Fix: libc internal mutex races with run_as
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #define _LGPL_SOURCE
22 #include <assert.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <inttypes.h>
32 #include <signal.h>
33
34 #include <bin/lttng-consumerd/health-consumerd.h>
35 #include <common/common.h>
36 #include <common/utils.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer-timer.h>
47
48 #include "consumer.h"
49 #include "consumer-stream.h"
50 #include "consumer-testpoint.h"
51 #include "align.h"
52
53 struct lttng_consumer_global_data consumer_data = {
54 .stream_count = 0,
55 .need_update = 1,
56 .type = LTTNG_CONSUMER_UNKNOWN,
57 };
58
59 enum consumer_channel_action {
60 CONSUMER_CHANNEL_ADD,
61 CONSUMER_CHANNEL_DEL,
62 CONSUMER_CHANNEL_QUIT,
63 };
64
65 struct consumer_channel_msg {
66 enum consumer_channel_action action;
67 struct lttng_consumer_channel *chan; /* add */
68 uint64_t key; /* del */
69 };
70
71 /*
72 * Flag to inform the polling thread to quit when all fd hung up. Updated by
73 * the consumer_thread_receive_fds when it notices that all fds has hung up.
74 * Also updated by the signal handler (consumer_should_exit()). Read by the
75 * polling threads.
76 */
77 volatile int consumer_quit;
78
79 /*
80 * Global hash table containing respectively metadata and data streams. The
81 * stream element in this ht should only be updated by the metadata poll thread
82 * for the metadata and the data poll thread for the data.
83 */
84 static struct lttng_ht *metadata_ht;
85 static struct lttng_ht *data_ht;
86
87 /*
88 * Notify a thread lttng pipe to poll back again. This usually means that some
89 * global state has changed so we just send back the thread in a poll wait
90 * call.
91 */
92 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
93 {
94 struct lttng_consumer_stream *null_stream = NULL;
95
96 assert(pipe);
97
98 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
99 }
100
101 static void notify_health_quit_pipe(int *pipe)
102 {
103 ssize_t ret;
104
105 ret = lttng_write(pipe[1], "4", 1);
106 if (ret < 1) {
107 PERROR("write consumer health quit");
108 }
109 }
110
111 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
112 struct lttng_consumer_channel *chan,
113 uint64_t key,
114 enum consumer_channel_action action)
115 {
116 struct consumer_channel_msg msg;
117 ssize_t ret;
118
119 memset(&msg, 0, sizeof(msg));
120
121 msg.action = action;
122 msg.chan = chan;
123 msg.key = key;
124 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
125 if (ret < sizeof(msg)) {
126 PERROR("notify_channel_pipe write error");
127 }
128 }
129
130 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
131 uint64_t key)
132 {
133 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
134 }
135
136 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
137 struct lttng_consumer_channel **chan,
138 uint64_t *key,
139 enum consumer_channel_action *action)
140 {
141 struct consumer_channel_msg msg;
142 ssize_t ret;
143
144 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
145 if (ret < sizeof(msg)) {
146 ret = -1;
147 goto error;
148 }
149 *action = msg.action;
150 *chan = msg.chan;
151 *key = msg.key;
152 error:
153 return (int) ret;
154 }
155
156 /*
157 * Cleanup the stream list of a channel. Those streams are not yet globally
158 * visible
159 */
160 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
161 {
162 struct lttng_consumer_stream *stream, *stmp;
163
164 assert(channel);
165
166 /* Delete streams that might have been left in the stream list. */
167 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
168 send_node) {
169 cds_list_del(&stream->send_node);
170 /*
171 * Once a stream is added to this list, the buffers were created so we
172 * have a guarantee that this call will succeed. Setting the monitor
173 * mode to 0 so we don't lock nor try to delete the stream from the
174 * global hash table.
175 */
176 stream->monitor = 0;
177 consumer_stream_destroy(stream, NULL);
178 }
179 }
180
181 /*
182 * Find a stream. The consumer_data.lock must be locked during this
183 * call.
184 */
185 static struct lttng_consumer_stream *find_stream(uint64_t key,
186 struct lttng_ht *ht)
187 {
188 struct lttng_ht_iter iter;
189 struct lttng_ht_node_u64 *node;
190 struct lttng_consumer_stream *stream = NULL;
191
192 assert(ht);
193
194 /* -1ULL keys are lookup failures */
195 if (key == (uint64_t) -1ULL) {
196 return NULL;
197 }
198
199 rcu_read_lock();
200
201 lttng_ht_lookup(ht, &key, &iter);
202 node = lttng_ht_iter_get_node_u64(&iter);
203 if (node != NULL) {
204 stream = caa_container_of(node, struct lttng_consumer_stream, node);
205 }
206
207 rcu_read_unlock();
208
209 return stream;
210 }
211
212 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
213 {
214 struct lttng_consumer_stream *stream;
215
216 rcu_read_lock();
217 stream = find_stream(key, ht);
218 if (stream) {
219 stream->key = (uint64_t) -1ULL;
220 /*
221 * We don't want the lookup to match, but we still need
222 * to iterate on this stream when iterating over the hash table. Just
223 * change the node key.
224 */
225 stream->node.key = (uint64_t) -1ULL;
226 }
227 rcu_read_unlock();
228 }
229
230 /*
231 * Return a channel object for the given key.
232 *
233 * RCU read side lock MUST be acquired before calling this function and
234 * protects the channel ptr.
235 */
236 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
237 {
238 struct lttng_ht_iter iter;
239 struct lttng_ht_node_u64 *node;
240 struct lttng_consumer_channel *channel = NULL;
241
242 /* -1ULL keys are lookup failures */
243 if (key == (uint64_t) -1ULL) {
244 return NULL;
245 }
246
247 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
248 node = lttng_ht_iter_get_node_u64(&iter);
249 if (node != NULL) {
250 channel = caa_container_of(node, struct lttng_consumer_channel, node);
251 }
252
253 return channel;
254 }
255
256 /*
257 * There is a possibility that the consumer does not have enough time between
258 * the close of the channel on the session daemon and the cleanup in here thus
259 * once we have a channel add with an existing key, we know for sure that this
260 * channel will eventually get cleaned up by all streams being closed.
261 *
262 * This function just nullifies the already existing channel key.
263 */
264 static void steal_channel_key(uint64_t key)
265 {
266 struct lttng_consumer_channel *channel;
267
268 rcu_read_lock();
269 channel = consumer_find_channel(key);
270 if (channel) {
271 channel->key = (uint64_t) -1ULL;
272 /*
273 * We don't want the lookup to match, but we still need to iterate on
274 * this channel when iterating over the hash table. Just change the
275 * node key.
276 */
277 channel->node.key = (uint64_t) -1ULL;
278 }
279 rcu_read_unlock();
280 }
281
282 static void free_channel_rcu(struct rcu_head *head)
283 {
284 struct lttng_ht_node_u64 *node =
285 caa_container_of(head, struct lttng_ht_node_u64, head);
286 struct lttng_consumer_channel *channel =
287 caa_container_of(node, struct lttng_consumer_channel, node);
288
289 switch (consumer_data.type) {
290 case LTTNG_CONSUMER_KERNEL:
291 break;
292 case LTTNG_CONSUMER32_UST:
293 case LTTNG_CONSUMER64_UST:
294 lttng_ustconsumer_free_channel(channel);
295 break;
296 default:
297 ERR("Unknown consumer_data type");
298 abort();
299 }
300 free(channel);
301 }
302
303 /*
304 * RCU protected relayd socket pair free.
305 */
306 static void free_relayd_rcu(struct rcu_head *head)
307 {
308 struct lttng_ht_node_u64 *node =
309 caa_container_of(head, struct lttng_ht_node_u64, head);
310 struct consumer_relayd_sock_pair *relayd =
311 caa_container_of(node, struct consumer_relayd_sock_pair, node);
312
313 /*
314 * Close all sockets. This is done in the call RCU since we don't want the
315 * socket fds to be reassigned thus potentially creating bad state of the
316 * relayd object.
317 *
318 * We do not have to lock the control socket mutex here since at this stage
319 * there is no one referencing to this relayd object.
320 */
321 (void) relayd_close(&relayd->control_sock);
322 (void) relayd_close(&relayd->data_sock);
323
324 free(relayd);
325 }
326
327 /*
328 * Destroy and free relayd socket pair object.
329 */
330 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
331 {
332 int ret;
333 struct lttng_ht_iter iter;
334
335 if (relayd == NULL) {
336 return;
337 }
338
339 DBG("Consumer destroy and close relayd socket pair");
340
341 iter.iter.node = &relayd->node.node;
342 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
343 if (ret != 0) {
344 /* We assume the relayd is being or is destroyed */
345 return;
346 }
347
348 /* RCU free() call */
349 call_rcu(&relayd->node.head, free_relayd_rcu);
350 }
351
352 /*
353 * Remove a channel from the global list protected by a mutex. This function is
354 * also responsible for freeing its data structures.
355 */
356 void consumer_del_channel(struct lttng_consumer_channel *channel)
357 {
358 int ret;
359 struct lttng_ht_iter iter;
360
361 DBG("Consumer delete channel key %" PRIu64, channel->key);
362
363 pthread_mutex_lock(&consumer_data.lock);
364 pthread_mutex_lock(&channel->lock);
365
366 /* Destroy streams that might have been left in the stream list. */
367 clean_channel_stream_list(channel);
368
369 if (channel->live_timer_enabled == 1) {
370 consumer_timer_live_stop(channel);
371 }
372
373 switch (consumer_data.type) {
374 case LTTNG_CONSUMER_KERNEL:
375 break;
376 case LTTNG_CONSUMER32_UST:
377 case LTTNG_CONSUMER64_UST:
378 lttng_ustconsumer_del_channel(channel);
379 break;
380 default:
381 ERR("Unknown consumer_data type");
382 assert(0);
383 goto end;
384 }
385
386 rcu_read_lock();
387 iter.iter.node = &channel->node.node;
388 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
389 assert(!ret);
390 rcu_read_unlock();
391
392 call_rcu(&channel->node.head, free_channel_rcu);
393 end:
394 pthread_mutex_unlock(&channel->lock);
395 pthread_mutex_unlock(&consumer_data.lock);
396 }
397
398 /*
399 * Iterate over the relayd hash table and destroy each element. Finally,
400 * destroy the whole hash table.
401 */
402 static void cleanup_relayd_ht(void)
403 {
404 struct lttng_ht_iter iter;
405 struct consumer_relayd_sock_pair *relayd;
406
407 rcu_read_lock();
408
409 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
410 node.node) {
411 consumer_destroy_relayd(relayd);
412 }
413
414 rcu_read_unlock();
415
416 lttng_ht_destroy(consumer_data.relayd_ht);
417 }
418
419 /*
420 * Update the end point status of all streams having the given network sequence
421 * index (relayd index).
422 *
423 * It's atomically set without having the stream mutex locked which is fine
424 * because we handle the write/read race with a pipe wakeup for each thread.
425 */
426 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
427 enum consumer_endpoint_status status)
428 {
429 struct lttng_ht_iter iter;
430 struct lttng_consumer_stream *stream;
431
432 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
433
434 rcu_read_lock();
435
436 /* Let's begin with metadata */
437 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
438 if (stream->net_seq_idx == net_seq_idx) {
439 uatomic_set(&stream->endpoint_status, status);
440 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
441 }
442 }
443
444 /* Follow up by the data streams */
445 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
446 if (stream->net_seq_idx == net_seq_idx) {
447 uatomic_set(&stream->endpoint_status, status);
448 DBG("Delete flag set to data stream %d", stream->wait_fd);
449 }
450 }
451 rcu_read_unlock();
452 }
453
454 /*
455 * Cleanup a relayd object by flagging every associated streams for deletion,
456 * destroying the object meaning removing it from the relayd hash table,
457 * closing the sockets and freeing the memory in a RCU call.
458 *
459 * If a local data context is available, notify the threads that the streams'
460 * state have changed.
461 */
462 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
463 struct lttng_consumer_local_data *ctx)
464 {
465 uint64_t netidx;
466
467 assert(relayd);
468
469 DBG("Cleaning up relayd sockets");
470
471 /* Save the net sequence index before destroying the object */
472 netidx = relayd->net_seq_idx;
473
474 /*
475 * Delete the relayd from the relayd hash table, close the sockets and free
476 * the object in a RCU call.
477 */
478 consumer_destroy_relayd(relayd);
479
480 /* Set inactive endpoint to all streams */
481 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
482
483 /*
484 * With a local data context, notify the threads that the streams' state
485 * have changed. The write() action on the pipe acts as an "implicit"
486 * memory barrier ordering the updates of the end point status from the
487 * read of this status which happens AFTER receiving this notify.
488 */
489 if (ctx) {
490 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
491 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
492 }
493 }
494
495 /*
496 * Flag a relayd socket pair for destruction. Destroy it if the refcount
497 * reaches zero.
498 *
499 * RCU read side lock MUST be aquired before calling this function.
500 */
501 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
502 {
503 assert(relayd);
504
505 /* Set destroy flag for this object */
506 uatomic_set(&relayd->destroy_flag, 1);
507
508 /* Destroy the relayd if refcount is 0 */
509 if (uatomic_read(&relayd->refcount) == 0) {
510 consumer_destroy_relayd(relayd);
511 }
512 }
513
514 /*
515 * Completly destroy stream from every visiable data structure and the given
516 * hash table if one.
