61d6f2e79b702337e3e8095da5132136714616b5
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
41
42 #include "consumer.h"
43
44 struct lttng_consumer_global_data consumer_data = {
45 .stream_count = 0,
46 .need_update = 1,
47 .type = LTTNG_CONSUMER_UNKNOWN,
48 };
49
50 /*
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
54 * polling threads.
55 */
56 volatile int consumer_quit;
57
58 /*
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
62 */
63 static struct lttng_ht *metadata_ht;
64 static struct lttng_ht *data_ht;
65
66 /*
67 * This hash table contains the mapping between the session id of the sessiond
68 * and the relayd session id. Element of the ht are indexed by sessiond session
69 * id.
70 *
71 * Node can be added when a relayd communication is opened in the sessiond
72 * thread.
73 *
74 * Note that a session id of the session daemon is unique to a tracing session
75 * and not to a domain session. However, a domain session has one consumer
76 * which forces the 1-1 mapping between a consumer and a domain session (ex:
77 * UST). This means that we can't have duplicate in this ht.
78 */
79 static struct lttng_ht *relayd_session_id_ht;
80
81 /*
82 * Notify a thread pipe to poll back again. This usually means that some global
83 * state has changed so we just send back the thread in a poll wait call.
84 */
85 static void notify_thread_pipe(int wpipe)
86 {
87 int ret;
88
89 do {
90 struct lttng_consumer_stream *null_stream = NULL;
91
92 ret = write(wpipe, &null_stream, sizeof(null_stream));
93 } while (ret < 0 && errno == EINTR);
94 }
95
96 /*
97 * Find a stream. The consumer_data.lock must be locked during this
98 * call.
99 */
100 static struct lttng_consumer_stream *consumer_find_stream(int key,
101 struct lttng_ht *ht)
102 {
103 struct lttng_ht_iter iter;
104 struct lttng_ht_node_ulong *node;
105 struct lttng_consumer_stream *stream = NULL;
106
107 assert(ht);
108
109 /* Negative keys are lookup failures */
110 if (key < 0) {
111 return NULL;
112 }
113
114 rcu_read_lock();
115
116 lttng_ht_lookup(ht, (void *)((unsigned long) key), &iter);
117 node = lttng_ht_iter_get_node_ulong(&iter);
118 if (node != NULL) {
119 stream = caa_container_of(node, struct lttng_consumer_stream, node);
120 }
121
122 rcu_read_unlock();
123
124 return stream;
125 }
126
127 void consumer_steal_stream_key(int key, struct lttng_ht *ht)
128 {
129 struct lttng_consumer_stream *stream;
130
131 rcu_read_lock();
132 stream = consumer_find_stream(key, ht);
133 if (stream) {
134 stream->key = -1;
135 /*
136 * We don't want the lookup to match, but we still need
137 * to iterate on this stream when iterating over the hash table. Just
138 * change the node key.
139 */
140 stream->node.key = -1;
141 }
142 rcu_read_unlock();
143 }
144
145 /*
146 * Return a channel object for the given key.
147 *
148 * RCU read side lock MUST be acquired before calling this function and
149 * protects the channel ptr.
150 */
151 static struct lttng_consumer_channel *consumer_find_channel(int key)
152 {
153 struct lttng_ht_iter iter;
154 struct lttng_ht_node_ulong *node;
155 struct lttng_consumer_channel *channel = NULL;
156
157 /* Negative keys are lookup failures */
158 if (key < 0) {
159 return NULL;
160 }
161
162 lttng_ht_lookup(consumer_data.channel_ht, (void *)((unsigned long) key),
163 &iter);
164 node = lttng_ht_iter_get_node_ulong(&iter);
165 if (node != NULL) {
166 channel = caa_container_of(node, struct lttng_consumer_channel, node);
167 }
168
169 return channel;
170 }
171
172 static void consumer_steal_channel_key(int key)
173 {
174 struct lttng_consumer_channel *channel;
175
176 rcu_read_lock();
177 channel = consumer_find_channel(key);
178 if (channel) {
179 channel->key = -1;
180 /*
181 * We don't want the lookup to match, but we still need
182 * to iterate on this channel when iterating over the hash table. Just
183 * change the node key.
184 */
185 channel->node.key = -1;
186 }
187 rcu_read_unlock();
188 }
189
190 static
191 void consumer_free_stream(struct rcu_head *head)
192 {
193 struct lttng_ht_node_ulong *node =
194 caa_container_of(head, struct lttng_ht_node_ulong, head);
195 struct lttng_consumer_stream *stream =
196 caa_container_of(node, struct lttng_consumer_stream, node);
197
198 free(stream);
199 }
200
201 /*
202 * RCU protected relayd socket pair free.
203 */
204 static void consumer_rcu_free_relayd(struct rcu_head *head)
205 {
206 struct lttng_ht_node_ulong *node =
207 caa_container_of(head, struct lttng_ht_node_ulong, head);
208 struct consumer_relayd_sock_pair *relayd =
209 caa_container_of(node, struct consumer_relayd_sock_pair, node);
210
211 /*
212 * Close all sockets. This is done in the call RCU since we don't want the
213 * socket fds to be reassigned thus potentially creating bad state of the
214 * relayd object.
215 *
216 * We do not have to lock the control socket mutex here since at this stage
217 * there is no one referencing to this relayd object.
218 */
219 (void) relayd_close(&relayd->control_sock);
220 (void) relayd_close(&relayd->data_sock);
221
222 free(relayd);
223 }
224
225 /*
226 * Destroy and free relayd socket pair object.
227 *
228 * This function MUST be called with the consumer_data lock acquired.
229 */
230 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
231 {
232 int ret;
233 struct lttng_ht_iter iter;
234 struct lttng_ht_node_ulong *node;
235
236 if (relayd == NULL) {
237 return;
238 }
239
240 DBG("Consumer destroy and close relayd socket pair");
241
242 /* Loockup for a relayd node in the session id map hash table. */
243 lttng_ht_lookup(relayd_session_id_ht,
244 (void *)((unsigned long) relayd->sessiond_session_id), &iter);
245 node = lttng_ht_iter_get_node_ulong(&iter);
246 if (node == NULL) {
247 /* We assume the relayd is being or is destroyed */
248 return;
249 }
250
251 /*
252 * Try to delete it from the relayd session id ht. The return value is of
253 * no importance since either way we are going to try to delete the relayd
254 * from the global relayd_ht.
255 */
256 lttng_ht_del(relayd_session_id_ht, &iter);
257
258 iter.iter.node = &relayd->node.node;
259 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
260 if (ret != 0) {
261 /* We assume the relayd is being or is destroyed */
262 return;
263 }
264
265 /* RCU free() call */
266 call_rcu(&relayd->node.head, consumer_rcu_free_relayd);
267 }
268
269 /*
270 * Iterate over the relayd hash table and destroy each element. Finally,
271 * destroy the whole hash table.
272 */
273 static void cleanup_relayd_ht(void)
274 {
275 struct lttng_ht_iter iter;
276 struct consumer_relayd_sock_pair *relayd;
277
278 rcu_read_lock();
279
280 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
281 node.node) {
282 destroy_relayd(relayd);
283 }
284
285 lttng_ht_destroy(consumer_data.relayd_ht);
286 /* The destroy_relayd call makes sure that this ht is empty here. */
287 lttng_ht_destroy(relayd_session_id_ht);
288
289 rcu_read_unlock();
290 }
291
292 /*
293 * Update the end point status of all streams having the given network sequence
294 * index (relayd index).
295 *
296 * It's atomically set without having the stream mutex locked which is fine
297 * because we handle the write/read race with a pipe wakeup for each thread.
298 */
299 static void update_endpoint_status_by_netidx(int net_seq_idx,
300 enum consumer_endpoint_status status)
301 {
302 struct lttng_ht_iter iter;
303 struct lttng_consumer_stream *stream;
304
305 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
306
307 rcu_read_lock();
308
309 /* Let's begin with metadata */
310 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
311 if (stream->net_seq_idx == net_seq_idx) {
312 uatomic_set(&stream->endpoint_status, status);
313 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
314 }
315 }
316
317 /* Follow up by the data streams */
318 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
319 if (stream->net_seq_idx == net_seq_idx) {
320 uatomic_set(&stream->endpoint_status, status);
321 DBG("Delete flag set to data stream %d", stream->wait_fd);
322 }
323 }
324 rcu_read_unlock();
325 }
326
327 /*
328 * Cleanup a relayd object by flagging every associated streams for deletion,
329 * destroying the object meaning removing it from the relayd hash table,
330 * closing the sockets and freeing the memory in a RCU call.
331 *
332 * If a local data context is available, notify the threads that the streams'
333 * state have changed.
334 */
335 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
336 struct lttng_consumer_local_data *ctx)
337 {
338 int netidx;
339
340 assert(relayd);
341
342 DBG("Cleaning up relayd sockets");
343
344 /* Save the net sequence index before destroying the object */
345 netidx = relayd->net_seq_idx;
346
347 /*
348 * Delete the relayd from the relayd hash table, close the sockets and free
349 * the object in a RCU call.
350 */
351 destroy_relayd(relayd);
352
353 /* Set inactive endpoint to all streams */
354 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
355
356 /*
357 * With a local data context, notify the threads that the streams' state
358 * have changed. The write() action on the pipe acts as an "implicit"
359 * memory barrier ordering the updates of the end point status from the
360 * read of this status which happens AFTER receiving this notify.
361 */
362 if (ctx) {
363 notify_thread_pipe(ctx->consumer_data_pipe[1]);
364 notify_thread_pipe(ctx->consumer_metadata_pipe[1]);
365 }
366 }
367
368 /*
369 * Flag a relayd socket pair for destruction. Destroy it if the refcount
370 * reaches zero.
371 *
372 * RCU read side lock MUST be aquired before calling this function.
373 */
374 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
375 {
376 assert(relayd);
377
378 /* Set destroy flag for this object */
379 uatomic_set(&relayd->destroy_flag, 1);
380
381 /* Destroy the relayd if refcount is 0 */
382 if (uatomic_read(&relayd->refcount) == 0) {
383 destroy_relayd(relayd);
384 }
385 }
386
387 /*
388 * Remove a stream from the global list protected by a mutex. This
389 * function is also responsible for freeing its data structures.
390 */
391 void consumer_del_stream(struct lttng_consumer_stream *stream,
392 struct lttng_ht *ht)
393 {
394 int ret;
395 struct lttng_ht_iter iter;
396 struct lttng_consumer_channel *free_chan = NULL;
397 struct consumer_relayd_sock_pair *relayd;
398
399 assert(stream);
400
401 DBG("Consumer del stream %d", stream->wait_fd);
402
403 if (ht == NULL) {
404 /* Means the stream was allocated but not successfully added */
405 goto free_stream;
406 }
407
408 pthread_mutex_lock(&consumer_data.lock);
409 pthread_mutex_lock(&stream->lock);
410
411 switch (consumer_data.type) {
412 case LTTNG_CONSUMER_KERNEL:
413 if (stream->mmap_base != NULL) {
414 ret = munmap(stream->mmap_base, stream->mmap_len);
415 if (ret != 0) {
416 PERROR("munmap");
417 }
418 }
419 break;
420 case LTTNG_CONSUMER32_UST:
421 case LTTNG_CONSUMER64_UST:
422 lttng_ustconsumer_del_stream(stream);
423 break;
424 default:
425 ERR("Unknown consumer_data type");
426 assert(0);
427 goto end;
428 }
429
430 rcu_read_lock();
431 iter.iter.node = &stream->node.node;
432 ret = lttng_ht_del(ht, &iter);
433 assert(!ret);
434
435 /* Remove node session id from the consumer_data stream ht */
436 iter.iter.node = &stream->node_session_id.node;
437 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
438 assert(!ret);
439 rcu_read_unlock();
440
441 assert(consumer_data.stream_count > 0);
442 consumer_data.stream_count--;
443
444 if (stream->out_fd >= 0) {
445 ret = close(stream->out_fd);
446 if (ret) {
447 PERROR("close");
448 }
449 }
450 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
451 ret = close(stream->wait_fd);
452 if (ret) {
453 PERROR("close");
454 }
455 }
456 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
457 ret = close(stream->shm_fd);
458 if (ret) {
459 PERROR("close");
460 }
461 }
462
463 /* Check and cleanup relayd */
464 rcu_read_lock();
465 relayd = consumer_find_relayd(stream->net_seq_idx);
466 if (relayd != NULL) {
467 uatomic_dec(&relayd->refcount);
468 assert(uatomic_read(&relayd->refcount) >= 0);
469
470 /* Closing streams requires to lock the control socket. */
471 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
472 ret = relayd_send_close_stream(&relayd->control_sock,
473 stream->relayd_stream_id,
474 stream->next_net_seq_num - 1);
475 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
476 if (ret < 0) {
477 DBG("Unable to close stream on the relayd. Continuing");
478 /*
479 * Continue here. There is nothing we can do for the relayd.
