocked.
1966 */
1967 lttng_ustconsumer_close_all_metadata(metadata_ht);
1968 break;
1969 default:
1970 ERR("Unknown consumer_data type");
1971 assert(0);
1972 }
1973 }
1974
1975 /*
1976 * Clean up a metadata stream and free its memory.
1977 */
1978 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1979 struct lttng_ht *ht)
1980 {
1981 struct lttng_consumer_channel *free_chan = NULL;
1982
1983 assert(stream);
1984 /*
1985 * This call should NEVER receive regular stream. It must always be
1986 * metadata stream and this is crucial for data structure synchronization.
1987 */
1988 assert(stream->metadata_flag);
1989
1990 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1991
1992 pthread_mutex_lock(&consumer_data.lock);
1993 pthread_mutex_lock(&stream->chan->lock);
1994 pthread_mutex_lock(&stream->lock);
1995
1996 /* Remove any reference to that stream. */
1997 consumer_stream_delete(stream, ht);
1998
1999 /* Close down everything including the relayd if one. */
2000 consumer_stream_close(stream);
2001 /* Destroy tracer buffers of the stream. */
2002 consumer_stream_destroy_buffers(stream);
2003
2004 /* Atomically decrement channel refcount since other threads can use it. */
2005 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2006 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2007 /* Go for channel deletion! */
2008 free_chan = stream->chan;
2009 }
2010
2011 /*
2012 * Nullify the stream reference so it is not used after deletion. The
2013 * channel lock MUST be acquired before being able to check for a NULL
2014 * pointer value.
2015 */
2016 stream->chan->metadata_stream = NULL;
2017
2018 pthread_mutex_unlock(&stream->lock);
2019 pthread_mutex_unlock(&stream->chan->lock);
2020 pthread_mutex_unlock(&consumer_data.lock);
2021
2022 if (free_chan) {
2023 consumer_del_channel(free_chan);
2024 }
2025
2026 consumer_stream_free(stream);
2027 }
2028
2029 /*
2030 * Action done with the metadata stream when adding it to the consumer internal
2031 * data structures to handle it.
2032 */
2033 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2034 {
2035 struct lttng_ht *ht = metadata_ht;
2036 int ret = 0;
2037 struct lttng_ht_iter iter;
2038 struct lttng_ht_node_u64 *node;
2039
2040 assert(stream);
2041 assert(ht);
2042
2043 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2044
2045 pthread_mutex_lock(&consumer_data.lock);
2046 pthread_mutex_lock(&stream->chan->lock);
2047 pthread_mutex_lock(&stream->chan->timer_lock);
2048 pthread_mutex_lock(&stream->lock);
2049
2050 /*
2051 * From here, refcounts are updated so be _careful_ when returning an error
2052 * after this point.
2053 */
2054
2055 rcu_read_lock();
2056
2057 /*
2058 * Lookup the stream just to make sure it does not exist in our internal
2059 * state. This should NEVER happen.
2060 */
2061 lttng_ht_lookup(ht, &stream->key, &iter);
2062 node = lttng_ht_iter_get_node_u64(&iter);
2063 assert(!node);
2064
2065 /*
2066 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2067 * in terms of destroying the associated channel, because the action that
2068 * causes the count to become 0 also causes a stream to be added. The
2069 * channel deletion will thus be triggered by the following removal of this
2070 * stream.
2071 */
2072 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2073 /* Increment refcount before decrementing nb_init_stream_left */
2074 cmm_smp_wmb();
2075 uatomic_dec(&stream->chan->nb_init_stream_left);
2076 }
2077
2078 lttng_ht_add_unique_u64(ht, &stream->node);
2079
2080 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2081 &stream->node_channel_id);
2082
2083 /*
2084 * Add stream to the stream_list_ht of the consumer data. No need to steal
2085 * the key since the HT does not use it and we allow to add redundant keys
2086 * into this table.
2087 */
2088 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2089
2090 rcu_read_unlock();
2091
2092 pthread_mutex_unlock(&stream->lock);
2093 pthread_mutex_unlock(&stream->chan->lock);
2094 pthread_mutex_unlock(&stream->chan->timer_lock);
2095 pthread_mutex_unlock(&consumer_data.lock);
2096 return ret;
2097 }
2098
2099 /*
2100 * Delete data stream that are flagged for deletion (endpoint_status).
2101 */
2102 static void validate_endpoint_status_data_stream(void)
2103 {
2104 struct lttng_ht_iter iter;
2105 struct lttng_consumer_stream *stream;
2106
2107 DBG("Consumer delete flagged data stream");
2108
2109 rcu_read_lock();
2110 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2111 /* Validate delete flag of the stream */
2112 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2113 continue;
2114 }
2115 /* Delete it right now */
2116 consumer_del_stream(stream, data_ht);
2117 }
2118 rcu_read_unlock();
2119 }
2120
2121 /*
2122 * Delete metadata stream that are flagged for deletion (endpoint_status).
2123 */
2124 static void validate_endpoint_status_metadata_stream(
2125 struct lttng_poll_event *pollset)
2126 {
2127 struct lttng_ht_iter iter;
2128 struct lttng_consumer_stream *stream;
2129
2130 DBG("Consumer delete flagged metadata stream");
2131
2132 assert(pollset);
2133
2134 rcu_read_lock();
2135 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2136 /* Validate delete flag of the stream */
2137 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2138 continue;
2139 }
2140 /*
2141 * Remove from pollset so the metadata thread can continue without
2142 * blocking on a deleted stream.
2143 */
2144 lttng_poll_del(pollset, stream->wait_fd);
2145
2146 /* Delete it right now */
2147 consumer_del_metadata_stream(stream, metadata_ht);
2148 }
2149 rcu_read_unlock();
2150 }
2151
2152 /*
2153 * Thread polls on metadata file descriptor and write them on disk or on the
2154 * network.