517 *
518 * One this call returns, the stream object is not longer usable nor visible.
519 */
520 void consumer_del_stream(struct lttng_consumer_stream *stream,
521 struct lttng_ht *ht)
522 {
523 consumer_stream_destroy(stream, ht);
524 }
525
526 /*
527 * XXX naming of del vs destroy is all mixed up.
528 */
529 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
530 {
531 consumer_stream_destroy(stream, data_ht);
532 }
533
534 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, metadata_ht);
537 }
538
539 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
540 uint64_t stream_key,
541 enum lttng_consumer_stream_state state,
542 const char *channel_name,
543 uid_t uid,
544 gid_t gid,
545 uint64_t relayd_id,
546 uint64_t session_id,
547 int cpu,
548 int *alloc_ret,
549 enum consumer_channel_type type,
550 unsigned int monitor)
551 {
552 int ret;
553 struct lttng_consumer_stream *stream;
554
555 stream = zmalloc(sizeof(*stream));
556 if (stream == NULL) {
557 PERROR("malloc struct lttng_consumer_stream");
558 ret = -ENOMEM;
559 goto end;
560 }
561
562 rcu_read_lock();
563
564 stream->key = stream_key;
565 stream->out_fd = -1;
566 stream->out_fd_offset = 0;
567 stream->output_written = 0;
568 stream->state = state;
569 stream->uid = uid;
570 stream->gid = gid;
571 stream->net_seq_idx = relayd_id;
572 stream->session_id = session_id;
573 stream->monitor = monitor;
574 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
575 stream->index_fd = -1;
576 pthread_mutex_init(&stream->lock, NULL);
577 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
578
579 /* If channel is the metadata, flag this stream as metadata. */
580 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
581 stream->metadata_flag = 1;
582 /* Metadata is flat out. */
583 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
584 /* Live rendez-vous point. */
585 pthread_cond_init(&stream->metadata_rdv, NULL);
586 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
607 " relayd_id %" PRIu64 ", session_id %" PRIu64,
608 stream->name, stream->key, channel_key,
609 stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
628 {
629 struct lttng_ht *ht = data_ht;
630 int ret = 0;
631
632 assert(stream);
633 assert(ht);
634
635 DBG3("Adding consumer stream %" PRIu64, stream->key);
636
637 pthread_mutex_lock(&consumer_data.lock);
638 pthread_mutex_lock(&stream->chan->lock);
639 pthread_mutex_lock(&stream->chan->timer_lock);
640 pthread_mutex_lock(&stream->lock);
641 rcu_read_lock();
642
643 /* Steal stream identifier to avoid having streams with the same key */
644 steal_stream_key(stream->key, ht);
645
646 lttng_ht_add_unique_u64(ht, &stream->node);
647
648 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
649 &stream->node_channel_id);
650
651 /*
652 * Add stream to the stream_list_ht of the consumer data. No need to steal
653 * the key since the HT does not use it and we allow to add redundant keys
654 * into this table.
655 */
656 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
657
658 /*
659 * When nb_init_stream_left reaches 0, we don't need to trigger any action
660 * in terms of destroying the associated channel, because the action that
661 * causes the count to become 0 also causes a stream to be added. The
662 * channel deletion will thus be triggered by the following removal of this
663 * stream.
664 */
665 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
666 /* Increment refcount before decrementing nb_init_stream_left */
667 cmm_smp_wmb();
668 uatomic_dec(&stream->chan->nb_init_stream_left);
669 }
670
671 /* Update consumer data once the node is inserted. */
672 consumer_data.stream_count++;
673 consumer_data.need_update = 1;
674
675 rcu_read_unlock();
676 pthread_mutex_unlock(&stream->lock);
677 pthread_mutex_unlock(&stream->chan->timer_lock);
678 pthread_mutex_unlock(&stream->chan->lock);
679 pthread_mutex_unlock(&consumer_data.lock);
680
681 return ret;
682 }
683
684 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
685 {
686 consumer_del_stream(stream, data_ht);
687 }
688
689 /*
690 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
691 * be acquired before calling this.
692 */
693 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
694 {
695 int ret = 0;
696 struct lttng_ht_node_u64 *node;
697 struct lttng_ht_iter iter;
698
699 assert(relayd);
700
701 lttng_ht_lookup(consumer_data.relayd_ht,
702 &relayd->net_seq_idx, &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 goto end;
706 }
707 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
708
709 end:
710 return ret;
711 }
712
713 /*
714 * Allocate and return a consumer relayd socket.
715 */
716 static struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
717 uint64_t net_seq_idx)
718 {
719 struct consumer_relayd_sock_pair *obj = NULL;
720
721 /* net sequence index of -1 is a failure */
722 if (net_seq_idx == (uint64_t) -1ULL) {
723 goto error;
724 }
725
726 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
727 if (obj == NULL) {
728 PERROR("zmalloc relayd sock");
729 goto error;
730 }
731
732 obj->net_seq_idx = net_seq_idx;
733 obj->refcount = 0;
734 obj->destroy_flag = 0;
735 obj->control_sock.sock.fd = -1;
736 obj->data_sock.sock.fd = -1;
737 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
738 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
739
740 error:
741 return obj;
742 }
743
744 /*
745 * Find a relayd socket pair in the global consumer data.
746 *
747 * Return the object if found else NULL.
748 * RCU read-side lock must be held across this call and while using the
749 * returned object.
750 */
751 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
752 {
753 struct lttng_ht_iter iter;
754 struct lttng_ht_node_u64 *node;
755 struct consumer_relayd_sock_pair *relayd = NULL;
756
757 /* Negative keys are lookup failures */
758 if (key == (uint64_t) -1ULL) {
759 goto error;
760 }
761
762 lttng_ht_lookup(consumer_data.relayd_ht, &key,
763 &iter);
764 node = lttng_ht_iter_get_node_u64(&iter);
765 if (node != NULL) {
766 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
767 }
768
769 error:
770 return relayd;
771 }
772
773 /*
774 * Find a relayd and send the stream
775 *
776 * Returns 0 on success, < 0 on error
777 */
778 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
779 char *path)
780 {
781 int ret = 0;
782 struct consumer_relayd_sock_pair *relayd;
783
784 assert(stream);
785 assert(stream->net_seq_idx != -1ULL);
786 assert(path);
787
788 /* The stream is not metadata. Get relayd reference if exists. */
789 rcu_read_lock();
790 relayd = consumer_find_relayd(stream->net_seq_idx);
791 if (relayd != NULL) {
792 /* Add stream on the relayd */
793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
794 ret = relayd_add_stream(&relayd->control_sock, stream->name,
795 path, &stream->relayd_stream_id,
796 stream->chan->tracefile_size, stream->chan->tracefile_count);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801
802 uatomic_inc(&relayd->refcount);
803 stream->sent_to_relayd = 1;
804 } else {
805 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
806 stream->key, stream->net_seq_idx);
807 ret = -1;
808 goto end;
809 }
810
811 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
812 stream->name, stream->key, stream->net_seq_idx);
813
814 end:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /*
820 * Find a relayd and send the streams sent message
821 *
822 * Returns 0 on success, < 0 on error
823 */
824 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
825 {
826 int ret = 0;
827 struct consumer_relayd_sock_pair *relayd;
828
829 assert(net_seq_idx != -1ULL);
830
831 /* The stream is not metadata. Get relayd reference if exists. */
832 rcu_read_lock();
833 relayd = consumer_find_relayd(net_seq_idx);
834 if (relayd != NULL) {
835 /* Add stream on the relayd */
836 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
837 ret = relayd_streams_sent(&relayd->control_sock);
838 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
839 if (ret < 0) {
840 goto end;
841 }
842 } else {
843 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
844 net_seq_idx);
845 ret = -1;
846 goto end;
847 }
848
849 ret = 0;
850 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
851
852 end:
853 rcu_read_unlock();
854 return ret;
855 }
856
857 /*
858 * Find a relayd and close the stream
859 */
860 void close_relayd_stream(struct lttng_consumer_stream *stream)
861 {
862 struct consumer_relayd_sock_pair *relayd;
863
864 /* The stream is not metadata. Get relayd reference if exists. */
865 rcu_read_lock();
866 relayd = consumer_find_relayd(stream->net_seq_idx);
867 if (relayd) {
868 consumer_stream_relayd_close(stream, relayd);
869 }
870 rcu_read_unlock();
871 }
872
873 /*
874 * Handle stream for relayd transmission if the stream applies for network
875 * streaming where the net sequence index is set.
876 *
877 * Return destination file descriptor or negative value on error.
878 */
879 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
880 size_t data_size, unsigned long padding,
881 struct consumer_relayd_sock_pair *relayd)
882 {
883 int outfd = -1, ret;
884 struct lttcomm_relayd_data_hdr data_hdr;
885
886 /* Safety net */
887 assert(stream);
888 assert(relayd);
889
890 /* Reset data header */
891 memset(&data_hdr, 0, sizeof(data_hdr));
892
893 if (stream->metadata_flag) {
894 /* Caller MUST acquire the relayd control socket lock */
895 ret = relayd_send_metadata(&relayd->control_sock, data_size);
896 if (ret < 0) {
897 goto error;
898 }
899
900 /* Metadata are always sent on the control socket. */
901 outfd = relayd->control_sock.sock.fd;
902 } else {
903 /* Set header with stream information */
904 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
905 data_hdr.data_size = htobe32(data_size);
906 data_hdr.padding_size = htobe32(padding);
907 /*
908 * Note that net_seq_num below is assigned with the *current* value of
909 * next_net_seq_num and only after that the next_net_seq_num will be
910 * increment. This is why when issuing a command on the relayd using
911 * this next value, 1 should always be substracted in order to compare
912 * the last seen sequence number on the relayd side to the last sent.
913 */
914 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
915 /* Other fields are zeroed previously */
916
917 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
918 sizeof(data_hdr));
919 if (ret < 0) {
920 goto error;
921 }
922
923 ++stream->next_net_seq_num;
924
925 /* Set to go on data socket */
926 outfd = relayd->data_sock.sock.fd;
927 }
928
929 error:
930 return outfd;
931 }
932
933 /*
934 * Allocate and return a new lttng_consumer_channel object using the given key
935 * to initialize the hash table node.
936 *
937 * On error, return NULL.
938 */
939 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
940 uint64_t session_id,
941 const char *pathname,
942 const char *name,
943 uid_t uid,
944 gid_t gid,
945 uint64_t relayd_id,
946 enum lttng_event_output output,
947 uint64_t tracefile_size,
948 uint64_t tracefile_count,
949 uint64_t session_id_per_pid,
950 unsigned int monitor,
951 unsigned int live_timer_interval,
952 const char *root_shm_path,
953 const char *shm_path)
954 {
955 struct lttng_consumer_channel *channel;
956
957 channel = zmalloc(sizeof(*channel));
958 if (channel == NULL) {
959 PERROR("malloc struct lttng_consumer_channel");
960 goto end;
961 }
962
963 channel->key = key;
964 channel->refcount = 0;
965 channel->session_id = session_id;
966 channel->session_id_per_pid = session_id_per_pid;
967 channel->uid = uid;
968 channel->gid = gid;
969 channel->relayd_id = relayd_id;
970 channel->tracefile_size = tracefile_size;
971 channel->tracefile_count = tracefile_count;
972 channel->monitor = monitor;
973 channel->live_timer_interval = live_timer_interval;
974 pthread_mutex_init(&channel->lock, NULL);
975 pthread_mutex_init(&channel->timer_lock, NULL);
976
977 switch (output) {
978 case LTTNG_EVENT_SPLICE:
979 channel->output = CONSUMER_CHANNEL_SPLICE;
980 break;
981 case LTTNG_EVENT_MMAP:
982 channel->output = CONSUMER_CHANNEL_MMAP;
983 break;
984 default:
985 assert(0);
986 free(channel);
987 channel = NULL;
988 goto end;
989 }
990
991 /*
992 * In monitor mode, the streams associated with the channel will be put in
993 * a special list ONLY owned by this channel. So, the refcount is set to 1
994 * here meaning that the channel itself has streams that are referenced.
995 *
996 * On a channel deletion, once the channel is no longer visible, the
997 * refcount is decremented and checked for a zero value to delete it. With
998 * streams in no monitor mode, it will now be safe to destroy the channel.
999 */
1000 if (!channel->monitor) {
1001 channel->refcount = 1;
1002 }
1003
1004 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1005 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1006
1007 strncpy(channel->name, name, sizeof(channel->name));
1008 channel->name[sizeof(channel->name) - 1] = '\0';
1009
1010 if (root_shm_path) {
1011 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1012 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1013 }
1014 if (shm_path) {
1015 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1016 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1017 }
1018
1019 lttng_ht_node_init_u64(&channel->node, channel->key);
1020
1021 channel->wait_fd = -1;
1022
1023 CDS_INIT_LIST_HEAD(&channel->streams.head);
1024
1025 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1026
1027 end:
1028 return channel;
1029 }
1030
1031 /*
1032 * Add a channel to the global list protected by a mutex.
1033 *
1034 * Always return 0 indicating success.
