Fix: protect consumer_find_channel with rcu locking
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
41
42 #include "consumer.h"
43
44 struct lttng_consumer_global_data consumer_data = {
45 .stream_count = 0,
46 .need_update = 1,
47 .type = LTTNG_CONSUMER_UNKNOWN,
48 };
49
50 /*
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
54 * polling threads.
55 */
56 volatile int consumer_quit;
57
58 /*
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
62 */
63 static struct lttng_ht *metadata_ht;
64 static struct lttng_ht *data_ht;
65
66 /*
67 * Notify a thread pipe to poll back again. This usually means that some global
68 * state has changed so we just send back the thread in a poll wait call.
69 */
70 static void notify_thread_pipe(int wpipe)
71 {
72 int ret;
73
74 do {
75 struct lttng_consumer_stream *null_stream = NULL;
76
77 ret = write(wpipe, &null_stream, sizeof(null_stream));
78 } while (ret < 0 && errno == EINTR);
79 }
80
81 /*
82 * Find a stream. The consumer_data.lock must be locked during this
83 * call.
84 */
85 static struct lttng_consumer_stream *consumer_find_stream(int key,
86 struct lttng_ht *ht)
87 {
88 struct lttng_ht_iter iter;
89 struct lttng_ht_node_ulong *node;
90 struct lttng_consumer_stream *stream = NULL;
91
92 assert(ht);
93
94 /* Negative keys are lookup failures */
95 if (key < 0) {
96 return NULL;
97 }
98
99 rcu_read_lock();
100
101 lttng_ht_lookup(ht, (void *)((unsigned long) key), &iter);
102 node = lttng_ht_iter_get_node_ulong(&iter);
103 if (node != NULL) {
104 stream = caa_container_of(node, struct lttng_consumer_stream, node);
105 }
106
107 rcu_read_unlock();
108
109 return stream;
110 }
111
112 void consumer_steal_stream_key(int key, struct lttng_ht *ht)
113 {
114 struct lttng_consumer_stream *stream;
115
116 rcu_read_lock();
117 stream = consumer_find_stream(key, ht);
118 if (stream) {
119 stream->key = -1;
120 /*
121 * We don't want the lookup to match, but we still need
122 * to iterate on this stream when iterating over the hash table. Just
123 * change the node key.
124 */
125 stream->node.key = -1;
126 }
127 rcu_read_unlock();
128 }
129
130 /*
131 * Return a channel object for the given key.
132 *
133 * RCU read side lock MUST be acquired before calling this function and
134 * protects the channel ptr.
135 */
136 static struct lttng_consumer_channel *consumer_find_channel(int key)
137 {
138 struct lttng_ht_iter iter;
139 struct lttng_ht_node_ulong *node;
140 struct lttng_consumer_channel *channel = NULL;
141
142 /* Negative keys are lookup failures */
143 if (key < 0) {
144 return NULL;
145 }
146
147 lttng_ht_lookup(consumer_data.channel_ht, (void *)((unsigned long) key),
148 &iter);
149 node = lttng_ht_iter_get_node_ulong(&iter);
150 if (node != NULL) {
151 channel = caa_container_of(node, struct lttng_consumer_channel, node);
152 }
153
154 return channel;
155 }
156
157 static void consumer_steal_channel_key(int key)
158 {
159 struct lttng_consumer_channel *channel;
160
161 rcu_read_lock();
162 channel = consumer_find_channel(key);
163 if (channel) {
164 channel->key = -1;
165 /*
166 * We don't want the lookup to match, but we still need
167 * to iterate on this channel when iterating over the hash table. Just
168 * change the node key.
169 */
170 channel->node.key = -1;
171 }
172 rcu_read_unlock();
173 }
174
175 static
176 void consumer_free_stream(struct rcu_head *head)
177 {
178 struct lttng_ht_node_ulong *node =
179 caa_container_of(head, struct lttng_ht_node_ulong, head);
180 struct lttng_consumer_stream *stream =
181 caa_container_of(node, struct lttng_consumer_stream, node);
182
183 free(stream);
184 }
185
186 /*
187 * RCU protected relayd socket pair free.