2155 */
2156 void *consumer_thread_metadata_poll(void *data)
2157 {
2158 int ret, i, pollfd, err = -1;
2159 uint32_t revents, nb_fd;
2160 struct lttng_consumer_stream *stream = NULL;
2161 struct lttng_ht_iter iter;
2162 struct lttng_ht_node_u64 *node;
2163 struct lttng_poll_event events;
2164 struct lttng_consumer_local_data *ctx = data;
2165 ssize_t len;
2166
2167 rcu_register_thread();
2168
2169 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2170
2171 if (testpoint(consumerd_thread_metadata)) {
2172 goto error_testpoint;
2173 }
2174
2175 health_code_update();
2176
2177 DBG("Thread metadata poll started");
2178
2179 /* Size is set to 1 for the consumer_metadata pipe */
2180 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2181 if (ret < 0) {
2182 ERR("Poll set creation failed");
2183 goto end_poll;
2184 }
2185
2186 ret = lttng_poll_add(&events,
2187 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2188 if (ret < 0) {
2189 goto end;
2190 }
2191
2192 /* Main loop */
2193 DBG("Metadata main loop started");
2194
2195 while (1) {
2196 health_code_update();
2197
2198 /* Only the metadata pipe is set */
2199 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2200 err = 0; /* All is OK */
2201 goto end;
2202 }
2203
2204 restart:
2205 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2206 health_poll_entry();
2207 ret = lttng_poll_wait(&events, -1);
2208 health_poll_exit();
2209 DBG("Metadata event catched in thread");
2210 if (ret < 0) {
2211 if (errno == EINTR) {
2212 ERR("Poll EINTR catched");
2213 goto restart;
2214 }
2215 goto error;
2216 }
2217
2218 nb_fd = ret;
2219
2220 /* From here, the event is a metadata wait fd */
2221 for (i = 0; i < nb_fd; i++) {
2222 health_code_update();
2223
2224 revents = LTTNG_POLL_GETEV(&events, i);
2225 pollfd = LTTNG_POLL_GETFD(&events, i);
2226
2227 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2228 if (revents & (LPOLLERR | LPOLLHUP )) {
2229 DBG("Metadata thread pipe hung up");
2230 /*
2231 * Remove the pipe from the poll set and continue the loop
2232 * since their might be data to consume.
2233 */
2234 lttng_poll_del(&events,
2235 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2236 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2237 continue;
2238 } else if (revents & LPOLLIN) {
2239 ssize_t pipe_len;
2240
2241 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2242 &stream, sizeof(stream));
2243 if (pipe_len < sizeof(stream)) {
2244 PERROR("read metadata stream");
2245 /*
2246 * Continue here to handle the rest of the streams.
2247 */
2248 continue;
2249 }
2250
2251 /* A NULL stream means that the state has changed. */
2252 if (stream == NULL) {
2253 /* Check for deleted streams. */
2254 validate_endpoint_status_metadata_stream(&events);
2255 goto restart;
2256 }
2257
2258 DBG("Adding metadata stream %d to poll set",
2259 stream->wait_fd);
2260
2261 /* Add metadata stream to the global poll events list */
2262 lttng_poll_add(&events, stream->wait_fd,
2263 LPOLLIN | LPOLLPRI | LPOLLHUP);
2264 }
2265
2266 /* Handle other stream */
2267 continue;
2268 }
2269
2270 rcu_read_lock();
2271 {
2272 uint64_t tmp_id = (uint64_t) pollfd;
2273
2274 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2275 }
2276 node = lttng_ht_iter_get_node_u64(&iter);
2277 assert(node);
2278
2279 stream = caa_container_of(node, struct lttng_consumer_stream,
2280 node);
2281
2282 /* Check for error event */
2283 if (revents & (LPOLLERR | LPOLLHUP)) {
2284 DBG("Metadata fd %d is hup|err.", pollfd);
2285 if (!stream->hangup_flush_done
2286 && (consumer_data.type == LTTNG_CONSUMER32_UST
2287 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2288 DBG("Attempting to flush and consume the UST buffers");
2289 lttng_ustconsumer_on_stream_hangup(stream);
2290
2291 /* We just flushed the stream now read it. */
2292 do {
2293 health_code_update();
2294
2295 len = ctx->on_buffer_ready(stream, ctx);
2296 /*
2297 * We don't check the return value here since if we get
2298 * a negative len, it means an error occured thus we
2299 * simply remove it from the poll set and free the
2300 * stream.
2301 */
2302 } while (len > 0);
2303 }
2304
2305 lttng_poll_del(&events, stream->wait_fd);
2306 /*
2307 * This call update the channel states, closes file descriptors
2308 * and securely free the stream.
2309 */
2310 consumer_del_metadata_stream(stream, metadata_ht);
2311 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2312 /* Get the data out of the metadata file descriptor */
2313 DBG("Metadata available on fd %d", pollfd);
2314 assert(stream->wait_fd == pollfd);
2315
2316 do {
2317 health_code_update();
2318
2319 len = ctx->on_buffer_ready(stream, ctx);
2320 /*
2321 * We don't check the return value here since if we get
2322 * a negative len, it means an error occured thus we
2323 * simply remove it from the poll set and free the
2324 * stream.
2325 */
2326 } while (len > 0);
2327
2328 /* It's ok to have an unavailable sub-buffer */
2329 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2330 /* Clean up stream from consumer and free it. */
2331 lttng_poll_del(&events, stream->wait_fd);
2332 consumer_del_metadata_stream(stream, metadata_ht);
2333 }
2334 }
2335
2336 /* Release RCU lock for the stream looked up */
2337 rcu_read_unlock();
2338 }
2339 }
2340
2341 /* All is OK */
2342 err = 0;
2343 error:
2344 end:
2345 DBG("Metadata poll thread exiting");
2346
2347 lttng_poll_clean(&events);
2348 end_poll:
2349 error_testpoint:
2350 if (err) {
2351 health_error();
2352 ERR("Health error occurred in %s", __func__);
2353 }
2354 health_unregister(health_consumerd);
2355 rcu_unregister_thread();
2356 return NULL;
2357 }
2358
2359 /*
2360 * This thread polls the fds in the set to consume the data and write
2361 * it to tracefile if necessary.