1035 */
1036 int consumer_add_channel(struct lttng_consumer_channel *channel,
1037 struct lttng_consumer_local_data *ctx)
1038 {
1039 pthread_mutex_lock(&consumer_data.lock);
1040 pthread_mutex_lock(&channel->lock);
1041 pthread_mutex_lock(&channel->timer_lock);
1042
1043 /*
1044 * This gives us a guarantee that the channel we are about to add to the
1045 * channel hash table will be unique. See this function comment on the why
1046 * we need to steel the channel key at this stage.
1047 */
1048 steal_channel_key(channel->key);
1049
1050 rcu_read_lock();
1051 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1052 rcu_read_unlock();
1053
1054 pthread_mutex_unlock(&channel->timer_lock);
1055 pthread_mutex_unlock(&channel->lock);
1056 pthread_mutex_unlock(&consumer_data.lock);
1057
1058 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1059 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1060 }
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Allocate the pollfd structure and the local view of the out fds to avoid
1067 * doing a lookup in the linked list and concurrency issues when writing is
1068 * needed. Called with consumer_data.lock held.
1069 *
1070 * Returns the number of fds in the structures.
1071 */
1072 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1073 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1074 struct lttng_ht *ht)
1075 {
1076 int i = 0;
1077 struct lttng_ht_iter iter;
1078 struct lttng_consumer_stream *stream;
1079
1080 assert(ctx);
1081 assert(ht);
1082 assert(pollfd);
1083 assert(local_stream);
1084
1085 DBG("Updating poll fd array");
1086 rcu_read_lock();
1087 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1088 /*
1089 * Only active streams with an active end point can be added to the
1090 * poll set and local stream storage of the thread.
1091 *
1092 * There is a potential race here for endpoint_status to be updated
1093 * just after the check. However, this is OK since the stream(s) will
1094 * be deleted once the thread is notified that the end point state has
1095 * changed where this function will be called back again.
1096 */
1097 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1098 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1099 continue;
1100 }
1101 /*
1102 * This clobbers way too much the debug output. Uncomment that if you
1103 * need it for debugging purposes.
1104 *
1105 * DBG("Active FD %d", stream->wait_fd);
1106 */
1107 (*pollfd)[i].fd = stream->wait_fd;
1108 (*pollfd)[i].events = POLLIN | POLLPRI;
1109 local_stream[i] = stream;
1110 i++;
1111 }
1112 rcu_read_unlock();
1113
1114 /*
1115 * Insert the consumer_data_pipe at the end of the array and don't
1116 * increment i so nb_fd is the number of real FD.
1117 */
1118 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1119 (*pollfd)[i].events = POLLIN | POLLPRI;
1120
1121 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1122 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1123 return i;
1124 }
1125
1126 /*
1127 * Poll on the should_quit pipe and the command socket return -1 on
1128 * error, 1 if should exit, 0 if data is available on the command socket
1129 */
1130 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1131 {
1132 int num_rdy;
1133
1134 restart:
1135 num_rdy = poll(consumer_sockpoll, 2, -1);
1136 if (num_rdy == -1) {
1137 /*
1138 * Restart interrupted system call.
1139 */
1140 if (errno == EINTR) {
1141 goto restart;
1142 }
1143 PERROR("Poll error");
1144 return -1;
1145 }
1146 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1147 DBG("consumer_should_quit wake up");
1148 return 1;
1149 }
1150 return 0;
1151 }
1152
1153 /*
1154 * Set the error socket.
1155 */
1156 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1157 int sock)
1158 {
1159 ctx->consumer_error_socket = sock;
1160 }
1161
1162 /*
1163 * Set the command socket path.
1164 */
1165 void lttng_consumer_set_command_sock_path(
1166 struct lttng_consumer_local_data *ctx, char *sock)
1167 {
1168 ctx->consumer_command_sock_path = sock;
1169 }
1170
1171 /*
1172 * Send return code to the session daemon.
1173 * If the socket is not defined, we return 0, it is not a fatal error
1174 */
1175 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1176 {
1177 if (ctx->consumer_error_socket > 0) {
1178 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1179 sizeof(enum lttcomm_sessiond_command));
1180 }
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Close all the tracefiles and stream fds and MUST be called when all
1187 * instances are destroyed i.e. when all threads were joined and are ended.
1188 */
1189 void lttng_consumer_cleanup(void)
1190 {
1191 struct lttng_ht_iter iter;
1192 struct lttng_consumer_channel *channel;
1193
1194 rcu_read_lock();
1195
1196 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1197 node.node) {
1198 consumer_del_channel(channel);
1199 }
1200
1201 rcu_read_unlock();
1202
1203 lttng_ht_destroy(consumer_data.channel_ht);
1204
1205 cleanup_relayd_ht();
1206
1207 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1208
1209 /*
1210 * This HT contains streams that are freed by either the metadata thread or
1211 * the data thread so we do *nothing* on the hash table and simply destroy
1212 * it.
1213 */
1214 lttng_ht_destroy(consumer_data.stream_list_ht);
1215
1216 run_as_destroy_worker();
1217 }
1218
1219 /*
1220 * Called from signal handler.
1221 */
1222 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1223 {
1224 ssize_t ret;
1225
1226 consumer_quit = 1;
1227 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1228 if (ret < 1) {
1229 PERROR("write consumer quit");
1230 }
1231
1232 DBG("Consumer flag that it should quit");
1233 }
1234
1235 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1236 off_t orig_offset)
1237 {
1238 int outfd = stream->out_fd;
1239
1240 /*
1241 * This does a blocking write-and-wait on any page that belongs to the
1242 * subbuffer prior to the one we just wrote.
1243 * Don't care about error values, as these are just hints and ways to
1244 * limit the amount of page cache used.
1245 */
1246 if (orig_offset < stream->max_sb_size) {
1247 return;
1248 }
1249 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1250 stream->max_sb_size,
1251 SYNC_FILE_RANGE_WAIT_BEFORE
1252 | SYNC_FILE_RANGE_WRITE
1253 | SYNC_FILE_RANGE_WAIT_AFTER);
1254 /*
1255 * Give hints to the kernel about how we access the file:
1256 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1257 * we write it.
1258 *
1259 * We need to call fadvise again after the file grows because the
1260 * kernel does not seem to apply fadvise to non-existing parts of the
1261 * file.
1262 *
1263 * Call fadvise _after_ having waited for the page writeback to
1264 * complete because the dirty page writeback semantic is not well
1265 * defined. So it can be expected to lead to lower throughput in
1266 * streaming.
1267 */
1268 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1269 stream->max_sb_size, POSIX_FADV_DONTNEED);
1270 }
1271
1272 /*
1273 * Initialise the necessary environnement :
1274 * - create a new context
1275 * - create the poll_pipe
1276 * - create the should_quit pipe (for signal handler)
1277 * - create the thread pipe (for splice)
1278 *
1279 * Takes a function pointer as argument, this function is called when data is
1280 * available on a buffer. This function is responsible to do the
1281 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1282 * buffer configuration and then kernctl_put_next_subbuf at the end.
1283 *
1284 * Returns a pointer to the new context or NULL on error.
1285 */
1286 struct lttng_consumer_local_data *lttng_consumer_create(
1287 enum lttng_consumer_type type,
1288 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1289 struct lttng_consumer_local_data *ctx),
1290 int (*recv_channel)(struct lttng_consumer_channel *channel),
1291 int (*recv_stream)(struct lttng_consumer_stream *stream),
1292 int (*update_stream)(uint64_t stream_key, uint32_t state))
1293 {
1294 int ret;
1295 struct lttng_consumer_local_data *ctx;
1296
1297 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1298 consumer_data.type == type);
1299 consumer_data.type = type;
1300
1301 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1302 if (ctx == NULL) {
1303 PERROR("allocating context");
1304 goto error;
1305 }
1306
1307 ctx->consumer_error_socket = -1;
1308 ctx->consumer_metadata_socket = -1;
1309 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1310 /* assign the callbacks */
1311 ctx->on_buffer_ready = buffer_ready;
1312 ctx->on_recv_channel = recv_channel;
1313 ctx->on_recv_stream = recv_stream;
1314 ctx->on_update_stream = update_stream;
1315
1316 ctx->consumer_data_pipe = lttng_pipe_open(0);
1317 if (!ctx->consumer_data_pipe) {
1318 goto error_poll_pipe;
1319 }
1320
1321 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1322 if (!ctx->consumer_wakeup_pipe) {
1323 goto error_wakeup_pipe;
1324 }
1325
1326 ret = pipe(ctx->consumer_should_quit);
1327 if (ret < 0) {
1328 PERROR("Error creating recv pipe");
1329 goto error_quit_pipe;
1330 }
1331
1332 ret = pipe(ctx->consumer_channel_pipe);
1333 if (ret < 0) {
1334 PERROR("Error creating channel pipe");
1335 goto error_channel_pipe;
1336 }
1337
1338 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1339 if (!ctx->consumer_metadata_pipe) {
1340 goto error_metadata_pipe;
1341 }
1342
1343 return ctx;
1344
1345 error_metadata_pipe:
1346 utils_close_pipe(ctx->consumer_channel_pipe);
1347 error_channel_pipe:
1348 utils_close_pipe(ctx->consumer_should_quit);
1349 error_quit_pipe:
1350 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1351 error_wakeup_pipe:
1352 lttng_pipe_destroy(ctx->consumer_data_pipe);
1353 error_poll_pipe:
1354 free(ctx);
1355 error:
1356 return NULL;
1357 }
1358
1359 /*
1360 * Iterate over all streams of the hashtable and free them properly.
1361 */
1362 static void destroy_data_stream_ht(struct lttng_ht *ht)
1363 {
1364 struct lttng_ht_iter iter;
1365 struct lttng_consumer_stream *stream;
1366
1367 if (ht == NULL) {
1368 return;
1369 }
1370
1371 rcu_read_lock();
1372 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1373 /*
1374 * Ignore return value since we are currently cleaning up so any error
1375 * can't be handled.
1376 */
1377 (void) consumer_del_stream(stream, ht);
1378 }
1379 rcu_read_unlock();
1380
1381 lttng_ht_destroy(ht);
1382 }
1383
1384 /*
1385 * Iterate over all streams of the metadata hashtable and free them
1386 * properly.
1387 */
1388 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1389 {
1390 struct lttng_ht_iter iter;
1391 struct lttng_consumer_stream *stream;
1392
1393 if (ht == NULL) {
1394 return;
1395 }
1396
1397 rcu_read_lock();
1398 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1399 /*
1400 * Ignore return value since we are currently cleaning up so any error
1401 * can't be handled.
1402 */
1403 (void) consumer_del_metadata_stream(stream, ht);
1404 }
1405 rcu_read_unlock();
1406
1407 lttng_ht_destroy(ht);
1408 }
1409
1410 /*
1411 * Close all fds associated with the instance and free the context.
1412 */
1413 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1414 {
1415 int ret;
1416
1417 DBG("Consumer destroying it. Closing everything.");
1418
1419 if (!ctx) {
1420 return;
1421 }
1422
1423 destroy_data_stream_ht(data_ht);
1424 destroy_metadata_stream_ht(metadata_ht);
1425
1426 ret = close(ctx->consumer_error_socket);
1427 if (ret) {
1428 PERROR("close");
1429 }
1430 ret = close(ctx->consumer_metadata_socket);
1431 if (ret) {
1432 PERROR("close");
1433 }
1434 utils_close_pipe(ctx->consumer_channel_pipe);
1435 lttng_pipe_destroy(ctx->consumer_data_pipe);
1436 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1437 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1438 utils_close_pipe(ctx->consumer_should_quit);
1439
1440 unlink(ctx->consumer_command_sock_path);
1441 free(ctx);
1442 }
1443
1444 /*
1445 * Write the metadata stream id on the specified file descriptor.
1446 */
1447 static int write_relayd_metadata_id(int fd,
1448 struct lttng_consumer_stream *stream,
1449 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1450 {
1451 ssize_t ret;
1452 struct lttcomm_relayd_metadata_payload hdr;
1453
1454 hdr.stream_id = htobe64(stream->relayd_stream_id);
1455 hdr.padding_size = htobe32(padding);
1456 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1457 if (ret < sizeof(hdr)) {
1458 /*
1459 * This error means that the fd's end is closed so ignore the PERROR
1460 * not to clubber the error output since this can happen in a normal
1461 * code path.
1462 */
1463 if (errno != EPIPE) {
1464 PERROR("write metadata stream id");
1465 }
1466 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1467 /*
1468 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1469 * handle writting the missing part so report that as an error and
1470 * don't lie to the caller.
1471 */
1472 ret = -1;
1473 goto end;
1474 }
1475 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1476 stream->relayd_stream_id, padding);
1477
1478 end:
1479 return (int) ret;
1480 }
1481
1482 /*
1483 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1484 * core function for writing trace buffers to either the local filesystem or
1485 * the network.
1486 *
1487 * It must be called with the stream lock held.
1488 *
1489 * Careful review MUST be put if any changes occur!
