94a0cc3efb1d557da732ed9a201848b0ee4dc3e4
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44 #include "consumer-stream.h"
45
46 struct lttng_consumer_global_data consumer_data = {
47 .stream_count = 0,
48 .need_update = 1,
49 .type = LTTNG_CONSUMER_UNKNOWN,
50 };
51
52 enum consumer_channel_action {
53 CONSUMER_CHANNEL_ADD,
54 CONSUMER_CHANNEL_DEL,
55 CONSUMER_CHANNEL_QUIT,
56 };
57
58 struct consumer_channel_msg {
59 enum consumer_channel_action action;
60 struct lttng_consumer_channel *chan; /* add */
61 uint64_t key; /* del */
62 };
63
64 /*
65 * Flag to inform the polling thread to quit when all fd hung up. Updated by
66 * the consumer_thread_receive_fds when it notices that all fds has hung up.
67 * Also updated by the signal handler (consumer_should_exit()). Read by the
68 * polling threads.
69 */
70 volatile int consumer_quit;
71
72 /*
73 * Global hash table containing respectively metadata and data streams. The
74 * stream element in this ht should only be updated by the metadata poll thread
75 * for the metadata and the data poll thread for the data.
76 */
77 static struct lttng_ht *metadata_ht;
78 static struct lttng_ht *data_ht;
79
80 /*
81 * Notify a thread lttng pipe to poll back again. This usually means that some
82 * global state has changed so we just send back the thread in a poll wait
83 * call.
84 */
85 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
86 {
87 struct lttng_consumer_stream *null_stream = NULL;
88
89 assert(pipe);
90
91 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
92 }
93
94 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
95 struct lttng_consumer_channel *chan,
96 uint64_t key,
97 enum consumer_channel_action action)
98 {
99 struct consumer_channel_msg msg;
100 int ret;
101
102 memset(&msg, 0, sizeof(msg));
103
104 msg.action = action;
105 msg.chan = chan;
106 msg.key = key;
107 do {
108 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
109 } while (ret < 0 && errno == EINTR);
110 }
111
112 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
113 uint64_t key)
114 {
115 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
116 }
117
118 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
119 struct lttng_consumer_channel **chan,
120 uint64_t *key,
121 enum consumer_channel_action *action)
122 {
123 struct consumer_channel_msg msg;
124 int ret;
125
126 do {
127 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
128 } while (ret < 0 && errno == EINTR);
129 if (ret > 0) {
130 *action = msg.action;
131 *chan = msg.chan;
132 *key = msg.key;
133 }
134 return ret;
135 }
136
137 /*
138 * Find a stream. The consumer_data.lock must be locked during this
139 * call.
140 */
141 static struct lttng_consumer_stream *find_stream(uint64_t key,
142 struct lttng_ht *ht)
143 {
144 struct lttng_ht_iter iter;
145 struct lttng_ht_node_u64 *node;
146 struct lttng_consumer_stream *stream = NULL;
147
148 assert(ht);
149
150 /* -1ULL keys are lookup failures */
151 if (key == (uint64_t) -1ULL) {
152 return NULL;
153 }
154
155 rcu_read_lock();
156
157 lttng_ht_lookup(ht, &key, &iter);
158 node = lttng_ht_iter_get_node_u64(&iter);
159 if (node != NULL) {
160 stream = caa_container_of(node, struct lttng_consumer_stream, node);
161 }
162
163 rcu_read_unlock();
164
165 return stream;
166 }
167
168 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
169 {
170 struct lttng_consumer_stream *stream;
171
172 rcu_read_lock();
173 stream = find_stream(key, ht);
174 if (stream) {
175 stream->key = (uint64_t) -1ULL;
176 /*
177 * We don't want the lookup to match, but we still need
178 * to iterate on this stream when iterating over the hash table. Just
179 * change the node key.
180 */
181 stream->node.key = (uint64_t) -1ULL;
182 }
183 rcu_read_unlock();
184 }
185
186 /*
187 * Return a channel object for the given key.
188 *
189 * RCU read side lock MUST be acquired before calling this function and
190 * protects the channel ptr.
191 */
192 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
193 {
194 struct lttng_ht_iter iter;
195 struct lttng_ht_node_u64 *node;
196 struct lttng_consumer_channel *channel = NULL;
197
198 /* -1ULL keys are lookup failures */
199 if (key == (uint64_t) -1ULL) {
200 return NULL;
201 }
202
203 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 channel = caa_container_of(node, struct lttng_consumer_channel, node);
207 }
208
209 return channel;
210 }
211
212 static void free_stream_rcu(struct rcu_head *head)
213 {
214 struct lttng_ht_node_u64 *node =
215 caa_container_of(head, struct lttng_ht_node_u64, head);
216 struct lttng_consumer_stream *stream =
217 caa_container_of(node, struct lttng_consumer_stream, node);
218
219 free(stream);
220 }
221
222 static void free_channel_rcu(struct rcu_head *head)
223 {
224 struct lttng_ht_node_u64 *node =
225 caa_container_of(head, struct lttng_ht_node_u64, head);
226 struct lttng_consumer_channel *channel =
227 caa_container_of(node, struct lttng_consumer_channel, node);
228
229 free(channel);
230 }
231
232 /*
233 * RCU protected relayd socket pair free.
234 */
235 static void free_relayd_rcu(struct rcu_head *head)
236 {
237 struct lttng_ht_node_u64 *node =
238 caa_container_of(head, struct lttng_ht_node_u64, head);
239 struct consumer_relayd_sock_pair *relayd =
240 caa_container_of(node, struct consumer_relayd_sock_pair, node);
241
242 /*
243 * Close all sockets. This is done in the call RCU since we don't want the
244 * socket fds to be reassigned thus potentially creating bad state of the
245 * relayd object.
246 *
247 * We do not have to lock the control socket mutex here since at this stage
248 * there is no one referencing to this relayd object.
249 */
250 (void) relayd_close(&relayd->control_sock);
251 (void) relayd_close(&relayd->data_sock);
252
253 free(relayd);
254 }
255
256 /*
257 * Destroy and free relayd socket pair object.
258 */
259 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
260 {
261 int ret;
262 struct lttng_ht_iter iter;
263
264 if (relayd == NULL) {
265 return;
266 }
267
268 DBG("Consumer destroy and close relayd socket pair");
269
270 iter.iter.node = &relayd->node.node;
271 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
272 if (ret != 0) {
273 /* We assume the relayd is being or is destroyed */
274 return;
275 }
276
277 /* RCU free() call */
278 call_rcu(&relayd->node.head, free_relayd_rcu);
279 }
280
281 /*
282 * Remove a channel from the global list protected by a mutex. This function is
283 * also responsible for freeing its data structures.
284 */
285 void consumer_del_channel(struct lttng_consumer_channel *channel)
286 {
287 int ret;
288 struct lttng_ht_iter iter;
289 struct lttng_consumer_stream *stream, *stmp;
290
291 DBG("Consumer delete channel key %" PRIu64, channel->key);
292
293 pthread_mutex_lock(&consumer_data.lock);
294 pthread_mutex_lock(&channel->lock);
295
296 /* Delete streams that might have been left in the stream list. */
297 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
298 send_node) {
299 cds_list_del(&stream->send_node);
300 /*
301 * Once a stream is added to this list, the buffers were created so
302 * we have a guarantee that this call will succeed.
303 */
304 consumer_stream_destroy(stream, NULL);
305 }
306
307 switch (consumer_data.type) {
308 case LTTNG_CONSUMER_KERNEL:
309 break;
310 case LTTNG_CONSUMER32_UST:
311 case LTTNG_CONSUMER64_UST:
312 lttng_ustconsumer_del_channel(channel);
313 break;
314 default:
315 ERR("Unknown consumer_data type");
316 assert(0);
317 goto end;
318 }
319
320 rcu_read_lock();
321 iter.iter.node = &channel->node.node;
322 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
323 assert(!ret);
324 rcu_read_unlock();
325
326 call_rcu(&channel->node.head, free_channel_rcu);
327 end:
328 pthread_mutex_unlock(&channel->lock);
329 pthread_mutex_unlock(&consumer_data.lock);
330 }
331
332 /*
333 * Iterate over the relayd hash table and destroy each element. Finally,
334 * destroy the whole hash table.
335 */
336 static void cleanup_relayd_ht(void)
337 {
338 struct lttng_ht_iter iter;
339 struct consumer_relayd_sock_pair *relayd;
340
341 rcu_read_lock();
342
343 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
344 node.node) {
345 consumer_destroy_relayd(relayd);
346 }
347
348 rcu_read_unlock();
349
350 lttng_ht_destroy(consumer_data.relayd_ht);
351 }
352
353 /*
354 * Update the end point status of all streams having the given network sequence
355 * index (relayd index).
356 *
357 * It's atomically set without having the stream mutex locked which is fine
358 * because we handle the write/read race with a pipe wakeup for each thread.
359 */
360 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
361 enum consumer_endpoint_status status)
362 {
363 struct lttng_ht_iter iter;
364 struct lttng_consumer_stream *stream;
365
366 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
367
368 rcu_read_lock();
369
370 /* Let's begin with metadata */
371 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
372 if (stream->net_seq_idx == net_seq_idx) {
373 uatomic_set(&stream->endpoint_status, status);
374 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
375 }
376 }
377
378 /* Follow up by the data streams */
379 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
380 if (stream->net_seq_idx == net_seq_idx) {
381 uatomic_set(&stream->endpoint_status, status);
382 DBG("Delete flag set to data stream %d", stream->wait_fd);
383 }
384 }
385 rcu_read_unlock();
386 }
387
388 /*
389 * Cleanup a relayd object by flagging every associated streams for deletion,
390 * destroying the object meaning removing it from the relayd hash table,
391 * closing the sockets and freeing the memory in a RCU call.
392 *
393 * If a local data context is available, notify the threads that the streams'
394 * state have changed.
395 */
396 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
397 struct lttng_consumer_local_data *ctx)
398 {
399 uint64_t netidx;
400
401 assert(relayd);
402
403 DBG("Cleaning up relayd sockets");
404
405 /* Save the net sequence index before destroying the object */
406 netidx = relayd->net_seq_idx;
407
408 /*
409 * Delete the relayd from the relayd hash table, close the sockets and free
410 * the object in a RCU call.
411 */
412 consumer_destroy_relayd(relayd);
413
414 /* Set inactive endpoint to all streams */
415 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
416
417 /*
418 * With a local data context, notify the threads that the streams' state
419 * have changed. The write() action on the pipe acts as an "implicit"
420 * memory barrier ordering the updates of the end point status from the
421 * read of this status which happens AFTER receiving this notify.
422 */
423 if (ctx) {
424 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
425 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
426 }
427 }
428
429 /*
430 * Flag a relayd socket pair for destruction. Destroy it if the refcount
431 * reaches zero.
432 *
433 * RCU read side lock MUST be aquired before calling this function.
434 */
435 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
436 {
437 assert(relayd);
438
439 /* Set destroy flag for this object */
440 uatomic_set(&relayd->destroy_flag, 1);
441
442 /* Destroy the relayd if refcount is 0 */
443 if (uatomic_read(&relayd->refcount) == 0) {
444 consumer_destroy_relayd(relayd);
445 }
446 }
447
448 /*
449 * Completly destroy stream from every visiable data structure and the given
450 * hash table if one.
451 *
452 * One this call returns, the stream object is not longer usable nor visible.
453 */
454 void consumer_del_stream(struct lttng_consumer_stream *stream,
455 struct lttng_ht *ht)
456 {
457 consumer_stream_destroy(stream, ht);
458 }
459
460 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
461 uint64_t stream_key,
462 enum lttng_consumer_stream_state state,
463 const char *channel_name,
464 uid_t uid,
465 gid_t gid,
466 uint64_t relayd_id,
467 uint64_t session_id,
468 int cpu,
469 int *alloc_ret,
470 enum consumer_channel_type type,
471 unsigned int monitor)
472 {
473 int ret;
474 struct lttng_consumer_stream *stream;
475
476 stream = zmalloc(sizeof(*stream));
477 if (stream == NULL) {
478 PERROR("malloc struct lttng_consumer_stream");
479 ret = -ENOMEM;
480 goto end;
481 }
482
483 rcu_read_lock();
484
485 stream->key = stream_key;
486 stream->out_fd = -1;
487 stream->out_fd_offset = 0;
488 stream->state = state;
489 stream->uid = uid;
490 stream->gid = gid;
491 stream->net_seq_idx = relayd_id;
492 stream->session_id = session_id;
493 stream->monitor = monitor;
494 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
495 pthread_mutex_init(&stream->lock, NULL);
496
497 /* If channel is the metadata, flag this stream as metadata. */
498 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
499 stream->metadata_flag = 1;
500 /* Metadata is flat out. */
501 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
502 } else {
503 /* Format stream name to <channel_name>_<cpu_number> */
504 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
505 channel_name, cpu);
506 if (ret < 0) {
507 PERROR("snprintf stream name");
508 goto error;
509 }
510 }
511
512 /* Key is always the wait_fd for streams. */
513 lttng_ht_node_init_u64(&stream->node, stream->key);
514
515 /* Init node per channel id key */
516 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
517
518 /* Init session id node with the stream session id */
519 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
520
521 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
522 " relayd_id %" PRIu64 ", session_id %" PRIu64,
523 stream->name, stream->key, channel_key,
524 stream->net_seq_idx, stream->session_id);
525
526 rcu_read_unlock();
527 return stream;
528
529 error:
530 rcu_read_unlock();
531 free(stream);
532 end:
533 if (alloc_ret) {
534 *alloc_ret = ret;
535 }
536 return NULL;
537 }
538
539 /*
540 * Add a stream to the global list protected by a mutex.