2362 */
2363 void *consumer_thread_data_poll(void *data)
2364 {
2365 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2366 struct pollfd *pollfd = NULL;
2367 /* local view of the streams */
2368 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2369 /* local view of consumer_data.fds_count */
2370 int nb_fd = 0;
2371 struct lttng_consumer_local_data *ctx = data;
2372 ssize_t len;
2373
2374 rcu_register_thread();
2375
2376 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2377
2378 if (testpoint(consumerd_thread_data)) {
2379 goto error_testpoint;
2380 }
2381
2382 health_code_update();
2383
2384 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2385 if (local_stream == NULL) {
2386 PERROR("local_stream malloc");
2387 goto end;
2388 }
2389
2390 while (1) {
2391 health_code_update();
2392
2393 high_prio = 0;
2394 num_hup = 0;
2395
2396 /*
2397 * the fds set has been updated, we need to update our
2398 * local array as well
2399 */
2400 pthread_mutex_lock(&consumer_data.lock);
2401 if (consumer_data.need_update) {
2402 free(pollfd);
2403 pollfd = NULL;
2404
2405 free(local_stream);
2406 local_stream = NULL;
2407
2408 /* allocate for all fds + 1 for the consumer_data_pipe */
2409 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2410 if (pollfd == NULL) {
2411 PERROR("pollfd malloc");
2412 pthread_mutex_unlock(&consumer_data.lock);
2413 goto end;
2414 }
2415
2416 /* allocate for all fds + 1 for the consumer_data_pipe */
2417 local_stream = zmalloc((consumer_data.stream_count + 1) *
2418 sizeof(struct lttng_consumer_stream *));
2419 if (local_stream == NULL) {
2420 PERROR("local_stream malloc");
2421 pthread_mutex_unlock(&consumer_data.lock);
2422 goto end;
2423 }
2424 ret = update_poll_array(ctx, &pollfd, local_stream,
2425 data_ht);
2426 if (ret < 0) {
2427 ERR("Error in allocating pollfd or local_outfds");
2428 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2429 pthread_mutex_unlock(&consumer_data.lock);
2430 goto end;
2431 }
2432 nb_fd = ret;
2433 consumer_data.need_update = 0;
2434 }
2435 pthread_mutex_unlock(&consumer_data.lock);
2436
2437 /* No FDs and consumer_quit, consumer_cleanup the thread */
2438 if (nb_fd == 0 && consumer_quit == 1) {
2439 err = 0; /* All is OK */
2440 goto end;
2441 }
2442 /* poll on the array of fds */
2443 restart:
2444 DBG("polling on %d fd", nb_fd + 1);
2445 health_poll_entry();
2446 num_rdy = poll(pollfd, nb_fd + 1, -1);
2447 health_poll_exit();
2448 DBG("poll num_rdy : %d", num_rdy);
2449 if (num_rdy == -1) {
2450 /*
2451 * Restart interrupted system call.
2452 */
2453 if (errno == EINTR) {
2454 goto restart;
2455 }
2456 PERROR("Poll error");
2457 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2458 goto end;
2459 } else if (num_rdy == 0) {
2460 DBG("Polling thread timed out");
2461 goto end;
2462 }
2463
2464 /*
2465 * If the consumer_data_pipe triggered poll go directly to the
2466 * beginning of the loop to update the array. We want to prioritize
2467 * array update over low-priority reads.
2468 */
2469 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2470 ssize_t pipe_readlen;
2471
2472 DBG("consumer_data_pipe wake up");
2473 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2474 &new_stream, sizeof(new_stream));
2475 if (pipe_readlen < sizeof(new_stream)) {
2476 PERROR("Consumer data pipe");
2477 /* Continue so we can at least handle the current stream(s). */
2478 continue;
2479 }
2480
2481 /*
2482 * If the stream is NULL, just ignore it. It's also possible that
2483 * the sessiond poll thread changed the consumer_quit state and is
2484 * waking us up to test it.
2485 */
2486 if (new_stream == NULL) {
2487 validate_endpoint_status_data_stream();
2488 continue;
2489 }
2490
2491 /* Continue to update the local streams and handle prio ones */
2492 continue;
2493 }
2494
2495 /* Take care of high priority channels first. */
2496 for (i = 0; i < nb_fd; i++) {
2497 health_code_update();
2498
2499 if (local_stream[i] == NULL) {
2500 continue;
2501 }
2502 if (pollfd[i].revents & POLLPRI) {
2503 DBG("Urgent read on fd %d", pollfd[i].fd);
2504 high_prio = 1;
2505 len = ctx->on_buffer_ready(local_stream[i], ctx);
2506 /* it's ok to have an unavailable sub-buffer */
2507 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2508 /* Clean the stream and free it. */
2509 consumer_del_stream(local_stream[i], data_ht);
2510 local_stream[i] = NULL;
2511 } else if (len > 0) {
2512 local_stream[i]->data_read = 1;
2513 }
2514 }
2515 }
2516
2517 /*
2518 * If we read high prio channel in this loop, try again
2519 * for more high prio data.
2520 */
2521 if (high_prio) {
2522 continue;
2523 }
2524
2525 /* Take care of low priority channels. */
2526 for (i = 0; i < nb_fd; i++) {
2527 health_code_update();
2528
2529 if (local_stream[i] == NULL) {
2530 continue;
2531 }
2532 if ((pollfd[i].revents & POLLIN) ||
2533 local_stream[i]->hangup_flush_done) {
2534 DBG("Normal read on fd %d", pollfd[i].fd);
2535 len = ctx->on_buffer_ready(local_stream[i], ctx);
2536 /* it's ok to have an unavailable sub-buffer */
2537 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2538 /* Clean the stream and free it. */
2539 consumer_del_stream(local_stream[i], data_ht);
2540 local_stream[i] = NULL;
2541 } else if (len > 0) {
2542 local_stream[i]->data_read = 1;
2543 }
2544 }
2545 }
2546
2547 /* Handle hangup and errors */
2548 for (i = 0; i < nb_fd; i++) {
2549 health_code_update();
2550
2551 if (local_stream[i] == NULL) {
2552 continue;
2553 }
2554 if (!local_stream[i]->hangup_flush_done
2555 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2556 && (consumer_data.type == LTTNG_CONSUMER32_UST
2557 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2558 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2559 pollfd[i].fd);
2560 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2561 /* Attempt read again, for the data we just flushed. */
2562 local_stream[i]->data_read = 1;
2563 }
2564 /*
2565 * If the poll flag is HUP/ERR/NVAL and we have
2566 * read no data in this pass, we can remove the
2567 * stream from its hash table.