1490 *
1491 * Returns the number of bytes written
1492 */
1493 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1494 struct lttng_consumer_local_data *ctx,
1495 struct lttng_consumer_stream *stream, unsigned long len,
1496 unsigned long padding,
1497 struct ctf_packet_index *index)
1498 {
1499 unsigned long mmap_offset;
1500 void *mmap_base;
1501 ssize_t ret = 0;
1502 off_t orig_offset = stream->out_fd_offset;
1503 /* Default is on the disk */
1504 int outfd = stream->out_fd;
1505 struct consumer_relayd_sock_pair *relayd = NULL;
1506 unsigned int relayd_hang_up = 0;
1507
1508 /* RCU lock for the relayd pointer */
1509 rcu_read_lock();
1510
1511 /* Flag that the current stream if set for network streaming. */
1512 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1513 relayd = consumer_find_relayd(stream->net_seq_idx);
1514 if (relayd == NULL) {
1515 ret = -EPIPE;
1516 goto end;
1517 }
1518 }
1519
1520 /* get the offset inside the fd to mmap */
1521 switch (consumer_data.type) {
1522 case LTTNG_CONSUMER_KERNEL:
1523 mmap_base = stream->mmap_base;
1524 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1525 if (ret < 0) {
1526 ret = -errno;
1527 PERROR("tracer ctl get_mmap_read_offset");
1528 goto end;
1529 }
1530 break;
1531 case LTTNG_CONSUMER32_UST:
1532 case LTTNG_CONSUMER64_UST:
1533 mmap_base = lttng_ustctl_get_mmap_base(stream);
1534 if (!mmap_base) {
1535 ERR("read mmap get mmap base for stream %s", stream->name);
1536 ret = -EPERM;
1537 goto end;
1538 }
1539 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1540 if (ret != 0) {
1541 PERROR("tracer ctl get_mmap_read_offset");
1542 ret = -EINVAL;
1543 goto end;
1544 }
1545 break;
1546 default:
1547 ERR("Unknown consumer_data type");
1548 assert(0);
1549 }
1550
1551 /* Handle stream on the relayd if the output is on the network */
1552 if (relayd) {
1553 unsigned long netlen = len;
1554
1555 /*
1556 * Lock the control socket for the complete duration of the function
1557 * since from this point on we will use the socket.
1558 */
1559 if (stream->metadata_flag) {
1560 /* Metadata requires the control socket. */
1561 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1562 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1563 }
1564
1565 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1566 if (ret < 0) {
1567 relayd_hang_up = 1;
1568 goto write_error;
1569 }
1570 /* Use the returned socket. */
1571 outfd = ret;
1572
1573 /* Write metadata stream id before payload */
1574 if (stream->metadata_flag) {
1575 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1576 if (ret < 0) {
1577 relayd_hang_up = 1;
1578 goto write_error;
1579 }
1580 }
1581 } else {
1582 /* No streaming, we have to set the len with the full padding */
1583 len += padding;
1584
1585 /*
1586 * Check if we need to change the tracefile before writing the packet.
1587 */
1588 if (stream->chan->tracefile_size > 0 &&
1589 (stream->tracefile_size_current + len) >
1590 stream->chan->tracefile_size) {
1591 ret = utils_rotate_stream_file(stream->chan->pathname,
1592 stream->name, stream->chan->tracefile_size,
1593 stream->chan->tracefile_count, stream->uid, stream->gid,
1594 stream->out_fd, &(stream->tracefile_count_current),
1595 &stream->out_fd);
1596 if (ret < 0) {
1597 ERR("Rotating output file");
1598 goto end;
1599 }
1600 outfd = stream->out_fd;
1601
1602 if (stream->index_fd >= 0) {
1603 ret = index_create_file(stream->chan->pathname,
1604 stream->name, stream->uid, stream->gid,
1605 stream->chan->tracefile_size,
1606 stream->tracefile_count_current);
1607 if (ret < 0) {
1608 goto end;
1609 }
1610 stream->index_fd = ret;
1611 }
1612
1613 /* Reset current size because we just perform a rotation. */
1614 stream->tracefile_size_current = 0;
1615 stream->out_fd_offset = 0;
1616 orig_offset = 0;
1617 }
1618 stream->tracefile_size_current += len;
1619 if (index) {
1620 index->offset = htobe64(stream->out_fd_offset);
1621 }
1622 }
1623
1624 /*
1625 * This call guarantee that len or less is returned. It's impossible to
1626 * receive a ret value that is bigger than len.
1627 */
1628 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1629 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1630 if (ret < 0 || ((size_t) ret != len)) {
1631 /*
1632 * Report error to caller if nothing was written else at least send the
1633 * amount written.
1634 */
1635 if (ret < 0) {
1636 ret = -errno;
1637 }
1638 relayd_hang_up = 1;
1639
1640 /* Socket operation failed. We consider the relayd dead */
1641 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1642 /*
1643 * This is possible if the fd is closed on the other side
1644 * (outfd) or any write problem. It can be verbose a bit for a
1645 * normal execution if for instance the relayd is stopped
1646 * abruptly. This can happen so set this to a DBG statement.
1647 */
1648 DBG("Consumer mmap write detected relayd hang up");
1649 } else {
1650 /* Unhandled error, print it and stop function right now. */
1651 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1652 }
1653 goto write_error;
1654 }
1655 stream->output_written += ret;
1656
1657 /* This call is useless on a socket so better save a syscall. */
1658 if (!relayd) {
1659 /* This won't block, but will start writeout asynchronously */
1660 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1661 SYNC_FILE_RANGE_WRITE);
1662 stream->out_fd_offset += len;
1663 }
1664 lttng_consumer_sync_trace_file(stream, orig_offset);
1665
1666 write_error:
1667 /*
1668 * This is a special case that the relayd has closed its socket. Let's
1669 * cleanup the relayd object and all associated streams.
1670 */
1671 if (relayd && relayd_hang_up) {
1672 cleanup_relayd(relayd, ctx);
1673 }
1674
1675 end:
1676 /* Unlock only if ctrl socket used */
1677 if (relayd && stream->metadata_flag) {
1678 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1679 }
1680
1681 rcu_read_unlock();
1682 return ret;
1683 }
1684
1685 /*
1686 * Splice the data from the ring buffer to the tracefile.
1687 *
1688 * It must be called with the stream lock held.
1689 *
1690 * Returns the number of bytes spliced.
1691 */
1692 ssize_t lttng_consumer_on_read_subbuffer_splice(
1693 struct lttng_consumer_local_data *ctx,
1694 struct lttng_consumer_stream *stream, unsigned long len,
1695 unsigned long padding,
1696 struct ctf_packet_index *index)
1697 {
1698 ssize_t ret = 0, written = 0, ret_splice = 0;
1699 loff_t offset = 0;
1700 off_t orig_offset = stream->out_fd_offset;
1701 int fd = stream->wait_fd;
1702 /* Default is on the disk */
1703 int outfd = stream->out_fd;
1704 struct consumer_relayd_sock_pair *relayd = NULL;
1705 int *splice_pipe;
1706 unsigned int relayd_hang_up = 0;
1707
1708 switch (consumer_data.type) {
1709 case LTTNG_CONSUMER_KERNEL:
1710 break;
1711 case LTTNG_CONSUMER32_UST:
1712 case LTTNG_CONSUMER64_UST:
1713 /* Not supported for user space tracing */
1714 return -ENOSYS;
1715 default:
1716 ERR("Unknown consumer_data type");
1717 assert(0);
1718 }
1719
1720 /* RCU lock for the relayd pointer */
1721 rcu_read_lock();
1722
1723 /* Flag that the current stream if set for network streaming. */
1724 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1725 relayd = consumer_find_relayd(stream->net_seq_idx);
1726 if (relayd == NULL) {
1727 written = -ret;
1728 goto end;
1729 }
1730 }
1731 splice_pipe = stream->splice_pipe;
1732
1733 /* Write metadata stream id before payload */
1734 if (relayd) {
1735 unsigned long total_len = len;
1736
1737 if (stream->metadata_flag) {
1738 /*
1739 * Lock the control socket for the complete duration of the function
1740 * since from this point on we will use the socket.
1741 */
1742 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1743
1744 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1745 padding);
1746 if (ret < 0) {
1747 written = ret;
1748 relayd_hang_up = 1;
1749 goto write_error;
1750 }
1751
1752 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1753 }
1754
1755 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1756 if (ret < 0) {
1757 written = ret;
1758 relayd_hang_up = 1;
1759 goto write_error;
1760 }
1761 /* Use the returned socket. */
1762 outfd = ret;
1763 } else {
1764 /* No streaming, we have to set the len with the full padding */
1765 len += padding;
1766
1767 /*
1768 * Check if we need to change the tracefile before writing the packet.
1769 */
1770 if (stream->chan->tracefile_size > 0 &&
1771 (stream->tracefile_size_current + len) >
1772 stream->chan->tracefile_size) {
1773 ret = utils_rotate_stream_file(stream->chan->pathname,
1774 stream->name, stream->chan->tracefile_size,
1775 stream->chan->tracefile_count, stream->uid, stream->gid,
1776 stream->out_fd, &(stream->tracefile_count_current),
1777 &stream->out_fd);
1778 if (ret < 0) {
1779 written = ret;
1780 ERR("Rotating output file");
1781 goto end;
1782 }
1783 outfd = stream->out_fd;
1784
1785 if (stream->index_fd >= 0) {
1786 ret = index_create_file(stream->chan->pathname,
1787 stream->name, stream->uid, stream->gid,
1788 stream->chan->tracefile_size,
1789 stream->tracefile_count_current);
1790 if (ret < 0) {
1791 written = ret;
1792 goto end;
1793 }
1794 stream->index_fd = ret;
1795 }
1796
1797 /* Reset current size because we just perform a rotation. */
1798 stream->tracefile_size_current = 0;
1799 stream->out_fd_offset = 0;
1800 orig_offset = 0;
1801 }
1802 stream->tracefile_size_current += len;
1803 index->offset = htobe64(stream->out_fd_offset);
1804 }
1805
1806 while (len > 0) {
1807 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1808 (unsigned long)offset, len, fd, splice_pipe[1]);
1809 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1810 SPLICE_F_MOVE | SPLICE_F_MORE);
1811 DBG("splice chan to pipe, ret %zd", ret_splice);
1812 if (ret_splice < 0) {
1813 ret = errno;
1814 written = -ret;
1815 PERROR("Error in relay splice");
1816 goto splice_error;
1817 }
1818
1819 /* Handle stream on the relayd if the output is on the network */
1820 if (relayd && stream->metadata_flag) {
1821 size_t metadata_payload_size =
1822 sizeof(struct lttcomm_relayd_metadata_payload);
1823
1824 /* Update counter to fit the spliced data */
1825 ret_splice += metadata_payload_size;
1826 len += metadata_payload_size;
1827 /*
1828 * We do this so the return value can match the len passed as
1829 * argument to this function.
1830 */
1831 written -= metadata_payload_size;
1832 }
1833
1834 /* Splice data out */
1835 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1836 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1837 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1838 outfd, ret_splice);
1839 if (ret_splice < 0) {
1840 ret = errno;
1841 written = -ret;
1842 relayd_hang_up = 1;
1843 goto write_error;
1844 } else if (ret_splice > len) {
1845 /*
1846 * We don't expect this code path to be executed but you never know
1847 * so this is an extra protection agains a buggy splice().
1848 */
1849 ret = errno;
1850 written += ret_splice;
1851 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1852 len);
1853 goto splice_error;
1854 } else {
1855 /* All good, update current len and continue. */
1856 len -= ret_splice;
1857 }
1858
1859 /* This call is useless on a socket so better save a syscall. */
1860 if (!relayd) {
1861 /* This won't block, but will start writeout asynchronously */
1862 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1863 SYNC_FILE_RANGE_WRITE);
1864 stream->out_fd_offset += ret_splice;
1865 }
1866 stream->output_written += ret_splice;
1867 written += ret_splice;
1868 }
1869 lttng_consumer_sync_trace_file(stream, orig_offset);
1870 goto end;
1871
1872 write_error:
1873 /*
1874 * This is a special case that the relayd has closed its socket. Let's
1875 * cleanup the relayd object and all associated streams.