480 * Chances are that the relayd has closed the socket so we just
481 * continue cleaning up.
482 */
483 }
484
485 /* Both conditions are met, we destroy the relayd. */
486 if (uatomic_read(&relayd->refcount) == 0 &&
487 uatomic_read(&relayd->destroy_flag)) {
488 destroy_relayd(relayd);
489 }
490 }
491 rcu_read_unlock();
492
493 uatomic_dec(&stream->chan->refcount);
494 if (!uatomic_read(&stream->chan->refcount)
495 && !uatomic_read(&stream->chan->nb_init_streams)) {
496 free_chan = stream->chan;
497 }
498
499 end:
500 consumer_data.need_update = 1;
501 pthread_mutex_unlock(&stream->lock);
502 pthread_mutex_unlock(&consumer_data.lock);
503
504 if (free_chan) {
505 consumer_del_channel(free_chan);
506 }
507
508 free_stream:
509 call_rcu(&stream->node.head, consumer_free_stream);
510 }
511
512 struct lttng_consumer_stream *consumer_allocate_stream(
513 int channel_key, int stream_key,
514 int shm_fd, int wait_fd,
515 enum lttng_consumer_stream_state state,
516 uint64_t mmap_len,
517 enum lttng_event_output output,
518 const char *path_name,
519 uid_t uid,
520 gid_t gid,
521 int net_index,
522 int metadata_flag,
523 uint64_t session_id,
524 int *alloc_ret)
525 {
526 struct lttng_consumer_stream *stream;
527
528 stream = zmalloc(sizeof(*stream));
529 if (stream == NULL) {
530 PERROR("malloc struct lttng_consumer_stream");
531 *alloc_ret = -ENOMEM;
532 goto end;
533 }
534
535 rcu_read_lock();
536
537 /*
538 * Get stream's channel reference. Needed when adding the stream to the
539 * global hash table.
540 */
541 stream->chan = consumer_find_channel(channel_key);
542 if (!stream->chan) {
543 *alloc_ret = -ENOENT;
544 ERR("Unable to find channel for stream %d", stream_key);
545 goto error;
546 }
547
548 stream->key = stream_key;
549 stream->shm_fd = shm_fd;
550 stream->wait_fd = wait_fd;
551 stream->out_fd = -1;
552 stream->out_fd_offset = 0;
553 stream->state = state;
554 stream->mmap_len = mmap_len;
555 stream->mmap_base = NULL;
556 stream->output = output;
557 stream->uid = uid;
558 stream->gid = gid;
559 stream->net_seq_idx = net_index;
560 stream->metadata_flag = metadata_flag;
561 stream->session_id = session_id;
562 strncpy(stream->path_name, path_name, sizeof(stream->path_name));
563 stream->path_name[sizeof(stream->path_name) - 1] = '\0';
564 pthread_mutex_init(&stream->lock, NULL);
565
566 /*
567 * Index differently the metadata node because the thread is using an
568 * internal hash table to match streams in the metadata_ht to the epoll set
569 * file descriptor.
570 */
571 if (metadata_flag) {
572 lttng_ht_node_init_ulong(&stream->node, stream->wait_fd);
573 } else {
574 lttng_ht_node_init_ulong(&stream->node, stream->key);
575 }
576
577 /* Init session id node with the stream session id */
578 lttng_ht_node_init_ulong(&stream->node_session_id, stream->session_id);
579
580 /*
581 * The cpu number is needed before using any ustctl_* actions. Ignored for
582 * the kernel so the value does not matter.
583 */
584 pthread_mutex_lock(&consumer_data.lock);
585 stream->cpu = stream->chan->cpucount++;
586 pthread_mutex_unlock(&consumer_data.lock);
587
588 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
589 " out_fd %d, net_seq_idx %d, session_id %" PRIu64,
590 stream->path_name, stream->key, stream->shm_fd, stream->wait_fd,
591 (unsigned long long) stream->mmap_len, stream->out_fd,
592 stream->net_seq_idx, stream->session_id);
593
594 rcu_read_unlock();
595 return stream;
596
597 error:
598 rcu_read_unlock();
599 free(stream);
600 end:
601 return NULL;
602 }
603
604 /*
605 * Add a stream to the global list protected by a mutex.
606 */
607 static int consumer_add_stream(struct lttng_consumer_stream *stream,
608 struct lttng_ht *ht)
609 {
610 int ret = 0;
611 struct consumer_relayd_sock_pair *relayd;
612
613 assert(stream);
614 assert(ht);
615
616 DBG3("Adding consumer stream %d", stream->key);
617
618 pthread_mutex_lock(&consumer_data.lock);
619 pthread_mutex_lock(&stream->lock);
620 rcu_read_lock();
621
622 /* Steal stream identifier to avoid having streams with the same key */
623 consumer_steal_stream_key(stream->key, ht);
624
625 lttng_ht_add_unique_ulong(ht, &stream->node);
626
627 /*
628 * Add stream to the stream_list_ht of the consumer data. No need to steal
629 * the key since the HT does not use it and we allow to add redundant keys
630 * into this table.
631 */
632 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
633
634 /* Check and cleanup relayd */
635 relayd = consumer_find_relayd(stream->net_seq_idx);
636 if (relayd != NULL) {
637 uatomic_inc(&relayd->refcount);
638 }
639
640 /* Update channel refcount once added without error(s). */
641 uatomic_inc(&stream->chan->refcount);
642
643 /*
644 * When nb_init_streams reaches 0, we don't need to trigger any action in
645 * terms of destroying the associated channel, because the action that
646 * causes the count to become 0 also causes a stream to be added. The
647 * channel deletion will thus be triggered by the following removal of this
648 * stream.
649 */
650 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
651 uatomic_dec(&stream->chan->nb_init_streams);
652 }
653
654 /* Update consumer data once the node is inserted. */
655 consumer_data.stream_count++;
656 consumer_data.need_update = 1;
657
658 rcu_read_unlock();
659 pthread_mutex_unlock(&stream->lock);
660 pthread_mutex_unlock(&consumer_data.lock);
661
662 return ret;
663 }
664
665 /*
666 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
667 * be acquired before calling this.
668 */
669 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
670 {
671 int ret = 0;
672 struct lttng_ht_node_ulong *node;
673 struct lttng_ht_iter iter;
674
675 if (relayd == NULL) {
676 ret = -1;
677 goto end;
678 }
679
680 lttng_ht_lookup(consumer_data.relayd_ht,
681 (void *)((unsigned long) relayd->net_seq_idx), &iter);
682 node = lttng_ht_iter_get_node_ulong(&iter);
683 if (node != NULL) {
684 /* Relayd already exist. Ignore the insertion */
685 goto end;
686 }
687 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
688
689 end:
690 return ret;
691 }
692
693 /*
694 * Allocate and return a consumer relayd socket.
695 */
696 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
697 int net_seq_idx)
698 {
699 struct consumer_relayd_sock_pair *obj = NULL;
700
701 /* Negative net sequence index is a failure */
702 if (net_seq_idx < 0) {
703 goto error;
704 }
705
706 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
707 if (obj == NULL) {
708 PERROR("zmalloc relayd sock");
709 goto error;
710 }
711
712 obj->net_seq_idx = net_seq_idx;
713 obj->refcount = 0;
714 obj->destroy_flag = 0;
715 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
716 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
717
718 error:
719 return obj;
720 }
721
722 /*
723 * Find a relayd socket pair in the global consumer data.
724 *
725 * Return the object if found else NULL.
726 * RCU read-side lock must be held across this call and while using the
727 * returned object.
728 */
729 struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
730 {
731 struct lttng_ht_iter iter;
732 struct lttng_ht_node_ulong *node;
733 struct consumer_relayd_sock_pair *relayd = NULL;
734
735 /* Negative keys are lookup failures */
736 if (key < 0) {
737 goto error;
738 }
739
740 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
741 &iter);
742 node = lttng_ht_iter_get_node_ulong(&iter);
743 if (node != NULL) {
744 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
745 }
746
747 error:
748 return relayd;
749 }
750
751 /*
752 * Handle stream for relayd transmission if the stream applies for network
753 * streaming where the net sequence index is set.
754 *
755 * Return destination file descriptor or negative value on error.
756 */
757 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
758 size_t data_size, unsigned long padding,
759 struct consumer_relayd_sock_pair *relayd)
760 {
761 int outfd = -1, ret;
762 struct lttcomm_relayd_data_hdr data_hdr;
763
764 /* Safety net */
765 assert(stream);
766 assert(relayd);
767
768 /* Reset data header */
769 memset(&data_hdr, 0, sizeof(data_hdr));
770
771 if (stream->metadata_flag) {
772 /* Caller MUST acquire the relayd control socket lock */
773 ret = relayd_send_metadata(&relayd->control_sock, data_size);
774 if (ret < 0) {
775 goto error;
776 }
777
778 /* Metadata are always sent on the control socket. */
779 outfd = relayd->control_sock.fd;
780 } else {
781 /* Set header with stream information */
782 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
783 data_hdr.data_size = htobe32(data_size);
784 data_hdr.padding_size = htobe32(padding);
785 /*
786 * Note that net_seq_num below is assigned with the *current* value of
787 * next_net_seq_num and only after that the next_net_seq_num will be
788 * increment. This is why when issuing a command on the relayd using
789 * this next value, 1 should always be substracted in order to compare
790 * the last seen sequence number on the relayd side to the last sent.
791 */
792 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num++);
793 /* Other fields are zeroed previously */
794
795 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
796 sizeof(data_hdr));
797 if (ret < 0) {
798 goto error;
799 }
800
801 /* Set to go on data socket */
802 outfd = relayd->data_sock.fd;
803 }
804
805 error:
806 return outfd;
807 }
808
809 static
810 void consumer_free_channel(struct rcu_head *head)
811 {
812 struct lttng_ht_node_ulong *node =
813 caa_container_of(head, struct lttng_ht_node_ulong, head);
814 struct lttng_consumer_channel *channel =
815 caa_container_of(node, struct lttng_consumer_channel, node);
816
817 free(channel);
818 }
819
820 /*
821 * Remove a channel from the global list protected by a mutex. This
822 * function is also responsible for freeing its data structures.