188 */
189 static void consumer_rcu_free_relayd(struct rcu_head *head)
190 {
191 struct lttng_ht_node_ulong *node =
192 caa_container_of(head, struct lttng_ht_node_ulong, head);
193 struct consumer_relayd_sock_pair *relayd =
194 caa_container_of(node, struct consumer_relayd_sock_pair, node);
195
196 /*
197 * Close all sockets. This is done in the call RCU since we don't want the
198 * socket fds to be reassigned thus potentially creating bad state of the
199 * relayd object.
200 *
201 * We do not have to lock the control socket mutex here since at this stage
202 * there is no one referencing to this relayd object.
203 */
204 (void) relayd_close(&relayd->control_sock);
205 (void) relayd_close(&relayd->data_sock);
206
207 free(relayd);
208 }
209
210 /*
211 * Destroy and free relayd socket pair object.
212 *
213 * This function MUST be called with the consumer_data lock acquired.
214 */
215 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
216 {
217 int ret;
218 struct lttng_ht_iter iter;
219
220 if (relayd == NULL) {
221 return;
222 }
223
224 DBG("Consumer destroy and close relayd socket pair");
225
226 iter.iter.node = &relayd->node.node;
227 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
228 if (ret != 0) {
229 /* We assume the relayd is being or is destroyed */
230 return;
231 }
232
233 /* RCU free() call */
234 call_rcu(&relayd->node.head, consumer_rcu_free_relayd);
235 }
236
237 /*
238 * Update the end point status of all streams having the given network sequence
239 * index (relayd index).
240 *
241 * It's atomically set without having the stream mutex locked which is fine
242 * because we handle the write/read race with a pipe wakeup for each thread.
243 */
244 static void update_endpoint_status_by_netidx(int net_seq_idx,
245 enum consumer_endpoint_status status)
246 {
247 struct lttng_ht_iter iter;
248 struct lttng_consumer_stream *stream;
249
250 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
251
252 rcu_read_lock();
253
254 /* Let's begin with metadata */
255 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
256 if (stream->net_seq_idx == net_seq_idx) {
257 uatomic_set(&stream->endpoint_status, status);
258 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
259 }
260 }
261
262 /* Follow up by the data streams */
263 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
264 if (stream->net_seq_idx == net_seq_idx) {
265 uatomic_set(&stream->endpoint_status, status);
266 DBG("Delete flag set to data stream %d", stream->wait_fd);
267 }
268 }
269 rcu_read_unlock();
270 }
271
272 /*
273 * Cleanup a relayd object by flagging every associated streams for deletion,
274 * destroying the object meaning removing it from the relayd hash table,
275 * closing the sockets and freeing the memory in a RCU call.
276 *
277 * If a local data context is available, notify the threads that the streams'
278 * state have changed.
279 */
280 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
281 struct lttng_consumer_local_data *ctx)
282 {
283 int netidx;
284
285 assert(relayd);
286
287 DBG("Cleaning up relayd sockets");
288
289 /* Save the net sequence index before destroying the object */
290 netidx = relayd->net_seq_idx;
291
292 /*
293 * Delete the relayd from the relayd hash table, close the sockets and free
294 * the object in a RCU call.
295 */
296 destroy_relayd(relayd);
297
298 /* Set inactive endpoint to all streams */
299 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
300
301 /*
302 * With a local data context, notify the threads that the streams' state
303 * have changed. The write() action on the pipe acts as an "implicit"
304 * memory barrier ordering the updates of the end point status from the
305 * read of this status which happens AFTER receiving this notify.
306 */
307 if (ctx) {
308 notify_thread_pipe(ctx->consumer_data_pipe[1]);
309 notify_thread_pipe(ctx->consumer_metadata_pipe[1]);
310 }
311 }
312
313 /*
314 * Flag a relayd socket pair for destruction. Destroy it if the refcount
315 * reaches zero.
316 *
317 * RCU read side lock MUST be aquired before calling this function.
318 */
319 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
320 {
321 assert(relayd);
322
323 /* Set destroy flag for this object */
324 uatomic_set(&relayd->destroy_flag, 1);
325
326 /* Destroy the relayd if refcount is 0 */
327 if (uatomic_read(&relayd->refcount) == 0) {
328 destroy_relayd(relayd);
329 }
330 }
331
332 /*
333 * Remove a stream from the global list protected by a mutex. This
334 * function is also responsible for freeing its data structures.