1876 */
1877 if (relayd && relayd_hang_up) {
1878 cleanup_relayd(relayd, ctx);
1879 /* Skip splice error so the consumer does not fail */
1880 goto end;
1881 }
1882
1883 splice_error:
1884 /* send the appropriate error description to sessiond */
1885 switch (ret) {
1886 case EINVAL:
1887 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1888 break;
1889 case ENOMEM:
1890 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1891 break;
1892 case ESPIPE:
1893 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1894 break;
1895 }
1896
1897 end:
1898 if (relayd && stream->metadata_flag) {
1899 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1900 }
1901
1902 rcu_read_unlock();
1903 return written;
1904 }
1905
1906 /*
1907 * Take a snapshot for a specific fd
1908 *
1909 * Returns 0 on success, < 0 on error
1910 */
1911 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1912 {
1913 switch (consumer_data.type) {
1914 case LTTNG_CONSUMER_KERNEL:
1915 return lttng_kconsumer_take_snapshot(stream);
1916 case LTTNG_CONSUMER32_UST:
1917 case LTTNG_CONSUMER64_UST:
1918 return lttng_ustconsumer_take_snapshot(stream);
1919 default:
1920 ERR("Unknown consumer_data type");
1921 assert(0);
1922 return -ENOSYS;
1923 }
1924 }
1925
1926 /*
1927 * Get the produced position
1928 *
1929 * Returns 0 on success, < 0 on error
1930 */
1931 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1932 unsigned long *pos)
1933 {
1934 switch (consumer_data.type) {
1935 case LTTNG_CONSUMER_KERNEL:
1936 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1937 case LTTNG_CONSUMER32_UST:
1938 case LTTNG_CONSUMER64_UST:
1939 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1940 default:
1941 ERR("Unknown consumer_data type");
1942 assert(0);
1943 return -ENOSYS;
1944 }
1945 }
1946
1947 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1948 int sock, struct pollfd *consumer_sockpoll)
1949 {
1950 switch (consumer_data.type) {
1951 case LTTNG_CONSUMER_KERNEL:
1952 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1953 case LTTNG_CONSUMER32_UST:
1954 case LTTNG_CONSUMER64_UST:
1955 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1956 default:
1957 ERR("Unknown consumer_data type");
1958 assert(0);
1959 return -ENOSYS;
1960 }
1961 }
1962
1963 void lttng_consumer_close_all_metadata(void)
1964 {
1965 switch (consumer_data.type) {
1966 case LTTNG_CONSUMER_KERNEL:
1967 /*
1968 * The Kernel consumer has a different metadata scheme so we don't
1969 * close anything because the stream will be closed by the session
1970 * daemon.
1971 */
1972 break;
1973 case LTTNG_CONSUMER32_UST:
1974 case LTTNG_CONSUMER64_UST:
1975 /*
1976 * Close all metadata streams. The metadata hash table is passed and
1977 * this call iterates over it by closing all wakeup fd. This is safe
1978 * because at this point we are sure that the metadata producer is
1979 * either dead or blocked.
1980 */
1981 lttng_ustconsumer_close_all_metadata(metadata_ht);
1982 break;
1983 default:
1984 ERR("Unknown consumer_data type");
1985 assert(0);
1986 }
1987 }
1988
1989 /*
1990 * Clean up a metadata stream and free its memory.
1991 */
1992 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1993 struct lttng_ht *ht)
1994 {
1995 struct lttng_consumer_channel *free_chan = NULL;
1996
1997 assert(stream);
1998 /*
1999 * This call should NEVER receive regular stream. It must always be
2000 * metadata stream and this is crucial for data structure synchronization.
2001 */
2002 assert(stream->metadata_flag);
2003
2004 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2005
2006 pthread_mutex_lock(&consumer_data.lock);
2007 pthread_mutex_lock(&stream->chan->lock);
2008 pthread_mutex_lock(&stream->lock);
2009
2010 /* Remove any reference to that stream. */
2011 consumer_stream_delete(stream, ht);
2012
2013 /* Close down everything including the relayd if one. */
2014 consumer_stream_close(stream);
2015 /* Destroy tracer buffers of the stream. */
2016 consumer_stream_destroy_buffers(stream);
2017
2018 /* Atomically decrement channel refcount since other threads can use it. */
2019 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2020 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2021 /* Go for channel deletion! */
2022 free_chan = stream->chan;
2023 }
2024
2025 /*
2026 * Nullify the stream reference so it is not used after deletion. The
2027 * channel lock MUST be acquired before being able to check for a NULL
2028 * pointer value.
2029 */
2030 stream->chan->metadata_stream = NULL;
2031
2032 pthread_mutex_unlock(&stream->lock);
2033 pthread_mutex_unlock(&stream->chan->lock);
2034 pthread_mutex_unlock(&consumer_data.lock);
2035
2036 if (free_chan) {
2037 consumer_del_channel(free_chan);
2038 }
2039
2040 consumer_stream_free(stream);
2041 }
2042
2043 /*
2044 * Action done with the metadata stream when adding it to the consumer internal
2045 * data structures to handle it.
2046 */
2047 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2048 {
2049 struct lttng_ht *ht = metadata_ht;
2050 int ret = 0;
2051 struct lttng_ht_iter iter;
2052 struct lttng_ht_node_u64 *node;
2053
2054 assert(stream);
2055 assert(ht);
2056
2057 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2058
2059 pthread_mutex_lock(&consumer_data.lock);
2060 pthread_mutex_lock(&stream->chan->lock);
2061 pthread_mutex_lock(&stream->chan->timer_lock);
2062 pthread_mutex_lock(&stream->lock);
2063
2064 /*
2065 * From here, refcounts are updated so be _careful_ when returning an error
2066 * after this point.
2067 */
2068
2069 rcu_read_lock();
2070
2071 /*
2072 * Lookup the stream just to make sure it does not exist in our internal
2073 * state. This should NEVER happen.
2074 */
2075 lttng_ht_lookup(ht, &stream->key, &iter);
2076 node = lttng_ht_iter_get_node_u64(&iter);
2077 assert(!node);
2078
2079 /*
2080 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2081 * in terms of destroying the associated channel, because the action that
2082 * causes the count to become 0 also causes a stream to be added. The
2083 * channel deletion will thus be triggered by the following removal of this
2084 * stream.
2085 */
2086 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2087 /* Increment refcount before decrementing nb_init_stream_left */
2088 cmm_smp_wmb();
2089 uatomic_dec(&stream->chan->nb_init_stream_left);
2090 }
2091
2092 lttng_ht_add_unique_u64(ht, &stream->node);
2093
2094 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2095 &stream->node_channel_id);
2096
2097 /*
2098 * Add stream to the stream_list_ht of the consumer data. No need to steal
2099 * the key since the HT does not use it and we allow to add redundant keys
2100 * into this table.
2101 */
2102 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2103
2104 rcu_read_unlock();
2105
2106 pthread_mutex_unlock(&stream->lock);
2107 pthread_mutex_unlock(&stream->chan->lock);
2108 pthread_mutex_unlock(&stream->chan->timer_lock);
2109 pthread_mutex_unlock(&consumer_data.lock);
2110 return ret;
2111 }
2112
2113 /*
2114 * Delete data stream that are flagged for deletion (endpoint_status).
2115 */
2116 static void validate_endpoint_status_data_stream(void)
2117 {
2118 struct lttng_ht_iter iter;
2119 struct lttng_consumer_stream *stream;
2120
2121 DBG("Consumer delete flagged data stream");
2122
2123 rcu_read_lock();
2124 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2125 /* Validate delete flag of the stream */
2126 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2127 continue;
2128 }
2129 /* Delete it right now */
2130 consumer_del_stream(stream, data_ht);
2131 }
2132 rcu_read_unlock();
2133 }
2134
2135 /*
2136 * Delete metadata stream that are flagged for deletion (endpoint_status).
2137 */
2138 static void validate_endpoint_status_metadata_stream(
2139 struct lttng_poll_event *pollset)
2140 {
2141 struct lttng_ht_iter iter;
2142 struct lttng_consumer_stream *stream;
2143
2144 DBG("Consumer delete flagged metadata stream");
2145
2146 assert(pollset);
2147
2148 rcu_read_lock();
2149 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2150 /* Validate delete flag of the stream */
2151 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2152 continue;
2153 }
2154 /*
2155 * Remove from pollset so the metadata thread can continue without
2156 * blocking on a deleted stream.
2157 */
2158 lttng_poll_del(pollset, stream->wait_fd);
2159
2160 /* Delete it right now */
2161 consumer_del_metadata_stream(stream, metadata_ht);
2162 }
2163 rcu_read_unlock();
2164 }
2165
2166 /*
2167 * Thread polls on metadata file descriptor and write them on disk or on the
2168 * network.
2169 */
2170 void *consumer_thread_metadata_poll(void *data)
2171 {
2172 int ret, i, pollfd, err = -1;
2173 uint32_t revents, nb_fd;
2174 struct lttng_consumer_stream *stream = NULL;
2175 struct lttng_ht_iter iter;
2176 struct lttng_ht_node_u64 *node;
2177 struct lttng_poll_event events;
2178 struct lttng_consumer_local_data *ctx = data;
2179 ssize_t len;
2180
2181 rcu_register_thread();
2182
2183 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2184
2185 if (testpoint(consumerd_thread_metadata)) {
2186 goto error_testpoint;
2187 }
2188
2189 health_code_update();
2190
2191 DBG("Thread metadata poll started");
2192
2193 /* Size is set to 1 for the consumer_metadata pipe */
2194 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2195 if (ret < 0) {
2196 ERR("Poll set creation failed");
2197 goto end_poll;
2198 }
2199
2200 ret = lttng_poll_add(&events,
2201 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2202 if (ret < 0) {
2203 goto end;
2204 }
2205
2206 /* Main loop */
2207 DBG("Metadata main loop started");
2208
2209 while (1) {
2210 restart:
2211 health_code_update();
2212 health_poll_entry();
2213 DBG("Metadata poll wait");
2214 ret = lttng_poll_wait(&events, -1);
2215 DBG("Metadata poll return from wait with %d fd(s)",
2216 LTTNG_POLL_GETNB(&events));
2217 health_poll_exit();
2218 DBG("Metadata event catched in thread");
2219 if (ret < 0) {
2220 if (errno == EINTR) {
2221 ERR("Poll EINTR catched");
2222 goto restart;
2223 }
2224 if (LTTNG_POLL_GETNB(&events) == 0) {
2225 err = 0; /* All is OK */
2226 }
2227 goto end;
2228 }
2229
2230 nb_fd = ret;
2231
2232 /* From here, the event is a metadata wait fd */
2233 for (i = 0; i < nb_fd; i++) {
2234 health_code_update();
2235
2236 revents = LTTNG_POLL_GETEV(&events, i);
2237 pollfd = LTTNG_POLL_GETFD(&events, i);
2238
2239 if (!revents) {
2240 /* No activity for this FD (poll implementation). */
2241 continue;
2242 }
2243
2244 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2245 if (revents & LPOLLIN) {
2246 ssize_t pipe_len;
2247
2248 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2249 &stream, sizeof(stream));
2250 if (pipe_len < sizeof(stream)) {
2251 if (pipe_len < 0) {
2252 PERROR("read metadata stream");
2253 }
2254 /*
2255 * Remove the pipe from the poll set and continue the loop
2256 * since their might be data to consume.
2257 */
2258 lttng_poll_del(&events,
2259 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2260 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2261 continue;
2262 }
2263
2264 /* A NULL stream means that the state has changed. */
2265 if (stream == NULL) {
2266 /* Check for deleted streams. */
2267 validate_endpoint_status_metadata_stream(&events);
2268 goto restart;
2269 }
2270
2271 DBG("Adding metadata stream %d to poll set",
2272 stream->wait_fd);
2273
2274 /* Add metadata stream to the global poll events list */
2275 lttng_poll_add(&events, stream->wait_fd,
2276 LPOLLIN | LPOLLPRI | LPOLLHUP);
2277 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2278 DBG("Metadata thread pipe hung up");
2279 /*
2280 * Remove the pipe from the poll set and continue the loop
2281 * since their might be data to consume.
2282 */
2283 lttng_poll_del(&events,
2284 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2285 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2286 continue;
2287 } else {
2288 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2289 goto end;
2290 }
2291
2292 /* Handle other stream */
2293 continue;
2294 }
2295
2296 rcu_read_lock();
2297 {
2298 uint64_t tmp_id = (uint64_t) pollfd;
2299
2300 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2301 }
2302 node = lttng_ht_iter_get_node_u64(&iter);
2303 assert(node);
2304
2305 stream = caa_container_of(node, struct lttng_consumer_stream,
2306 node);
2307
2308 if (revents & (LPOLLIN | LPOLLPRI)) {
2309 /* Get the data out of the metadata file descriptor */
2310 DBG("Metadata available on fd %d", pollfd);
2311 assert(stream->wait_fd == pollfd);
2312
2313 do {
2314 health_code_update();
2315
2316 len = ctx->on_buffer_ready(stream, ctx);
2317 /*
2318 * We don't check the return value here since if we get
2319 * a negative len, it means an error occured thus we
2320 * simply remove it from the poll set and free the
2321 * stream.
2322 */
2323 } while (len > 0);
2324
2325 /* It's ok to have an unavailable sub-buffer */
2326 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2327 /* Clean up stream from consumer and free it. */
2328 lttng_poll_del(&events, stream->wait_fd);
2329 consumer_del_metadata_stream(stream, metadata_ht);
2330 }
2331 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2332 DBG("Metadata fd %d is hup|err.", pollfd);
2333 if (!stream->hangup_flush_done
2334 && (consumer_data.type == LTTNG_CONSUMER32_UST
2335 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2336 DBG("Attempting to flush and consume the UST buffers");
2337 lttng_ustconsumer_on_stream_hangup(stream);
2338
2339 /* We just flushed the stream now read it. */
2340 do {
2341 health_code_update();
2342
2343 len = ctx->on_buffer_ready(stream, ctx);
2344 /*
2345 * We don't check the return value here since if we get
2346 * a negative len, it means an error occured thus we
2347 * simply remove it from the poll set and free the
2348 * stream.
2349 */
2350 } while (len > 0);
2351 }
2352
2353 lttng_poll_del(&events, stream->wait_fd);
2354 /*
2355 * This call update the channel states, closes file descriptors
2356 * and securely free the stream.