2568 */
2569 if ((pollfd[i].revents & POLLHUP)) {
2570 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2571 if (!local_stream[i]->data_read) {
2572 consumer_del_stream(local_stream[i], data_ht);
2573 local_stream[i] = NULL;
2574 num_hup++;
2575 }
2576 } else if (pollfd[i].revents & POLLERR) {
2577 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2578 if (!local_stream[i]->data_read) {
2579 consumer_del_stream(local_stream[i], data_ht);
2580 local_stream[i] = NULL;
2581 num_hup++;
2582 }
2583 } else if (pollfd[i].revents & POLLNVAL) {
2584 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2585 if (!local_stream[i]->data_read) {
2586 consumer_del_stream(local_stream[i], data_ht);
2587 local_stream[i] = NULL;
2588 num_hup++;
2589 }
2590 }
2591 if (local_stream[i] != NULL) {
2592 local_stream[i]->data_read = 0;
2593 }
2594 }
2595 }
2596 /* All is OK */
2597 err = 0;
2598 end:
2599 DBG("polling thread exiting");
2600 free(pollfd);
2601 free(local_stream);
2602
2603 /*
2604 * Close the write side of the pipe so epoll_wait() in
2605 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2606 * read side of the pipe. If we close them both, epoll_wait strangely does
2607 * not return and could create a endless wait period if the pipe is the
2608 * only tracked fd in the poll set. The thread will take care of closing
2609 * the read side.
2610 */
2611 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2612
2613 error_testpoint:
2614 if (err) {
2615 health_error();
2616 ERR("Health error occurred in %s", __func__);
2617 }
2618 health_unregister(health_consumerd);
2619
2620 rcu_unregister_thread();
2621 return NULL;
2622 }
2623
2624 /*
2625 * Close wake-up end of each stream belonging to the channel. This will
2626 * allow the poll() on the stream read-side to detect when the
2627 * write-side (application) finally closes them.
2628 */
2629 static
2630 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2631 {
2632 struct lttng_ht *ht;
2633 struct lttng_consumer_stream *stream;
2634 struct lttng_ht_iter iter;
2635
2636 ht = consumer_data.stream_per_chan_id_ht;
2637
2638 rcu_read_lock();
2639 cds_lfht_for_each_entry_duplicate(ht->ht,
2640 ht->hash_fct(&channel->key, lttng_ht_seed),
2641 ht->match_fct, &channel->key,
2642 &iter.iter, stream, node_channel_id.node) {
2643 /*
2644 * Protect against teardown with mutex.
2645 */
2646 pthread_mutex_lock(&stream->lock);
2647 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2648 goto next;
2649 }
2650 switch (consumer_data.type) {
2651 case LTTNG_CONSUMER_KERNEL:
2652 break;
2653 case LTTNG_CONSUMER32_UST:
2654 case LTTNG_CONSUMER64_UST:
2655 if (stream->metadata_flag) {
2656 /* Safe and protected by the stream lock. */
2657 lttng_ustconsumer_close_metadata(stream->chan);
2658 } else {
2659 /*
2660 * Note: a mutex is taken internally within
2661 * liblttng-ust-ctl to protect timer wakeup_fd
2662 * use from concurrent close.
2663 */
2664 lttng_ustconsumer_close_stream_wakeup(stream);
2665 }
2666 break;
2667 default:
2668 ERR("Unknown consumer_data type");
2669 assert(0);
2670 }
2671 next:
2672 pthread_mutex_unlock(&stream->lock);
2673 }
2674 rcu_read_unlock();
2675 }
2676
2677 static void destroy_channel_ht(struct lttng_ht *ht)
2678 {
2679 struct lttng_ht_iter iter;
2680 struct lttng_consumer_channel *channel;
2681 int ret;
2682
2683 if (ht == NULL) {
2684 return;
2685 }
2686
2687 rcu_read_lock();
2688 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2689 ret = lttng_ht_del(ht, &iter);
2690 assert(ret != 0);
2691 }
2692 rcu_read_unlock();
2693
2694 lttng_ht_destroy(ht);
2695 }
2696
2697 /*
2698 * This thread polls the channel fds to detect when they are being
2699 * closed. It closes all related streams if the channel is detected as
2700 * closed. It is currently only used as a shim layer for UST because the
2701 * consumerd needs to keep the per-stream wakeup end of pipes open for
2702 * periodical flush.
2703 */
2704 void *consumer_thread_channel_poll(void *data)
2705 {
2706 int ret, i, pollfd, err = -1;
2707 uint32_t revents, nb_fd;
2708 struct lttng_consumer_channel *chan = NULL;
2709 struct lttng_ht_iter iter;
2710 struct lttng_ht_node_u64 *node;
2711 struct lttng_poll_event events;
2712 struct lttng_consumer_local_data *ctx = data;
2713 struct lttng_ht *channel_ht;
2714
2715 rcu_register_thread();
2716
2717 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2718
2719 if (testpoint(consumerd_thread_channel)) {
2720 goto error_testpoint;
2721 }
2722
2723 health_code_update();
2724
2725 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2726 if (!channel_ht) {
2727 /* ENOMEM at this point. Better to bail out. */
2728 goto end_ht;
2729 }
2730
2731 DBG("Thread channel poll started");
2732
2733 /* Size is set to 1 for the consumer_channel pipe */
2734 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2735 if (ret < 0) {
2736 ERR("Poll set creation failed");
2737 goto end_poll;
2738 }
2739
2740 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2741 if (ret < 0) {
2742 goto end;
2743 }
2744
2745 /* Main loop */
2746 DBG("Channel main loop started");
2747
2748 while (1) {
2749 health_code_update();
2750
2751 /* Only the channel pipe is set */
2752 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2753 err = 0; /* All is OK */
2754 goto end;
2755 }
2756
2757 restart:
2758 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2759 health_poll_entry();
2760 ret = lttng_poll_wait(&events, -1);
2761 health_poll_exit();
2762 DBG("Channel event catched in thread");
2763 if (ret < 0) {
2764 if (errno == EINTR) {
2765 ERR("Poll EINTR catched");
2766 goto restart;
2767 }
2768 goto end;
2769 }
2770
2771 nb_fd = ret;
2772
2773 /* From here, the event is a channel wait fd */
2774 for (i = 0; i < nb_fd; i++) {
2775 health_code_update();
2776
2777 revents = LTTNG_POLL_GETEV(&events, i);
2778 pollfd = LTTNG_POLL_GETFD(&events, i);
2779
2780 /* Just don't waste time if no returned events for the fd */
2781 if (!revents) {
2782 continue;
2783 }
2784 if (pollfd == ctx->consumer_channel_pipe[0]) {
2785 if (revents & (LPOLLERR | LPOLLHUP)) {
2786 DBG("Channel thread pipe hung up");
2787 /*
2788 * Remove the pipe from the poll set and continue the loop
2789 * since their might be data to consume.