541 */
542 static int add_stream(struct lttng_consumer_stream *stream,
543 struct lttng_ht *ht)
544 {
545 int ret = 0;
546
547 assert(stream);
548 assert(ht);
549
550 DBG3("Adding consumer stream %" PRIu64, stream->key);
551
552 pthread_mutex_lock(&consumer_data.lock);
553 pthread_mutex_lock(&stream->chan->lock);
554 pthread_mutex_lock(&stream->lock);
555 rcu_read_lock();
556
557 /* Steal stream identifier to avoid having streams with the same key */
558 steal_stream_key(stream->key, ht);
559
560 lttng_ht_add_unique_u64(ht, &stream->node);
561
562 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
563 &stream->node_channel_id);
564
565 /*
566 * Add stream to the stream_list_ht of the consumer data. No need to steal
567 * the key since the HT does not use it and we allow to add redundant keys
568 * into this table.
569 */
570 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
571
572 /*
573 * When nb_init_stream_left reaches 0, we don't need to trigger any action
574 * in terms of destroying the associated channel, because the action that
575 * causes the count to become 0 also causes a stream to be added. The
576 * channel deletion will thus be triggered by the following removal of this
577 * stream.
578 */
579 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
580 /* Increment refcount before decrementing nb_init_stream_left */
581 cmm_smp_wmb();
582 uatomic_dec(&stream->chan->nb_init_stream_left);
583 }
584
585 /* Update consumer data once the node is inserted. */
586 consumer_data.stream_count++;
587 consumer_data.need_update = 1;
588
589 rcu_read_unlock();
590 pthread_mutex_unlock(&stream->lock);
591 pthread_mutex_unlock(&stream->chan->lock);
592 pthread_mutex_unlock(&consumer_data.lock);
593
594 return ret;
595 }
596
597 /*
598 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
599 * be acquired before calling this.
600 */
601 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
602 {
603 int ret = 0;
604 struct lttng_ht_node_u64 *node;
605 struct lttng_ht_iter iter;
606
607 assert(relayd);
608
609 lttng_ht_lookup(consumer_data.relayd_ht,
610 &relayd->net_seq_idx, &iter);
611 node = lttng_ht_iter_get_node_u64(&iter);
612 if (node != NULL) {
613 goto end;
614 }
615 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
616
617 end:
618 return ret;
619 }
620
621 /*
622 * Allocate and return a consumer relayd socket.
623 */
624 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
625 uint64_t net_seq_idx)
626 {
627 struct consumer_relayd_sock_pair *obj = NULL;
628
629 /* net sequence index of -1 is a failure */
630 if (net_seq_idx == (uint64_t) -1ULL) {
631 goto error;
632 }
633
634 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
635 if (obj == NULL) {
636 PERROR("zmalloc relayd sock");
637 goto error;
638 }
639
640 obj->net_seq_idx = net_seq_idx;
641 obj->refcount = 0;
642 obj->destroy_flag = 0;
643 obj->control_sock.sock.fd = -1;
644 obj->data_sock.sock.fd = -1;
645 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
646 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
647
648 error:
649 return obj;
650 }
651
652 /*
653 * Find a relayd socket pair in the global consumer data.
654 *
655 * Return the object if found else NULL.
656 * RCU read-side lock must be held across this call and while using the
657 * returned object.
658 */
659 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
660 {
661 struct lttng_ht_iter iter;
662 struct lttng_ht_node_u64 *node;
663 struct consumer_relayd_sock_pair *relayd = NULL;
664
665 /* Negative keys are lookup failures */
666 if (key == (uint64_t) -1ULL) {
667 goto error;
668 }
669
670 lttng_ht_lookup(consumer_data.relayd_ht, &key,
671 &iter);
672 node = lttng_ht_iter_get_node_u64(&iter);
673 if (node != NULL) {
674 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
675 }
676
677 error:
678 return relayd;
679 }
680
681 /*
682 * Find a relayd and send the stream
683 *
684 * Returns 0 on success, < 0 on error
685 */
686 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
687 char *path)
688 {
689 int ret = 0;
690 struct consumer_relayd_sock_pair *relayd;
691
692 assert(stream);
693 assert(stream->net_seq_idx != -1ULL);
694 assert(path);
695
696 /* The stream is not metadata. Get relayd reference if exists. */
697 rcu_read_lock();
698 relayd = consumer_find_relayd(stream->net_seq_idx);
699 if (relayd != NULL) {
700 /* Add stream on the relayd */
701 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
702 ret = relayd_add_stream(&relayd->control_sock, stream->name,
703 path, &stream->relayd_stream_id,
704 stream->chan->tracefile_size, stream->chan->tracefile_count);
705 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
706 if (ret < 0) {
707 goto end;
708 }
709 uatomic_inc(&relayd->refcount);
710 stream->sent_to_relayd = 1;
711 } else {
712 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
713 stream->key, stream->net_seq_idx);
714 ret = -1;
715 goto end;
716 }
717
718 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
719 stream->name, stream->key, stream->net_seq_idx);
720
721 end:
722 rcu_read_unlock();
723 return ret;
724 }
725
726 /*
727 * Find a relayd and close the stream
728 */
729 void close_relayd_stream(struct lttng_consumer_stream *stream)
730 {
731 struct consumer_relayd_sock_pair *relayd;
732
733 /* The stream is not metadata. Get relayd reference if exists. */
734 rcu_read_lock();
735 relayd = consumer_find_relayd(stream->net_seq_idx);
736 if (relayd) {
737 consumer_stream_relayd_close(stream, relayd);
738 }
739 rcu_read_unlock();
740 }
741
742 /*
743 * Handle stream for relayd transmission if the stream applies for network
744 * streaming where the net sequence index is set.
745 *
746 * Return destination file descriptor or negative value on error.
747 */
748 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
749 size_t data_size, unsigned long padding,
750 struct consumer_relayd_sock_pair *relayd)
751 {
752 int outfd = -1, ret;
753 struct lttcomm_relayd_data_hdr data_hdr;
754
755 /* Safety net */
756 assert(stream);
757 assert(relayd);
758
759 /* Reset data header */
760 memset(&data_hdr, 0, sizeof(data_hdr));
761
762 if (stream->metadata_flag) {
763 /* Caller MUST acquire the relayd control socket lock */
764 ret = relayd_send_metadata(&relayd->control_sock, data_size);
765 if (ret < 0) {
766 goto error;
767 }
768
769 /* Metadata are always sent on the control socket. */
770 outfd = relayd->control_sock.sock.fd;
771 } else {
772 /* Set header with stream information */
773 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
774 data_hdr.data_size = htobe32(data_size);
775 data_hdr.padding_size = htobe32(padding);
776 /*
777 * Note that net_seq_num below is assigned with the *current* value of
778 * next_net_seq_num and only after that the next_net_seq_num will be
779 * increment. This is why when issuing a command on the relayd using
780 * this next value, 1 should always be substracted in order to compare
781 * the last seen sequence number on the relayd side to the last sent.
782 */
783 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
784 /* Other fields are zeroed previously */
785
786 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
787 sizeof(data_hdr));
788 if (ret < 0) {
789 goto error;
790 }
791
792 ++stream->next_net_seq_num;
793
794 /* Set to go on data socket */
795 outfd = relayd->data_sock.sock.fd;
796 }
797
798 error:
799 return outfd;
800 }
801
802 /*
803 * Allocate and return a new lttng_consumer_channel object using the given key
804 * to initialize the hash table node.
805 *
806 * On error, return NULL.
807 */
808 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
809 uint64_t session_id,
810 const char *pathname,
811 const char *name,
812 uid_t uid,
813 gid_t gid,
814 uint64_t relayd_id,
815 enum lttng_event_output output,
816 uint64_t tracefile_size,
817 uint64_t tracefile_count,
818 uint64_t session_id_per_pid,
819 unsigned int monitor)
820 {
821 struct lttng_consumer_channel *channel;
822
823 channel = zmalloc(sizeof(*channel));
824 if (channel == NULL) {
825 PERROR("malloc struct lttng_consumer_channel");
826 goto end;
827 }
828
829 channel->key = key;
830 channel->refcount = 0;
831 channel->session_id = session_id;
832 channel->session_id_per_pid = session_id_per_pid;
833 channel->uid = uid;
834 channel->gid = gid;
835 channel->relayd_id = relayd_id;
836 channel->output = output;
837 channel->tracefile_size = tracefile_size;
838 channel->tracefile_count = tracefile_count;
839 channel->monitor = monitor;
840 pthread_mutex_init(&channel->lock, NULL);
841
842 /*
843 * In monitor mode, the streams associated with the channel will be put in
844 * a special list ONLY owned by this channel. So, the refcount is set to 1
845 * here meaning that the channel itself has streams that are referenced.
846 *
847 * On a channel deletion, once the channel is no longer visible, the
848 * refcount is decremented and checked for a zero value to delete it. With
849 * streams in no monitor mode, it will now be safe to destroy the channel.
850 */
851 if (!channel->monitor) {
852 channel->refcount = 1;
853 }
854
855 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
856 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
857
858 strncpy(channel->name, name, sizeof(channel->name));
859 channel->name[sizeof(channel->name) - 1] = '\0';
860
861 lttng_ht_node_init_u64(&channel->node, channel->key);
862
863 channel->wait_fd = -1;
864
865 CDS_INIT_LIST_HEAD(&channel->streams.head);
866
867 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
868
869 end:
870 return channel;
871 }
872
873 /*
874 * Add a channel to the global list protected by a mutex.
875 *
876 * On success 0 is returned else a negative value.
877 */
878 int consumer_add_channel(struct lttng_consumer_channel *channel,
879 struct lttng_consumer_local_data *ctx)
880 {
881 int ret = 0;
882 struct lttng_ht_node_u64 *node;
883 struct lttng_ht_iter iter;
884
885 pthread_mutex_lock(&consumer_data.lock);
886 pthread_mutex_lock(&channel->lock);
887 rcu_read_lock();
888
889 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
890 node = lttng_ht_iter_get_node_u64(&iter);
891 if (node != NULL) {
892 /* Channel already exist. Ignore the insertion */
893 ERR("Consumer add channel key %" PRIu64 " already exists!",
894 channel->key);
895 ret = -EEXIST;
896 goto end;
897 }
898
899 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
900
901 end:
902 rcu_read_unlock();
903 pthread_mutex_unlock(&channel->lock);
904 pthread_mutex_unlock(&consumer_data.lock);
905
906 if (!ret && channel->wait_fd != -1 &&
907 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
908 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
909 }
910 return ret;
911 }
912
913 /*
914 * Allocate the pollfd structure and the local view of the out fds to avoid
915 * doing a lookup in the linked list and concurrency issues when writing is
916 * needed. Called with consumer_data.lock held.
917 *
918 * Returns the number of fds in the structures.
919 */
920 static int update_poll_array(struct lttng_consumer_local_data *ctx,
921 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
922 struct lttng_ht *ht)
923 {
924 int i = 0;
925 struct lttng_ht_iter iter;
926 struct lttng_consumer_stream *stream;
927
928 assert(ctx);
929 assert(ht);
930 assert(pollfd);
931 assert(local_stream);
932
933 DBG("Updating poll fd array");
934 rcu_read_lock();
935 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
936 /*
937 * Only active streams with an active end point can be added to the
938 * poll set and local stream storage of the thread.
939 *
940 * There is a potential race here for endpoint_status to be updated
941 * just after the check. However, this is OK since the stream(s) will
942 * be deleted once the thread is notified that the end point state has
943 * changed where this function will be called back again.
944 */
945 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
946 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
947 continue;
948 }
949 /*
950 * This clobbers way too much the debug output. Uncomment that if you
951 * need it for debugging purposes.
952 *
953 * DBG("Active FD %d", stream->wait_fd);
954 */
955 (*pollfd)[i].fd = stream->wait_fd;
956 (*pollfd)[i].events = POLLIN | POLLPRI;
957 local_stream[i] = stream;
958 i++;
959 }
960 rcu_read_unlock();
961
962 /*
963 * Insert the consumer_data_pipe at the end of the array and don't
964 * increment i so nb_fd is the number of real FD.