2357 */
2358 consumer_del_metadata_stream(stream, metadata_ht);
2359 } else {
2360 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2361 rcu_read_unlock();
2362 goto end;
2363 }
2364 /* Release RCU lock for the stream looked up */
2365 rcu_read_unlock();
2366 }
2367 }
2368
2369 /* All is OK */
2370 err = 0;
2371 end:
2372 DBG("Metadata poll thread exiting");
2373
2374 lttng_poll_clean(&events);
2375 end_poll:
2376 error_testpoint:
2377 if (err) {
2378 health_error();
2379 ERR("Health error occurred in %s", __func__);
2380 }
2381 health_unregister(health_consumerd);
2382 rcu_unregister_thread();
2383 return NULL;
2384 }
2385
2386 /*
2387 * This thread polls the fds in the set to consume the data and write
2388 * it to tracefile if necessary.
2389 */
2390 void *consumer_thread_data_poll(void *data)
2391 {
2392 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2393 struct pollfd *pollfd = NULL;
2394 /* local view of the streams */
2395 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2396 /* local view of consumer_data.fds_count */
2397 int nb_fd = 0;
2398 struct lttng_consumer_local_data *ctx = data;
2399 ssize_t len;
2400
2401 rcu_register_thread();
2402
2403 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2404
2405 if (testpoint(consumerd_thread_data)) {
2406 goto error_testpoint;
2407 }
2408
2409 health_code_update();
2410
2411 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2412 if (local_stream == NULL) {
2413 PERROR("local_stream malloc");
2414 goto end;
2415 }
2416
2417 while (1) {
2418 health_code_update();
2419
2420 high_prio = 0;
2421 num_hup = 0;
2422
2423 /*
2424 * the fds set has been updated, we need to update our
2425 * local array as well
2426 */
2427 pthread_mutex_lock(&consumer_data.lock);
2428 if (consumer_data.need_update) {
2429 free(pollfd);
2430 pollfd = NULL;
2431
2432 free(local_stream);
2433 local_stream = NULL;
2434
2435 /*
2436 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2437 * wake up pipe.
2438 */
2439 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2440 if (pollfd == NULL) {
2441 PERROR("pollfd malloc");
2442 pthread_mutex_unlock(&consumer_data.lock);
2443 goto end;
2444 }
2445
2446 local_stream = zmalloc((consumer_data.stream_count + 2) *
2447 sizeof(struct lttng_consumer_stream *));
2448 if (local_stream == NULL) {
2449 PERROR("local_stream malloc");
2450 pthread_mutex_unlock(&consumer_data.lock);
2451 goto end;
2452 }
2453 ret = update_poll_array(ctx, &pollfd, local_stream,
2454 data_ht);
2455 if (ret < 0) {
2456 ERR("Error in allocating pollfd or local_outfds");
2457 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2458 pthread_mutex_unlock(&consumer_data.lock);
2459 goto end;
2460 }
2461 nb_fd = ret;
2462 consumer_data.need_update = 0;
2463 }
2464 pthread_mutex_unlock(&consumer_data.lock);
2465
2466 /* No FDs and consumer_quit, consumer_cleanup the thread */
2467 if (nb_fd == 0 && consumer_quit == 1) {
2468 err = 0; /* All is OK */
2469 goto end;
2470 }
2471 /* poll on the array of fds */
2472 restart:
2473 DBG("polling on %d fd", nb_fd + 2);
2474 health_poll_entry();
2475 num_rdy = poll(pollfd, nb_fd + 2, -1);
2476 health_poll_exit();
2477 DBG("poll num_rdy : %d", num_rdy);
2478 if (num_rdy == -1) {
2479 /*
2480 * Restart interrupted system call.
2481 */
2482 if (errno == EINTR) {
2483 goto restart;
2484 }
2485 PERROR("Poll error");
2486 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2487 goto end;
2488 } else if (num_rdy == 0) {
2489 DBG("Polling thread timed out");
2490 goto end;
2491 }
2492
2493 /*
2494 * If the consumer_data_pipe triggered poll go directly to the
2495 * beginning of the loop to update the array. We want to prioritize
2496 * array update over low-priority reads.
2497 */
2498 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2499 ssize_t pipe_readlen;
2500
2501 DBG("consumer_data_pipe wake up");
2502 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2503 &new_stream, sizeof(new_stream));
2504 if (pipe_readlen < sizeof(new_stream)) {
2505 PERROR("Consumer data pipe");
2506 /* Continue so we can at least handle the current stream(s). */
2507 continue;
2508 }
2509
2510 /*
2511 * If the stream is NULL, just ignore it. It's also possible that
2512 * the sessiond poll thread changed the consumer_quit state and is
2513 * waking us up to test it.
2514 */
2515 if (new_stream == NULL) {
2516 validate_endpoint_status_data_stream();
2517 continue;
2518 }
2519
2520 /* Continue to update the local streams and handle prio ones */
2521 continue;
2522 }
2523
2524 /* Handle wakeup pipe. */
2525 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2526 char dummy;
2527 ssize_t pipe_readlen;
2528
2529 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2530 sizeof(dummy));
2531 if (pipe_readlen < 0) {
2532 PERROR("Consumer data wakeup pipe");
2533 }
2534 /* We've been awakened to handle stream(s). */
2535 ctx->has_wakeup = 0;
2536 }
2537
2538 /* Take care of high priority channels first. */
2539 for (i = 0; i < nb_fd; i++) {
2540 health_code_update();
2541
2542 if (local_stream[i] == NULL) {
2543 continue;
2544 }
2545 if (pollfd[i].revents & POLLPRI) {
2546 DBG("Urgent read on fd %d", pollfd[i].fd);
2547 high_prio = 1;
2548 len = ctx->on_buffer_ready(local_stream[i], ctx);
2549 /* it's ok to have an unavailable sub-buffer */
2550 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2551 /* Clean the stream and free it. */
2552 consumer_del_stream(local_stream[i], data_ht);
2553 local_stream[i] = NULL;
2554 } else if (len > 0) {
2555 local_stream[i]->data_read = 1;
2556 }
2557 }
2558 }
2559
2560 /*
2561 * If we read high prio channel in this loop, try again
2562 * for more high prio data.
2563 */
2564 if (high_prio) {
2565 continue;
2566 }
2567
2568 /* Take care of low priority channels. */
2569 for (i = 0; i < nb_fd; i++) {
2570 health_code_update();
2571
2572 if (local_stream[i] == NULL) {
2573 continue;
2574 }
2575 if ((pollfd[i].revents & POLLIN) ||
2576 local_stream[i]->hangup_flush_done ||
2577 local_stream[i]->has_data) {
2578 DBG("Normal read on fd %d", pollfd[i].fd);
2579 len = ctx->on_buffer_ready(local_stream[i], ctx);
2580 /* it's ok to have an unavailable sub-buffer */
2581 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2582 /* Clean the stream and free it. */
2583 consumer_del_stream(local_stream[i], data_ht);
2584 local_stream[i] = NULL;
2585 } else if (len > 0) {
2586 local_stream[i]->data_read = 1;
2587 }
2588 }
2589 }
2590
2591 /* Handle hangup and errors */
2592 for (i = 0; i < nb_fd; i++) {
2593 health_code_update();
2594
2595 if (local_stream[i] == NULL) {
2596 continue;
2597 }
2598 if (!local_stream[i]->hangup_flush_done
2599 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2600 && (consumer_data.type == LTTNG_CONSUMER32_UST
2601 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2602 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2603 pollfd[i].fd);
2604 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2605 /* Attempt read again, for the data we just flushed. */
2606 local_stream[i]->data_read = 1;
2607 }
2608 /*
2609 * If the poll flag is HUP/ERR/NVAL and we have
2610 * read no data in this pass, we can remove the
2611 * stream from its hash table.
2612 */
2613 if ((pollfd[i].revents & POLLHUP)) {
2614 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2615 if (!local_stream[i]->data_read) {
2616 consumer_del_stream(local_stream[i], data_ht);
2617 local_stream[i] = NULL;
2618 num_hup++;
2619 }
2620 } else if (pollfd[i].revents & POLLERR) {
2621 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2622 if (!local_stream[i]->data_read) {
2623 consumer_del_stream(local_stream[i], data_ht);
2624 local_stream[i] = NULL;
2625 num_hup++;
2626 }
2627 } else if (pollfd[i].revents & POLLNVAL) {
2628 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2629 if (!local_stream[i]->data_read) {
2630 consumer_del_stream(local_stream[i], data_ht);
2631 local_stream[i] = NULL;
2632 num_hup++;
2633 }
2634 }
2635 if (local_stream[i] != NULL) {
2636 local_stream[i]->data_read = 0;
2637 }
2638 }
2639 }
2640 /* All is OK */
2641 err = 0;
2642 end:
2643 DBG("polling thread exiting");
2644 free(pollfd);
2645 free(local_stream);
2646
2647 /*
2648 * Close the write side of the pipe so epoll_wait() in
2649 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2650 * read side of the pipe. If we close them both, epoll_wait strangely does
2651 * not return and could create a endless wait period if the pipe is the
2652 * only tracked fd in the poll set. The thread will take care of closing
2653 * the read side.
2654 */
2655 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2656
2657 error_testpoint:
2658 if (err) {
2659 health_error();
2660 ERR("Health error occurred in %s", __func__);
2661 }
2662 health_unregister(health_consumerd);
2663
2664 rcu_unregister_thread();
2665 return NULL;
2666 }
2667
2668 /*
2669 * Close wake-up end of each stream belonging to the channel. This will
2670 * allow the poll() on the stream read-side to detect when the
2671 * write-side (application) finally closes them.
2672 */
2673 static
2674 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2675 {
2676 struct lttng_ht *ht;
2677 struct lttng_consumer_stream *stream;
2678 struct lttng_ht_iter iter;
2679
2680 ht = consumer_data.stream_per_chan_id_ht;
2681
2682 rcu_read_lock();
2683 cds_lfht_for_each_entry_duplicate(ht->ht,
2684 ht->hash_fct(&channel->key, lttng_ht_seed),
2685 ht->match_fct, &channel->key,
2686 &iter.iter, stream, node_channel_id.node) {
2687 /*
2688 * Protect against teardown with mutex.
2689 */
2690 pthread_mutex_lock(&stream->lock);
2691 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2692 goto next;
2693 }
2694 switch (consumer_data.type) {
2695 case LTTNG_CONSUMER_KERNEL:
2696 break;
2697 case LTTNG_CONSUMER32_UST:
2698 case LTTNG_CONSUMER64_UST:
2699 if (stream->metadata_flag) {
2700 /* Safe and protected by the stream lock. */
2701 lttng_ustconsumer_close_metadata(stream->chan);
2702 } else {
2703 /*
2704 * Note: a mutex is taken internally within
2705 * liblttng-ust-ctl to protect timer wakeup_fd
2706 * use from concurrent close.
2707 */
2708 lttng_ustconsumer_close_stream_wakeup(stream);
2709 }
2710 break;
2711 default:
2712 ERR("Unknown consumer_data type");
2713 assert(0);
2714 }
2715 next:
2716 pthread_mutex_unlock(&stream->lock);
2717 }
2718 rcu_read_unlock();
2719 }
2720
2721 static void destroy_channel_ht(struct lttng_ht *ht)
2722 {
2723 struct lttng_ht_iter iter;
2724 struct lttng_consumer_channel *channel;
2725 int ret;
2726
2727 if (ht == NULL) {
2728 return;
2729 }
2730
2731 rcu_read_lock();
2732 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2733 ret = lttng_ht_del(ht, &iter);
2734 assert(ret != 0);
2735 }
2736 rcu_read_unlock();
2737
2738 lttng_ht_destroy(ht);
2739 }
2740
2741 /*
2742 * This thread polls the channel fds to detect when they are being
2743 * closed. It closes all related streams if the channel is detected as
2744 * closed. It is currently only used as a shim layer for UST because the
2745 * consumerd needs to keep the per-stream wakeup end of pipes open for
2746 * periodical flush.