2790 */
2791 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2792 continue;
2793 } else if (revents & LPOLLIN) {
2794 enum consumer_channel_action action;
2795 uint64_t key;
2796
2797 ret = read_channel_pipe(ctx, &chan, &key, &action);
2798 if (ret <= 0) {
2799 ERR("Error reading channel pipe");
2800 continue;
2801 }
2802
2803 switch (action) {
2804 case CONSUMER_CHANNEL_ADD:
2805 DBG("Adding channel %d to poll set",
2806 chan->wait_fd);
2807
2808 lttng_ht_node_init_u64(&chan->wait_fd_node,
2809 chan->wait_fd);
2810 rcu_read_lock();
2811 lttng_ht_add_unique_u64(channel_ht,
2812 &chan->wait_fd_node);
2813 rcu_read_unlock();
2814 /* Add channel to the global poll events list */
2815 lttng_poll_add(&events, chan->wait_fd,
2816 LPOLLIN | LPOLLPRI);
2817 break;
2818 case CONSUMER_CHANNEL_DEL:
2819 {
2820 /*
2821 * This command should never be called if the channel
2822 * has streams monitored by either the data or metadata
2823 * thread. The consumer only notify this thread with a
2824 * channel del. command if it receives a destroy
2825 * channel command from the session daemon that send it
2826 * if a command prior to the GET_CHANNEL failed.
2827 */
2828
2829 rcu_read_lock();
2830 chan = consumer_find_channel(key);
2831 if (!chan) {
2832 rcu_read_unlock();
2833 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2834 break;
2835 }
2836 lttng_poll_del(&events, chan->wait_fd);
2837 iter.iter.node = &chan->wait_fd_node.node;
2838 ret = lttng_ht_del(channel_ht, &iter);
2839 assert(ret == 0);
2840
2841 switch (consumer_data.type) {
2842 case LTTNG_CONSUMER_KERNEL:
2843 break;
2844 case LTTNG_CONSUMER32_UST:
2845 case LTTNG_CONSUMER64_UST:
2846 health_code_update();
2847 /* Destroy streams that might have been left in the stream list. */
2848 clean_channel_stream_list(chan);
2849 break;
2850 default:
2851 ERR("Unknown consumer_data type");
2852 assert(0);
2853 }
2854
2855 /*
2856 * Release our own refcount. Force channel deletion even if
2857 * streams were not initialized.
2858 */
2859 if (!uatomic_sub_return(&chan->refcount, 1)) {
2860 consumer_del_channel(chan);
2861 }
2862 rcu_read_unlock();
2863 goto restart;
2864 }
2865 case CONSUMER_CHANNEL_QUIT:
2866 /*
2867 * Remove the pipe from the poll set and continue the loop
2868 * since their might be data to consume.
2869 */
2870 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2871 continue;
2872 default:
2873 ERR("Unknown action");
2874 break;
2875 }
2876 }
2877
2878 /* Handle other stream */
2879 continue;
2880 }
2881
2882 rcu_read_lock();
2883 {
2884 uint64_t tmp_id = (uint64_t) pollfd;
2885
2886 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2887 }
2888 node = lttng_ht_iter_get_node_u64(&iter);
2889 assert(node);
2890
2891 chan = caa_container_of(node, struct lttng_consumer_channel,
2892 wait_fd_node);
2893
2894 /* Check for error event */
2895 if (revents & (LPOLLERR | LPOLLHUP)) {
2896 DBG("Channel fd %d is hup|err.", pollfd);
2897
2898 lttng_poll_del(&events, chan->wait_fd);
2899 ret = lttng_ht_del(channel_ht, &iter);
2900 assert(ret == 0);
2901
2902 /*
2903 * This will close the wait fd for each stream associated to
2904 * this channel AND monitored by the data/metadata thread thus
2905 * will be clean by the right thread.
2906 */
2907 consumer_close_channel_streams(chan);
2908
2909 /* Release our own refcount */
2910 if (!uatomic_sub_return(&chan->refcount, 1)
2911 && !uatomic_read(&chan->nb_init_stream_left)) {
2912 consumer_del_channel(chan);
2913 }
2914 }
2915
2916 /* Release RCU lock for the channel looked up */
2917 rcu_read_unlock();
2918 }
2919 }
2920
2921 /* All is OK */
2922 err = 0;
2923 end:
2924 lttng_poll_clean(&events);
2925 end_poll:
2926 destroy_channel_ht(channel_ht);
2927 end_ht:
2928 error_testpoint:
2929 DBG("Channel poll thread exiting");
2930 if (err) {
2931 health_error();
2932 ERR("Health error occurred in %s", __func__);
2933 }
2934 health_unregister(health_consumerd);
2935 rcu_unregister_thread();
2936 return NULL;
2937 }
2938
2939 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2940 struct pollfd *sockpoll, int client_socket)
2941 {
2942 int ret;
2943
2944 assert(ctx);
2945 assert(sockpoll);
2946
2947 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2948 ret = -1;
2949 goto error;
2950 }
2951 DBG("Metadata connection on client_socket");
2952
2953 /* Blocking call, waiting for transmission */
2954 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2955 if (ctx->consumer_metadata_socket < 0) {
2956 WARN("On accept metadata");
2957 ret = -1;
2958 goto error;
2959 }
2960 ret = 0;
2961
2962 error:
2963 return ret;
2964 }
2965
2966 /*
2967 * This thread listens on the consumerd socket and receives the file
2968 * descriptors from the session daemon.
2969 */
2970 void *consumer_thread_sessiond_poll(void *data)
2971 {
2972 int sock = -1, client_socket, ret, err = -1;
2973 /*
2974 * structure to poll for incoming data on communication socket avoids
2975 * making blocking sockets.