335 */
336 void consumer_del_stream(struct lttng_consumer_stream *stream,
337 struct lttng_ht *ht)
338 {
339 int ret;
340 struct lttng_ht_iter iter;
341 struct lttng_consumer_channel *free_chan = NULL;
342 struct consumer_relayd_sock_pair *relayd;
343
344 assert(stream);
345
346 DBG("Consumer del stream %d", stream->wait_fd);
347
348 if (ht == NULL) {
349 /* Means the stream was allocated but not successfully added */
350 goto free_stream;
351 }
352
353 pthread_mutex_lock(&consumer_data.lock);
354 pthread_mutex_lock(&stream->lock);
355
356 switch (consumer_data.type) {
357 case LTTNG_CONSUMER_KERNEL:
358 if (stream->mmap_base != NULL) {
359 ret = munmap(stream->mmap_base, stream->mmap_len);
360 if (ret != 0) {
361 PERROR("munmap");
362 }
363 }
364 break;
365 case LTTNG_CONSUMER32_UST:
366 case LTTNG_CONSUMER64_UST:
367 lttng_ustconsumer_del_stream(stream);
368 break;
369 default:
370 ERR("Unknown consumer_data type");
371 assert(0);
372 goto end;
373 }
374
375 rcu_read_lock();
376 iter.iter.node = &stream->node.node;
377 ret = lttng_ht_del(ht, &iter);
378 assert(!ret);
379
380 /* Remove node session id from the consumer_data stream ht */
381 iter.iter.node = &stream->node_session_id.node;
382 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
383 assert(!ret);
384 rcu_read_unlock();
385
386 assert(consumer_data.stream_count > 0);
387 consumer_data.stream_count--;
388
389 if (stream->out_fd >= 0) {
390 ret = close(stream->out_fd);
391 if (ret) {
392 PERROR("close");
393 }
394 }
395 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
396 ret = close(stream->wait_fd);
397 if (ret) {
398 PERROR("close");
399 }
400 }
401 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
402 ret = close(stream->shm_fd);
403 if (ret) {
404 PERROR("close");
405 }
406 }
407
408 /* Check and cleanup relayd */
409 rcu_read_lock();
410 relayd = consumer_find_relayd(stream->net_seq_idx);
411 if (relayd != NULL) {
412 uatomic_dec(&relayd->refcount);
413 assert(uatomic_read(&relayd->refcount) >= 0);
414
415 /* Closing streams requires to lock the control socket. */
416 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
417 ret = relayd_send_close_stream(&relayd->control_sock,
418 stream->relayd_stream_id,
419 stream->next_net_seq_num - 1);
420 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
421 if (ret < 0) {
422 DBG("Unable to close stream on the relayd. Continuing");
423 /*
424 * Continue here. There is nothing we can do for the relayd.
425 * Chances are that the relayd has closed the socket so we just
426 * continue cleaning up.
427 */
428 }
429
430 /* Both conditions are met, we destroy the relayd. */
431 if (uatomic_read(&relayd->refcount) == 0 &&
432 uatomic_read(&relayd->destroy_flag)) {
433 destroy_relayd(relayd);
434 }
435 }
436 rcu_read_unlock();
437
438 uatomic_dec(&stream->chan->refcount);
439 if (!uatomic_read(&stream->chan->refcount)
440 && !uatomic_read(&stream->chan->nb_init_streams)) {
441 free_chan = stream->chan;
442 }
443
444 end:
445 consumer_data.need_update = 1;
446 pthread_mutex_unlock(&stream->lock);
447 pthread_mutex_unlock(&consumer_data.lock);
448
449 if (free_chan) {
450 consumer_del_channel(free_chan);
451 }
452
453 free_stream:
454 call_rcu(&stream->node.head, consumer_free_stream);
455 }
456
457 struct lttng_consumer_stream *consumer_allocate_stream(
458 int channel_key, int stream_key,
459 int shm_fd, int wait_fd,
460 enum lttng_consumer_stream_state state,
461 uint64_t mmap_len,
462 enum lttng_event_output output,
463 const char *path_name,
464 uid_t uid,
465 gid_t gid,
466 int net_index,
467 int metadata_flag,
468 uint64_t session_id,
469 int *alloc_ret)
470 {
471 struct lttng_consumer_stream *stream;
472
473 stream = zmalloc(sizeof(*stream));
474 if (stream == NULL) {
475 PERROR("malloc struct lttng_consumer_stream");
476 *alloc_ret = -ENOMEM;
477 goto end;
478 }
479
480 rcu_read_lock();
481
482 /*
483 * Get stream's channel reference. Needed when adding the stream to the
484 * global hash table.