823 */
824 void consumer_del_channel(struct lttng_consumer_channel *channel)
825 {
826 int ret;
827 struct lttng_ht_iter iter;
828
829 DBG("Consumer delete channel key %d", channel->key);
830
831 pthread_mutex_lock(&consumer_data.lock);
832
833 switch (consumer_data.type) {
834 case LTTNG_CONSUMER_KERNEL:
835 break;
836 case LTTNG_CONSUMER32_UST:
837 case LTTNG_CONSUMER64_UST:
838 lttng_ustconsumer_del_channel(channel);
839 break;
840 default:
841 ERR("Unknown consumer_data type");
842 assert(0);
843 goto end;
844 }
845
846 rcu_read_lock();
847 iter.iter.node = &channel->node.node;
848 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
849 assert(!ret);
850 rcu_read_unlock();
851
852 if (channel->mmap_base != NULL) {
853 ret = munmap(channel->mmap_base, channel->mmap_len);
854 if (ret != 0) {
855 PERROR("munmap");
856 }
857 }
858 if (channel->wait_fd >= 0 && !channel->wait_fd_is_copy) {
859 ret = close(channel->wait_fd);
860 if (ret) {
861 PERROR("close");
862 }
863 }
864 if (channel->shm_fd >= 0 && channel->wait_fd != channel->shm_fd) {
865 ret = close(channel->shm_fd);
866 if (ret) {
867 PERROR("close");
868 }
869 }
870
871 call_rcu(&channel->node.head, consumer_free_channel);
872 end:
873 pthread_mutex_unlock(&consumer_data.lock);
874 }
875
876 struct lttng_consumer_channel *consumer_allocate_channel(
877 int channel_key,
878 int shm_fd, int wait_fd,
879 uint64_t mmap_len,
880 uint64_t max_sb_size,
881 unsigned int nb_init_streams)
882 {
883 struct lttng_consumer_channel *channel;
884 int ret;
885
886 channel = zmalloc(sizeof(*channel));
887 if (channel == NULL) {
888 PERROR("malloc struct lttng_consumer_channel");
889 goto end;
890 }
891 channel->key = channel_key;
892 channel->shm_fd = shm_fd;
893 channel->wait_fd = wait_fd;
894 channel->mmap_len = mmap_len;
895 channel->max_sb_size = max_sb_size;
896 channel->refcount = 0;
897 channel->nb_init_streams = nb_init_streams;
898 lttng_ht_node_init_ulong(&channel->node, channel->key);
899
900 switch (consumer_data.type) {
901 case LTTNG_CONSUMER_KERNEL:
902 channel->mmap_base = NULL;
903 channel->mmap_len = 0;
904 break;
905 case LTTNG_CONSUMER32_UST:
906 case LTTNG_CONSUMER64_UST:
907 ret = lttng_ustconsumer_allocate_channel(channel);
908 if (ret) {
909 free(channel);
910 return NULL;
911 }
912 break;
913 default:
914 ERR("Unknown consumer_data type");
915 assert(0);
916 goto end;
917 }
918 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
919 channel->key, channel->shm_fd, channel->wait_fd,
920 (unsigned long long) channel->mmap_len,
921 (unsigned long long) channel->max_sb_size);
922 end:
923 return channel;
924 }
925
926 /*
927 * Add a channel to the global list protected by a mutex.
928 */
929 int consumer_add_channel(struct lttng_consumer_channel *channel)
930 {
931 struct lttng_ht_node_ulong *node;
932 struct lttng_ht_iter iter;
933
934 pthread_mutex_lock(&consumer_data.lock);
935 /* Steal channel identifier, for UST */
936 consumer_steal_channel_key(channel->key);
937 rcu_read_lock();
938
939 lttng_ht_lookup(consumer_data.channel_ht,
940 (void *)((unsigned long) channel->key), &iter);
941 node = lttng_ht_iter_get_node_ulong(&iter);
942 if (node != NULL) {
943 /* Channel already exist. Ignore the insertion */
944 goto end;
945 }
946
947 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
948
949 end:
950 rcu_read_unlock();
951 pthread_mutex_unlock(&consumer_data.lock);
952
953 return 0;
954 }
955
956 /*
957 * Allocate the pollfd structure and the local view of the out fds to avoid
958 * doing a lookup in the linked list and concurrency issues when writing is
959 * needed. Called with consumer_data.lock held.
960 *
961 * Returns the number of fds in the structures.
962 */
963 static int consumer_update_poll_array(
964 struct lttng_consumer_local_data *ctx, struct pollfd **pollfd,
965 struct lttng_consumer_stream **local_stream, struct lttng_ht *ht)
966 {
967 int i = 0;
968 struct lttng_ht_iter iter;
969 struct lttng_consumer_stream *stream;
970
971 DBG("Updating poll fd array");
972 rcu_read_lock();
973 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
974 /*
975 * Only active streams with an active end point can be added to the
976 * poll set and local stream storage of the thread.
977 *
978 * There is a potential race here for endpoint_status to be updated
979 * just after the check. However, this is OK since the stream(s) will
980 * be deleted once the thread is notified that the end point state has
981 * changed where this function will be called back again.
982 */
983 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
984 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
985 continue;
986 }
987 DBG("Active FD %d", stream->wait_fd);
988 (*pollfd)[i].fd = stream->wait_fd;
989 (*pollfd)[i].events = POLLIN | POLLPRI;
990 local_stream[i] = stream;
991 i++;
992 }
993 rcu_read_unlock();
994
995 /*
996 * Insert the consumer_data_pipe at the end of the array and don't
997 * increment i so nb_fd is the number of real FD.
998 */
999 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
1000 (*pollfd)[i].events = POLLIN | POLLPRI;
1001 return i;
1002 }
1003
1004 /*
1005 * Poll on the should_quit pipe and the command socket return -1 on error and
1006 * should exit, 0 if data is available on the command socket
1007 */
1008 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1009 {
1010 int num_rdy;
1011
1012 restart:
1013 num_rdy = poll(consumer_sockpoll, 2, -1);
1014 if (num_rdy == -1) {
1015 /*
1016 * Restart interrupted system call.
1017 */
1018 if (errno == EINTR) {
1019 goto restart;
1020 }
1021 PERROR("Poll error");
1022 goto exit;
1023 }
1024 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1025 DBG("consumer_should_quit wake up");
1026 goto exit;
1027 }
1028 return 0;
1029
1030 exit:
1031 return -1;
1032 }
1033
1034 /*
1035 * Set the error socket.
1036 */
1037 void lttng_consumer_set_error_sock(
1038 struct lttng_consumer_local_data *ctx, int sock)
1039 {
1040 ctx->consumer_error_socket = sock;
1041 }
1042
1043 /*
1044 * Set the command socket path.
1045 */
1046 void lttng_consumer_set_command_sock_path(
1047 struct lttng_consumer_local_data *ctx, char *sock)
1048 {
1049 ctx->consumer_command_sock_path = sock;
1050 }
1051
1052 /*
1053 * Send return code to the session daemon.
1054 * If the socket is not defined, we return 0, it is not a fatal error
1055 */
1056 int lttng_consumer_send_error(
1057 struct lttng_consumer_local_data *ctx, int cmd)
1058 {
1059 if (ctx->consumer_error_socket > 0) {
1060 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1061 sizeof(enum lttcomm_sessiond_command));
1062 }
1063
1064 return 0;
1065 }
1066
1067 /*
1068 * Close all the tracefiles and stream fds and MUST be called when all
1069 * instances are destroyed i.e. when all threads were joined and are ended.
1070 */
1071 void lttng_consumer_cleanup(void)
1072 {
1073 struct lttng_ht_iter iter;
1074 struct lttng_ht_node_ulong *node;
1075
1076 rcu_read_lock();
1077
1078 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, node,
1079 node) {
1080 struct lttng_consumer_channel *channel =
1081 caa_container_of(node, struct lttng_consumer_channel, node);
1082 consumer_del_channel(channel);
1083 }
1084
1085 rcu_read_unlock();
1086
1087 lttng_ht_destroy(consumer_data.channel_ht);
1088
1089 cleanup_relayd_ht();
1090
1091 /*
1092 * This HT contains streams that are freed by either the metadata thread or
1093 * the data thread so we do *nothing* on the hash table and simply destroy
1094 * it.
1095 */
1096 lttng_ht_destroy(consumer_data.stream_list_ht);
1097 }
1098
1099 /*
1100 * Called from signal handler.
1101 */
1102 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1103 {
1104 int ret;
1105 consumer_quit = 1;
1106 do {
1107 ret = write(ctx->consumer_should_quit[1], "4", 1);
1108 } while (ret < 0 && errno == EINTR);
1109 if (ret < 0) {
1110 PERROR("write consumer quit");
1111 }
1112
1113 DBG("Consumer flag that it should quit");
1114 }
1115
1116 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1117 off_t orig_offset)
1118 {
1119 int outfd = stream->out_fd;
1120
1121 /*
1122 * This does a blocking write-and-wait on any page that belongs to the
1123 * subbuffer prior to the one we just wrote.
1124 * Don't care about error values, as these are just hints and ways to
1125 * limit the amount of page cache used.
1126 */
1127 if (orig_offset < stream->chan->max_sb_size) {
1128 return;
1129 }
1130 lttng_sync_file_range(outfd, orig_offset - stream->chan->max_sb_size,
1131 stream->chan->max_sb_size,
1132 SYNC_FILE_RANGE_WAIT_BEFORE
1133 | SYNC_FILE_RANGE_WRITE
1134 | SYNC_FILE_RANGE_WAIT_AFTER);
1135 /*
1136 * Give hints to the kernel about how we access the file:
1137 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1138 * we write it.
1139 *
1140 * We need to call fadvise again after the file grows because the
1141 * kernel does not seem to apply fadvise to non-existing parts of the
1142 * file.
1143 *
1144 * Call fadvise _after_ having waited for the page writeback to
1145 * complete because the dirty page writeback semantic is not well
1146 * defined. So it can be expected to lead to lower throughput in
1147 * streaming.
1148 */
1149 posix_fadvise(outfd, orig_offset - stream->chan->max_sb_size,
1150 stream->chan->max_sb_size, POSIX_FADV_DONTNEED);
1151 }
1152
1153 /*
1154 * Initialise the necessary environnement :
1155 * - create a new context
1156 * - create the poll_pipe
1157 * - create the should_quit pipe (for signal handler)
1158 * - create the thread pipe (for splice)
1159 *
1160 * Takes a function pointer as argument, this function is called when data is
1161 * available on a buffer. This function is responsible to do the
1162 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1163 * buffer configuration and then kernctl_put_next_subbuf at the end.
1164 *
1165 * Returns a pointer to the new context or NULL on error.