965 */
966 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
967 (*pollfd)[i].events = POLLIN | POLLPRI;
968 return i;
969 }
970
971 /*
972 * Poll on the should_quit pipe and the command socket return -1 on error and
973 * should exit, 0 if data is available on the command socket
974 */
975 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
976 {
977 int num_rdy;
978
979 restart:
980 num_rdy = poll(consumer_sockpoll, 2, -1);
981 if (num_rdy == -1) {
982 /*
983 * Restart interrupted system call.
984 */
985 if (errno == EINTR) {
986 goto restart;
987 }
988 PERROR("Poll error");
989 goto exit;
990 }
991 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
992 DBG("consumer_should_quit wake up");
993 goto exit;
994 }
995 return 0;
996
997 exit:
998 return -1;
999 }
1000
1001 /*
1002 * Set the error socket.
1003 */
1004 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1005 int sock)
1006 {
1007 ctx->consumer_error_socket = sock;
1008 }
1009
1010 /*
1011 * Set the command socket path.
1012 */
1013 void lttng_consumer_set_command_sock_path(
1014 struct lttng_consumer_local_data *ctx, char *sock)
1015 {
1016 ctx->consumer_command_sock_path = sock;
1017 }
1018
1019 /*
1020 * Send return code to the session daemon.
1021 * If the socket is not defined, we return 0, it is not a fatal error
1022 */
1023 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1024 {
1025 if (ctx->consumer_error_socket > 0) {
1026 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1027 sizeof(enum lttcomm_sessiond_command));
1028 }
1029
1030 return 0;
1031 }
1032
1033 /*
1034 * Close all the tracefiles and stream fds and MUST be called when all
1035 * instances are destroyed i.e. when all threads were joined and are ended.
1036 */
1037 void lttng_consumer_cleanup(void)
1038 {
1039 struct lttng_ht_iter iter;
1040 struct lttng_consumer_channel *channel;
1041
1042 rcu_read_lock();
1043
1044 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1045 node.node) {
1046 consumer_del_channel(channel);
1047 }
1048
1049 rcu_read_unlock();
1050
1051 lttng_ht_destroy(consumer_data.channel_ht);
1052
1053 cleanup_relayd_ht();
1054
1055 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1056
1057 /*
1058 * This HT contains streams that are freed by either the metadata thread or
1059 * the data thread so we do *nothing* on the hash table and simply destroy
1060 * it.
1061 */
1062 lttng_ht_destroy(consumer_data.stream_list_ht);
1063 }
1064
1065 /*
1066 * Called from signal handler.
1067 */
1068 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1069 {
1070 int ret;
1071 consumer_quit = 1;
1072 do {
1073 ret = write(ctx->consumer_should_quit[1], "4", 1);
1074 } while (ret < 0 && errno == EINTR);
1075 if (ret < 0 || ret != 1) {
1076 PERROR("write consumer quit");
1077 }
1078
1079 DBG("Consumer flag that it should quit");
1080 }
1081
1082 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1083 off_t orig_offset)
1084 {
1085 int outfd = stream->out_fd;
1086
1087 /*
1088 * This does a blocking write-and-wait on any page that belongs to the
1089 * subbuffer prior to the one we just wrote.
1090 * Don't care about error values, as these are just hints and ways to
1091 * limit the amount of page cache used.
1092 */
1093 if (orig_offset < stream->max_sb_size) {
1094 return;
1095 }
1096 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1097 stream->max_sb_size,
1098 SYNC_FILE_RANGE_WAIT_BEFORE
1099 | SYNC_FILE_RANGE_WRITE
1100 | SYNC_FILE_RANGE_WAIT_AFTER);
1101 /*
1102 * Give hints to the kernel about how we access the file:
1103 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1104 * we write it.
1105 *
1106 * We need to call fadvise again after the file grows because the
1107 * kernel does not seem to apply fadvise to non-existing parts of the
1108 * file.
1109 *
1110 * Call fadvise _after_ having waited for the page writeback to
1111 * complete because the dirty page writeback semantic is not well
1112 * defined. So it can be expected to lead to lower throughput in
1113 * streaming.
1114 */
1115 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1116 stream->max_sb_size, POSIX_FADV_DONTNEED);
1117 }
1118
1119 /*
1120 * Initialise the necessary environnement :
1121 * - create a new context
1122 * - create the poll_pipe
1123 * - create the should_quit pipe (for signal handler)
1124 * - create the thread pipe (for splice)
1125 *
1126 * Takes a function pointer as argument, this function is called when data is
1127 * available on a buffer. This function is responsible to do the
1128 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1129 * buffer configuration and then kernctl_put_next_subbuf at the end.
1130 *
1131 * Returns a pointer to the new context or NULL on error.
1132 */
1133 struct lttng_consumer_local_data *lttng_consumer_create(
1134 enum lttng_consumer_type type,
1135 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1136 struct lttng_consumer_local_data *ctx),
1137 int (*recv_channel)(struct lttng_consumer_channel *channel),
1138 int (*recv_stream)(struct lttng_consumer_stream *stream),
1139 int (*update_stream)(uint64_t stream_key, uint32_t state))
1140 {
1141 int ret;
1142 struct lttng_consumer_local_data *ctx;
1143
1144 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1145 consumer_data.type == type);
1146 consumer_data.type = type;
1147
1148 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1149 if (ctx == NULL) {
1150 PERROR("allocating context");
1151 goto error;
1152 }
1153
1154 ctx->consumer_error_socket = -1;
1155 ctx->consumer_metadata_socket = -1;
1156 /* assign the callbacks */
1157 ctx->on_buffer_ready = buffer_ready;
1158 ctx->on_recv_channel = recv_channel;
1159 ctx->on_recv_stream = recv_stream;
1160 ctx->on_update_stream = update_stream;
1161
1162 ctx->consumer_data_pipe = lttng_pipe_open(0);
1163 if (!ctx->consumer_data_pipe) {
1164 goto error_poll_pipe;
1165 }
1166
1167 ret = pipe(ctx->consumer_should_quit);
1168 if (ret < 0) {
1169 PERROR("Error creating recv pipe");
1170 goto error_quit_pipe;
1171 }
1172
1173 ret = pipe(ctx->consumer_thread_pipe);
1174 if (ret < 0) {
1175 PERROR("Error creating thread pipe");
1176 goto error_thread_pipe;
1177 }
1178
1179 ret = pipe(ctx->consumer_channel_pipe);
1180 if (ret < 0) {
1181 PERROR("Error creating channel pipe");
1182 goto error_channel_pipe;
1183 }
1184
1185 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1186 if (!ctx->consumer_metadata_pipe) {
1187 goto error_metadata_pipe;
1188 }
1189
1190 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1191 if (ret < 0) {
1192 goto error_splice_pipe;
1193 }
1194
1195 return ctx;
1196
1197 error_splice_pipe:
1198 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1199 error_metadata_pipe:
1200 utils_close_pipe(ctx->consumer_channel_pipe);
1201 error_channel_pipe:
1202 utils_close_pipe(ctx->consumer_thread_pipe);
1203 error_thread_pipe:
1204 utils_close_pipe(ctx->consumer_should_quit);
1205 error_quit_pipe:
1206 lttng_pipe_destroy(ctx->consumer_data_pipe);
1207 error_poll_pipe:
1208 free(ctx);
1209 error:
1210 return NULL;
1211 }
1212
1213 /*
1214 * Close all fds associated with the instance and free the context.
1215 */
1216 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1217 {
1218 int ret;
1219
1220 DBG("Consumer destroying it. Closing everything.");
1221
1222 ret = close(ctx->consumer_error_socket);
1223 if (ret) {
1224 PERROR("close");
1225 }
1226 ret = close(ctx->consumer_metadata_socket);
1227 if (ret) {
1228 PERROR("close");
1229 }
1230 utils_close_pipe(ctx->consumer_thread_pipe);
1231 utils_close_pipe(ctx->consumer_channel_pipe);
1232 lttng_pipe_destroy(ctx->consumer_data_pipe);
1233 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1234 utils_close_pipe(ctx->consumer_should_quit);
1235 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1236
1237 unlink(ctx->consumer_command_sock_path);
1238 free(ctx);
1239 }
1240
1241 /*
1242 * Write the metadata stream id on the specified file descriptor.
1243 */
1244 static int write_relayd_metadata_id(int fd,
1245 struct lttng_consumer_stream *stream,
1246 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1247 {
1248 int ret;
1249 struct lttcomm_relayd_metadata_payload hdr;
1250
1251 hdr.stream_id = htobe64(stream->relayd_stream_id);
1252 hdr.padding_size = htobe32(padding);
1253 do {
1254 ret = write(fd, (void *) &hdr, sizeof(hdr));
1255 } while (ret < 0 && errno == EINTR);
1256 if (ret < 0 || ret != sizeof(hdr)) {
1257 /*
1258 * This error means that the fd's end is closed so ignore the perror
1259 * not to clubber the error output since this can happen in a normal
1260 * code path.
1261 */
1262 if (errno != EPIPE) {
1263 PERROR("write metadata stream id");
1264 }
1265 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1266 /*
1267 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1268 * handle writting the missing part so report that as an error and
1269 * don't lie to the caller.
1270 */
1271 ret = -1;
1272 goto end;
1273 }
1274 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1275 stream->relayd_stream_id, padding);
1276
1277 end:
1278 return ret;
1279 }
1280
1281 /*
1282 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1283 * core function for writing trace buffers to either the local filesystem or
1284 * the network.
1285 *
1286 * It must be called with the stream lock held.
1287 *
1288 * Careful review MUST be put if any changes occur!
1289 *
1290 * Returns the number of bytes written
1291 */
1292 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1293 struct lttng_consumer_local_data *ctx,
1294 struct lttng_consumer_stream *stream, unsigned long len,
1295 unsigned long padding)
1296 {
1297 unsigned long mmap_offset;
1298 void *mmap_base;
1299 ssize_t ret = 0, written = 0;
1300 off_t orig_offset = stream->out_fd_offset;
1301 /* Default is on the disk */
1302 int outfd = stream->out_fd;
1303 struct consumer_relayd_sock_pair *relayd = NULL;
1304 unsigned int relayd_hang_up = 0;
1305
1306 /* RCU lock for the relayd pointer */
1307 rcu_read_lock();
1308
1309 /* Flag that the current stream if set for network streaming. */
1310 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1311 relayd = consumer_find_relayd(stream->net_seq_idx);
1312 if (relayd == NULL) {
1313 goto end;
1314 }
1315 }
1316
1317 /* get the offset inside the fd to mmap */
1318 switch (consumer_data.type) {
1319 case LTTNG_CONSUMER_KERNEL:
1320 mmap_base = stream->mmap_base;
1321 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1322 break;
1323 case LTTNG_CONSUMER32_UST:
1324 case LTTNG_CONSUMER64_UST:
1325 mmap_base = lttng_ustctl_get_mmap_base(stream);
1326 if (!mmap_base) {
1327 ERR("read mmap get mmap base for stream %s", stream->name);
1328 written = -1;
1329 goto end;
1330 }
1331 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1332
1333 break;
1334 default:
1335 ERR("Unknown consumer_data type");
1336 assert(0);
1337 }
1338 if (ret != 0) {
1339 errno = -ret;
1340 PERROR("tracer ctl get_mmap_read_offset");
1341 written = ret;
1342 goto end;
1343 }
1344
1345 /* Handle stream on the relayd if the output is on the network */
1346 if (relayd) {
1347 unsigned long netlen = len;
1348
1349 /*
1350 * Lock the control socket for the complete duration of the function
1351 * since from this point on we will use the socket.
1352 */
1353 if (stream->metadata_flag) {
1354 /* Metadata requires the control socket. */
1355 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1356 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1357 }
1358
1359 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1360 if (ret >= 0) {
1361 /* Use the returned socket. */
1362 outfd = ret;
1363
1364 /* Write metadata stream id before payload */
1365 if (stream->metadata_flag) {
1366 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1367 if (ret < 0) {
1368 written = ret;
1369 /* Socket operation failed. We consider the relayd dead */
1370 if (ret == -EPIPE || ret == -EINVAL) {
1371 relayd_hang_up = 1;
1372 goto write_error;
1373 }
1374 goto end;
1375 }
1376 }
1377 } else {
1378 /* Socket operation failed. We consider the relayd dead */
1379 if (ret == -EPIPE || ret == -EINVAL) {
1380 relayd_hang_up = 1;
1381 goto write_error;
1382 }
1383 /* Else, use the default set before which is the filesystem. */
1384 }
1385 } else {
1386 /* No streaming, we have to set the len with the full padding */
1387 len += padding;
1388
1389 /*
1390 * Check if we need to change the tracefile before writing the packet.