485 */
486 stream->chan = consumer_find_channel(channel_key);
487 if (!stream->chan) {
488 *alloc_ret = -ENOENT;
489 ERR("Unable to find channel for stream %d", stream_key);
490 goto error;
491 }
492
493 stream->key = stream_key;
494 stream->shm_fd = shm_fd;
495 stream->wait_fd = wait_fd;
496 stream->out_fd = -1;
497 stream->out_fd_offset = 0;
498 stream->state = state;
499 stream->mmap_len = mmap_len;
500 stream->mmap_base = NULL;
501 stream->output = output;
502 stream->uid = uid;
503 stream->gid = gid;
504 stream->net_seq_idx = net_index;
505 stream->metadata_flag = metadata_flag;
506 stream->session_id = session_id;
507 strncpy(stream->path_name, path_name, sizeof(stream->path_name));
508 stream->path_name[sizeof(stream->path_name) - 1] = '\0';
509 pthread_mutex_init(&stream->lock, NULL);
510
511 /*
512 * Index differently the metadata node because the thread is using an
513 * internal hash table to match streams in the metadata_ht to the epoll set
514 * file descriptor.
515 */
516 if (metadata_flag) {
517 lttng_ht_node_init_ulong(&stream->node, stream->wait_fd);
518 } else {
519 lttng_ht_node_init_ulong(&stream->node, stream->key);
520 }
521
522 /* Init session id node with the stream session id */
523 lttng_ht_node_init_ulong(&stream->node_session_id, stream->session_id);
524
525 /*
526 * The cpu number is needed before using any ustctl_* actions. Ignored for
527 * the kernel so the value does not matter.
528 */
529 pthread_mutex_lock(&consumer_data.lock);
530 stream->cpu = stream->chan->cpucount++;
531 pthread_mutex_unlock(&consumer_data.lock);
532
533 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
534 " out_fd %d, net_seq_idx %d, session_id %" PRIu64,
535 stream->path_name, stream->key, stream->shm_fd, stream->wait_fd,
536 (unsigned long long) stream->mmap_len, stream->out_fd,
537 stream->net_seq_idx, stream->session_id);
538
539 rcu_read_unlock();
540 return stream;
541
542 error:
543 rcu_read_unlock();
544 free(stream);
545 end:
546 return NULL;
547 }
548
549 /*
550 * Add a stream to the global list protected by a mutex.
551 */
552 static int consumer_add_stream(struct lttng_consumer_stream *stream,
553 struct lttng_ht *ht)
554 {
555 int ret = 0;
556 struct consumer_relayd_sock_pair *relayd;
557
558 assert(stream);
559 assert(ht);
560
561 DBG3("Adding consumer stream %d", stream->key);
562
563 pthread_mutex_lock(&consumer_data.lock);
564 pthread_mutex_lock(&stream->lock);
565 rcu_read_lock();
566
567 /* Steal stream identifier to avoid having streams with the same key */
568 consumer_steal_stream_key(stream->key, ht);
569
570 lttng_ht_add_unique_ulong(ht, &stream->node);
571
572 /*
573 * Add stream to the stream_list_ht of the consumer data. No need to steal
574 * the key since the HT does not use it and we allow to add redundant keys
575 * into this table.
576 */
577 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
578
579 /* Check and cleanup relayd */
580 relayd = consumer_find_relayd(stream->net_seq_idx);
581 if (relayd != NULL) {
582 uatomic_inc(&relayd->refcount);
583 }
584
585 /* Update channel refcount once added without error(s). */
586 uatomic_inc(&stream->chan->refcount);
587
588 /*
589 * When nb_init_streams reaches 0, we don't need to trigger any action in
590 * terms of destroying the associated channel, because the action that
591 * causes the count to become 0 also causes a stream to be added. The
592 * channel deletion will thus be triggered by the following removal of this
593 * stream.