1166 */
1167 struct lttng_consumer_local_data *lttng_consumer_create(
1168 enum lttng_consumer_type type,
1169 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1170 struct lttng_consumer_local_data *ctx),
1171 int (*recv_channel)(struct lttng_consumer_channel *channel),
1172 int (*recv_stream)(struct lttng_consumer_stream *stream),
1173 int (*update_stream)(int stream_key, uint32_t state))
1174 {
1175 int ret, i;
1176 struct lttng_consumer_local_data *ctx;
1177
1178 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1179 consumer_data.type == type);
1180 consumer_data.type = type;
1181
1182 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1183 if (ctx == NULL) {
1184 PERROR("allocating context");
1185 goto error;
1186 }
1187
1188 ctx->consumer_error_socket = -1;
1189 /* assign the callbacks */
1190 ctx->on_buffer_ready = buffer_ready;
1191 ctx->on_recv_channel = recv_channel;
1192 ctx->on_recv_stream = recv_stream;
1193 ctx->on_update_stream = update_stream;
1194
1195 ret = pipe(ctx->consumer_data_pipe);
1196 if (ret < 0) {
1197 PERROR("Error creating poll pipe");
1198 goto error_poll_pipe;
1199 }
1200
1201 /* set read end of the pipe to non-blocking */
1202 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1203 if (ret < 0) {
1204 PERROR("fcntl O_NONBLOCK");
1205 goto error_poll_fcntl;
1206 }
1207
1208 /* set write end of the pipe to non-blocking */
1209 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1210 if (ret < 0) {
1211 PERROR("fcntl O_NONBLOCK");
1212 goto error_poll_fcntl;
1213 }
1214
1215 ret = pipe(ctx->consumer_should_quit);
1216 if (ret < 0) {
1217 PERROR("Error creating recv pipe");
1218 goto error_quit_pipe;
1219 }
1220
1221 ret = pipe(ctx->consumer_thread_pipe);
1222 if (ret < 0) {
1223 PERROR("Error creating thread pipe");
1224 goto error_thread_pipe;
1225 }
1226
1227 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1228 if (ret < 0) {
1229 goto error_metadata_pipe;
1230 }
1231
1232 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1233 if (ret < 0) {
1234 goto error_splice_pipe;
1235 }
1236
1237 return ctx;
1238
1239 error_splice_pipe:
1240 utils_close_pipe(ctx->consumer_metadata_pipe);
1241 error_metadata_pipe:
1242 utils_close_pipe(ctx->consumer_thread_pipe);
1243 error_thread_pipe:
1244 for (i = 0; i < 2; i++) {
1245 int err;
1246
1247 err = close(ctx->consumer_should_quit[i]);
1248 if (err) {
1249 PERROR("close");
1250 }
1251 }
1252 error_poll_fcntl:
1253 error_quit_pipe:
1254 for (i = 0; i < 2; i++) {
1255 int err;
1256
1257 err = close(ctx->consumer_data_pipe[i]);
1258 if (err) {
1259 PERROR("close");
1260 }
1261 }
1262 error_poll_pipe:
1263 free(ctx);
1264 error:
1265 return NULL;
1266 }
1267
1268 /*
1269 * Close all fds associated with the instance and free the context.
1270 */
1271 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1272 {
1273 int ret;
1274
1275 DBG("Consumer destroying it. Closing everything.");
1276
1277 ret = close(ctx->consumer_error_socket);
1278 if (ret) {
1279 PERROR("close");
1280 }
1281 ret = close(ctx->consumer_thread_pipe[0]);
1282 if (ret) {
1283 PERROR("close");
1284 }
1285 ret = close(ctx->consumer_thread_pipe[1]);
1286 if (ret) {
1287 PERROR("close");
1288 }
1289 ret = close(ctx->consumer_data_pipe[0]);
1290 if (ret) {
1291 PERROR("close");
1292 }
1293 ret = close(ctx->consumer_data_pipe[1]);
1294 if (ret) {
1295 PERROR("close");
1296 }
1297 ret = close(ctx->consumer_should_quit[0]);
1298 if (ret) {
1299 PERROR("close");
1300 }
1301 ret = close(ctx->consumer_should_quit[1]);
1302 if (ret) {
1303 PERROR("close");
1304 }
1305 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1306
1307 unlink(ctx->consumer_command_sock_path);
1308 free(ctx);
1309 }
1310
1311 /*
1312 * Write the metadata stream id on the specified file descriptor.
1313 */
1314 static int write_relayd_metadata_id(int fd,
1315 struct lttng_consumer_stream *stream,
1316 struct consumer_relayd_sock_pair *relayd,
1317 unsigned long padding)
1318 {
1319 int ret;
1320 struct lttcomm_relayd_metadata_payload hdr;
1321
1322 hdr.stream_id = htobe64(stream->relayd_stream_id);
1323 hdr.padding_size = htobe32(padding);
1324 do {
1325 ret = write(fd, (void *) &hdr, sizeof(hdr));
1326 } while (ret < 0 && errno == EINTR);
1327 if (ret < 0) {
1328 PERROR("write metadata stream id");
1329 goto end;
1330 }
1331 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1332 stream->relayd_stream_id, padding);
1333
1334 end:
1335 return ret;
1336 }
1337
1338 /*
1339 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1340 * core function for writing trace buffers to either the local filesystem or
1341 * the network.
1342 *
1343 * It must be called with the stream lock held.
1344 *
1345 * Careful review MUST be put if any changes occur!
1346 *
1347 * Returns the number of bytes written
1348 */
1349 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1350 struct lttng_consumer_local_data *ctx,
1351 struct lttng_consumer_stream *stream, unsigned long len,
1352 unsigned long padding)
1353 {
1354 unsigned long mmap_offset;
1355 ssize_t ret = 0, written = 0;
1356 off_t orig_offset = stream->out_fd_offset;
1357 /* Default is on the disk */
1358 int outfd = stream->out_fd;
1359 struct consumer_relayd_sock_pair *relayd = NULL;
1360 unsigned int relayd_hang_up = 0;
1361
1362 /* RCU lock for the relayd pointer */
1363 rcu_read_lock();
1364
1365 /* Flag that the current stream if set for network streaming. */
1366 if (stream->net_seq_idx != -1) {
1367 relayd = consumer_find_relayd(stream->net_seq_idx);
1368 if (relayd == NULL) {
1369 goto end;
1370 }
1371 }
1372
1373 /* get the offset inside the fd to mmap */
1374 switch (consumer_data.type) {
1375 case LTTNG_CONSUMER_KERNEL:
1376 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1377 break;
1378 case LTTNG_CONSUMER32_UST:
1379 case LTTNG_CONSUMER64_UST:
1380 ret = lttng_ustctl_get_mmap_read_offset(stream->chan->handle,
1381 stream->buf, &mmap_offset);
1382 break;
1383 default:
1384 ERR("Unknown consumer_data type");
1385 assert(0);
1386 }
1387 if (ret != 0) {
1388 errno = -ret;
1389 PERROR("tracer ctl get_mmap_read_offset");
1390 written = ret;
1391 goto end;
1392 }
1393
1394 /* Handle stream on the relayd if the output is on the network */
1395 if (relayd) {
1396 unsigned long netlen = len;
1397
1398 /*
1399 * Lock the control socket for the complete duration of the function
1400 * since from this point on we will use the socket.
1401 */
1402 if (stream->metadata_flag) {
1403 /* Metadata requires the control socket. */
1404 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1405 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1406 }
1407
1408 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1409 if (ret >= 0) {
1410 /* Use the returned socket. */
1411 outfd = ret;
1412
1413 /* Write metadata stream id before payload */
1414 if (stream->metadata_flag) {
1415 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1416 if (ret < 0) {
1417 written = ret;
1418 /* Socket operation failed. We consider the relayd dead */
1419 if (ret == -EPIPE || ret == -EINVAL) {
1420 relayd_hang_up = 1;
1421 goto write_error;
1422 }
1423 goto end;
1424 }
1425 }
1426 } else {
1427 /* Socket operation failed. We consider the relayd dead */
1428 if (ret == -EPIPE || ret == -EINVAL) {
1429 relayd_hang_up = 1;
1430 goto write_error;
1431 }
1432 /* Else, use the default set before which is the filesystem. */
1433 }
1434 } else {
1435 /* No streaming, we have to set the len with the full padding */
1436 len += padding;
1437 }
1438
1439 while (len > 0) {
1440 do {
1441 ret = write(outfd, stream->mmap_base + mmap_offset, len);
1442 } while (ret < 0 && errno == EINTR);
1443 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1444 if (ret < 0) {
1445 /*
1446 * This is possible if the fd is closed on the other side (outfd)
1447 * or any write problem. It can be verbose a bit for a normal
1448 * execution if for instance the relayd is stopped abruptly. This
1449 * can happen so set this to a DBG statement.
1450 */
1451 DBG("Error in file write mmap");
1452 if (written == 0) {
1453 written = ret;
1454 }
1455 /* Socket operation failed. We consider the relayd dead */
1456 if (errno == EPIPE || errno == EINVAL) {
1457 relayd_hang_up = 1;
1458 goto write_error;
1459 }
1460 goto end;
1461 } else if (ret > len) {
1462 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1463 written += ret;
1464 goto end;
1465 } else {
1466 len -= ret;
1467 mmap_offset += ret;
1468 }
1469
1470 /* This call is useless on a socket so better save a syscall. */
1471 if (!relayd) {
1472 /* This won't block, but will start writeout asynchronously */
1473 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1474 SYNC_FILE_RANGE_WRITE);
1475 stream->out_fd_offset += ret;
1476 }
1477 written += ret;
1478 }
1479 lttng_consumer_sync_trace_file(stream, orig_offset);
1480
1481 write_error:
1482 /*
1483 * This is a special case that the relayd has closed its socket. Let's
1484 * cleanup the relayd object and all associated streams.
1485 */
1486 if (relayd && relayd_hang_up) {
1487 cleanup_relayd(relayd, ctx);
1488 }
1489
1490 end:
1491 /* Unlock only if ctrl socket used */
1492 if (relayd && stream->metadata_flag) {
1493 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1494 }
1495
1496 rcu_read_unlock();
1497 return written;
1498 }
1499
1500 /*
1501 * Splice the data from the ring buffer to the tracefile.
1502 *
1503 * It must be called with the stream lock held.
1504 *
1505 * Returns the number of bytes spliced.
1506 */
1507 ssize_t lttng_consumer_on_read_subbuffer_splice(
1508 struct lttng_consumer_local_data *ctx,
1509 struct lttng_consumer_stream *stream, unsigned long len,
1510 unsigned long padding)
1511 {
1512 ssize_t ret = 0, written = 0, ret_splice = 0;
1513 loff_t offset = 0;
1514 off_t orig_offset = stream->out_fd_offset;
1515 int fd = stream->wait_fd;
1516 /* Default is on the disk */
1517 int outfd = stream->out_fd;
1518 struct consumer_relayd_sock_pair *relayd = NULL;
1519 int *splice_pipe;
1520 unsigned int relayd_hang_up = 0;
1521
1522 switch (consumer_data.type) {
1523 case LTTNG_CONSUMER_KERNEL:
1524 break;
1525 case LTTNG_CONSUMER32_UST:
1526 case LTTNG_CONSUMER64_UST:
1527 /* Not supported for user space tracing */
1528 return -ENOSYS;
1529 default:
1530 ERR("Unknown consumer_data type");
1531 assert(0);
1532 }
1533
1534 /* RCU lock for the relayd pointer */
1535 rcu_read_lock();
1536
1537 /* Flag that the current stream if set for network streaming. */
1538 if (stream->net_seq_idx != -1) {
1539 relayd = consumer_find_relayd(stream->net_seq_idx);
1540 if (relayd == NULL) {
1541 goto end;
1542 }
1543 }
1544
1545 /*
1546 * Choose right pipe for splice. Metadata and trace data are handled by
1547 * different threads hence the use of two pipes in order not to race or
1548 * corrupt the written data.
1549 */
1550 if (stream->metadata_flag) {
1551 splice_pipe = ctx->consumer_splice_metadata_pipe;
1552 } else {
1553 splice_pipe = ctx->consumer_thread_pipe;
1554 }
1555
1556 /* Write metadata stream id before payload */
1557 if (relayd) {
1558 int total_len = len;
1559
1560 if (stream->metadata_flag) {
1561 /*
1562 * Lock the control socket for the complete duration of the function
1563 * since from this point on we will use the socket.