1391 */
1392 if (stream->chan->tracefile_size > 0 &&
1393 (stream->tracefile_size_current + len) >
1394 stream->chan->tracefile_size) {
1395 ret = utils_rotate_stream_file(stream->chan->pathname,
1396 stream->name, stream->chan->tracefile_size,
1397 stream->chan->tracefile_count, stream->uid, stream->gid,
1398 stream->out_fd, &(stream->tracefile_count_current));
1399 if (ret < 0) {
1400 ERR("Rotating output file");
1401 goto end;
1402 }
1403 outfd = stream->out_fd = ret;
1404 /* Reset current size because we just perform a rotation. */
1405 stream->tracefile_size_current = 0;
1406 }
1407 stream->tracefile_size_current += len;
1408 }
1409
1410 while (len > 0) {
1411 do {
1412 ret = write(outfd, mmap_base + mmap_offset, len);
1413 } while (ret < 0 && errno == EINTR);
1414 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1415 if (ret < 0) {
1416 /*
1417 * This is possible if the fd is closed on the other side (outfd)
1418 * or any write problem. It can be verbose a bit for a normal
1419 * execution if for instance the relayd is stopped abruptly. This
1420 * can happen so set this to a DBG statement.
1421 */
1422 DBG("Error in file write mmap");
1423 if (written == 0) {
1424 written = ret;
1425 }
1426 /* Socket operation failed. We consider the relayd dead */
1427 if (errno == EPIPE || errno == EINVAL) {
1428 relayd_hang_up = 1;
1429 goto write_error;
1430 }
1431 goto end;
1432 } else if (ret > len) {
1433 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1434 written += ret;
1435 goto end;
1436 } else {
1437 len -= ret;
1438 mmap_offset += ret;
1439 }
1440
1441 /* This call is useless on a socket so better save a syscall. */
1442 if (!relayd) {
1443 /* This won't block, but will start writeout asynchronously */
1444 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1445 SYNC_FILE_RANGE_WRITE);
1446 stream->out_fd_offset += ret;
1447 }
1448 written += ret;
1449 }
1450 lttng_consumer_sync_trace_file(stream, orig_offset);
1451
1452 write_error:
1453 /*
1454 * This is a special case that the relayd has closed its socket. Let's
1455 * cleanup the relayd object and all associated streams.
1456 */
1457 if (relayd && relayd_hang_up) {
1458 cleanup_relayd(relayd, ctx);
1459 }
1460
1461 end:
1462 /* Unlock only if ctrl socket used */
1463 if (relayd && stream->metadata_flag) {
1464 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1465 }
1466
1467 rcu_read_unlock();
1468 return written;
1469 }
1470
1471 /*
1472 * Splice the data from the ring buffer to the tracefile.
1473 *
1474 * It must be called with the stream lock held.
1475 *
1476 * Returns the number of bytes spliced.
1477 */
1478 ssize_t lttng_consumer_on_read_subbuffer_splice(
1479 struct lttng_consumer_local_data *ctx,
1480 struct lttng_consumer_stream *stream, unsigned long len,
1481 unsigned long padding)
1482 {
1483 ssize_t ret = 0, written = 0, ret_splice = 0;
1484 loff_t offset = 0;
1485 off_t orig_offset = stream->out_fd_offset;
1486 int fd = stream->wait_fd;
1487 /* Default is on the disk */
1488 int outfd = stream->out_fd;
1489 struct consumer_relayd_sock_pair *relayd = NULL;
1490 int *splice_pipe;
1491 unsigned int relayd_hang_up = 0;
1492
1493 switch (consumer_data.type) {
1494 case LTTNG_CONSUMER_KERNEL:
1495 break;
1496 case LTTNG_CONSUMER32_UST:
1497 case LTTNG_CONSUMER64_UST:
1498 /* Not supported for user space tracing */
1499 return -ENOSYS;
1500 default:
1501 ERR("Unknown consumer_data type");
1502 assert(0);
1503 }
1504
1505 /* RCU lock for the relayd pointer */
1506 rcu_read_lock();
1507
1508 /* Flag that the current stream if set for network streaming. */
1509 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1510 relayd = consumer_find_relayd(stream->net_seq_idx);
1511 if (relayd == NULL) {
1512 goto end;
1513 }
1514 }
1515
1516 /*
1517 * Choose right pipe for splice. Metadata and trace data are handled by
1518 * different threads hence the use of two pipes in order not to race or
1519 * corrupt the written data.
1520 */
1521 if (stream->metadata_flag) {
1522 splice_pipe = ctx->consumer_splice_metadata_pipe;
1523 } else {
1524 splice_pipe = ctx->consumer_thread_pipe;
1525 }
1526
1527 /* Write metadata stream id before payload */
1528 if (relayd) {
1529 int total_len = len;
1530
1531 if (stream->metadata_flag) {
1532 /*
1533 * Lock the control socket for the complete duration of the function
1534 * since from this point on we will use the socket.
1535 */
1536 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1537
1538 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1539 padding);
1540 if (ret < 0) {
1541 written = ret;
1542 /* Socket operation failed. We consider the relayd dead */
1543 if (ret == -EBADF) {
1544 WARN("Remote relayd disconnected. Stopping");
1545 relayd_hang_up = 1;
1546 goto write_error;
1547 }
1548 goto end;
1549 }
1550
1551 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1552 }
1553
1554 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1555 if (ret >= 0) {
1556 /* Use the returned socket. */
1557 outfd = ret;
1558 } else {
1559 /* Socket operation failed. We consider the relayd dead */
1560 if (ret == -EBADF) {
1561 WARN("Remote relayd disconnected. Stopping");
1562 relayd_hang_up = 1;
1563 goto write_error;
1564 }
1565 goto end;
1566 }
1567 } else {
1568 /* No streaming, we have to set the len with the full padding */
1569 len += padding;
1570
1571 /*
1572 * Check if we need to change the tracefile before writing the packet.
1573 */
1574 if (stream->chan->tracefile_size > 0 &&
1575 (stream->tracefile_size_current + len) >
1576 stream->chan->tracefile_size) {
1577 ret = utils_rotate_stream_file(stream->chan->pathname,
1578 stream->name, stream->chan->tracefile_size,
1579 stream->chan->tracefile_count, stream->uid, stream->gid,
1580 stream->out_fd, &(stream->tracefile_count_current));
1581 if (ret < 0) {
1582 ERR("Rotating output file");
1583 goto end;
1584 }
1585 outfd = stream->out_fd = ret;
1586 /* Reset current size because we just perform a rotation. */
1587 stream->tracefile_size_current = 0;
1588 }
1589 stream->tracefile_size_current += len;
1590 }
1591
1592 while (len > 0) {
1593 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1594 (unsigned long)offset, len, fd, splice_pipe[1]);
1595 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1596 SPLICE_F_MOVE | SPLICE_F_MORE);
1597 DBG("splice chan to pipe, ret %zd", ret_splice);
1598 if (ret_splice < 0) {
1599 PERROR("Error in relay splice");
1600 if (written == 0) {
1601 written = ret_splice;
1602 }
1603 ret = errno;
1604 goto splice_error;
1605 }
1606
1607 /* Handle stream on the relayd if the output is on the network */
1608 if (relayd) {
1609 if (stream->metadata_flag) {
1610 size_t metadata_payload_size =
1611 sizeof(struct lttcomm_relayd_metadata_payload);
1612
1613 /* Update counter to fit the spliced data */
1614 ret_splice += metadata_payload_size;
1615 len += metadata_payload_size;
1616 /*
1617 * We do this so the return value can match the len passed as
1618 * argument to this function.
1619 */
1620 written -= metadata_payload_size;
1621 }
1622 }
1623
1624 /* Splice data out */
1625 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1626 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1627 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1628 if (ret_splice < 0) {
1629 PERROR("Error in file splice");
1630 if (written == 0) {
1631 written = ret_splice;
1632 }
1633 /* Socket operation failed. We consider the relayd dead */
1634 if (errno == EBADF || errno == EPIPE) {
1635 WARN("Remote relayd disconnected. Stopping");
1636 relayd_hang_up = 1;
1637 goto write_error;
1638 }
1639 ret = errno;
1640 goto splice_error;
1641 } else if (ret_splice > len) {
1642 errno = EINVAL;
1643 PERROR("Wrote more data than requested %zd (len: %lu)",
1644 ret_splice, len);
1645 written += ret_splice;
1646 ret = errno;
1647 goto splice_error;
1648 }
1649 len -= ret_splice;
1650
1651 /* This call is useless on a socket so better save a syscall. */
1652 if (!relayd) {
1653 /* This won't block, but will start writeout asynchronously */
1654 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1655 SYNC_FILE_RANGE_WRITE);
1656 stream->out_fd_offset += ret_splice;
1657 }
1658 written += ret_splice;
1659 }
1660 lttng_consumer_sync_trace_file(stream, orig_offset);
1661
1662 ret = ret_splice;
1663
1664 goto end;
1665
1666 write_error:
1667 /*
1668 * This is a special case that the relayd has closed its socket. Let's
1669 * cleanup the relayd object and all associated streams.
1670 */
1671 if (relayd && relayd_hang_up) {
1672 cleanup_relayd(relayd, ctx);
1673 /* Skip splice error so the consumer does not fail */
1674 goto end;
1675 }
1676
1677 splice_error:
1678 /* send the appropriate error description to sessiond */
1679 switch (ret) {
1680 case EINVAL:
1681 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1682 break;
1683 case ENOMEM:
1684 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1685 break;
1686 case ESPIPE:
1687 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1688 break;
1689 }
1690
1691 end:
1692 if (relayd && stream->metadata_flag) {
1693 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1694 }
1695
1696 rcu_read_unlock();
1697 return written;
1698 }
1699
1700 /*
1701 * Take a snapshot for a specific fd
1702 *
1703 * Returns 0 on success, < 0 on error
1704 */
1705 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1706 {
1707 switch (consumer_data.type) {
1708 case LTTNG_CONSUMER_KERNEL:
1709 return lttng_kconsumer_take_snapshot(stream);
1710 case LTTNG_CONSUMER32_UST:
1711 case LTTNG_CONSUMER64_UST:
1712 return lttng_ustconsumer_take_snapshot(stream);
1713 default:
1714 ERR("Unknown consumer_data type");
1715 assert(0);
1716 return -ENOSYS;
1717 }
1718 }
1719
1720 /*
1721 * Get the produced position
1722 *
1723 * Returns 0 on success, < 0 on error
1724 */
1725 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1726 unsigned long *pos)
1727 {
1728 switch (consumer_data.type) {
1729 case LTTNG_CONSUMER_KERNEL:
1730 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1731 case LTTNG_CONSUMER32_UST:
1732 case LTTNG_CONSUMER64_UST:
1733 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1734 default:
1735 ERR("Unknown consumer_data type");
1736 assert(0);
1737 return -ENOSYS;
1738 }
1739 }
1740
1741 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1742 int sock, struct pollfd *consumer_sockpoll)
1743 {
1744 switch (consumer_data.type) {
1745 case LTTNG_CONSUMER_KERNEL:
1746 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1747 case LTTNG_CONSUMER32_UST:
1748 case LTTNG_CONSUMER64_UST:
1749 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1750 default:
1751 ERR("Unknown consumer_data type");
1752 assert(0);
1753 return -ENOSYS;
1754 }
1755 }
1756
1757 /*
1758 * Iterate over all streams of the hashtable and free them properly.
1759 *
1760 * WARNING: *MUST* be used with data stream only.
1761 */
1762 static void destroy_data_stream_ht(struct lttng_ht *ht)
1763 {
1764 struct lttng_ht_iter iter;
1765 struct lttng_consumer_stream *stream;
1766
1767 if (ht == NULL) {
1768 return;
1769 }
1770
1771 rcu_read_lock();
1772 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1773 /*
1774 * Ignore return value since we are currently cleaning up so any error
1775 * can't be handled.
1776 */
1777 (void) consumer_del_stream(stream, ht);
1778 }
1779 rcu_read_unlock();
1780
1781 lttng_ht_destroy(ht);
1782 }
1783
1784 /*
1785 * Iterate over all streams of the hashtable and free them properly.
1786 *
1787 * XXX: Should not be only for metadata stream or else use an other name.
1788 */
1789 static void destroy_stream_ht(struct lttng_ht *ht)
1790 {
1791 struct lttng_ht_iter iter;
1792 struct lttng_consumer_stream *stream;
1793
1794 if (ht == NULL) {
1795 return;
1796 }
1797
1798 rcu_read_lock();
1799 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1800 /*
1801 * Ignore return value since we are currently cleaning up so any error
1802 * can't be handled.