594 */
595 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
596 uatomic_dec(&stream->chan->nb_init_streams);
597 }
598
599 /* Update consumer data once the node is inserted. */
600 consumer_data.stream_count++;
601 consumer_data.need_update = 1;
602
603 rcu_read_unlock();
604 pthread_mutex_unlock(&stream->lock);
605 pthread_mutex_unlock(&consumer_data.lock);
606
607 return ret;
608 }
609
610 /*
611 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
612 * be acquired before calling this.
613 */
614 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
615 {
616 int ret = 0;
617 struct lttng_ht_node_ulong *node;
618 struct lttng_ht_iter iter;
619
620 if (relayd == NULL) {
621 ret = -1;
622 goto end;
623 }
624
625 lttng_ht_lookup(consumer_data.relayd_ht,
626 (void *)((unsigned long) relayd->net_seq_idx), &iter);
627 node = lttng_ht_iter_get_node_ulong(&iter);
628 if (node != NULL) {
629 /* Relayd already exist. Ignore the insertion */
630 goto end;
631 }
632 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
633
634 end:
635 return ret;
636 }
637
638 /*
639 * Allocate and return a consumer relayd socket.
640 */
641 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
642 int net_seq_idx)
643 {
644 struct consumer_relayd_sock_pair *obj = NULL;
645
646 /* Negative net sequence index is a failure */
647 if (net_seq_idx < 0) {
648 goto error;
649 }
650
651 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
652 if (obj == NULL) {
653 PERROR("zmalloc relayd sock");
654 goto error;
655 }
656
657 obj->net_seq_idx = net_seq_idx;
658 obj->refcount = 0;
659 obj->destroy_flag = 0;
660 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
661 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
662
663 error:
664 return obj;
665 }
666
667 /*
668 * Find a relayd socket pair in the global consumer data.
669 *
670 * Return the object if found else NULL.
671 * RCU read-side lock must be held across this call and while using the
672 * returned object.
673 */
674 struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
675 {
676 struct lttng_ht_iter iter;
677 struct lttng_ht_node_ulong *node;
678 struct consumer_relayd_sock_pair *relayd = NULL;
679
680 /* Negative keys are lookup failures */
681 if (key < 0) {
682 goto error;
683 }
684
685 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
686 &iter);
687 node = lttng_ht_iter_get_node_ulong(&iter);
688 if (node != NULL) {
689 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
690 }
691
692 error:
693 return relayd;
694 }
695
696 /*
697 * Handle stream for relayd transmission if the stream applies for network
698 * streaming where the net sequence index is set.
699 *
700 * Return destination file descriptor or negative value on error.
701 */
702 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
703 size_t data_size, unsigned long padding,
704 struct consumer_relayd_sock_pair *relayd)
705 {
706 int outfd = -1, ret;
707 struct lttcomm_relayd_data_hdr data_hdr;
708
709 /* Safety net */
710 assert(stream);
711 assert(relayd);
712
713 /* Reset data header */
714 memset(&data_hdr, 0, sizeof(data_hdr));
715
716 if (stream->metadata_flag) {
717 /* Caller MUST acquire the relayd control socket lock */
718 ret = relayd_send_metadata(&relayd->control_sock, data_size);
719 if (ret < 0) {
720 goto error;
721 }
722
723 /* Metadata are always sent on the control socket. */
724 outfd = relayd->control_sock.fd;
725 } else {
726 /* Set header with stream information */
727 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
728 data_hdr.data_size = htobe32(data_size);
729 data_hdr.padding_size = htobe32(padding);
730 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num++);
731 /* Other fields are zeroed previously */
732
733 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
734 sizeof(data_hdr));
735 if (ret < 0) {
736 goto error;
737 }
738
739 /* Set to go on data socket */
740 outfd = relayd->data_sock.fd;
741 }
742
743 error:
744 return outfd;
745 }
746
747 static
748 void consumer_free_channel(struct rcu_head *head)
749 {
750 struct lttng_ht_node_ulong *node =
751 caa_container_of(head, struct lttng_ht_node_ulong, head);
752 struct lttng_consumer_channel *channel =
753 caa_container_of(node, struct lttng_consumer_channel, node);
754
755 free(channel);
756 }
757
758 /*
759 * Remove a channel from the global list protected by a mutex. This
760 * function is also responsible for freeing its data structures.