1564 */
1565 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1566
1567 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1568 padding);
1569 if (ret < 0) {
1570 written = ret;
1571 /* Socket operation failed. We consider the relayd dead */
1572 if (ret == -EBADF) {
1573 WARN("Remote relayd disconnected. Stopping");
1574 relayd_hang_up = 1;
1575 goto write_error;
1576 }
1577 goto end;
1578 }
1579
1580 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1581 }
1582
1583 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1584 if (ret >= 0) {
1585 /* Use the returned socket. */
1586 outfd = ret;
1587 } else {
1588 /* Socket operation failed. We consider the relayd dead */
1589 if (ret == -EBADF) {
1590 WARN("Remote relayd disconnected. Stopping");
1591 relayd_hang_up = 1;
1592 goto write_error;
1593 }
1594 goto end;
1595 }
1596 } else {
1597 /* No streaming, we have to set the len with the full padding */
1598 len += padding;
1599 }
1600
1601 while (len > 0) {
1602 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1603 (unsigned long)offset, len, fd, splice_pipe[1]);
1604 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1605 SPLICE_F_MOVE | SPLICE_F_MORE);
1606 DBG("splice chan to pipe, ret %zd", ret_splice);
1607 if (ret_splice < 0) {
1608 PERROR("Error in relay splice");
1609 if (written == 0) {
1610 written = ret_splice;
1611 }
1612 ret = errno;
1613 goto splice_error;
1614 }
1615
1616 /* Handle stream on the relayd if the output is on the network */
1617 if (relayd) {
1618 if (stream->metadata_flag) {
1619 size_t metadata_payload_size =
1620 sizeof(struct lttcomm_relayd_metadata_payload);
1621
1622 /* Update counter to fit the spliced data */
1623 ret_splice += metadata_payload_size;
1624 len += metadata_payload_size;
1625 /*
1626 * We do this so the return value can match the len passed as
1627 * argument to this function.
1628 */
1629 written -= metadata_payload_size;
1630 }
1631 }
1632
1633 /* Splice data out */
1634 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1635 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1636 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1637 if (ret_splice < 0) {
1638 PERROR("Error in file splice");
1639 if (written == 0) {
1640 written = ret_splice;
1641 }
1642 /* Socket operation failed. We consider the relayd dead */
1643 if (errno == EBADF || errno == EPIPE) {
1644 WARN("Remote relayd disconnected. Stopping");
1645 relayd_hang_up = 1;
1646 goto write_error;
1647 }
1648 ret = errno;
1649 goto splice_error;
1650 } else if (ret_splice > len) {
1651 errno = EINVAL;
1652 PERROR("Wrote more data than requested %zd (len: %lu)",
1653 ret_splice, len);
1654 written += ret_splice;
1655 ret = errno;
1656 goto splice_error;
1657 }
1658 len -= ret_splice;
1659
1660 /* This call is useless on a socket so better save a syscall. */
1661 if (!relayd) {
1662 /* This won't block, but will start writeout asynchronously */
1663 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1664 SYNC_FILE_RANGE_WRITE);
1665 stream->out_fd_offset += ret_splice;
1666 }
1667 written += ret_splice;
1668 }
1669 lttng_consumer_sync_trace_file(stream, orig_offset);
1670
1671 ret = ret_splice;
1672
1673 goto end;
1674
1675 write_error:
1676 /*
1677 * This is a special case that the relayd has closed its socket. Let's
1678 * cleanup the relayd object and all associated streams.
1679 */
1680 if (relayd && relayd_hang_up) {
1681 cleanup_relayd(relayd, ctx);
1682 /* Skip splice error so the consumer does not fail */
1683 goto end;
1684 }
1685
1686 splice_error:
1687 /* send the appropriate error description to sessiond */
1688 switch (ret) {
1689 case EINVAL:
1690 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1691 break;
1692 case ENOMEM:
1693 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1694 break;
1695 case ESPIPE:
1696 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1697 break;
1698 }
1699
1700 end:
1701 if (relayd && stream->metadata_flag) {
1702 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1703 }
1704
1705 rcu_read_unlock();
1706 return written;
1707 }
1708
1709 /*
1710 * Take a snapshot for a specific fd
1711 *
1712 * Returns 0 on success, < 0 on error
1713 */
1714 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data *ctx,
1715 struct lttng_consumer_stream *stream)
1716 {
1717 switch (consumer_data.type) {
1718 case LTTNG_CONSUMER_KERNEL:
1719 return lttng_kconsumer_take_snapshot(ctx, stream);
1720 case LTTNG_CONSUMER32_UST:
1721 case LTTNG_CONSUMER64_UST:
1722 return lttng_ustconsumer_take_snapshot(ctx, stream);
1723 default:
1724 ERR("Unknown consumer_data type");
1725 assert(0);
1726 return -ENOSYS;
1727 }
1728
1729 }
1730
1731 /*
1732 * Get the produced position
1733 *
1734 * Returns 0 on success, < 0 on error
1735 */
1736 int lttng_consumer_get_produced_snapshot(
1737 struct lttng_consumer_local_data *ctx,
1738 struct lttng_consumer_stream *stream,
1739 unsigned long *pos)
1740 {
1741 switch (consumer_data.type) {
1742 case LTTNG_CONSUMER_KERNEL:
1743 return lttng_kconsumer_get_produced_snapshot(ctx, stream, pos);
1744 case LTTNG_CONSUMER32_UST:
1745 case LTTNG_CONSUMER64_UST:
1746 return lttng_ustconsumer_get_produced_snapshot(ctx, stream, pos);
1747 default:
1748 ERR("Unknown consumer_data type");
1749 assert(0);
1750 return -ENOSYS;
1751 }
1752 }
1753
1754 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1755 int sock, struct pollfd *consumer_sockpoll)
1756 {
1757 switch (consumer_data.type) {
1758 case LTTNG_CONSUMER_KERNEL:
1759 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1760 case LTTNG_CONSUMER32_UST:
1761 case LTTNG_CONSUMER64_UST:
1762 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1763 default:
1764 ERR("Unknown consumer_data type");
1765 assert(0);
1766 return -ENOSYS;
1767 }
1768 }
1769
1770 /*
1771 * Iterate over all streams of the hashtable and free them properly.
1772 *
1773 * WARNING: *MUST* be used with data stream only.
1774 */
1775 static void destroy_data_stream_ht(struct lttng_ht *ht)
1776 {
1777 struct lttng_ht_iter iter;
1778 struct lttng_consumer_stream *stream;
1779
1780 if (ht == NULL) {
1781 return;
1782 }
1783
1784 rcu_read_lock();
1785 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1786 /*
1787 * Ignore return value since we are currently cleaning up so any error
1788 * can't be handled.
1789 */
1790 (void) consumer_del_stream(stream, ht);
1791 }
1792 rcu_read_unlock();
1793
1794 lttng_ht_destroy(ht);
1795 }
1796
1797 /*
1798 * Iterate over all streams of the hashtable and free them properly.
1799 *
1800 * XXX: Should not be only for metadata stream or else use an other name.
1801 */
1802 static void destroy_stream_ht(struct lttng_ht *ht)
1803 {
1804 struct lttng_ht_iter iter;
1805 struct lttng_consumer_stream *stream;
1806
1807 if (ht == NULL) {
1808 return;
1809 }
1810
1811 rcu_read_lock();
1812 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1813 /*
1814 * Ignore return value since we are currently cleaning up so any error
1815 * can't be handled.
1816 */
1817 (void) consumer_del_metadata_stream(stream, ht);
1818 }
1819 rcu_read_unlock();
1820
1821 lttng_ht_destroy(ht);
1822 }
1823
1824 /*
1825 * Clean up a metadata stream and free its memory.
1826 */
1827 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1828 struct lttng_ht *ht)
1829 {
1830 int ret;
1831 struct lttng_ht_iter iter;
1832 struct lttng_consumer_channel *free_chan = NULL;
1833 struct consumer_relayd_sock_pair *relayd;
1834
1835 assert(stream);
1836 /*
1837 * This call should NEVER receive regular stream. It must always be
1838 * metadata stream and this is crucial for data structure synchronization.
1839 */
1840 assert(stream->metadata_flag);
1841
1842 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1843
1844 if (ht == NULL) {
1845 /* Means the stream was allocated but not successfully added */
1846 goto free_stream;
1847 }
1848
1849 pthread_mutex_lock(&consumer_data.lock);
1850 pthread_mutex_lock(&stream->lock);
1851
1852 switch (consumer_data.type) {
1853 case LTTNG_CONSUMER_KERNEL:
1854 if (stream->mmap_base != NULL) {
1855 ret = munmap(stream->mmap_base, stream->mmap_len);
1856 if (ret != 0) {
1857 PERROR("munmap metadata stream");
1858 }
1859 }
1860 break;
1861 case LTTNG_CONSUMER32_UST:
1862 case LTTNG_CONSUMER64_UST:
1863 lttng_ustconsumer_del_stream(stream);
1864 break;
1865 default:
1866 ERR("Unknown consumer_data type");
1867 assert(0);
1868 goto end;
1869 }
1870
1871 rcu_read_lock();
1872 iter.iter.node = &stream->node.node;
1873 ret = lttng_ht_del(ht, &iter);
1874 assert(!ret);
1875
1876 /* Remove node session id from the consumer_data stream ht */
1877 iter.iter.node = &stream->node_session_id.node;
1878 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1879 assert(!ret);
1880 rcu_read_unlock();
1881
1882 if (stream->out_fd >= 0) {
1883 ret = close(stream->out_fd);
1884 if (ret) {
1885 PERROR("close");
1886 }
1887 }
1888
1889 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
1890 ret = close(stream->wait_fd);
1891 if (ret) {
1892 PERROR("close");
1893 }
1894 }
1895
1896 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
1897 ret = close(stream->shm_fd);
1898 if (ret) {
1899 PERROR("close");
1900 }
1901 }
1902
1903 /* Check and cleanup relayd */
1904 rcu_read_lock();
1905 relayd = consumer_find_relayd(stream->net_seq_idx);
1906 if (relayd != NULL) {
1907 uatomic_dec(&relayd->refcount);
1908 assert(uatomic_read(&relayd->refcount) >= 0);
1909
1910 /* Closing streams requires to lock the control socket. */
1911 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1912 ret = relayd_send_close_stream(&relayd->control_sock,
1913 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1914 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1915 if (ret < 0) {
1916 DBG("Unable to close stream on the relayd. Continuing");
1917 /*
1918 * Continue here. There is nothing we can do for the relayd.
1919 * Chances are that the relayd has closed the socket so we just
1920 * continue cleaning up.
1921 */
1922 }
1923
1924 /* Both conditions are met, we destroy the relayd. */
1925 if (uatomic_read(&relayd->refcount) == 0 &&
1926 uatomic_read(&relayd->destroy_flag)) {
1927 destroy_relayd(relayd);
1928 }
1929 }
1930 rcu_read_unlock();
1931
1932 /* Atomically decrement channel refcount since other threads can use it. */
1933 uatomic_dec(&stream->chan->refcount);
1934 if (!uatomic_read(&stream->chan->refcount)
1935 && !uatomic_read(&stream->chan->nb_init_streams)) {
1936 /* Go for channel deletion! */
1937 free_chan = stream->chan;
1938 }
1939
1940 end:
1941 pthread_mutex_unlock(&stream->lock);
1942 pthread_mutex_unlock(&consumer_data.lock);
1943
1944 if (free_chan) {
1945 consumer_del_channel(free_chan);
1946 }
1947
1948 free_stream:
1949 call_rcu(&stream->node.head, consumer_free_stream);
1950 }
1951
1952 /*
1953 * Action done with the metadata stream when adding it to the consumer internal
1954 * data structures to handle it.
1955 */
1956 static int consumer_add_metadata_stream(struct lttng_consumer_stream *stream,
1957 struct lttng_ht *ht)
1958 {
1959 int ret = 0;
1960 struct consumer_relayd_sock_pair *relayd;
1961 struct lttng_ht_iter iter;
1962 struct lttng_ht_node_ulong *node;
1963
1964 assert(stream);
1965 assert(ht);
1966
1967 DBG3("Adding metadata stream %d to hash table", stream->wait_fd);
1968
1969 pthread_mutex_lock(&consumer_data.lock);
1970 pthread_mutex_lock(&stream->lock);
1971
1972 /*
1973 * From here, refcounts are updated so be _careful_ when returning an error
1974 * after this point.