2747 */
2748 void *consumer_thread_channel_poll(void *data)
2749 {
2750 int ret, i, pollfd, err = -1;
2751 uint32_t revents, nb_fd;
2752 struct lttng_consumer_channel *chan = NULL;
2753 struct lttng_ht_iter iter;
2754 struct lttng_ht_node_u64 *node;
2755 struct lttng_poll_event events;
2756 struct lttng_consumer_local_data *ctx = data;
2757 struct lttng_ht *channel_ht;
2758
2759 rcu_register_thread();
2760
2761 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2762
2763 if (testpoint(consumerd_thread_channel)) {
2764 goto error_testpoint;
2765 }
2766
2767 health_code_update();
2768
2769 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2770 if (!channel_ht) {
2771 /* ENOMEM at this point. Better to bail out. */
2772 goto end_ht;
2773 }
2774
2775 DBG("Thread channel poll started");
2776
2777 /* Size is set to 1 for the consumer_channel pipe */
2778 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2779 if (ret < 0) {
2780 ERR("Poll set creation failed");
2781 goto end_poll;
2782 }
2783
2784 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2785 if (ret < 0) {
2786 goto end;
2787 }
2788
2789 /* Main loop */
2790 DBG("Channel main loop started");
2791
2792 while (1) {
2793 restart:
2794 health_code_update();
2795 DBG("Channel poll wait");
2796 health_poll_entry();
2797 ret = lttng_poll_wait(&events, -1);
2798 DBG("Channel poll return from wait with %d fd(s)",
2799 LTTNG_POLL_GETNB(&events));
2800 health_poll_exit();
2801 DBG("Channel event catched in thread");
2802 if (ret < 0) {
2803 if (errno == EINTR) {
2804 ERR("Poll EINTR catched");
2805 goto restart;
2806 }
2807 if (LTTNG_POLL_GETNB(&events) == 0) {
2808 err = 0; /* All is OK */
2809 }
2810 goto end;
2811 }
2812
2813 nb_fd = ret;
2814
2815 /* From here, the event is a channel wait fd */
2816 for (i = 0; i < nb_fd; i++) {
2817 health_code_update();
2818
2819 revents = LTTNG_POLL_GETEV(&events, i);
2820 pollfd = LTTNG_POLL_GETFD(&events, i);
2821
2822 if (!revents) {
2823 /* No activity for this FD (poll implementation). */
2824 continue;
2825 }
2826
2827 if (pollfd == ctx->consumer_channel_pipe[0]) {
2828 if (revents & LPOLLIN) {
2829 enum consumer_channel_action action;
2830 uint64_t key;
2831
2832 ret = read_channel_pipe(ctx, &chan, &key, &action);
2833 if (ret <= 0) {
2834 if (ret < 0) {
2835 ERR("Error reading channel pipe");
2836 }
2837 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2838 continue;
2839 }
2840
2841 switch (action) {
2842 case CONSUMER_CHANNEL_ADD:
2843 DBG("Adding channel %d to poll set",
2844 chan->wait_fd);
2845
2846 lttng_ht_node_init_u64(&chan->wait_fd_node,
2847 chan->wait_fd);
2848 rcu_read_lock();
2849 lttng_ht_add_unique_u64(channel_ht,
2850 &chan->wait_fd_node);
2851 rcu_read_unlock();
2852 /* Add channel to the global poll events list */
2853 lttng_poll_add(&events, chan->wait_fd,
2854 LPOLLERR | LPOLLHUP);
2855 break;
2856 case CONSUMER_CHANNEL_DEL:
2857 {
2858 /*
2859 * This command should never be called if the channel
2860 * has streams monitored by either the data or metadata
2861 * thread. The consumer only notify this thread with a
2862 * channel del. command if it receives a destroy
2863 * channel command from the session daemon that send it
2864 * if a command prior to the GET_CHANNEL failed.
2865 */
2866
2867 rcu_read_lock();
2868 chan = consumer_find_channel(key);
2869 if (!chan) {
2870 rcu_read_unlock();
2871 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2872 break;
2873 }
2874 lttng_poll_del(&events, chan->wait_fd);
2875 iter.iter.node = &chan->wait_fd_node.node;
2876 ret = lttng_ht_del(channel_ht, &iter);
2877 assert(ret == 0);
2878
2879 switch (consumer_data.type) {
2880 case LTTNG_CONSUMER_KERNEL:
2881 break;
2882 case LTTNG_CONSUMER32_UST:
2883 case LTTNG_CONSUMER64_UST:
2884 health_code_update();
2885 /* Destroy streams that might have been left in the stream list. */
2886 clean_channel_stream_list(chan);
2887 break;
2888 default:
2889 ERR("Unknown consumer_data type");
2890 assert(0);
2891 }
2892
2893 /*
2894 * Release our own refcount. Force channel deletion even if
2895 * streams were not initialized.
2896 */
2897 if (!uatomic_sub_return(&chan->refcount, 1)) {
2898 consumer_del_channel(chan);
2899 }
2900 rcu_read_unlock();
2901 goto restart;
2902 }
2903 case CONSUMER_CHANNEL_QUIT:
2904 /*
2905 * Remove the pipe from the poll set and continue the loop
2906 * since their might be data to consume.
2907 */
2908 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2909 continue;
2910 default:
2911 ERR("Unknown action");
2912 break;
2913 }
2914 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2915 DBG("Channel thread pipe hung up");
2916 /*
2917 * Remove the pipe from the poll set and continue the loop
2918 * since their might be data to consume.
2919 */
2920 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2921 continue;
2922 } else {
2923 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2924 goto end;
2925 }
2926
2927 /* Handle other stream */
2928 continue;
2929 }
2930
2931 rcu_read_lock();
2932 {
2933 uint64_t tmp_id = (uint64_t) pollfd;
2934
2935 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2936 }
2937 node = lttng_ht_iter_get_node_u64(&iter);
2938 assert(node);
2939
2940 chan = caa_container_of(node, struct lttng_consumer_channel,
2941 wait_fd_node);
2942
2943 /* Check for error event */
2944 if (revents & (LPOLLERR | LPOLLHUP)) {
2945 DBG("Channel fd %d is hup|err.", pollfd);
2946
2947 lttng_poll_del(&events, chan->wait_fd);
2948 ret = lttng_ht_del(channel_ht, &iter);
2949 assert(ret == 0);
2950
2951 /*
2952 * This will close the wait fd for each stream associated to
2953 * this channel AND monitored by the data/metadata thread thus
2954 * will be clean by the right thread.
2955 */
2956 consumer_close_channel_streams(chan);
2957
2958 /* Release our own refcount */
2959 if (!uatomic_sub_return(&chan->refcount, 1)
2960 && !uatomic_read(&chan->nb_init_stream_left)) {
2961 consumer_del_channel(chan);
2962 }
2963 } else {
2964 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2965 rcu_read_unlock();
2966 goto end;
2967 }
2968
2969 /* Release RCU lock for the channel looked up */
2970 rcu_read_unlock();
2971 }
2972 }
2973
2974 /* All is OK */
2975 err = 0;
2976 end:
2977 lttng_poll_clean(&events);
2978 end_poll:
2979 destroy_channel_ht(channel_ht);
2980 end_ht:
2981 error_testpoint:
2982 DBG("Channel poll thread exiting");
2983 if (err) {
2984 health_error();
2985 ERR("Health error occurred in %s", __func__);
2986 }
2987 health_unregister(health_consumerd);
2988 rcu_unregister_thread();
2989 return NULL;
2990 }
2991
2992 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2993 struct pollfd *sockpoll, int client_socket)
2994 {
2995 int ret;
2996
2997 assert(ctx);
2998 assert(sockpoll);
2999
3000 ret = lttng_consumer_poll_socket(sockpoll);
3001 if (ret) {
3002 goto error;
3003 }
3004 DBG("Metadata connection on client_socket");
3005
3006 /* Blocking call, waiting for transmission */
3007 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3008 if (ctx->consumer_metadata_socket < 0) {
3009 WARN("On accept metadata");
3010 ret = -1;
3011 goto error;
3012 }
3013 ret = 0;
3014
3015 error:
3016 return ret;
3017 }
3018
3019 /*
3020 * This thread listens on the consumerd socket and receives the file
3021 * descriptors from the session daemon.
3022 */
3023 void *consumer_thread_sessiond_poll(void *data)
3024 {
3025 int sock = -1, client_socket, ret, err = -1;
3026 /*
3027 * structure to poll for incoming data on communication socket avoids
3028 * making blocking sockets.
3029 */
3030 struct pollfd consumer_sockpoll[2];
3031 struct lttng_consumer_local_data *ctx = data;
3032
3033 rcu_register_thread();
3034
3035 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3036
3037 if (testpoint(consumerd_thread_sessiond)) {
3038 goto error_testpoint;
3039 }
3040
3041 health_code_update();
3042
3043 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3044 unlink(ctx->consumer_command_sock_path);
3045 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3046 if (client_socket < 0) {
3047 ERR("Cannot create command socket");
3048 goto end;
3049 }
3050
3051 ret = lttcomm_listen_unix_sock(client_socket);
3052 if (ret < 0) {
3053 goto end;
3054 }
3055
3056 DBG("Sending ready command to lttng-sessiond");
3057 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3058 /* return < 0 on error, but == 0 is not fatal */
3059 if (ret < 0) {
3060 ERR("Error sending ready command to lttng-sessiond");
3061 goto end;
3062 }
3063
3064 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3065 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3066 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3067 consumer_sockpoll[1].fd = client_socket;
3068 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3069
3070 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3071 if (ret) {
3072 if (ret > 0) {
3073 /* should exit */
3074 err = 0;
3075 }
3076 goto end;
3077 }
3078 DBG("Connection on client_socket");
3079
3080 /* Blocking call, waiting for transmission */
3081 sock = lttcomm_accept_unix_sock(client_socket);
3082 if (sock < 0) {
3083 WARN("On accept");
3084 goto end;
3085 }
3086
3087 /*
3088 * Setup metadata socket which is the second socket connection on the
3089 * command unix socket.
3090 */
3091 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3092 if (ret) {
3093 if (ret > 0) {
3094 /* should exit */
3095 err = 0;
3096 }
3097 goto end;
3098 }
3099
3100 /* This socket is not useful anymore. */
3101 ret = close(client_socket);
3102 if (ret < 0) {
3103 PERROR("close client_socket");
3104 }
3105 client_socket = -1;
3106
3107 /* update the polling structure to poll on the established socket */
3108 consumer_sockpoll[1].fd = sock;
3109 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3110
3111 while (1) {
3112 health_code_update();
3113
3114 health_poll_entry();
3115 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3116 health_poll_exit();
3117 if (ret) {
3118 if (ret > 0) {
3119 /* should exit */
3120 err = 0;
3121 }
3122 goto end;
3123 }
3124 DBG("Incoming command on sock");
3125 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3126 if (ret <= 0) {
3127 /*
3128 * This could simply be a session daemon quitting. Don't output
3129 * ERR() here.
3130 */
3131 DBG("Communication interrupted on command socket");
3132 err = 0;
3133 goto end;
3134 }
3135 if (consumer_quit) {
3136 DBG("consumer_thread_receive_fds received quit from signal");
3137 err = 0; /* All is OK */
3138 goto end;
3139 }
3140 DBG("received command on sock");
3141 }
3142 /* All is OK */
3143 err = 0;
3144
3145 end:
3146 DBG("Consumer thread sessiond poll exiting");
3147
3148 /*
3149 * Close metadata streams since the producer is the session daemon which
3150 * just died.
3151 *
3152 * NOTE: for now, this only applies to the UST tracer.
3153 */
3154 lttng_consumer_close_all_metadata();
3155
3156 /*
3157 * when all fds have hung up, the polling thread
3158 * can exit cleanly
3159 */
3160 consumer_quit = 1;
3161
3162 /*
3163 * Notify the data poll thread to poll back again and test the
3164 * consumer_quit state that we just set so to quit gracefully.
3165 */
3166 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3167
3168 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3169
3170 notify_health_quit_pipe(health_quit_pipe);
3171
3172 /* Cleaning up possibly open sockets. */
3173 if (sock >= 0) {
3174 ret = close(sock);
3175 if (ret < 0) {
3176 PERROR("close sock sessiond poll");
3177 }
3178 }
3179 if (client_socket >= 0) {
3180 ret = close(client_socket);
3181 if (ret < 0) {
3182 PERROR("close client_socket sessiond poll");
3183 }
3184 }
3185
3186 error_testpoint:
3187 if (err) {
3188 health_error();
3189 ERR("Health error occurred in %s", __func__);
3190 }
3191 health_unregister(health_consumerd);
3192
3193 rcu_unregister_thread();
3194 return NULL;
3195 }
3196
3197 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3198 struct lttng_consumer_local_data *ctx)
3199 {
3200 ssize_t ret;
3201
3202 pthread_mutex_lock(&stream->lock);
3203 if (stream->metadata_flag) {
3204 pthread_mutex_lock(&stream->metadata_rdv_lock);
3205 }
3206
3207 switch (consumer_data.type) {
3208 case LTTNG_CONSUMER_KERNEL:
3209 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3210 break;
3211 case LTTNG_CONSUMER32_UST:
3212 case LTTNG_CONSUMER64_UST:
3213 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3214 break;
3215 default:
3216 ERR("Unknown consumer_data type");
3217 assert(0);
3218 ret = -ENOSYS;
3219 break;
3220 }
3221
3222 if (stream->metadata_flag) {
3223 pthread_cond_broadcast(&stream->metadata_rdv);
3224 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3225 }
3226 pthread_mutex_unlock(&stream->lock);
3227 return ret;
3228 }
3229
3230 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3231 {
3232 switch (consumer_data.type) {
3233 case LTTNG_CONSUMER_KERNEL:
3234 return lttng_kconsumer_on_recv_stream(stream);
3235 case LTTNG_CONSUMER32_UST:
3236 case LTTNG_CONSUMER64_UST:
3237 return lttng_ustconsumer_on_recv_stream(stream);
3238 default:
3239 ERR("Unknown consumer_data type");
3240 assert(0);
3241 return -ENOSYS;
3242 }
3243 }
3244
3245 /*
3246 * Allocate and set consumer data hash tables.