761 */
762 void consumer_del_channel(struct lttng_consumer_channel *channel)
763 {
764 int ret;
765 struct lttng_ht_iter iter;
766
767 pthread_mutex_lock(&consumer_data.lock);
768
769 switch (consumer_data.type) {
770 case LTTNG_CONSUMER_KERNEL:
771 break;
772 case LTTNG_CONSUMER32_UST:
773 case LTTNG_CONSUMER64_UST:
774 lttng_ustconsumer_del_channel(channel);
775 break;
776 default:
777 ERR("Unknown consumer_data type");
778 assert(0);
779 goto end;
780 }
781
782 rcu_read_lock();
783 iter.iter.node = &channel->node.node;
784 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
785 assert(!ret);
786 rcu_read_unlock();
787
788 if (channel->mmap_base != NULL) {
789 ret = munmap(channel->mmap_base, channel->mmap_len);
790 if (ret != 0) {
791 PERROR("munmap");
792 }
793 }
794 if (channel->wait_fd >= 0 && !channel->wait_fd_is_copy) {
795 ret = close(channel->wait_fd);
796 if (ret) {
797 PERROR("close");
798 }
799 }
800 if (channel->shm_fd >= 0 && channel->wait_fd != channel->shm_fd) {
801 ret = close(channel->shm_fd);
802 if (ret) {
803 PERROR("close");
804 }
805 }
806
807 call_rcu(&channel->node.head, consumer_free_channel);
808 end:
809 pthread_mutex_unlock(&consumer_data.lock);
810 }
811
812 struct lttng_consumer_channel *consumer_allocate_channel(
813 int channel_key,
814 int shm_fd, int wait_fd,
815 uint64_t mmap_len,
816 uint64_t max_sb_size,
817 unsigned int nb_init_streams)
818 {
819 struct lttng_consumer_channel *channel;
820 int ret;
821
822 channel = zmalloc(sizeof(*channel));
823 if (channel == NULL) {
824 PERROR("malloc struct lttng_consumer_channel");
825 goto end;
826 }
827 channel->key = channel_key;
828 channel->shm_fd = shm_fd;
829 channel->wait_fd = wait_fd;
830 channel->mmap_len = mmap_len;
831 channel->max_sb_size = max_sb_size;
832 channel->refcount = 0;
833 channel->nb_init_streams = nb_init_streams;
834 lttng_ht_node_init_ulong(&channel->node, channel->key);
835
836 switch (consumer_data.type) {
837 case LTTNG_CONSUMER_KERNEL:
838 channel->mmap_base = NULL;
839 channel->mmap_len = 0;
840 break;
841 case LTTNG_CONSUMER32_UST:
842 case LTTNG_CONSUMER64_UST:
843 ret = lttng_ustconsumer_allocate_channel(channel);
844 if (ret) {
845 free(channel);
846 return NULL;
847 }
848 break;
849 default:
850 ERR("Unknown consumer_data type");
851 assert(0);
852 goto end;
853 }
854 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
855 channel->key, channel->shm_fd, channel->wait_fd,
856 (unsigned long long) channel->mmap_len,
857 (unsigned long long) channel->max_sb_size);
858 end:
859 return channel;
860 }
861
862 /*
863 * Add a channel to the global list protected by a mutex.
864 */
865 int consumer_add_channel(struct lttng_consumer_channel *channel)
866 {
867 struct lttng_ht_node_ulong *node;
868 struct lttng_ht_iter iter;
869
870 pthread_mutex_lock(&consumer_data.lock);
871 /* Steal channel identifier, for UST */
872 consumer_steal_channel_key(channel->key);
873 rcu_read_lock();
874
875 lttng_ht_lookup(consumer_data.channel_ht,
876 (void *)((unsigned long) channel->key), &iter);
877 node = lttng_ht_iter_get_node_ulong(&iter);
878 if (node != NULL) {
879 /* Channel already exist. Ignore the insertion */
880 goto end;
881 }
882
883 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
884
885 end:
886 rcu_read_unlock();
887 pthread_mutex_unlock(&consumer_data.lock);
888
889 return 0;
890 }
891
892 /*
893 * Allocate the pollfd structure and the local view of the out fds to avoid
894 * doing a lookup in the linked list and concurrency issues when writing is
895 * needed. Called with consumer_data.lock held.
896 *
897 * Returns the number of fds in the structures.