1975 */
1976
1977 rcu_read_lock();
1978
1979 /*
1980 * Lookup the stream just to make sure it does not exist in our internal
1981 * state. This should NEVER happen.
1982 */
1983 lttng_ht_lookup(ht, (void *)((unsigned long) stream->wait_fd), &iter);
1984 node = lttng_ht_iter_get_node_ulong(&iter);
1985 assert(!node);
1986
1987 /* Find relayd and, if one is found, increment refcount. */
1988 relayd = consumer_find_relayd(stream->net_seq_idx);
1989 if (relayd != NULL) {
1990 uatomic_inc(&relayd->refcount);
1991 }
1992
1993 /* Update channel refcount once added without error(s). */
1994 uatomic_inc(&stream->chan->refcount);
1995
1996 /*
1997 * When nb_init_streams reaches 0, we don't need to trigger any action in
1998 * terms of destroying the associated channel, because the action that
1999 * causes the count to become 0 also causes a stream to be added. The
2000 * channel deletion will thus be triggered by the following removal of this
2001 * stream.
2002 */
2003 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
2004 uatomic_dec(&stream->chan->nb_init_streams);
2005 }
2006
2007 lttng_ht_add_unique_ulong(ht, &stream->node);
2008
2009 /*
2010 * Add stream to the stream_list_ht of the consumer data. No need to steal
2011 * the key since the HT does not use it and we allow to add redundant keys
2012 * into this table.
2013 */
2014 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
2015
2016 rcu_read_unlock();
2017
2018 pthread_mutex_unlock(&stream->lock);
2019 pthread_mutex_unlock(&consumer_data.lock);
2020 return ret;
2021 }
2022
2023 /*
2024 * Delete data stream that are flagged for deletion (endpoint_status).
2025 */
2026 static void validate_endpoint_status_data_stream(void)
2027 {
2028 struct lttng_ht_iter iter;
2029 struct lttng_consumer_stream *stream;
2030
2031 DBG("Consumer delete flagged data stream");
2032
2033 rcu_read_lock();
2034 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2035 /* Validate delete flag of the stream */
2036 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2037 continue;
2038 }
2039 /* Delete it right now */
2040 consumer_del_stream(stream, data_ht);
2041 }
2042 rcu_read_unlock();
2043 }
2044
2045 /*
2046 * Delete metadata stream that are flagged for deletion (endpoint_status).
2047 */
2048 static void validate_endpoint_status_metadata_stream(
2049 struct lttng_poll_event *pollset)
2050 {
2051 struct lttng_ht_iter iter;
2052 struct lttng_consumer_stream *stream;
2053
2054 DBG("Consumer delete flagged metadata stream");
2055
2056 assert(pollset);
2057
2058 rcu_read_lock();
2059 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2060 /* Validate delete flag of the stream */
2061 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2062 continue;
2063 }
2064 /*
2065 * Remove from pollset so the metadata thread can continue without
2066 * blocking on a deleted stream.
2067 */
2068 lttng_poll_del(pollset, stream->wait_fd);
2069
2070 /* Delete it right now */
2071 consumer_del_metadata_stream(stream, metadata_ht);
2072 }
2073 rcu_read_unlock();
2074 }
2075
2076 /*
2077 * Thread polls on metadata file descriptor and write them on disk or on the
2078 * network.
2079 */
2080 void *consumer_thread_metadata_poll(void *data)
2081 {
2082 int ret, i, pollfd;
2083 uint32_t revents, nb_fd;
2084 struct lttng_consumer_stream *stream = NULL;
2085 struct lttng_ht_iter iter;
2086 struct lttng_ht_node_ulong *node;
2087 struct lttng_poll_event events;
2088 struct lttng_consumer_local_data *ctx = data;
2089 ssize_t len;
2090
2091 rcu_register_thread();
2092
2093 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2094 if (!metadata_ht) {
2095 /* ENOMEM at this point. Better to bail out. */
2096 goto error;
2097 }
2098
2099 DBG("Thread metadata poll started");
2100
2101 /* Size is set to 1 for the consumer_metadata pipe */
2102 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2103 if (ret < 0) {
2104 ERR("Poll set creation failed");
2105 goto end;
2106 }
2107
2108 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
2109 if (ret < 0) {
2110 goto end;
2111 }
2112
2113 /* Main loop */
2114 DBG("Metadata main loop started");
2115
2116 while (1) {
2117 /* Only the metadata pipe is set */
2118 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2119 goto end;
2120 }
2121
2122 restart:
2123 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2124 ret = lttng_poll_wait(&events, -1);
2125 DBG("Metadata event catched in thread");
2126 if (ret < 0) {
2127 if (errno == EINTR) {
2128 ERR("Poll EINTR catched");
2129 goto restart;
2130 }
2131 goto error;
2132 }
2133
2134 nb_fd = ret;
2135
2136 /* From here, the event is a metadata wait fd */
2137 for (i = 0; i < nb_fd; i++) {
2138 revents = LTTNG_POLL_GETEV(&events, i);
2139 pollfd = LTTNG_POLL_GETFD(&events, i);
2140
2141 /* Just don't waste time if no returned events for the fd */
2142 if (!revents) {
2143 continue;
2144 }
2145
2146 if (pollfd == ctx->consumer_metadata_pipe[0]) {
2147 if (revents & (LPOLLERR | LPOLLHUP )) {
2148 DBG("Metadata thread pipe hung up");
2149 /*
2150 * Remove the pipe from the poll set and continue the loop
2151 * since their might be data to consume.
2152 */
2153 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
2154 ret = close(ctx->consumer_metadata_pipe[0]);
2155 if (ret < 0) {
2156 PERROR("close metadata pipe");
2157 }
2158 continue;
2159 } else if (revents & LPOLLIN) {
2160 do {
2161 /* Get the stream pointer received */
2162 ret = read(pollfd, &stream, sizeof(stream));
2163 } while (ret < 0 && errno == EINTR);
2164 if (ret < 0 ||
2165 ret < sizeof(struct lttng_consumer_stream *)) {
2166 PERROR("read metadata stream");
2167 /*
2168 * Let's continue here and hope we can still work
2169 * without stopping the consumer. XXX: Should we?
2170 */
2171 continue;
2172 }
2173
2174 /* A NULL stream means that the state has changed. */
2175 if (stream == NULL) {
2176 /* Check for deleted streams. */
2177 validate_endpoint_status_metadata_stream(&events);
2178 continue;
2179 }
2180
2181 DBG("Adding metadata stream %d to poll set",
2182 stream->wait_fd);
2183
2184 ret = consumer_add_metadata_stream(stream, metadata_ht);
2185 if (ret) {
2186 ERR("Unable to add metadata stream");
2187 /* Stream was not setup properly. Continuing. */
2188 consumer_del_metadata_stream(stream, NULL);
2189 continue;
2190 }
2191
2192 /* Add metadata stream to the global poll events list */
2193 lttng_poll_add(&events, stream->wait_fd,
2194 LPOLLIN | LPOLLPRI);
2195 }
2196
2197 /* Handle other stream */
2198 continue;
2199 }
2200
2201 rcu_read_lock();
2202 lttng_ht_lookup(metadata_ht, (void *)((unsigned long) pollfd),
2203 &iter);
2204 node = lttng_ht_iter_get_node_ulong(&iter);
2205 assert(node);
2206
2207 stream = caa_container_of(node, struct lttng_consumer_stream,
2208 node);
2209
2210 /* Check for error event */
2211 if (revents & (LPOLLERR | LPOLLHUP)) {
2212 DBG("Metadata fd %d is hup|err.", pollfd);
2213 if (!stream->hangup_flush_done
2214 && (consumer_data.type == LTTNG_CONSUMER32_UST
2215 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2216 DBG("Attempting to flush and consume the UST buffers");
2217 lttng_ustconsumer_on_stream_hangup(stream);
2218
2219 /* We just flushed the stream now read it. */
2220 do {
2221 len = ctx->on_buffer_ready(stream, ctx);
2222 /*
2223 * We don't check the return value here since if we get
2224 * a negative len, it means an error occured thus we
2225 * simply remove it from the poll set and free the
2226 * stream.
2227 */
2228 } while (len > 0);
2229 }
2230
2231 lttng_poll_del(&events, stream->wait_fd);
2232 /*
2233 * This call update the channel states, closes file descriptors
2234 * and securely free the stream.
2235 */
2236 consumer_del_metadata_stream(stream, metadata_ht);
2237 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2238 /* Get the data out of the metadata file descriptor */
2239 DBG("Metadata available on fd %d", pollfd);
2240 assert(stream->wait_fd == pollfd);
2241
2242 len = ctx->on_buffer_ready(stream, ctx);
2243 /* It's ok to have an unavailable sub-buffer */
2244 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2245 /* Clean up stream from consumer and free it. */
2246 lttng_poll_del(&events, stream->wait_fd);
2247 consumer_del_metadata_stream(stream, metadata_ht);
2248 } else if (len > 0) {
2249 stream->data_read = 1;
2250 }
2251 }
2252
2253 /* Release RCU lock for the stream looked up */
2254 rcu_read_unlock();
2255 }
2256 }
2257
2258 error:
2259 end:
2260 DBG("Metadata poll thread exiting");
2261 lttng_poll_clean(&events);
2262
2263 destroy_stream_ht(metadata_ht);
2264
2265 rcu_unregister_thread();
2266 return NULL;
2267 }
2268
2269 /*
2270 * This thread polls the fds in the set to consume the data and write
2271 * it to tracefile if necessary.
2272 */
2273 void *consumer_thread_data_poll(void *data)
2274 {
2275 int num_rdy, num_hup, high_prio, ret, i;
2276 struct pollfd *pollfd = NULL;
2277 /* local view of the streams */
2278 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2279 /* local view of consumer_data.fds_count */
2280 int nb_fd = 0;
2281 struct lttng_consumer_local_data *ctx = data;
2282 ssize_t len;
2283
2284 rcu_register_thread();
2285
2286 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2287 if (data_ht == NULL) {
2288 /* ENOMEM at this point. Better to bail out. */
2289 goto end;
2290 }
2291
2292 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2293
2294 while (1) {
2295 high_prio = 0;
2296 num_hup = 0;
2297
2298 /*
2299 * the fds set has been updated, we need to update our
2300 * local array as well
2301 */
2302 pthread_mutex_lock(&consumer_data.lock);
2303 if (consumer_data.need_update) {
2304 if (pollfd != NULL) {
2305 free(pollfd);
2306 pollfd = NULL;
2307 }
2308 if (local_stream != NULL) {
2309 free(local_stream);
2310 local_stream = NULL;
2311 }
2312
2313 /* allocate for all fds + 1 for the consumer_data_pipe */
2314 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2315 if (pollfd == NULL) {
2316 PERROR("pollfd malloc");
2317 pthread_mutex_unlock(&consumer_data.lock);
2318 goto end;
2319 }
2320
2321 /* allocate for all fds + 1 for the consumer_data_pipe */
2322 local_stream = zmalloc((consumer_data.stream_count + 1) *
2323 sizeof(struct lttng_consumer_stream));
2324 if (local_stream == NULL) {
2325 PERROR("local_stream malloc");
2326 pthread_mutex_unlock(&consumer_data.lock);
2327 goto end;
2328 }
2329 ret = consumer_update_poll_array(ctx, &pollfd, local_stream,
2330 data_ht);
2331 if (ret < 0) {
2332 ERR("Error in allocating pollfd or local_outfds");
2333 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2334 pthread_mutex_unlock(&consumer_data.lock);
2335 goto end;
2336 }
2337 nb_fd = ret;
2338 consumer_data.need_update = 0;
2339 }
2340 pthread_mutex_unlock(&consumer_data.lock);
2341
2342 /* No FDs and consumer_quit, consumer_cleanup the thread */
2343 if (nb_fd == 0 && consumer_quit == 1) {
2344 goto end;
2345 }
2346 /* poll on the array of fds */
2347 restart:
2348 DBG("polling on %d fd", nb_fd + 1);
2349 num_rdy = poll(pollfd, nb_fd + 1, -1);
2350 DBG("poll num_rdy : %d", num_rdy);
2351 if (num_rdy == -1) {
2352 /*
2353 * Restart interrupted system call.