3247 */
3248 int lttng_consumer_init(void)
3249 {
3250 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3251 if (!consumer_data.channel_ht) {
3252 goto error;
3253 }
3254
3255 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3256 if (!consumer_data.relayd_ht) {
3257 goto error;
3258 }
3259
3260 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3261 if (!consumer_data.stream_list_ht) {
3262 goto error;
3263 }
3264
3265 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3266 if (!consumer_data.stream_per_chan_id_ht) {
3267 goto error;
3268 }
3269
3270 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3271 if (!data_ht) {
3272 goto error;
3273 }
3274
3275 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3276 if (!metadata_ht) {
3277 goto error;
3278 }
3279
3280 return 0;
3281
3282 error:
3283 return -1;
3284 }
3285
3286 /*
3287 * Process the ADD_RELAYD command receive by a consumer.
3288 *
3289 * This will create a relayd socket pair and add it to the relayd hash table.
3290 * The caller MUST acquire a RCU read side lock before calling it.
3291 */
3292 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3293 struct lttng_consumer_local_data *ctx, int sock,
3294 struct pollfd *consumer_sockpoll,
3295 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3296 uint64_t relayd_session_id)
3297 {
3298 int fd = -1, ret = -1, relayd_created = 0;
3299 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3300 struct consumer_relayd_sock_pair *relayd = NULL;
3301
3302 assert(ctx);
3303 assert(relayd_sock);
3304
3305 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3306
3307 /* Get relayd reference if exists. */
3308 relayd = consumer_find_relayd(net_seq_idx);
3309 if (relayd == NULL) {
3310 assert(sock_type == LTTNG_STREAM_CONTROL);
3311 /* Not found. Allocate one. */
3312 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3313 if (relayd == NULL) {
3314 ret = -ENOMEM;
3315 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3316 goto error;
3317 } else {
3318 relayd->sessiond_session_id = sessiond_id;
3319 relayd_created = 1;
3320 }
3321
3322 /*
3323 * This code path MUST continue to the consumer send status message to
3324 * we can notify the session daemon and continue our work without
3325 * killing everything.
3326 */
3327 } else {
3328 /*
3329 * relayd key should never be found for control socket.
3330 */
3331 assert(sock_type != LTTNG_STREAM_CONTROL);
3332 }
3333
3334 /* First send a status message before receiving the fds. */
3335 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3336 if (ret < 0) {
3337 /* Somehow, the session daemon is not responding anymore. */
3338 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3339 goto error_nosignal;
3340 }
3341
3342 /* Poll on consumer socket. */
3343 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3344 if (ret) {
3345 /* Needing to exit in the middle of a command: error. */
3346 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3347 ret = -EINTR;
3348 goto error_nosignal;
3349 }
3350
3351 /* Get relayd socket from session daemon */
3352 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3353 if (ret != sizeof(fd)) {
3354 ret = -1;
3355 fd = -1; /* Just in case it gets set with an invalid value. */
3356
3357 /*
3358 * Failing to receive FDs might indicate a major problem such as
3359 * reaching a fd limit during the receive where the kernel returns a
3360 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3361 * don't take any chances and stop everything.
3362 *
3363 * XXX: Feature request #558 will fix that and avoid this possible
3364 * issue when reaching the fd limit.
3365 */
3366 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3367 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3368 goto error;
3369 }
3370
3371 /* Copy socket information and received FD */
3372 switch (sock_type) {
3373 case LTTNG_STREAM_CONTROL:
3374 /* Copy received lttcomm socket */
3375 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3376 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3377 /* Handle create_sock error. */
3378 if (ret < 0) {
3379 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3380 goto error;
3381 }
3382 /*
3383 * Close the socket created internally by
3384 * lttcomm_create_sock, so we can replace it by the one
3385 * received from sessiond.
3386 */
3387 if (close(relayd->control_sock.sock.fd)) {
3388 PERROR("close");
3389 }
3390
3391 /* Assign new file descriptor */
3392 relayd->control_sock.sock.fd = fd;
3393 fd = -1; /* For error path */
3394 /* Assign version values. */
3395 relayd->control_sock.major = relayd_sock->major;
3396 relayd->control_sock.minor = relayd_sock->minor;
3397
3398 relayd->relayd_session_id = relayd_session_id;
3399
3400 break;
3401 case LTTNG_STREAM_DATA:
3402 /* Copy received lttcomm socket */
3403 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3404 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3405 /* Handle create_sock error. */
3406 if (ret < 0) {
3407 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3408 goto error;
3409 }
3410 /*
3411 * Close the socket created internally by
3412 * lttcomm_create_sock, so we can replace it by the one
3413 * received from sessiond.
3414 */
3415 if (close(relayd->data_sock.sock.fd)) {
3416 PERROR("close");
3417 }
3418
3419 /* Assign new file descriptor */
3420 relayd->data_sock.sock.fd = fd;
3421 fd = -1; /* for eventual error paths */
3422 /* Assign version values. */
3423 relayd->data_sock.major = relayd_sock->major;
3424 relayd->data_sock.minor = relayd_sock->minor;
3425 break;
3426 default:
3427 ERR("Unknown relayd socket type (%d)", sock_type);
3428 ret = -1;
3429 ret_code = LTTCOMM_CONSUMERD_FATAL;
3430 goto error;
3431 }
3432
3433 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3434 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3435 relayd->net_seq_idx, fd);
3436
3437 /* We successfully added the socket. Send status back. */
3438 ret = consumer_send_status_msg(sock, ret_code);
3439 if (ret < 0) {
3440 /* Somehow, the session daemon is not responding anymore. */
3441 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3442 goto error_nosignal;
3443 }
3444
3445 /*
3446 * Add relayd socket pair to consumer data hashtable. If object already
3447 * exists or on error, the function gracefully returns.
3448 */
3449 add_relayd(relayd);
3450
3451 /* All good! */
3452 return 0;
3453
3454 error:
3455 if (consumer_send_status_msg(sock, ret_code) < 0) {
3456 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3457 }
3458
3459 error_nosignal:
3460 /* Close received socket if valid. */
3461 if (fd >= 0) {
3462 if (close(fd)) {
3463 PERROR("close received socket");
3464 }
3465 }
3466
3467 if (relayd_created) {
3468 free(relayd);
3469 }
3470
3471 return ret;
3472 }
3473
3474 /*
3475 * Try to lock the stream mutex.
3476 *
3477 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3478 */
3479 static int stream_try_lock(struct lttng_consumer_stream *stream)
3480 {
3481 int ret;
3482
3483 assert(stream);
3484
3485 /*
3486 * Try to lock the stream mutex. On failure, we know that the stream is
3487 * being used else where hence there is data still being extracted.
3488 */
3489 ret = pthread_mutex_trylock(&stream->lock);
3490 if (ret) {
3491 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3492 ret = 0;
3493 goto end;
3494 }
3495
3496 ret = 1;
3497
3498 end:
3499 return ret;
3500 }
3501
3502 /*
3503 * Search for a relayd associated to the session id and return the reference.
3504 *
3505 * A rcu read side lock MUST be acquire before calling this function and locked
3506 * until the relayd object is no longer necessary.
3507 */
3508 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3509 {
3510 struct lttng_ht_iter iter;
3511 struct consumer_relayd_sock_pair *relayd = NULL;
3512
3513 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3514 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3515 node.node) {
3516 /*
3517 * Check by sessiond id which is unique here where the relayd session
3518 * id might not be when having multiple relayd.
3519 */
3520 if (relayd->sessiond_session_id == id) {
3521 /* Found the relayd. There can be only one per id. */
3522 goto found;
3523 }
3524 }
3525
3526 return NULL;
3527
3528 found:
3529 return relayd;
3530 }
3531
3532 /*
3533 * Check if for a given session id there is still data needed to be extract
3534 * from the buffers.
3535 *
3536 * Return 1 if data is pending or else 0 meaning ready to be read.
3537 */
3538 int consumer_data_pending(uint64_t id)
3539 {
3540 int ret;
3541 struct lttng_ht_iter iter;
3542 struct lttng_ht *ht;
3543 struct lttng_consumer_stream *stream;
3544 struct consumer_relayd_sock_pair *relayd = NULL;
3545 int (*data_pending)(struct lttng_consumer_stream *);
3546
3547 DBG("Consumer data pending command on session id %" PRIu64, id);
3548
3549 rcu_read_lock();
3550 pthread_mutex_lock(&consumer_data.lock);
3551
3552 switch (consumer_data.type) {
3553 case LTTNG_CONSUMER_KERNEL:
3554 data_pending = lttng_kconsumer_data_pending;
3555 break;
3556 case LTTNG_CONSUMER32_UST:
3557 case LTTNG_CONSUMER64_UST:
3558 data_pending = lttng_ustconsumer_data_pending;
3559 break;
3560 default:
3561 ERR("Unknown consumer data type");
3562 assert(0);
3563 }
3564
3565 /* Ease our life a bit */
3566 ht = consumer_data.stream_list_ht;
3567
3568 relayd = find_relayd_by_session_id(id);
3569 if (relayd) {
3570 /* Send init command for data pending. */
3571 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3572 ret = relayd_begin_data_pending(&relayd->control_sock,
3573 relayd->relayd_session_id);
3574 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3575 if (ret < 0) {
3576 /* Communication error thus the relayd so no data pending. */
3577 goto data_not_pending;
3578 }
3579 }
3580
3581 cds_lfht_for_each_entry_duplicate(ht->ht,
3582 ht->hash_fct(&id, lttng_ht_seed),
3583 ht->match_fct, &id,
3584 &iter.iter, stream, node_session_id.node) {
3585 /* If this call fails, the stream is being used hence data pending. */
3586 ret = stream_try_lock(stream);
3587 if (!ret) {
3588 goto data_pending;
3589 }
3590
3591 /*
3592 * A removed node from the hash table indicates that the stream has
3593 * been deleted thus having a guarantee that the buffers are closed
3594 * on the consumer side. However, data can still be transmitted
3595 * over the network so don't skip the relayd check.
3596 */
3597 ret = cds_lfht_is_node_deleted(&stream->node.node);
3598 if (!ret) {
3599 /* Check the stream if there is data in the buffers. */
3600 ret = data_pending(stream);
3601 if (ret == 1) {
3602 pthread_mutex_unlock(&stream->lock);
3603 goto data_pending;
3604 }
3605 }
3606
3607 /* Relayd check */
3608 if (relayd) {
3609 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3610 if (stream->metadata_flag) {
3611 ret = relayd_quiescent_control(&relayd->control_sock,
3612 stream->relayd_stream_id);
3613 } else {
3614 ret = relayd_data_pending(&relayd->control_sock,
3615 stream->relayd_stream_id,
3616 stream->next_net_seq_num - 1);
3617 }
3618 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3619 if (ret == 1) {
3620 pthread_mutex_unlock(&stream->lock);
3621 goto data_pending;
3622 }
3623 }
3624 pthread_mutex_unlock(&stream->lock);
3625 }
3626
3627 if (relayd) {
3628 unsigned int is_data_inflight = 0;
3629
3630 /* Send init command for data pending. */
3631 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3632 ret = relayd_end_data_pending(&relayd->control_sock,
3633 relayd->relayd_session_id, &is_data_inflight);
3634 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3635 if (ret < 0) {
3636 goto data_not_pending;
3637 }
3638 if (is_data_inflight) {
3639 goto data_pending;
3640 }
3641 }
3642
3643 /*
3644 * Finding _no_ node in the hash table and no inflight data means that the
3645 * stream(s) have been removed thus data is guaranteed to be available for
3646 * analysis from the trace files.
3647 */
3648
3649 data_not_pending:
3650 /* Data is available to be read by a viewer. */
3651 pthread_mutex_unlock(&consumer_data.lock);
3652 rcu_read_unlock();
3653 return 0;
3654
3655 data_pending:
3656 /* Data is still being extracted from buffers. */
3657 pthread_mutex_unlock(&consumer_data.lock);
3658 rcu_read_unlock();
3659 return 1;
3660 }
3661
3662 /*
3663 * Send a ret code status message to the sessiond daemon.
3664 *
3665 * Return the sendmsg() return value.
3666 */
3667 int consumer_send_status_msg(int sock, int ret_code)
3668 {
3669 struct lttcomm_consumer_status_msg msg;
3670
3671 memset(&msg, 0, sizeof(msg));
3672 msg.ret_code = ret_code;
3673
3674 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3675 }
3676
3677 /*
3678 * Send a channel status message to the sessiond daemon.
3679 *
3680 * Return the sendmsg() return value.
3681 */
3682 int consumer_send_status_channel(int sock,
3683 struct lttng_consumer_channel *channel)
3684 {
3685 struct lttcomm_consumer_status_channel msg;
3686
3687 assert(sock >= 0);
3688
3689 memset(&msg, 0, sizeof(msg));
3690 if (!channel) {
3691 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3692 } else {
3693 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3694 msg.key = channel->key;
3695 msg.stream_count = channel->streams.count;
3696 }
3697
3698 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3699 }
3700
3701 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3702 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3703 uint64_t max_sb_size)
3704 {
3705 unsigned long start_pos;
3706
3707 if (!nb_packets_per_stream) {
3708 return consumed_pos; /* Grab everything */
3709 }
3710 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3711 start_pos -= max_sb_size * nb_packets_per_stream;
3712 if ((long) (start_pos - consumed_pos) < 0) {
3713 return consumed_pos; /* Grab everything */
3714 }
3715 return start_pos;
3716 }
This page took 0.465531 seconds and 4 git commands to generate.