898 */
899 static int consumer_update_poll_array(
900 struct lttng_consumer_local_data *ctx, struct pollfd **pollfd,
901 struct lttng_consumer_stream **local_stream, struct lttng_ht *ht)
902 {
903 int i = 0;
904 struct lttng_ht_iter iter;
905 struct lttng_consumer_stream *stream;
906
907 DBG("Updating poll fd array");
908 rcu_read_lock();
909 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
910 /*
911 * Only active streams with an active end point can be added to the
912 * poll set and local stream storage of the thread.
913 *
914 * There is a potential race here for endpoint_status to be updated
915 * just after the check. However, this is OK since the stream(s) will
916 * be deleted once the thread is notified that the end point state has
917 * changed where this function will be called back again.
918 */
919 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
920 stream->endpoint_status) {
921 continue;
922 }
923 DBG("Active FD %d", stream->wait_fd);
924 (*pollfd)[i].fd = stream->wait_fd;
925 (*pollfd)[i].events = POLLIN | POLLPRI;
926 local_stream[i] = stream;
927 i++;
928 }
929 rcu_read_unlock();
930
931 /*
932 * Insert the consumer_data_pipe at the end of the array and don't
933 * increment i so nb_fd is the number of real FD.
934 */
935 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
936 (*pollfd)[i].events = POLLIN | POLLPRI;
937 return i;
938 }
939
940 /*
941 * Poll on the should_quit pipe and the command socket return -1 on error and
942 * should exit, 0 if data is available on the command socket
943 */
944 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
945 {
946 int num_rdy;
947
948 restart:
949 num_rdy = poll(consumer_sockpoll, 2, -1);
950 if (num_rdy == -1) {
951 /*
952 * Restart interrupted system call.
953 */
954 if (errno == EINTR) {
955 goto restart;
956 }
957 PERROR("Poll error");
958 goto exit;
959 }
960 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
961 DBG("consumer_should_quit wake up");
962 goto exit;
963 }
964 return 0;
965
966 exit:
967 return -1;
968 }
969
970 /*
971 * Set the error socket.
972 */
973 void lttng_consumer_set_error_sock(
974 struct lttng_consumer_local_data *ctx, int sock)
975 {
976 ctx->consumer_error_socket = sock;
977 }
978
979 /*
980 * Set the command socket path.
981 */
982 void lttng_consumer_set_command_sock_path(
983 struct lttng_consumer_local_data *ctx, char *sock)
984 {
985 ctx->consumer_command_sock_path = sock;
986 }
987
988 /*
989 * Send return code to the session daemon.
990 * If the socket is not defined, we return 0, it is not a fatal error
991 */
992 int lttng_consumer_send_error(
993 struct lttng_consumer_local_data *ctx, int cmd)
994 {
995 if (ctx->consumer_error_socket > 0) {
996 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
997 sizeof(enum lttcomm_sessiond_command));
998 }
999
1000 return 0;
1001 }
1002
1003 /*
1004 * Close all the tracefiles and stream fds, should be called when all instances
1005 * are destroyed.
1006 */
1007 void lttng_consumer_cleanup(void)
1008 {
1009 struct lttng_ht_iter iter;
1010 struct lttng_ht_node_ulong *node;
1011
1012 rcu_read_lock();
1013
1014 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, node,
1015 node) {
1016 struct lttng_consumer_channel *channel =
1017 caa_container_of(node, struct lttng_consumer_channel, node);
1018 consumer_del_channel(channel);
1019 }
1020
1021 rcu_read_unlock();
1022
1023 lttng_ht_destroy(consumer_data.channel_ht);
1024 }
1025
1026 /*
1027 * Called from signal handler.
1028 */
1029 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1030 {
1031 int ret;
1032 consumer_quit = 1;
1033 do {
1034 ret = write(ctx->consumer_should_quit[1], "4", 1);
1035 } while (ret < 0 && errno == EINTR);
1036 if (ret < 0) {
1037 PERROR("write consumer quit");
1038 }
1039
1040 DBG("Consumer flag that it should quit");
1041 }
1042
1043 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1044 off_t orig_offset)
1045 {
1046 int outfd = stream->out_fd;
1047
1048 /*
1049 * This does a blocking write-and-wait on any page that belongs to the
1050 * subbuffer prior to the one we just wrote.
1051 * Don't care about error values, as these are just hints and ways to
1052 * limit the amount of page cache used.