2354 */
2355 if (errno == EINTR) {
2356 goto restart;
2357 }
2358 PERROR("Poll error");
2359 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2360 goto end;
2361 } else if (num_rdy == 0) {
2362 DBG("Polling thread timed out");
2363 goto end;
2364 }
2365
2366 /*
2367 * If the consumer_data_pipe triggered poll go directly to the
2368 * beginning of the loop to update the array. We want to prioritize
2369 * array update over low-priority reads.
2370 */
2371 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2372 size_t pipe_readlen;
2373
2374 DBG("consumer_data_pipe wake up");
2375 /* Consume 1 byte of pipe data */
2376 do {
2377 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2378 sizeof(new_stream));
2379 } while (pipe_readlen == -1 && errno == EINTR);
2380 if (pipe_readlen < 0) {
2381 PERROR("read consumer data pipe");
2382 /* Continue so we can at least handle the current stream(s). */
2383 continue;
2384 }
2385
2386 /*
2387 * If the stream is NULL, just ignore it. It's also possible that
2388 * the sessiond poll thread changed the consumer_quit state and is
2389 * waking us up to test it.
2390 */
2391 if (new_stream == NULL) {
2392 validate_endpoint_status_data_stream();
2393 continue;
2394 }
2395
2396 ret = consumer_add_stream(new_stream, data_ht);
2397 if (ret) {
2398 ERR("Consumer add stream %d failed. Continuing",
2399 new_stream->key);
2400 /*
2401 * At this point, if the add_stream fails, it is not in the
2402 * hash table thus passing the NULL value here.
2403 */
2404 consumer_del_stream(new_stream, NULL);
2405 }
2406
2407 /* Continue to update the local streams and handle prio ones */
2408 continue;
2409 }
2410
2411 /* Take care of high priority channels first. */
2412 for (i = 0; i < nb_fd; i++) {
2413 if (local_stream[i] == NULL) {
2414 continue;
2415 }
2416 if (pollfd[i].revents & POLLPRI) {
2417 DBG("Urgent read on fd %d", pollfd[i].fd);
2418 high_prio = 1;
2419 len = ctx->on_buffer_ready(local_stream[i], ctx);
2420 /* it's ok to have an unavailable sub-buffer */
2421 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2422 /* Clean the stream and free it. */
2423 consumer_del_stream(local_stream[i], data_ht);
2424 local_stream[i] = NULL;
2425 } else if (len > 0) {
2426 local_stream[i]->data_read = 1;
2427 }
2428 }
2429 }
2430
2431 /*
2432 * If we read high prio channel in this loop, try again
2433 * for more high prio data.
2434 */
2435 if (high_prio) {
2436 continue;
2437 }
2438
2439 /* Take care of low priority channels. */
2440 for (i = 0; i < nb_fd; i++) {
2441 if (local_stream[i] == NULL) {
2442 continue;
2443 }
2444 if ((pollfd[i].revents & POLLIN) ||
2445 local_stream[i]->hangup_flush_done) {
2446 DBG("Normal read on fd %d", pollfd[i].fd);
2447 len = ctx->on_buffer_ready(local_stream[i], ctx);
2448 /* it's ok to have an unavailable sub-buffer */
2449 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2450 /* Clean the stream and free it. */
2451 consumer_del_stream(local_stream[i], data_ht);
2452 local_stream[i] = NULL;
2453 } else if (len > 0) {
2454 local_stream[i]->data_read = 1;
2455 }
2456 }
2457 }
2458
2459 /* Handle hangup and errors */
2460 for (i = 0; i < nb_fd; i++) {
2461 if (local_stream[i] == NULL) {
2462 continue;
2463 }
2464 if (!local_stream[i]->hangup_flush_done
2465 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2466 && (consumer_data.type == LTTNG_CONSUMER32_UST
2467 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2468 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2469 pollfd[i].fd);
2470 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2471 /* Attempt read again, for the data we just flushed. */
2472 local_stream[i]->data_read = 1;
2473 }
2474 /*
2475 * If the poll flag is HUP/ERR/NVAL and we have
2476 * read no data in this pass, we can remove the
2477 * stream from its hash table.
2478 */
2479 if ((pollfd[i].revents & POLLHUP)) {
2480 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2481 if (!local_stream[i]->data_read) {
2482 consumer_del_stream(local_stream[i], data_ht);
2483 local_stream[i] = NULL;
2484 num_hup++;
2485 }
2486 } else if (pollfd[i].revents & POLLERR) {
2487 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2488 if (!local_stream[i]->data_read) {
2489 consumer_del_stream(local_stream[i], data_ht);
2490 local_stream[i] = NULL;
2491 num_hup++;
2492 }
2493 } else if (pollfd[i].revents & POLLNVAL) {
2494 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2495 if (!local_stream[i]->data_read) {
2496 consumer_del_stream(local_stream[i], data_ht);
2497 local_stream[i] = NULL;
2498 num_hup++;
2499 }
2500 }
2501 if (local_stream[i] != NULL) {
2502 local_stream[i]->data_read = 0;
2503 }
2504 }
2505 }
2506 end:
2507 DBG("polling thread exiting");
2508 if (pollfd != NULL) {
2509 free(pollfd);
2510 pollfd = NULL;
2511 }
2512 if (local_stream != NULL) {
2513 free(local_stream);
2514 local_stream = NULL;
2515 }
2516
2517 /*
2518 * Close the write side of the pipe so epoll_wait() in
2519 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2520 * read side of the pipe. If we close them both, epoll_wait strangely does
2521 * not return and could create a endless wait period if the pipe is the
2522 * only tracked fd in the poll set. The thread will take care of closing
2523 * the read side.
2524 */
2525 ret = close(ctx->consumer_metadata_pipe[1]);
2526 if (ret < 0) {
2527 PERROR("close data pipe");
2528 }
2529
2530 destroy_data_stream_ht(data_ht);
2531
2532 rcu_unregister_thread();
2533 return NULL;
2534 }
2535
2536 /*
2537 * This thread listens on the consumerd socket and receives the file
2538 * descriptors from the session daemon.
2539 */
2540 void *consumer_thread_sessiond_poll(void *data)
2541 {
2542 int sock = -1, client_socket, ret;
2543 /*
2544 * structure to poll for incoming data on communication socket avoids
2545 * making blocking sockets.
2546 */
2547 struct pollfd consumer_sockpoll[2];
2548 struct lttng_consumer_local_data *ctx = data;
2549
2550 rcu_register_thread();
2551
2552 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2553 unlink(ctx->consumer_command_sock_path);
2554 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2555 if (client_socket < 0) {
2556 ERR("Cannot create command socket");
2557 goto end;
2558 }
2559
2560 ret = lttcomm_listen_unix_sock(client_socket);
2561 if (ret < 0) {
2562 goto end;
2563 }
2564
2565 DBG("Sending ready command to lttng-sessiond");
2566 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2567 /* return < 0 on error, but == 0 is not fatal */
2568 if (ret < 0) {
2569 ERR("Error sending ready command to lttng-sessiond");
2570 goto end;
2571 }
2572
2573 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2574 if (ret < 0) {
2575 PERROR("fcntl O_NONBLOCK");
2576 goto end;
2577 }
2578
2579 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2580 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2581 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2582 consumer_sockpoll[1].fd = client_socket;
2583 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2584
2585 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2586 goto end;
2587 }
2588 DBG("Connection on client_socket");
2589
2590 /* Blocking call, waiting for transmission */
2591 sock = lttcomm_accept_unix_sock(client_socket);
2592 if (sock <= 0) {
2593 WARN("On accept");
2594 goto end;
2595 }
2596 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2597 if (ret < 0) {
2598 PERROR("fcntl O_NONBLOCK");
2599 goto end;
2600 }
2601
2602 /* This socket is not useful anymore. */
2603 ret = close(client_socket);
2604 if (ret < 0) {
2605 PERROR("close client_socket");
2606 }
2607 client_socket = -1;
2608
2609 /* update the polling structure to poll on the established socket */
2610 consumer_sockpoll[1].fd = sock;
2611 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2612
2613 while (1) {
2614 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2615 goto end;
2616 }
2617 DBG("Incoming command on sock");
2618 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2619 if (ret == -ENOENT) {
2620 DBG("Received STOP command");
2621 goto end;
2622 }
2623 if (ret <= 0) {
2624 /*
2625 * This could simply be a session daemon quitting. Don't output
2626 * ERR() here.
2627 */
2628 DBG("Communication interrupted on command socket");
2629 goto end;
2630 }
2631 if (consumer_quit) {
2632 DBG("consumer_thread_receive_fds received quit from signal");
2633 goto end;
2634 }
2635 DBG("received fds on sock");
2636 }
2637 end:
2638 DBG("consumer_thread_receive_fds exiting");
2639
2640 /*
2641 * when all fds have hung up, the polling thread
2642 * can exit cleanly
2643 */
2644 consumer_quit = 1;
2645
2646 /*
2647 * Notify the data poll thread to poll back again and test the
2648 * consumer_quit state that we just set so to quit gracefully.
2649 */
2650 notify_thread_pipe(ctx->consumer_data_pipe[1]);
2651
2652 /* Cleaning up possibly open sockets. */
2653 if (sock >= 0) {
2654 ret = close(sock);
2655 if (ret < 0) {
2656 PERROR("close sock sessiond poll");
2657 }
2658 }
2659 if (client_socket >= 0) {
2660 ret = close(sock);
2661 if (ret < 0) {
2662 PERROR("close client_socket sessiond poll");
2663 }
2664 }
2665
2666 rcu_unregister_thread();
2667 return NULL;
2668 }
2669
2670 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2671 struct lttng_consumer_local_data *ctx)
2672 {
2673 ssize_t ret;
2674
2675 pthread_mutex_lock(&stream->lock);
2676
2677 switch (consumer_data.type) {
2678 case LTTNG_CONSUMER_KERNEL:
2679 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2680 break;
2681 case LTTNG_CONSUMER32_UST:
2682 case LTTNG_CONSUMER64_UST:
2683 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
2684 break;
2685 default:
2686 ERR("Unknown consumer_data type");
2687 assert(0);
2688 ret = -ENOSYS;
2689 break;
2690 }
2691
2692 pthread_mutex_unlock(&stream->lock);
2693 return ret;
2694 }
2695
2696 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2697 {
2698 switch (consumer_data.type) {
2699 case LTTNG_CONSUMER_KERNEL:
2700 return lttng_kconsumer_on_recv_stream(stream);
2701 case LTTNG_CONSUMER32_UST:
2702 case LTTNG_CONSUMER64_UST:
2703 return lttng_ustconsumer_on_recv_stream(stream);
2704 default:
2705 ERR("Unknown consumer_data type");
2706 assert(0);
2707 return -ENOSYS;
2708 }
2709 }
2710
2711 /*
2712 * Allocate and set consumer data hash tables.
2713 */
2714 void lttng_consumer_init(void)
2715 {
2716 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2717 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2718 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2719 relayd_session_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2720 }
2721
2722 /*
2723 * Process the ADD_RELAYD command receive by a consumer.
2724 *
2725 * This will create a relayd socket pair and add it to the relayd hash table.
2726 * The caller MUST acquire a RCU read side lock before calling it.