1803 */
1804 (void) consumer_del_metadata_stream(stream, ht);
1805 }
1806 rcu_read_unlock();
1807
1808 lttng_ht_destroy(ht);
1809 }
1810
1811 void lttng_consumer_close_metadata(void)
1812 {
1813 switch (consumer_data.type) {
1814 case LTTNG_CONSUMER_KERNEL:
1815 /*
1816 * The Kernel consumer has a different metadata scheme so we don't
1817 * close anything because the stream will be closed by the session
1818 * daemon.
1819 */
1820 break;
1821 case LTTNG_CONSUMER32_UST:
1822 case LTTNG_CONSUMER64_UST:
1823 /*
1824 * Close all metadata streams. The metadata hash table is passed and
1825 * this call iterates over it by closing all wakeup fd. This is safe
1826 * because at this point we are sure that the metadata producer is
1827 * either dead or blocked.
1828 */
1829 lttng_ustconsumer_close_metadata(metadata_ht);
1830 break;
1831 default:
1832 ERR("Unknown consumer_data type");
1833 assert(0);
1834 }
1835 }
1836
1837 /*
1838 * Clean up a metadata stream and free its memory.
1839 */
1840 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1841 struct lttng_ht *ht)
1842 {
1843 int ret;
1844 struct lttng_ht_iter iter;
1845 struct lttng_consumer_channel *free_chan = NULL;
1846 struct consumer_relayd_sock_pair *relayd;
1847
1848 assert(stream);
1849 /*
1850 * This call should NEVER receive regular stream. It must always be
1851 * metadata stream and this is crucial for data structure synchronization.
1852 */
1853 assert(stream->metadata_flag);
1854
1855 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1856
1857 if (ht == NULL) {
1858 /* Means the stream was allocated but not successfully added */
1859 goto free_stream_rcu;
1860 }
1861
1862 pthread_mutex_lock(&consumer_data.lock);
1863 pthread_mutex_lock(&stream->chan->lock);
1864 pthread_mutex_lock(&stream->lock);
1865
1866 switch (consumer_data.type) {
1867 case LTTNG_CONSUMER_KERNEL:
1868 if (stream->mmap_base != NULL) {
1869 ret = munmap(stream->mmap_base, stream->mmap_len);
1870 if (ret != 0) {
1871 PERROR("munmap metadata stream");
1872 }
1873 }
1874 if (stream->wait_fd >= 0) {
1875 ret = close(stream->wait_fd);
1876 if (ret < 0) {
1877 PERROR("close kernel metadata wait_fd");
1878 }
1879 }
1880 break;
1881 case LTTNG_CONSUMER32_UST:
1882 case LTTNG_CONSUMER64_UST:
1883 lttng_ustconsumer_del_stream(stream);
1884 break;
1885 default:
1886 ERR("Unknown consumer_data type");
1887 assert(0);
1888 goto end;
1889 }
1890
1891 rcu_read_lock();
1892 iter.iter.node = &stream->node.node;
1893 ret = lttng_ht_del(ht, &iter);
1894 assert(!ret);
1895
1896 iter.iter.node = &stream->node_channel_id.node;
1897 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1898 assert(!ret);
1899
1900 iter.iter.node = &stream->node_session_id.node;
1901 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1902 assert(!ret);
1903 rcu_read_unlock();
1904
1905 if (stream->out_fd >= 0) {
1906 ret = close(stream->out_fd);
1907 if (ret) {
1908 PERROR("close");
1909 }
1910 }
1911
1912 /* Check and cleanup relayd */
1913 rcu_read_lock();
1914 relayd = consumer_find_relayd(stream->net_seq_idx);
1915 if (relayd != NULL) {
1916 uatomic_dec(&relayd->refcount);
1917 assert(uatomic_read(&relayd->refcount) >= 0);
1918
1919 /* Closing streams requires to lock the control socket. */
1920 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1921 ret = relayd_send_close_stream(&relayd->control_sock,
1922 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1923 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1924 if (ret < 0) {
1925 DBG("Unable to close stream on the relayd. Continuing");
1926 /*
1927 * Continue here. There is nothing we can do for the relayd.
1928 * Chances are that the relayd has closed the socket so we just
1929 * continue cleaning up.
1930 */
1931 }
1932
1933 /* Both conditions are met, we destroy the relayd. */
1934 if (uatomic_read(&relayd->refcount) == 0 &&
1935 uatomic_read(&relayd->destroy_flag)) {
1936 consumer_destroy_relayd(relayd);
1937 }
1938 }
1939 rcu_read_unlock();
1940
1941 /* Atomically decrement channel refcount since other threads can use it. */
1942 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1943 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1944 /* Go for channel deletion! */
1945 free_chan = stream->chan;
1946 }
1947
1948 end:
1949 /*
1950 * Nullify the stream reference so it is not used after deletion. The
1951 * consumer data lock MUST be acquired before being able to check for a
1952 * NULL pointer value.
1953 */
1954 stream->chan->metadata_stream = NULL;
1955
1956 pthread_mutex_unlock(&stream->lock);
1957 pthread_mutex_unlock(&stream->chan->lock);
1958 pthread_mutex_unlock(&consumer_data.lock);
1959
1960 if (free_chan) {
1961 consumer_del_channel(free_chan);
1962 }
1963
1964 free_stream_rcu:
1965 call_rcu(&stream->node.head, free_stream_rcu);
1966 }
1967
1968 /*
1969 * Action done with the metadata stream when adding it to the consumer internal
1970 * data structures to handle it.
1971 */
1972 static int add_metadata_stream(struct lttng_consumer_stream *stream,
1973 struct lttng_ht *ht)
1974 {
1975 int ret = 0;
1976 struct lttng_ht_iter iter;
1977 struct lttng_ht_node_u64 *node;
1978
1979 assert(stream);
1980 assert(ht);
1981
1982 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
1983
1984 pthread_mutex_lock(&consumer_data.lock);
1985 pthread_mutex_lock(&stream->chan->lock);
1986 pthread_mutex_lock(&stream->lock);
1987
1988 /*
1989 * From here, refcounts are updated so be _careful_ when returning an error
1990 * after this point.
1991 */
1992
1993 rcu_read_lock();
1994
1995 /*
1996 * Lookup the stream just to make sure it does not exist in our internal
1997 * state. This should NEVER happen.
1998 */
1999 lttng_ht_lookup(ht, &stream->key, &iter);
2000 node = lttng_ht_iter_get_node_u64(&iter);
2001 assert(!node);
2002
2003 /*
2004 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2005 * in terms of destroying the associated channel, because the action that
2006 * causes the count to become 0 also causes a stream to be added. The
2007 * channel deletion will thus be triggered by the following removal of this
2008 * stream.
2009 */
2010 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2011 /* Increment refcount before decrementing nb_init_stream_left */
2012 cmm_smp_wmb();
2013 uatomic_dec(&stream->chan->nb_init_stream_left);
2014 }
2015
2016 lttng_ht_add_unique_u64(ht, &stream->node);
2017
2018 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2019 &stream->node_channel_id);
2020
2021 /*
2022 * Add stream to the stream_list_ht of the consumer data. No need to steal
2023 * the key since the HT does not use it and we allow to add redundant keys
2024 * into this table.
2025 */
2026 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2027
2028 rcu_read_unlock();
2029
2030 pthread_mutex_unlock(&stream->lock);
2031 pthread_mutex_unlock(&stream->chan->lock);
2032 pthread_mutex_unlock(&consumer_data.lock);
2033 return ret;
2034 }
2035
2036 /*
2037 * Delete data stream that are flagged for deletion (endpoint_status).
2038 */
2039 static void validate_endpoint_status_data_stream(void)
2040 {
2041 struct lttng_ht_iter iter;
2042 struct lttng_consumer_stream *stream;
2043
2044 DBG("Consumer delete flagged data stream");
2045
2046 rcu_read_lock();
2047 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2048 /* Validate delete flag of the stream */
2049 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2050 continue;
2051 }
2052 /* Delete it right now */
2053 consumer_del_stream(stream, data_ht);
2054 }
2055 rcu_read_unlock();
2056 }
2057
2058 /*
2059 * Delete metadata stream that are flagged for deletion (endpoint_status).
2060 */
2061 static void validate_endpoint_status_metadata_stream(
2062 struct lttng_poll_event *pollset)
2063 {
2064 struct lttng_ht_iter iter;
2065 struct lttng_consumer_stream *stream;
2066
2067 DBG("Consumer delete flagged metadata stream");
2068
2069 assert(pollset);
2070
2071 rcu_read_lock();
2072 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2073 /* Validate delete flag of the stream */
2074 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2075 continue;
2076 }
2077 /*
2078 * Remove from pollset so the metadata thread can continue without
2079 * blocking on a deleted stream.
2080 */
2081 lttng_poll_del(pollset, stream->wait_fd);
2082
2083 /* Delete it right now */
2084 consumer_del_metadata_stream(stream, metadata_ht);
2085 }
2086 rcu_read_unlock();
2087 }
2088
2089 /*
2090 * Thread polls on metadata file descriptor and write them on disk or on the
2091 * network.
2092 */
2093 void *consumer_thread_metadata_poll(void *data)
2094 {
2095 int ret, i, pollfd;
2096 uint32_t revents, nb_fd;
2097 struct lttng_consumer_stream *stream = NULL;
2098 struct lttng_ht_iter iter;
2099 struct lttng_ht_node_u64 *node;
2100 struct lttng_poll_event events;
2101 struct lttng_consumer_local_data *ctx = data;
2102 ssize_t len;
2103
2104 rcu_register_thread();
2105
2106 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2107 if (!metadata_ht) {
2108 /* ENOMEM at this point. Better to bail out. */
2109 goto end_ht;
2110 }
2111
2112 DBG("Thread metadata poll started");
2113
2114 /* Size is set to 1 for the consumer_metadata pipe */
2115 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2116 if (ret < 0) {
2117 ERR("Poll set creation failed");
2118 goto end_poll;
2119 }
2120
2121 ret = lttng_poll_add(&events,
2122 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2123 if (ret < 0) {
2124 goto end;
2125 }
2126
2127 /* Main loop */
2128 DBG("Metadata main loop started");
2129
2130 while (1) {
2131 /* Only the metadata pipe is set */
2132 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2133 goto end;
2134 }
2135
2136 restart:
2137 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2138 ret = lttng_poll_wait(&events, -1);
2139 DBG("Metadata event catched in thread");
2140 if (ret < 0) {
2141 if (errno == EINTR) {
2142 ERR("Poll EINTR catched");
2143 goto restart;
2144 }
2145 goto error;
2146 }
2147
2148 nb_fd = ret;
2149
2150 /* From here, the event is a metadata wait fd */
2151 for (i = 0; i < nb_fd; i++) {
2152 revents = LTTNG_POLL_GETEV(&events, i);
2153 pollfd = LTTNG_POLL_GETFD(&events, i);
2154
2155 /* Just don't waste time if no returned events for the fd */
2156 if (!revents) {
2157 continue;
2158 }
2159
2160 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2161 if (revents & (LPOLLERR | LPOLLHUP )) {
2162 DBG("Metadata thread pipe hung up");
2163 /*
2164 * Remove the pipe from the poll set and continue the loop
2165 * since their might be data to consume.
2166 */
2167 lttng_poll_del(&events,
2168 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2169 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2170 continue;
2171 } else if (revents & LPOLLIN) {
2172 ssize_t pipe_len;
2173
2174 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2175 &stream, sizeof(stream));
2176 if (pipe_len < 0) {
2177 ERR("read metadata stream, ret: %ld", pipe_len);
2178 /*
2179 * Continue here to handle the rest of the streams.
2180 */
2181 continue;
2182 }
2183
2184 /* A NULL stream means that the state has changed. */
2185 if (stream == NULL) {
2186 /* Check for deleted streams. */
2187 validate_endpoint_status_metadata_stream(&events);
2188 goto restart;
2189 }
2190
2191 DBG("Adding metadata stream %d to poll set",
2192 stream->wait_fd);
2193
2194 ret = add_metadata_stream(stream, metadata_ht);
2195 if (ret) {
2196 ERR("Unable to add metadata stream");
2197 /* Stream was not setup properly. Continuing. */
2198 consumer_del_metadata_stream(stream, NULL);
2199 continue;
2200 }
2201
2202 /* Add metadata stream to the global poll events list */
2203 lttng_poll_add(&events, stream->wait_fd,
2204 LPOLLIN | LPOLLPRI);
2205 }
2206
2207 /* Handle other stream */
2208 continue;
2209 }
2210
2211 rcu_read_lock();
2212 {
2213 uint64_t tmp_id = (uint64_t) pollfd;
2214
2215 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2216 }
2217 node = lttng_ht_iter_get_node_u64(&iter);
2218 assert(node);
2219
2220 stream = caa_container_of(node, struct lttng_consumer_stream,
2221 node);
2222
2223 /* Check for error event */
2224 if (revents & (LPOLLERR | LPOLLHUP)) {
2225 DBG("Metadata fd %d is hup|err.", pollfd);
2226 if (!stream->hangup_flush_done
2227 && (consumer_data.type == LTTNG_CONSUMER32_UST
2228 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2229 DBG("Attempting to flush and consume the UST buffers");
2230 lttng_ustconsumer_on_stream_hangup(stream);
2231
2232 /* We just flushed the stream now read it. */
2233 do {
2234 len = ctx->on_buffer_ready(stream, ctx);
2235 /*
2236 * We don't check the return value here since if we get
2237 * a negative len, it means an error occured thus we
2238 * simply remove it from the poll set and free the
2239 * stream.