2976 */
2977 struct pollfd consumer_sockpoll[2];
2978 struct lttng_consumer_local_data *ctx = data;
2979
2980 rcu_register_thread();
2981
2982 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
2983
2984 if (testpoint(consumerd_thread_sessiond)) {
2985 goto error_testpoint;
2986 }
2987
2988 health_code_update();
2989
2990 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2991 unlink(ctx->consumer_command_sock_path);
2992 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2993 if (client_socket < 0) {
2994 ERR("Cannot create command socket");
2995 goto end;
2996 }
2997
2998 ret = lttcomm_listen_unix_sock(client_socket);
2999 if (ret < 0) {
3000 goto end;
3001 }
3002
3003 DBG("Sending ready command to lttng-sessiond");
3004 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3005 /* return < 0 on error, but == 0 is not fatal */
3006 if (ret < 0) {
3007 ERR("Error sending ready command to lttng-sessiond");
3008 goto end;
3009 }
3010
3011 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3012 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3013 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3014 consumer_sockpoll[1].fd = client_socket;
3015 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3016
3017 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3018 goto end;
3019 }
3020 DBG("Connection on client_socket");
3021
3022 /* Blocking call, waiting for transmission */
3023 sock = lttcomm_accept_unix_sock(client_socket);
3024 if (sock < 0) {
3025 WARN("On accept");
3026 goto end;
3027 }
3028
3029 /*
3030 * Setup metadata socket which is the second socket connection on the
3031 * command unix socket.
3032 */
3033 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3034 if (ret < 0) {
3035 goto end;
3036 }
3037
3038 /* This socket is not useful anymore. */
3039 ret = close(client_socket);
3040 if (ret < 0) {
3041 PERROR("close client_socket");
3042 }
3043 client_socket = -1;
3044
3045 /* update the polling structure to poll on the established socket */
3046 consumer_sockpoll[1].fd = sock;
3047 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3048
3049 while (1) {
3050 health_code_update();
3051
3052 health_poll_entry();
3053 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3054 health_poll_exit();
3055 if (ret < 0) {
3056 goto end;
3057 }
3058 DBG("Incoming command on sock");
3059 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3060 if (ret == -ENOENT) {
3061 DBG("Received STOP command");
3062 goto end;
3063 }
3064 if (ret <= 0) {
3065 /*
3066 * This could simply be a session daemon quitting. Don't output
3067 * ERR() here.
3068 */
3069 DBG("Communication interrupted on command socket");
3070 err = 0;
3071 goto end;
3072 }
3073 if (consumer_quit) {
3074 DBG("consumer_thread_receive_fds received quit from signal");
3075 err = 0; /* All is OK */
3076 goto end;
3077 }
3078 DBG("received command on sock");
3079 }
3080 /* All is OK */
3081 err = 0;
3082
3083 end:
3084 DBG("Consumer thread sessiond poll exiting");
3085
3086 /*
3087 * Close metadata streams since the producer is the session daemon which
3088 * just died.
3089 *
3090 * NOTE: for now, this only applies to the UST tracer.
3091 */
3092 lttng_consumer_close_all_metadata();
3093
3094 /*
3095 * when all fds have hung up, the polling thread
3096 * can exit cleanly
3097 */
3098 consumer_quit = 1;
3099
3100 /*
3101 * Notify the data poll thread to poll back again and test the
3102 * consumer_quit state that we just set so to quit gracefully.
3103 */
3104 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3105
3106 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3107
3108 notify_health_quit_pipe(health_quit_pipe);
3109
3110 /* Cleaning up possibly open sockets. */
3111 if (sock >= 0) {
3112 ret = close(sock);
3113 if (ret < 0) {
3114 PERROR("close sock sessiond poll");
3115 }
3116 }
3117 if (client_socket >= 0) {
3118 ret = close(client_socket);
3119 if (ret < 0) {
3120 PERROR("close client_socket sessiond poll");
3121 }
3122 }
3123
3124 error_testpoint:
3125 if (err) {
3126 health_error();
3127 ERR("Health error occurred in %s", __func__);
3128 }
3129 health_unregister(health_consumerd);
3130
3131 rcu_unregister_thread();
3132 return NULL;
3133 }
3134
3135 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3136 struct lttng_consumer_local_data *ctx)
3137 {
3138 ssize_t ret;
3139
3140 pthread_mutex_lock(&stream->lock);
3141 if (stream->metadata_flag) {
3142 pthread_mutex_lock(&stream->metadata_rdv_lock);
3143 }
3144
3145 switch (consumer_data.type) {
3146 case LTTNG_CONSUMER_KERNEL:
3147 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3148 break;
3149 case LTTNG_CONSUMER32_UST:
3150 case LTTNG_CONSUMER64_UST:
3151 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3152 break;
3153 default:
3154 ERR("Unknown consumer_data type");
3155 assert(0);
3156 ret = -ENOSYS;
3157 break;
3158 }
3159
3160 if (stream->metadata_flag) {
3161 pthread_cond_broadcast(&stream->metadata_rdv);
3162 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3163 }
3164 pthread_mutex_unlock(&stream->lock);
3165 return ret;
3166 }
3167
3168 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3169 {
3170 switch (consumer_data.type) {
3171 case LTTNG_CONSUMER_KERNEL:
3172 return lttng_kconsumer_on_recv_stream(stream);
3173 case LTTNG_CONSUMER32_UST:
3174 case LTTNG_CONSUMER64_UST:
3175 return lttng_ustconsumer_on_recv_stream(stream);
3176 default:
3177 ERR("Unknown consumer_data type");
3178 assert(0);
3179 return -ENOSYS;
3180 }
3181 }
3182
3183 /*
3184 * Allocate and set consumer data hash tables.
3185 */
3186 int lttng_consumer_init(void)
3187 {
3188 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3189 if (!consumer_data.channel_ht) {
3190 goto error;
3191 }
3192
3193 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3194 if (!consumer_data.relayd_ht) {
3195 goto error;
3196 }
3197
3198 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3199 if (!consumer_data.stream_list_ht) {
3200 goto error;
3201 }
3202
3203 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3204 if (!consumer_data.stream_per_chan_id_ht) {
3205 goto error;
3206 }
3207
3208 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3209 if (!data_ht) {
3210 goto error;
3211 }
3212
3213 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3214 if (!metadata_ht) {
3215 goto error;
3216 }
3217
3218 return 0;
3219
3220 error:
3221 return -1;
3222 }
3223
3224 /*
3225 * Process the ADD_RELAYD command receive by a consumer.
3226 *
3227 * This will create a relayd socket pair and add it to the relayd hash table.
3228 * The caller MUST acquire a RCU read side lock before calling it.