2727 */
2728 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
2729 struct lttng_consumer_local_data *ctx, int sock,
2730 struct pollfd *consumer_sockpoll, struct lttcomm_sock *relayd_sock,
2731 unsigned int sessiond_id)
2732 {
2733 int fd = -1, ret = -1, relayd_created = 0;
2734 enum lttng_error_code ret_code = LTTNG_OK;
2735 struct consumer_relayd_sock_pair *relayd;
2736 struct consumer_relayd_session_id *relayd_id_node;
2737
2738 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
2739
2740 /* First send a status message before receiving the fds. */
2741 ret = consumer_send_status_msg(sock, ret_code);
2742 if (ret < 0) {
2743 /* Somehow, the session daemon is not responding anymore. */
2744 goto error;
2745 }
2746
2747 /* Get relayd reference if exists. */
2748 relayd = consumer_find_relayd(net_seq_idx);
2749 if (relayd == NULL) {
2750 /* Not found. Allocate one. */
2751 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
2752 if (relayd == NULL) {
2753 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
2754 goto error;
2755 }
2756 relayd->sessiond_session_id = (uint64_t) sessiond_id;
2757 relayd_created = 1;
2758 }
2759
2760 /* Poll on consumer socket. */
2761 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2762 ret = -EINTR;
2763 goto error;
2764 }
2765
2766 /* Get relayd socket from session daemon */
2767 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
2768 if (ret != sizeof(fd)) {
2769 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
2770 ret = -1;
2771 fd = -1; /* Just in case it gets set with an invalid value. */
2772 goto error;
2773 }
2774
2775 /* We have the fds without error. Send status back. */
2776 ret = consumer_send_status_msg(sock, ret_code);
2777 if (ret < 0) {
2778 /* Somehow, the session daemon is not responding anymore. */
2779 goto error;
2780 }
2781
2782 /* Copy socket information and received FD */
2783 switch (sock_type) {
2784 case LTTNG_STREAM_CONTROL:
2785 /* Copy received lttcomm socket */
2786 lttcomm_copy_sock(&relayd->control_sock, relayd_sock);
2787 ret = lttcomm_create_sock(&relayd->control_sock);
2788 /* Immediately try to close the created socket if valid. */
2789 if (relayd->control_sock.fd >= 0) {
2790 if (close(relayd->control_sock.fd)) {
2791 PERROR("close relayd control socket");
2792 }
2793 }
2794 /* Handle create_sock error. */
2795 if (ret < 0) {
2796 goto error;
2797 }
2798
2799 /* Assign new file descriptor */
2800 relayd->control_sock.fd = fd;
2801
2802 /*
2803 * Create a session on the relayd and store the returned id. No need to
2804 * grab the socket lock since the relayd object is not yet visible.
2805 */
2806 ret = relayd_create_session(&relayd->control_sock,
2807 &relayd->relayd_session_id);
2808 if (ret < 0) {
2809 goto error;
2810 }
2811
2812 /* Set up a relayd session id node. */
2813 relayd_id_node = zmalloc(sizeof(struct consumer_relayd_session_id));
2814 if (!relayd_id_node) {
2815 PERROR("zmalloc relayd id node");
2816 goto error;
2817 }
2818
2819 relayd_id_node->relayd_id = relayd->relayd_session_id;
2820 relayd_id_node->sessiond_id = (uint64_t) sessiond_id;
2821
2822 /* Indexed by session id of the sessiond. */
2823 lttng_ht_node_init_ulong(&relayd_id_node->node,
2824 relayd_id_node->sessiond_id);
2825 rcu_read_lock();
2826 lttng_ht_add_unique_ulong(relayd_session_id_ht, &relayd_id_node->node);
2827 rcu_read_unlock();
2828
2829 break;
2830 case LTTNG_STREAM_DATA:
2831 /* Copy received lttcomm socket */
2832 lttcomm_copy_sock(&relayd->data_sock, relayd_sock);
2833 ret = lttcomm_create_sock(&relayd->data_sock);
2834 /* Immediately try to close the created socket if valid. */
2835 if (relayd->data_sock.fd >= 0) {
2836 if (close(relayd->data_sock.fd)) {
2837 PERROR("close relayd data socket");
2838 }
2839 }
2840 /* Handle create_sock error. */
2841 if (ret < 0) {
2842 goto error;
2843 }
2844
2845 /* Assign new file descriptor */
2846 relayd->data_sock.fd = fd;
2847 break;
2848 default:
2849 ERR("Unknown relayd socket type (%d)", sock_type);
2850 goto error;
2851 }
2852
2853 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2854 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
2855 relayd->net_seq_idx, fd);
2856
2857 /*
2858 * Add relayd socket pair to consumer data hashtable. If object already
2859 * exists or on error, the function gracefully returns.
2860 */
2861 add_relayd(relayd);
2862
2863 /* All good! */
2864 return 0;
2865
2866 error:
2867 /* Close received socket if valid. */
2868 if (fd >= 0) {
2869 if (close(fd)) {
2870 PERROR("close received socket");
2871 }
2872 }
2873
2874 if (relayd_created) {
2875 /* We just want to cleanup. Ignore ret value. */
2876 (void) relayd_close(&relayd->control_sock);
2877 (void) relayd_close(&relayd->data_sock);
2878 free(relayd);
2879 }
2880
2881 return ret;
2882 }
2883
2884 /*
2885 * Try to lock the stream mutex.
2886 *
2887 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2888 */
2889 static int stream_try_lock(struct lttng_consumer_stream *stream)
2890 {
2891 int ret;
2892
2893 assert(stream);
2894
2895 /*
2896 * Try to lock the stream mutex. On failure, we know that the stream is
2897 * being used else where hence there is data still being extracted.
2898 */
2899 ret = pthread_mutex_trylock(&stream->lock);
2900 if (ret) {
2901 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2902 ret = 0;
2903 goto end;
2904 }
2905
2906 ret = 1;
2907
2908 end:
2909 return ret;
2910 }
2911
2912 /*
2913 * Search for a relayd associated to the session id and return the reference.
2914 *
2915 * A rcu read side lock MUST be acquire before calling this function and locked
2916 * until the relayd object is no longer necessary.
2917 */
2918 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
2919 {
2920 struct lttng_ht_iter iter;
2921 struct lttng_ht_node_ulong *node;
2922 struct consumer_relayd_sock_pair *relayd = NULL;
2923 struct consumer_relayd_session_id *session_id_map;
2924
2925 /* Get the session id map. */
2926 lttng_ht_lookup(relayd_session_id_ht, (void *)((unsigned long) id), &iter);
2927 node = lttng_ht_iter_get_node_ulong(&iter);
2928 if (node == NULL) {
2929 goto end;
2930 }
2931
2932 session_id_map = caa_container_of(node, struct consumer_relayd_session_id,
2933 node);
2934
2935 /* Iterate over all relayd since they are indexed by net_seq_idx. */
2936 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
2937 node.node) {
2938 if (relayd->relayd_session_id == session_id_map->relayd_id) {
2939 /* Found the relayd. There can be only one per id. */
2940 break;
2941 }
2942 }
2943
2944 end:
2945 return relayd;
2946 }
2947
2948 /*
2949 * Check if for a given session id there is still data needed to be extract
2950 * from the buffers.
2951 *
2952 * Return 1 if data is pending or else 0 meaning ready to be read.
2953 */
2954 int consumer_data_pending(uint64_t id)
2955 {
2956 int ret;
2957 struct lttng_ht_iter iter;
2958 struct lttng_ht *ht;
2959 struct lttng_consumer_stream *stream;
2960 struct consumer_relayd_sock_pair *relayd = NULL;
2961 int (*data_pending)(struct lttng_consumer_stream *);
2962
2963 DBG("Consumer data pending command on session id %" PRIu64, id);
2964
2965 rcu_read_lock();
2966 pthread_mutex_lock(&consumer_data.lock);
2967
2968 switch (consumer_data.type) {
2969 case LTTNG_CONSUMER_KERNEL:
2970 data_pending = lttng_kconsumer_data_pending;
2971 break;
2972 case LTTNG_CONSUMER32_UST:
2973 case LTTNG_CONSUMER64_UST:
2974 data_pending = lttng_ustconsumer_data_pending;
2975 break;
2976 default:
2977 ERR("Unknown consumer data type");
2978 assert(0);
2979 }
2980
2981 /* Ease our life a bit */
2982 ht = consumer_data.stream_list_ht;
2983
2984 relayd = find_relayd_by_session_id(id);
2985 if (relayd) {
2986 /* Send init command for data pending. */
2987 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2988 ret = relayd_begin_data_pending(&relayd->control_sock,
2989 relayd->relayd_session_id);
2990 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2991 if (ret < 0) {
2992 /* Communication error thus the relayd so no data pending. */
2993 goto data_not_pending;
2994 }
2995 }
2996
2997 cds_lfht_for_each_entry_duplicate(ht->ht,
2998 ht->hash_fct((void *)((unsigned long) id), lttng_ht_seed),
2999 ht->match_fct, (void *)((unsigned long) id),
3000 &iter.iter, stream, node_session_id.node) {
3001 /* If this call fails, the stream is being used hence data pending. */
3002 ret = stream_try_lock(stream);
3003 if (!ret) {
3004 goto data_pending;
3005 }
3006
3007 /*
3008 * A removed node from the hash table indicates that the stream has
3009 * been deleted thus having a guarantee that the buffers are closed
3010 * on the consumer side. However, data can still be transmitted
3011 * over the network so don't skip the relayd check.
3012 */
3013 ret = cds_lfht_is_node_deleted(&stream->node.node);
3014 if (!ret) {
3015 /* Check the stream if there is data in the buffers. */
3016 ret = data_pending(stream);
3017 if (ret == 1) {
3018 pthread_mutex_unlock(&stream->lock);
3019 goto data_pending;
3020 }
3021 }
3022
3023 /* Relayd check */
3024 if (relayd) {
3025 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3026 if (stream->metadata_flag) {
3027 ret = relayd_quiescent_control(&relayd->control_sock,
3028 stream->relayd_stream_id);
3029 } else {
3030 ret = relayd_data_pending(&relayd->control_sock,
3031 stream->relayd_stream_id,
3032 stream->next_net_seq_num - 1);
3033 }
3034 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3035 if (ret == 1) {
3036 pthread_mutex_unlock(&stream->lock);
3037 goto data_pending;
3038 }
3039 }
3040 pthread_mutex_unlock(&stream->lock);
3041 }
3042
3043 if (relayd) {
3044 unsigned int is_data_inflight = 0;
3045
3046 /* Send init command for data pending. */
3047 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3048 ret = relayd_end_data_pending(&relayd->control_sock,
3049 relayd->relayd_session_id, &is_data_inflight);
3050 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3051 if (ret < 0) {
3052 goto data_not_pending;
3053 }
3054 if (is_data_inflight) {
3055 goto data_pending;
3056 }
3057 }
3058
3059 /*
3060 * Finding _no_ node in the hash table and no inflight data means that the
3061 * stream(s) have been removed thus data is guaranteed to be available for
3062 * analysis from the trace files.
3063 */
3064
3065 data_not_pending:
3066 /* Data is available to be read by a viewer. */
3067 pthread_mutex_unlock(&consumer_data.lock);
3068 rcu_read_unlock();
3069 return 0;
3070
3071 data_pending:
3072 /* Data is still being extracted from buffers. */
3073 pthread_mutex_unlock(&consumer_data.lock);
3074 rcu_read_unlock();
3075 return 1;
3076 }
3077
3078 /*
3079 * Send a ret code status message to the sessiond daemon.
3080 *
3081 * Return the sendmsg() return value.
3082 */
3083 int consumer_send_status_msg(int sock, int ret_code)
3084 {
3085 struct lttcomm_consumer_status_msg msg;
3086
3087 msg.ret_code = ret_code;
3088
3089 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3090 }
This page took 0.142869 seconds and 3 git commands to generate.