2240 */
2241 } while (len > 0);
2242 }
2243
2244 lttng_poll_del(&events, stream->wait_fd);
2245 /*
2246 * This call update the channel states, closes file descriptors
2247 * and securely free the stream.
2248 */
2249 consumer_del_metadata_stream(stream, metadata_ht);
2250 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2251 /* Get the data out of the metadata file descriptor */
2252 DBG("Metadata available on fd %d", pollfd);
2253 assert(stream->wait_fd == pollfd);
2254
2255 len = ctx->on_buffer_ready(stream, ctx);
2256 /* It's ok to have an unavailable sub-buffer */
2257 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2258 /* Clean up stream from consumer and free it. */
2259 lttng_poll_del(&events, stream->wait_fd);
2260 consumer_del_metadata_stream(stream, metadata_ht);
2261 } else if (len > 0) {
2262 stream->data_read = 1;
2263 }
2264 }
2265
2266 /* Release RCU lock for the stream looked up */
2267 rcu_read_unlock();
2268 }
2269 }
2270
2271 error:
2272 end:
2273 DBG("Metadata poll thread exiting");
2274
2275 lttng_poll_clean(&events);
2276 end_poll:
2277 destroy_stream_ht(metadata_ht);
2278 end_ht:
2279 rcu_unregister_thread();
2280 return NULL;
2281 }
2282
2283 /*
2284 * This thread polls the fds in the set to consume the data and write
2285 * it to tracefile if necessary.
2286 */
2287 void *consumer_thread_data_poll(void *data)
2288 {
2289 int num_rdy, num_hup, high_prio, ret, i;
2290 struct pollfd *pollfd = NULL;
2291 /* local view of the streams */
2292 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2293 /* local view of consumer_data.fds_count */
2294 int nb_fd = 0;
2295 struct lttng_consumer_local_data *ctx = data;
2296 ssize_t len;
2297
2298 rcu_register_thread();
2299
2300 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2301 if (data_ht == NULL) {
2302 /* ENOMEM at this point. Better to bail out. */
2303 goto end;
2304 }
2305
2306 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2307 if (local_stream == NULL) {
2308 PERROR("local_stream malloc");
2309 goto end;
2310 }
2311
2312 while (1) {
2313 high_prio = 0;
2314 num_hup = 0;
2315
2316 /*
2317 * the fds set has been updated, we need to update our
2318 * local array as well
2319 */
2320 pthread_mutex_lock(&consumer_data.lock);
2321 if (consumer_data.need_update) {
2322 free(pollfd);
2323 pollfd = NULL;
2324
2325 free(local_stream);
2326 local_stream = NULL;
2327
2328 /* allocate for all fds + 1 for the consumer_data_pipe */
2329 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2330 if (pollfd == NULL) {
2331 PERROR("pollfd malloc");
2332 pthread_mutex_unlock(&consumer_data.lock);
2333 goto end;
2334 }
2335
2336 /* allocate for all fds + 1 for the consumer_data_pipe */
2337 local_stream = zmalloc((consumer_data.stream_count + 1) *
2338 sizeof(struct lttng_consumer_stream *));
2339 if (local_stream == NULL) {
2340 PERROR("local_stream malloc");
2341 pthread_mutex_unlock(&consumer_data.lock);
2342 goto end;
2343 }
2344 ret = update_poll_array(ctx, &pollfd, local_stream,
2345 data_ht);
2346 if (ret < 0) {
2347 ERR("Error in allocating pollfd or local_outfds");
2348 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2349 pthread_mutex_unlock(&consumer_data.lock);
2350 goto end;
2351 }
2352 nb_fd = ret;
2353 consumer_data.need_update = 0;
2354 }
2355 pthread_mutex_unlock(&consumer_data.lock);
2356
2357 /* No FDs and consumer_quit, consumer_cleanup the thread */
2358 if (nb_fd == 0 && consumer_quit == 1) {
2359 goto end;
2360 }
2361 /* poll on the array of fds */
2362 restart:
2363 DBG("polling on %d fd", nb_fd + 1);
2364 num_rdy = poll(pollfd, nb_fd + 1, -1);
2365 DBG("poll num_rdy : %d", num_rdy);
2366 if (num_rdy == -1) {
2367 /*
2368 * Restart interrupted system call.
2369 */
2370 if (errno == EINTR) {
2371 goto restart;
2372 }
2373 PERROR("Poll error");
2374 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2375 goto end;
2376 } else if (num_rdy == 0) {
2377 DBG("Polling thread timed out");
2378 goto end;
2379 }
2380
2381 /*
2382 * If the consumer_data_pipe triggered poll go directly to the
2383 * beginning of the loop to update the array. We want to prioritize
2384 * array update over low-priority reads.
2385 */
2386 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2387 ssize_t pipe_readlen;
2388
2389 DBG("consumer_data_pipe wake up");
2390 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2391 &new_stream, sizeof(new_stream));
2392 if (pipe_readlen < 0) {
2393 ERR("Consumer data pipe ret %ld", pipe_readlen);
2394 /* Continue so we can at least handle the current stream(s). */
2395 continue;
2396 }
2397
2398 /*
2399 * If the stream is NULL, just ignore it. It's also possible that
2400 * the sessiond poll thread changed the consumer_quit state and is
2401 * waking us up to test it.
2402 */
2403 if (new_stream == NULL) {
2404 validate_endpoint_status_data_stream();
2405 continue;
2406 }
2407
2408 ret = add_stream(new_stream, data_ht);
2409 if (ret) {
2410 ERR("Consumer add stream %" PRIu64 " failed. Continuing",
2411 new_stream->key);
2412 /*
2413 * At this point, if the add_stream fails, it is not in the
2414 * hash table thus passing the NULL value here.
2415 */
2416 consumer_del_stream(new_stream, NULL);
2417 }
2418
2419 /* Continue to update the local streams and handle prio ones */
2420 continue;
2421 }
2422
2423 /* Take care of high priority channels first. */
2424 for (i = 0; i < nb_fd; i++) {
2425 if (local_stream[i] == NULL) {
2426 continue;
2427 }
2428 if (pollfd[i].revents & POLLPRI) {
2429 DBG("Urgent read on fd %d", pollfd[i].fd);
2430 high_prio = 1;
2431 len = ctx->on_buffer_ready(local_stream[i], ctx);
2432 /* it's ok to have an unavailable sub-buffer */
2433 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2434 /* Clean the stream and free it. */
2435 consumer_del_stream(local_stream[i], data_ht);
2436 local_stream[i] = NULL;
2437 } else if (len > 0) {
2438 local_stream[i]->data_read = 1;
2439 }
2440 }
2441 }
2442
2443 /*
2444 * If we read high prio channel in this loop, try again
2445 * for more high prio data.
2446 */
2447 if (high_prio) {
2448 continue;
2449 }
2450
2451 /* Take care of low priority channels. */
2452 for (i = 0; i < nb_fd; i++) {
2453 if (local_stream[i] == NULL) {
2454 continue;
2455 }
2456 if ((pollfd[i].revents & POLLIN) ||
2457 local_stream[i]->hangup_flush_done) {
2458 DBG("Normal read on fd %d", pollfd[i].fd);
2459 len = ctx->on_buffer_ready(local_stream[i], ctx);
2460 /* it's ok to have an unavailable sub-buffer */
2461 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2462 /* Clean the stream and free it. */
2463 consumer_del_stream(local_stream[i], data_ht);
2464 local_stream[i] = NULL;
2465 } else if (len > 0) {
2466 local_stream[i]->data_read = 1;
2467 }
2468 }
2469 }
2470
2471 /* Handle hangup and errors */
2472 for (i = 0; i < nb_fd; i++) {
2473 if (local_stream[i] == NULL) {
2474 continue;
2475 }
2476 if (!local_stream[i]->hangup_flush_done
2477 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2478 && (consumer_data.type == LTTNG_CONSUMER32_UST
2479 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2480 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2481 pollfd[i].fd);
2482 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2483 /* Attempt read again, for the data we just flushed. */
2484 local_stream[i]->data_read = 1;
2485 }
2486 /*
2487 * If the poll flag is HUP/ERR/NVAL and we have
2488 * read no data in this pass, we can remove the
2489 * stream from its hash table.
2490 */
2491 if ((pollfd[i].revents & POLLHUP)) {
2492 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2493 if (!local_stream[i]->data_read) {
2494 consumer_del_stream(local_stream[i], data_ht);
2495 local_stream[i] = NULL;
2496 num_hup++;
2497 }
2498 } else if (pollfd[i].revents & POLLERR) {
2499 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2500 if (!local_stream[i]->data_read) {
2501 consumer_del_stream(local_stream[i], data_ht);
2502 local_stream[i] = NULL;
2503 num_hup++;
2504 }
2505 } else if (pollfd[i].revents & POLLNVAL) {
2506 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2507 if (!local_stream[i]->data_read) {
2508 consumer_del_stream(local_stream[i], data_ht);
2509 local_stream[i] = NULL;
2510 num_hup++;
2511 }
2512 }
2513 if (local_stream[i] != NULL) {
2514 local_stream[i]->data_read = 0;
2515 }
2516 }
2517 }
2518 end:
2519 DBG("polling thread exiting");
2520 free(pollfd);
2521 free(local_stream);
2522
2523 /*
2524 * Close the write side of the pipe so epoll_wait() in
2525 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2526 * read side of the pipe. If we close them both, epoll_wait strangely does
2527 * not return and could create a endless wait period if the pipe is the
2528 * only tracked fd in the poll set. The thread will take care of closing
2529 * the read side.
2530 */
2531 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2532
2533 destroy_data_stream_ht(data_ht);
2534
2535 rcu_unregister_thread();
2536 return NULL;
2537 }
2538
2539 /*
2540 * Close wake-up end of each stream belonging to the channel. This will
2541 * allow the poll() on the stream read-side to detect when the
2542 * write-side (application) finally closes them.
2543 */
2544 static
2545 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2546 {
2547 struct lttng_ht *ht;
2548 struct lttng_consumer_stream *stream;
2549 struct lttng_ht_iter iter;
2550
2551 ht = consumer_data.stream_per_chan_id_ht;
2552
2553 rcu_read_lock();
2554 cds_lfht_for_each_entry_duplicate(ht->ht,
2555 ht->hash_fct(&channel->key, lttng_ht_seed),
2556 ht->match_fct, &channel->key,
2557 &iter.iter, stream, node_channel_id.node) {
2558 /*
2559 * Protect against teardown with mutex.
2560 */
2561 pthread_mutex_lock(&stream->lock);
2562 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2563 goto next;
2564 }
2565 switch (consumer_data.type) {
2566 case LTTNG_CONSUMER_KERNEL:
2567 break;
2568 case LTTNG_CONSUMER32_UST:
2569 case LTTNG_CONSUMER64_UST:
2570 /*
2571 * Note: a mutex is taken internally within
2572 * liblttng-ust-ctl to protect timer wakeup_fd
2573 * use from concurrent close.
2574 */
2575 lttng_ustconsumer_close_stream_wakeup(stream);
2576 break;
2577 default:
2578 ERR("Unknown consumer_data type");
2579 assert(0);
2580 }
2581 next:
2582 pthread_mutex_unlock(&stream->lock);
2583 }
2584 rcu_read_unlock();
2585 }
2586
2587 static void destroy_channel_ht(struct lttng_ht *ht)
2588 {
2589 struct lttng_ht_iter iter;
2590 struct lttng_consumer_channel *channel;
2591 int ret;
2592
2593 if (ht == NULL) {
2594 return;
2595 }
2596
2597 rcu_read_lock();
2598 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2599 ret = lttng_ht_del(ht, &iter);
2600 assert(ret != 0);
2601 }
2602 rcu_read_unlock();
2603
2604 lttng_ht_destroy(ht);
2605 }
2606
2607 /*
2608 * This thread polls the channel fds to detect when they are being
2609 * closed. It closes all related streams if the channel is detected as
2610 * closed. It is currently only used as a shim layer for UST because the
2611 * consumerd needs to keep the per-stream wakeup end of pipes open for
2612 * periodical flush.