3229 */
3230 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3231 struct lttng_consumer_local_data *ctx, int sock,
3232 struct pollfd *consumer_sockpoll,
3233 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3234 uint64_t relayd_session_id)
3235 {
3236 int fd = -1, ret = -1, relayd_created = 0;
3237 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3238 struct consumer_relayd_sock_pair *relayd = NULL;
3239
3240 assert(ctx);
3241 assert(relayd_sock);
3242
3243 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3244
3245 /* Get relayd reference if exists. */
3246 relayd = consumer_find_relayd(net_seq_idx);
3247 if (relayd == NULL) {
3248 assert(sock_type == LTTNG_STREAM_CONTROL);
3249 /* Not found. Allocate one. */
3250 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3251 if (relayd == NULL) {
3252 ret = -ENOMEM;
3253 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3254 goto error;
3255 } else {
3256 relayd->sessiond_session_id = sessiond_id;
3257 relayd_created = 1;
3258 }
3259
3260 /*
3261 * This code path MUST continue to the consumer send status message to
3262 * we can notify the session daemon and continue our work without
3263 * killing everything.
3264 */
3265 } else {
3266 /*
3267 * relayd key should never be found for control socket.
3268 */
3269 assert(sock_type != LTTNG_STREAM_CONTROL);
3270 }
3271
3272 /* First send a status message before receiving the fds. */
3273 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3274 if (ret < 0) {
3275 /* Somehow, the session daemon is not responding anymore. */
3276 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3277 goto error_nosignal;
3278 }
3279
3280 /* Poll on consumer socket. */
3281 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3282 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3283 ret = -EINTR;
3284 goto error_nosignal;
3285 }
3286
3287 /* Get relayd socket from session daemon */
3288 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3289 if (ret != sizeof(fd)) {
3290 ret = -1;
3291 fd = -1; /* Just in case it gets set with an invalid value. */
3292
3293 /*
3294 * Failing to receive FDs might indicate a major problem such as
3295 * reaching a fd limit during the receive where the kernel returns a
3296 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3297 * don't take any chances and stop everything.
3298 *
3299 * XXX: Feature request #558 will fix that and avoid this possible
3300 * issue when reaching the fd limit.
3301 */
3302 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3303 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3304 goto error;
3305 }
3306
3307 /* Copy socket information and received FD */
3308 switch (sock_type) {
3309 case LTTNG_STREAM_CONTROL:
3310 /* Copy received lttcomm socket */
3311 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3312 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3313 /* Handle create_sock error. */
3314 if (ret < 0) {
3315 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3316 goto error;
3317 }
3318 /*
3319 * Close the socket created internally by
3320 * lttcomm_create_sock, so we can replace it by the one
3321 * received from sessiond.
3322 */
3323 if (close(relayd->control_sock.sock.fd)) {
3324 PERROR("close");
3325 }
3326
3327 /* Assign new file descriptor */
3328 relayd->control_sock.sock.fd = fd;
3329 fd = -1; /* For error path */
3330 /* Assign version values. */
3331 relayd->control_sock.major = relayd_sock->major;
3332 relayd->control_sock.minor = relayd_sock->minor;
3333
3334 relayd->relayd_session_id = relayd_session_id;
3335
3336 break;
3337 case LTTNG_STREAM_DATA:
3338 /* Copy received lttcomm socket */
3339 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3340 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3341 /* Handle create_sock error. */
3342 if (ret < 0) {
3343 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3344 goto error;
3345 }
3346 /*
3347 * Close the socket created internally by
3348 * lttcomm_create_sock, so we can replace it by the one
3349 * received from sessiond.
3350 */
3351 if (close(relayd->data_sock.sock.fd)) {
3352 PERROR("close");
3353 }
3354
3355 /* Assign new file descriptor */
3356 relayd->data_sock.sock.fd = fd;
3357 fd = -1; /* for eventual error paths */
3358 /* Assign version values. */
3359 relayd->data_sock.major = relayd_sock->major;
3360 relayd->data_sock.minor = relayd_sock->minor;
3361 break;
3362 default:
3363 ERR("Unknown relayd socket type (%d)", sock_type);
3364 ret = -1;
3365 ret_code = LTTCOMM_CONSUMERD_FATAL;
3366 goto error;
3367 }
3368
3369 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3370 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3371 relayd->net_seq_idx, fd);
3372
3373 /* We successfully added the socket. Send status back. */
3374 ret = consumer_send_status_msg(sock, ret_code);
3375 if (ret < 0) {
3376 /* Somehow, the session daemon is not responding anymore. */
3377 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3378 goto error_nosignal;
3379 }
3380
3381 /*
3382 * Add relayd socket pair to consumer data hashtable. If object already
3383 * exists or on error, the function gracefully returns.
3384 */
3385 add_relayd(relayd);
3386
3387 /* All good! */
3388 return 0;
3389
3390 error:
3391 if (consumer_send_status_msg(sock, ret_code) < 0) {
3392 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3393 }
3394
3395 error_nosignal:
3396 /* Close received socket if valid. */
3397 if (fd >= 0) {
3398 if (close(fd)) {
3399 PERROR("close received socket");
3400 }
3401 }
3402
3403 if (relayd_created) {
3404 free(relayd);
3405 }
3406
3407 return ret;
3408 }
3409
3410 /*
3411 * Try to lock the stream mutex.
3412 *
3413 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3414 */
3415 static int stream_try_lock(struct lttng_consumer_stream *stream)
3416 {
3417 int ret;
3418
3419 assert(stream);
3420
3421 /*
3422 * Try to lock the stream mutex. On failure, we know that the stream is
3423 * being used else where hence there is data still being extracted.
3424 */
3425 ret = pthread_mutex_trylock(&stream->lock);
3426 if (ret) {
3427 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3428 ret = 0;
3429 goto end;
3430 }
3431
3432 ret = 1;
3433
3434 end:
3435 return ret;
3436 }
3437
3438 /*
3439 * Search for a relayd associated to the session id and return the reference.
3440 *
3441 * A rcu read side lock MUST be acquire before calling this function and locked
3442 * until the relayd object is no longer necessary.
3443 */
3444 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3445 {
3446 struct lttng_ht_iter iter;
3447 struct consumer_relayd_sock_pair *relayd = NULL;
3448
3449 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3450 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3451 node.node) {
3452 /*
3453 * Check by sessiond id which is unique here where the relayd session
3454 * id might not be when having multiple relayd.
3455 */
3456 if (relayd->sessiond_session_id == id) {
3457 /* Found the relayd. There can be only one per id. */
3458 goto found;
3459 }
3460 }
3461
3462 return NULL;
3463
3464 found:
3465 return relayd;
3466 }
3467
3468 /*
3469 * Check if for a given session id there is still data needed to be extract
3470 * from the buffers.