2613 */
2614 void *consumer_thread_channel_poll(void *data)
2615 {
2616 int ret, i, pollfd;
2617 uint32_t revents, nb_fd;
2618 struct lttng_consumer_channel *chan = NULL;
2619 struct lttng_ht_iter iter;
2620 struct lttng_ht_node_u64 *node;
2621 struct lttng_poll_event events;
2622 struct lttng_consumer_local_data *ctx = data;
2623 struct lttng_ht *channel_ht;
2624
2625 rcu_register_thread();
2626
2627 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2628 if (!channel_ht) {
2629 /* ENOMEM at this point. Better to bail out. */
2630 goto end_ht;
2631 }
2632
2633 DBG("Thread channel poll started");
2634
2635 /* Size is set to 1 for the consumer_channel pipe */
2636 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2637 if (ret < 0) {
2638 ERR("Poll set creation failed");
2639 goto end_poll;
2640 }
2641
2642 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2643 if (ret < 0) {
2644 goto end;
2645 }
2646
2647 /* Main loop */
2648 DBG("Channel main loop started");
2649
2650 while (1) {
2651 /* Only the channel pipe is set */
2652 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2653 goto end;
2654 }
2655
2656 restart:
2657 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2658 ret = lttng_poll_wait(&events, -1);
2659 DBG("Channel event catched in thread");
2660 if (ret < 0) {
2661 if (errno == EINTR) {
2662 ERR("Poll EINTR catched");
2663 goto restart;
2664 }
2665 goto end;
2666 }
2667
2668 nb_fd = ret;
2669
2670 /* From here, the event is a channel wait fd */
2671 for (i = 0; i < nb_fd; i++) {
2672 revents = LTTNG_POLL_GETEV(&events, i);
2673 pollfd = LTTNG_POLL_GETFD(&events, i);
2674
2675 /* Just don't waste time if no returned events for the fd */
2676 if (!revents) {
2677 continue;
2678 }
2679 if (pollfd == ctx->consumer_channel_pipe[0]) {
2680 if (revents & (LPOLLERR | LPOLLHUP)) {
2681 DBG("Channel thread pipe hung up");
2682 /*
2683 * Remove the pipe from the poll set and continue the loop
2684 * since their might be data to consume.
2685 */
2686 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2687 continue;
2688 } else if (revents & LPOLLIN) {
2689 enum consumer_channel_action action;
2690 uint64_t key;
2691
2692 ret = read_channel_pipe(ctx, &chan, &key, &action);
2693 if (ret <= 0) {
2694 ERR("Error reading channel pipe");
2695 continue;
2696 }
2697
2698 switch (action) {
2699 case CONSUMER_CHANNEL_ADD:
2700 DBG("Adding channel %d to poll set",
2701 chan->wait_fd);
2702
2703 lttng_ht_node_init_u64(&chan->wait_fd_node,
2704 chan->wait_fd);
2705 rcu_read_lock();
2706 lttng_ht_add_unique_u64(channel_ht,
2707 &chan->wait_fd_node);
2708 rcu_read_unlock();
2709 /* Add channel to the global poll events list */
2710 lttng_poll_add(&events, chan->wait_fd,
2711 LPOLLIN | LPOLLPRI);
2712 break;
2713 case CONSUMER_CHANNEL_DEL:
2714 {
2715 struct lttng_consumer_stream *stream, *stmp;
2716
2717 rcu_read_lock();
2718 chan = consumer_find_channel(key);
2719 if (!chan) {
2720 rcu_read_unlock();
2721 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2722 break;
2723 }
2724 lttng_poll_del(&events, chan->wait_fd);
2725 iter.iter.node = &chan->wait_fd_node.node;
2726 ret = lttng_ht_del(channel_ht, &iter);
2727 assert(ret == 0);
2728 consumer_close_channel_streams(chan);
2729
2730 switch (consumer_data.type) {
2731 case LTTNG_CONSUMER_KERNEL:
2732 break;
2733 case LTTNG_CONSUMER32_UST:
2734 case LTTNG_CONSUMER64_UST:
2735 /* Delete streams that might have been left in the stream list. */
2736 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2737 send_node) {
2738 cds_list_del(&stream->send_node);
2739 lttng_ustconsumer_del_stream(stream);
2740 uatomic_sub(&stream->chan->refcount, 1);
2741 assert(&chan->refcount);
2742 free(stream);
2743 }
2744 break;
2745 default:
2746 ERR("Unknown consumer_data type");
2747 assert(0);
2748 }
2749
2750 /*
2751 * Release our own refcount. Force channel deletion even if
2752 * streams were not initialized.
2753 */
2754 if (!uatomic_sub_return(&chan->refcount, 1)) {
2755 consumer_del_channel(chan);
2756 }
2757 rcu_read_unlock();
2758 goto restart;
2759 }
2760 case CONSUMER_CHANNEL_QUIT:
2761 /*
2762 * Remove the pipe from the poll set and continue the loop
2763 * since their might be data to consume.
2764 */
2765 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2766 continue;
2767 default:
2768 ERR("Unknown action");
2769 break;
2770 }
2771 }
2772
2773 /* Handle other stream */
2774 continue;
2775 }
2776
2777 rcu_read_lock();
2778 {
2779 uint64_t tmp_id = (uint64_t) pollfd;
2780
2781 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2782 }
2783 node = lttng_ht_iter_get_node_u64(&iter);
2784 assert(node);
2785
2786 chan = caa_container_of(node, struct lttng_consumer_channel,
2787 wait_fd_node);
2788
2789 /* Check for error event */
2790 if (revents & (LPOLLERR | LPOLLHUP)) {
2791 DBG("Channel fd %d is hup|err.", pollfd);
2792
2793 lttng_poll_del(&events, chan->wait_fd);
2794 ret = lttng_ht_del(channel_ht, &iter);
2795 assert(ret == 0);
2796 consumer_close_channel_streams(chan);
2797
2798 /* Release our own refcount */
2799 if (!uatomic_sub_return(&chan->refcount, 1)
2800 && !uatomic_read(&chan->nb_init_stream_left)) {
2801 consumer_del_channel(chan);
2802 }
2803 }
2804
2805 /* Release RCU lock for the channel looked up */
2806 rcu_read_unlock();
2807 }
2808 }
2809
2810 end:
2811 lttng_poll_clean(&events);
2812 end_poll:
2813 destroy_channel_ht(channel_ht);
2814 end_ht:
2815 DBG("Channel poll thread exiting");
2816 rcu_unregister_thread();
2817 return NULL;
2818 }
2819
2820 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2821 struct pollfd *sockpoll, int client_socket)
2822 {
2823 int ret;
2824
2825 assert(ctx);
2826 assert(sockpoll);
2827
2828 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2829 ret = -1;
2830 goto error;
2831 }
2832 DBG("Metadata connection on client_socket");
2833
2834 /* Blocking call, waiting for transmission */
2835 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2836 if (ctx->consumer_metadata_socket < 0) {
2837 WARN("On accept metadata");
2838 ret = -1;
2839 goto error;
2840 }
2841 ret = 0;
2842
2843 error:
2844 return ret;
2845 }
2846
2847 /*
2848 * This thread listens on the consumerd socket and receives the file
2849 * descriptors from the session daemon.
2850 */
2851 void *consumer_thread_sessiond_poll(void *data)
2852 {
2853 int sock = -1, client_socket, ret;
2854 /*
2855 * structure to poll for incoming data on communication socket avoids
2856 * making blocking sockets.
2857 */
2858 struct pollfd consumer_sockpoll[2];
2859 struct lttng_consumer_local_data *ctx = data;
2860
2861 rcu_register_thread();
2862
2863 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2864 unlink(ctx->consumer_command_sock_path);
2865 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2866 if (client_socket < 0) {
2867 ERR("Cannot create command socket");
2868 goto end;
2869 }
2870
2871 ret = lttcomm_listen_unix_sock(client_socket);
2872 if (ret < 0) {
2873 goto end;
2874 }
2875
2876 DBG("Sending ready command to lttng-sessiond");
2877 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2878 /* return < 0 on error, but == 0 is not fatal */
2879 if (ret < 0) {
2880 ERR("Error sending ready command to lttng-sessiond");
2881 goto end;
2882 }
2883
2884 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2885 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2886 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2887 consumer_sockpoll[1].fd = client_socket;
2888 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2889
2890 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2891 goto end;
2892 }
2893 DBG("Connection on client_socket");
2894
2895 /* Blocking call, waiting for transmission */
2896 sock = lttcomm_accept_unix_sock(client_socket);
2897 if (sock < 0) {
2898 WARN("On accept");
2899 goto end;
2900 }
2901
2902 /*
2903 * Setup metadata socket which is the second socket connection on the
2904 * command unix socket.
2905 */
2906 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2907 if (ret < 0) {
2908 goto end;
2909 }
2910
2911 /* This socket is not useful anymore. */
2912 ret = close(client_socket);
2913 if (ret < 0) {
2914 PERROR("close client_socket");
2915 }
2916 client_socket = -1;
2917
2918 /* update the polling structure to poll on the established socket */
2919 consumer_sockpoll[1].fd = sock;
2920 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2921
2922 while (1) {
2923 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2924 goto end;
2925 }
2926 DBG("Incoming command on sock");
2927 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2928 if (ret == -ENOENT) {
2929 DBG("Received STOP command");
2930 goto end;
2931 }
2932 if (ret <= 0) {
2933 /*
2934 * This could simply be a session daemon quitting. Don't output
2935 * ERR() here.
2936 */
2937 DBG("Communication interrupted on command socket");
2938 goto end;
2939 }
2940 if (consumer_quit) {
2941 DBG("consumer_thread_receive_fds received quit from signal");
2942 goto end;
2943 }
2944 DBG("received command on sock");
2945 }
2946 end:
2947 DBG("Consumer thread sessiond poll exiting");
2948
2949 /*
2950 * Close metadata streams since the producer is the session daemon which
2951 * just died.
2952 *
2953 * NOTE: for now, this only applies to the UST tracer.
2954 */
2955 lttng_consumer_close_metadata();
2956
2957 /*
2958 * when all fds have hung up, the polling thread
2959 * can exit cleanly
2960 */
2961 consumer_quit = 1;
2962
2963 /*
2964 * Notify the data poll thread to poll back again and test the
2965 * consumer_quit state that we just set so to quit gracefully.
2966 */
2967 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
2968
2969 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2970
2971 /* Cleaning up possibly open sockets. */
2972 if (sock >= 0) {
2973 ret = close(sock);
2974 if (ret < 0) {
2975 PERROR("close sock sessiond poll");
2976 }
2977 }
2978 if (client_socket >= 0) {
2979 ret = close(client_socket);
2980 if (ret < 0) {
2981 PERROR("close client_socket sessiond poll");
2982 }
2983 }
2984
2985 rcu_unregister_thread();
2986 return NULL;
2987 }
2988
2989 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2990 struct lttng_consumer_local_data *ctx)
2991 {
2992 ssize_t ret;
2993
2994 pthread_mutex_lock(&stream->lock);
2995
2996 switch (consumer_data.type) {
2997 case LTTNG_CONSUMER_KERNEL:
2998 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2999 break;
3000 case LTTNG_CONSUMER32_UST:
3001 case LTTNG_CONSUMER64_UST:
3002 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3003 break;
3004 default:
3005 ERR("Unknown consumer_data type");
3006 assert(0);
3007 ret = -ENOSYS;
3008 break;
3009 }
3010
3011 pthread_mutex_unlock(&stream->lock);
3012 return ret;
3013 }
3014
3015 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3016 {
3017 switch (consumer_data.type) {
3018 case LTTNG_CONSUMER_KERNEL:
3019 return lttng_kconsumer_on_recv_stream(stream);
3020 case LTTNG_CONSUMER32_UST:
3021 case LTTNG_CONSUMER64_UST:
3022 return lttng_ustconsumer_on_recv_stream(stream);
3023 default:
3024 ERR("Unknown consumer_data type");
3025 assert(0);
3026 return -ENOSYS;
3027 }
3028 }
3029
3030 /*
3031 * Allocate and set consumer data hash tables.
3032 */
3033 void lttng_consumer_init(void)
3034 {
3035 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3036 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3037 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3038 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3039 }
3040
3041 /*
3042 * Process the ADD_RELAYD command receive by a consumer.
3043 *
3044 * This will create a relayd socket pair and add it to the relayd hash table.
3045 * The caller MUST acquire a RCU read side lock before calling it.