3471 *
3472 * Return 1 if data is pending or else 0 meaning ready to be read.
3473 */
3474 int consumer_data_pending(uint64_t id)
3475 {
3476 int ret;
3477 struct lttng_ht_iter iter;
3478 struct lttng_ht *ht;
3479 struct lttng_consumer_stream *stream;
3480 struct consumer_relayd_sock_pair *relayd = NULL;
3481 int (*data_pending)(struct lttng_consumer_stream *);
3482
3483 DBG("Consumer data pending command on session id %" PRIu64, id);
3484
3485 rcu_read_lock();
3486 pthread_mutex_lock(&consumer_data.lock);
3487
3488 switch (consumer_data.type) {
3489 case LTTNG_CONSUMER_KERNEL:
3490 data_pending = lttng_kconsumer_data_pending;
3491 break;
3492 case LTTNG_CONSUMER32_UST:
3493 case LTTNG_CONSUMER64_UST:
3494 data_pending = lttng_ustconsumer_data_pending;
3495 break;
3496 default:
3497 ERR("Unknown consumer data type");
3498 assert(0);
3499 }
3500
3501 /* Ease our life a bit */
3502 ht = consumer_data.stream_list_ht;
3503
3504 relayd = find_relayd_by_session_id(id);
3505 if (relayd) {
3506 /* Send init command for data pending. */
3507 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3508 ret = relayd_begin_data_pending(&relayd->control_sock,
3509 relayd->relayd_session_id);
3510 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3511 if (ret < 0) {
3512 /* Communication error thus the relayd so no data pending. */
3513 goto data_not_pending;
3514 }
3515 }
3516
3517 cds_lfht_for_each_entry_duplicate(ht->ht,
3518 ht->hash_fct(&id, lttng_ht_seed),
3519 ht->match_fct, &id,
3520 &iter.iter, stream, node_session_id.node) {
3521 /* If this call fails, the stream is being used hence data pending. */
3522 ret = stream_try_lock(stream);
3523 if (!ret) {
3524 goto data_pending;
3525 }
3526
3527 /*
3528 * A removed node from the hash table indicates that the stream has
3529 * been deleted thus having a guarantee that the buffers are closed
3530 * on the consumer side. However, data can still be transmitted
3531 * over the network so don't skip the relayd check.
3532 */
3533 ret = cds_lfht_is_node_deleted(&stream->node.node);
3534 if (!ret) {
3535 /*
3536 * An empty output file is not valid. We need at least one packet
3537 * generated per stream, even if it contains no event, so it
3538 * contains at least one packet header.
3539 */
3540 if (stream->output_written == 0) {
3541 pthread_mutex_unlock(&stream->lock);
3542 goto data_pending;
3543 }
3544 /* Check the stream if there is data in the buffers. */
3545 ret = data_pending(stream);
3546 if (ret == 1) {
3547 pthread_mutex_unlock(&stream->lock);
3548 goto data_pending;
3549 }
3550 }
3551
3552 /* Relayd check */
3553 if (relayd) {
3554 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3555 if (stream->metadata_flag) {
3556 ret = relayd_quiescent_control(&relayd->control_sock,
3557 stream->relayd_stream_id);
3558 } else {
3559 ret = relayd_data_pending(&relayd->control_sock,
3560 stream->relayd_stream_id,
3561 stream->next_net_seq_num - 1);
3562 }
3563 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3564 if (ret == 1) {
3565 pthread_mutex_unlock(&stream->lock);
3566 goto data_pending;
3567 }
3568 }
3569 pthread_mutex_unlock(&stream->lock);
3570 }
3571
3572 if (relayd) {
3573 unsigned int is_data_inflight = 0;
3574
3575 /* Send init command for data pending. */
3576 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3577 ret = relayd_end_data_pending(&relayd->control_sock,
3578 relayd->relayd_session_id, &is_data_inflight);
3579 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3580 if (ret < 0) {
3581 goto data_not_pending;
3582 }
3583 if (is_data_inflight) {
3584 goto data_pending;
3585 }
3586 }
3587
3588 /*
3589 * Finding _no_ node in the hash table and no inflight data means that the
3590 * stream(s) have been removed thus data is guaranteed to be available for
3591 * analysis from the trace files.
3592 */
3593
3594 data_not_pending:
3595 /* Data is available to be read by a viewer. */
3596 pthread_mutex_unlock(&consumer_data.lock);
3597 rcu_read_unlock();
3598 return 0;
3599
3600 data_pending:
3601 /* Data is still being extracted from buffers. */
3602 pthread_mutex_unlock(&consumer_data.lock);
3603 rcu_read_unlock();
3604 return 1;
3605 }
3606
3607 /*
3608 * Send a ret code status message to the sessiond daemon.
3609 *
3610 * Return the sendmsg() return value.
3611 */
3612 int consumer_send_status_msg(int sock, int ret_code)
3613 {
3614 struct lttcomm_consumer_status_msg msg;
3615
3616 memset(&msg, 0, sizeof(msg));
3617 msg.ret_code = ret_code;
3618
3619 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3620 }
3621
3622 /*
3623 * Send a channel status message to the sessiond daemon.
3624 *
3625 * Return the sendmsg() return value.
3626 */
3627 int consumer_send_status_channel(int sock,
3628 struct lttng_consumer_channel *channel)
3629 {
3630 struct lttcomm_consumer_status_channel msg;
3631
3632 assert(sock >= 0);
3633
3634 memset(&msg, 0, sizeof(msg));
3635 if (!channel) {
3636 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3637 } else {
3638 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3639 msg.key = channel->key;
3640 msg.stream_count = channel->streams.count;
3641 }
3642
3643 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3644 }
3645
3646 /*
3647 * Using a maximum stream size with the produced and consumed position of a
3648 * stream, computes the new consumed position to be as close as possible to the
3649 * maximum possible stream size.
3650 *
3651 * If maximum stream size is lower than the possible buffer size (produced -
3652 * consumed), the consumed_pos given is returned untouched else the new value
3653 * is returned.
3654 */
3655 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3656 unsigned long produced_pos, uint64_t max_stream_size)
3657 {
3658 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3659 /* Offset from the produced position to get the latest buffers. */
3660 return produced_pos - max_stream_size;
3661 }
3662
3663 return consumed_pos;
3664 }
This page took 0.791255 seconds and 4 git commands to generate.