3046 */
3047 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3048 struct lttng_consumer_local_data *ctx, int sock,
3049 struct pollfd *consumer_sockpoll,
3050 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3051 {
3052 int fd = -1, ret = -1, relayd_created = 0;
3053 enum lttng_error_code ret_code = LTTNG_OK;
3054 struct consumer_relayd_sock_pair *relayd = NULL;
3055
3056 assert(ctx);
3057 assert(relayd_sock);
3058
3059 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3060
3061 /* Get relayd reference if exists. */
3062 relayd = consumer_find_relayd(net_seq_idx);
3063 if (relayd == NULL) {
3064 assert(sock_type == LTTNG_STREAM_CONTROL);
3065 /* Not found. Allocate one. */
3066 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3067 if (relayd == NULL) {
3068 ret = -ENOMEM;
3069 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3070 goto error;
3071 } else {
3072 relayd->sessiond_session_id = sessiond_id;
3073 relayd_created = 1;
3074 }
3075
3076 /*
3077 * This code path MUST continue to the consumer send status message to
3078 * we can notify the session daemon and continue our work without
3079 * killing everything.
3080 */
3081 } else {
3082 /*
3083 * relayd key should never be found for control socket.
3084 */
3085 assert(sock_type != LTTNG_STREAM_CONTROL);
3086 }
3087
3088 /* First send a status message before receiving the fds. */
3089 ret = consumer_send_status_msg(sock, LTTNG_OK);
3090 if (ret < 0) {
3091 /* Somehow, the session daemon is not responding anymore. */
3092 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3093 goto error_nosignal;
3094 }
3095
3096 /* Poll on consumer socket. */
3097 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3098 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3099 ret = -EINTR;
3100 goto error_nosignal;
3101 }
3102
3103 /* Get relayd socket from session daemon */
3104 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3105 if (ret != sizeof(fd)) {
3106 ret = -1;
3107 fd = -1; /* Just in case it gets set with an invalid value. */
3108
3109 /*
3110 * Failing to receive FDs might indicate a major problem such as
3111 * reaching a fd limit during the receive where the kernel returns a
3112 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3113 * don't take any chances and stop everything.
3114 *
3115 * XXX: Feature request #558 will fix that and avoid this possible
3116 * issue when reaching the fd limit.
3117 */
3118 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3119 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3120 goto error;
3121 }
3122
3123 /* Copy socket information and received FD */
3124 switch (sock_type) {
3125 case LTTNG_STREAM_CONTROL:
3126 /* Copy received lttcomm socket */
3127 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3128 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3129 /* Handle create_sock error. */
3130 if (ret < 0) {
3131 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3132 goto error;
3133 }
3134 /*
3135 * Close the socket created internally by
3136 * lttcomm_create_sock, so we can replace it by the one
3137 * received from sessiond.
3138 */
3139 if (close(relayd->control_sock.sock.fd)) {
3140 PERROR("close");
3141 }
3142
3143 /* Assign new file descriptor */
3144 relayd->control_sock.sock.fd = fd;
3145 fd = -1; /* For error path */
3146 /* Assign version values. */
3147 relayd->control_sock.major = relayd_sock->major;
3148 relayd->control_sock.minor = relayd_sock->minor;
3149
3150 /*
3151 * Create a session on the relayd and store the returned id. Lock the
3152 * control socket mutex if the relayd was NOT created before.
3153 */
3154 if (!relayd_created) {
3155 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3156 }
3157 ret = relayd_create_session(&relayd->control_sock,
3158 &relayd->relayd_session_id);
3159 if (!relayd_created) {
3160 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3161 }
3162 if (ret < 0) {
3163 /*
3164 * Close all sockets of a relayd object. It will be freed if it was
3165 * created at the error code path or else it will be garbage
3166 * collect.
3167 */
3168 (void) relayd_close(&relayd->control_sock);
3169 (void) relayd_close(&relayd->data_sock);
3170 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3171 goto error;
3172 }
3173
3174 break;
3175 case LTTNG_STREAM_DATA:
3176 /* Copy received lttcomm socket */
3177 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3178 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3179 /* Handle create_sock error. */
3180 if (ret < 0) {
3181 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3182 goto error;
3183 }
3184 /*
3185 * Close the socket created internally by
3186 * lttcomm_create_sock, so we can replace it by the one
3187 * received from sessiond.
3188 */
3189 if (close(relayd->data_sock.sock.fd)) {
3190 PERROR("close");
3191 }
3192
3193 /* Assign new file descriptor */
3194 relayd->data_sock.sock.fd = fd;
3195 fd = -1; /* for eventual error paths */
3196 /* Assign version values. */
3197 relayd->data_sock.major = relayd_sock->major;
3198 relayd->data_sock.minor = relayd_sock->minor;
3199 break;
3200 default:
3201 ERR("Unknown relayd socket type (%d)", sock_type);
3202 ret = -1;
3203 ret_code = LTTCOMM_CONSUMERD_FATAL;
3204 goto error;
3205 }
3206
3207 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3208 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3209 relayd->net_seq_idx, fd);
3210
3211 /* We successfully added the socket. Send status back. */
3212 ret = consumer_send_status_msg(sock, ret_code);
3213 if (ret < 0) {
3214 /* Somehow, the session daemon is not responding anymore. */
3215 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3216 goto error_nosignal;
3217 }
3218
3219 /*
3220 * Add relayd socket pair to consumer data hashtable. If object already
3221 * exists or on error, the function gracefully returns.
3222 */
3223 add_relayd(relayd);
3224
3225 /* All good! */
3226 return 0;
3227
3228 error:
3229 if (consumer_send_status_msg(sock, ret_code) < 0) {
3230 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3231 }
3232
3233 error_nosignal:
3234 /* Close received socket if valid. */
3235 if (fd >= 0) {
3236 if (close(fd)) {
3237 PERROR("close received socket");
3238 }
3239 }
3240
3241 if (relayd_created) {
3242 free(relayd);
3243 }
3244
3245 return ret;
3246 }
3247
3248 /*
3249 * Try to lock the stream mutex.
3250 *
3251 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3252 */
3253 static int stream_try_lock(struct lttng_consumer_stream *stream)
3254 {
3255 int ret;
3256
3257 assert(stream);
3258
3259 /*
3260 * Try to lock the stream mutex. On failure, we know that the stream is
3261 * being used else where hence there is data still being extracted.
3262 */
3263 ret = pthread_mutex_trylock(&stream->lock);
3264 if (ret) {
3265 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3266 ret = 0;
3267 goto end;
3268 }
3269
3270 ret = 1;
3271
3272 end:
3273 return ret;
3274 }
3275
3276 /*
3277 * Search for a relayd associated to the session id and return the reference.
3278 *
3279 * A rcu read side lock MUST be acquire before calling this function and locked
3280 * until the relayd object is no longer necessary.
3281 */
3282 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3283 {
3284 struct lttng_ht_iter iter;
3285 struct consumer_relayd_sock_pair *relayd = NULL;
3286
3287 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3288 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3289 node.node) {
3290 /*
3291 * Check by sessiond id which is unique here where the relayd session
3292 * id might not be when having multiple relayd.
3293 */
3294 if (relayd->sessiond_session_id == id) {
3295 /* Found the relayd. There can be only one per id. */
3296 goto found;
3297 }
3298 }
3299
3300 return NULL;
3301
3302 found:
3303 return relayd;
3304 }
3305
3306 /*
3307 * Check if for a given session id there is still data needed to be extract
3308 * from the buffers.
3309 *
3310 * Return 1 if data is pending or else 0 meaning ready to be read.
3311 */
3312 int consumer_data_pending(uint64_t id)
3313 {
3314 int ret;
3315 struct lttng_ht_iter iter;
3316 struct lttng_ht *ht;
3317 struct lttng_consumer_stream *stream;
3318 struct consumer_relayd_sock_pair *relayd = NULL;
3319 int (*data_pending)(struct lttng_consumer_stream *);
3320
3321 DBG("Consumer data pending command on session id %" PRIu64, id);
3322
3323 rcu_read_lock();
3324 pthread_mutex_lock(&consumer_data.lock);
3325
3326 switch (consumer_data.type) {
3327 case LTTNG_CONSUMER_KERNEL:
3328 data_pending = lttng_kconsumer_data_pending;
3329 break;
3330 case LTTNG_CONSUMER32_UST:
3331 case LTTNG_CONSUMER64_UST:
3332 data_pending = lttng_ustconsumer_data_pending;
3333 break;
3334 default:
3335 ERR("Unknown consumer data type");
3336 assert(0);
3337 }
3338
3339 /* Ease our life a bit */
3340 ht = consumer_data.stream_list_ht;
3341
3342 relayd = find_relayd_by_session_id(id);
3343 if (relayd) {
3344 /* Send init command for data pending. */
3345 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3346 ret = relayd_begin_data_pending(&relayd->control_sock,
3347 relayd->relayd_session_id);
3348 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3349 if (ret < 0) {
3350 /* Communication error thus the relayd so no data pending. */
3351 goto data_not_pending;
3352 }
3353 }
3354
3355 cds_lfht_for_each_entry_duplicate(ht->ht,
3356 ht->hash_fct(&id, lttng_ht_seed),
3357 ht->match_fct, &id,
3358 &iter.iter, stream, node_session_id.node) {
3359 /* If this call fails, the stream is being used hence data pending. */
3360 ret = stream_try_lock(stream);
3361 if (!ret) {
3362 goto data_pending;
3363 }
3364
3365 /*
3366 * A removed node from the hash table indicates that the stream has
3367 * been deleted thus having a guarantee that the buffers are closed
3368 * on the consumer side. However, data can still be transmitted
3369 * over the network so don't skip the relayd check.
3370 */
3371 ret = cds_lfht_is_node_deleted(&stream->node.node);
3372 if (!ret) {
3373 /* Check the stream if there is data in the buffers. */
3374 ret = data_pending(stream);
3375 if (ret == 1) {
3376 pthread_mutex_unlock(&stream->lock);
3377 goto data_pending;
3378 }
3379 }
3380
3381 /* Relayd check */
3382 if (relayd) {
3383 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3384 if (stream->metadata_flag) {
3385 ret = relayd_quiescent_control(&relayd->control_sock,
3386 stream->relayd_stream_id);
3387 } else {
3388 ret = relayd_data_pending(&relayd->control_sock,
3389 stream->relayd_stream_id,
3390 stream->next_net_seq_num - 1);
3391 }
3392 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3393 if (ret == 1) {
3394 pthread_mutex_unlock(&stream->lock);
3395 goto data_pending;
3396 }
3397 }
3398 pthread_mutex_unlock(&stream->lock);
3399 }
3400
3401 if (relayd) {
3402 unsigned int is_data_inflight = 0;
3403
3404 /* Send init command for data pending. */
3405 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3406 ret = relayd_end_data_pending(&relayd->control_sock,
3407 relayd->relayd_session_id, &is_data_inflight);
3408 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3409 if (ret < 0) {
3410 goto data_not_pending;
3411 }
3412 if (is_data_inflight) {
3413 goto data_pending;
3414 }
3415 }
3416
3417 /*
3418 * Finding _no_ node in the hash table and no inflight data means that the
3419 * stream(s) have been removed thus data is guaranteed to be available for
3420 * analysis from the trace files.
3421 */
3422
3423 data_not_pending:
3424 /* Data is available to be read by a viewer. */
3425 pthread_mutex_unlock(&consumer_data.lock);
3426 rcu_read_unlock();
3427 return 0;
3428
3429 data_pending:
3430 /* Data is still being extracted from buffers. */
3431 pthread_mutex_unlock(&consumer_data.lock);
3432 rcu_read_unlock();
3433 return 1;
3434 }
3435
3436 /*
3437 * Send a ret code status message to the sessiond daemon.
3438 *
3439 * Return the sendmsg() return value.
3440 */
3441 int consumer_send_status_msg(int sock, int ret_code)
3442 {
3443 struct lttcomm_consumer_status_msg msg;
3444
3445 msg.ret_code = ret_code;
3446
3447 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3448 }
3449
3450 /*
3451 * Send a channel status message to the sessiond daemon.
3452 *
3453 * Return the sendmsg() return value.
3454 */
3455 int consumer_send_status_channel(int sock,
3456 struct lttng_consumer_channel *channel)
3457 {
3458 struct lttcomm_consumer_status_channel msg;
3459
3460 assert(sock >= 0);
3461
3462 if (!channel) {
3463 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3464 } else {
3465 msg.ret_code = LTTNG_OK;
3466 msg.key = channel->key;
3467 msg.stream_count = channel->streams.count;
3468 }
3469
3470 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3471 }
3472
3473 /*
3474 * Using a maximum stream size with the produced and consumed position of a
3475 * stream, computes the new consumed position to be as close as possible to the
3476 * maximum possible stream size.
3477 *
3478 * If maximum stream size is lower than the possible buffer size (produced -
3479 * consumed), the consumed_pos given is returned untouched else the new value
3480 * is returned.
3481 */
3482 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3483 unsigned long produced_pos, uint64_t max_stream_size)
3484 {
3485 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3486 /* Offset from the produced position to get the latest buffers. */
3487 return produced_pos - max_stream_size;
3488 }
3489
3490 return consumed_pos;
3491 }
This page took 0.142835 seconds and 3 git commands to generate.