1053 */
1054 if (orig_offset < stream->chan->max_sb_size) {
1055 return;
1056 }
1057 lttng_sync_file_range(outfd, orig_offset - stream->chan->max_sb_size,
1058 stream->chan->max_sb_size,
1059 SYNC_FILE_RANGE_WAIT_BEFORE
1060 | SYNC_FILE_RANGE_WRITE
1061 | SYNC_FILE_RANGE_WAIT_AFTER);
1062 /*
1063 * Give hints to the kernel about how we access the file:
1064 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1065 * we write it.
1066 *
1067 * We need to call fadvise again after the file grows because the
1068 * kernel does not seem to apply fadvise to non-existing parts of the
1069 * file.
1070 *
1071 * Call fadvise _after_ having waited for the page writeback to
1072 * complete because the dirty page writeback semantic is not well
1073 * defined. So it can be expected to lead to lower throughput in
1074 * streaming.
1075 */
1076 posix_fadvise(outfd, orig_offset - stream->chan->max_sb_size,
1077 stream->chan->max_sb_size, POSIX_FADV_DONTNEED);
1078 }
1079
1080 /*
1081 * Initialise the necessary environnement :
1082 * - create a new context
1083 * - create the poll_pipe
1084 * - create the should_quit pipe (for signal handler)
1085 * - create the thread pipe (for splice)
1086 *
1087 * Takes a function pointer as argument, this function is called when data is
1088 * available on a buffer. This function is responsible to do the
1089 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1090 * buffer configuration and then kernctl_put_next_subbuf at the end.
1091 *
1092 * Returns a pointer to the new context or NULL on error.
1093 */
1094 struct lttng_consumer_local_data *lttng_consumer_create(
1095 enum lttng_consumer_type type,
1096 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1097 struct lttng_consumer_local_data *ctx),
1098 int (*recv_channel)(struct lttng_consumer_channel *channel),
1099 int (*recv_stream)(struct lttng_consumer_stream *stream),
1100 int (*update_stream)(int stream_key, uint32_t state))
1101 {
1102 int ret, i;
1103 struct lttng_consumer_local_data *ctx;
1104
1105 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1106 consumer_data.type == type);
1107 consumer_data.type = type;
1108
1109 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1110 if (ctx == NULL) {
1111 PERROR("allocating context");
1112 goto error;
1113 }
1114
1115 ctx->consumer_error_socket = -1;
1116 /* assign the callbacks */
1117 ctx->on_buffer_ready = buffer_ready;
1118 ctx->on_recv_channel = recv_channel;
1119 ctx->on_recv_stream = recv_stream;
1120 ctx->on_update_stream = update_stream;
1121
1122 ret = pipe(ctx->consumer_data_pipe);
1123 if (ret < 0) {
1124 PERROR("Error creating poll pipe");
1125 goto error_poll_pipe;
1126 }
1127
1128 /* set read end of the pipe to non-blocking */
1129 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1130 if (ret < 0) {
1131 PERROR("fcntl O_NONBLOCK");
1132 goto error_poll_fcntl;
1133 }
1134
1135 /* set write end of the pipe to non-blocking */
1136 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1137 if (ret < 0) {
1138 PERROR("fcntl O_NONBLOCK");
1139 goto error_poll_fcntl;
1140 }
1141
1142 ret = pipe(ctx->consumer_should_quit);
1143 if (ret < 0) {
1144 PERROR("Error creating recv pipe");
1145 goto error_quit_pipe;
1146 }
1147
1148 ret = pipe(ctx->consumer_thread_pipe);
1149 if (ret < 0) {
1150 PERROR("Error creating thread pipe");
1151 goto error_thread_pipe;
1152 }
1153
1154 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1155 if (ret < 0) {
1156 goto error_metadata_pipe;
1157 }
1158
1159 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1160 if (ret < 0) {
1161 goto error_splice_pipe;
1162 }
1163
1164 return ctx;
1165
1166 error_splice_pipe:
1167 utils_close_pipe(ctx->consumer_metadata_pipe);
1168 error_metadata_pipe:
1169 utils_close_pipe(ctx->consumer_thread_pipe);
1170 error_thread_pipe:
1171 for (i = 0; i < 2; i++) {
1172 int err;
1173
1174 err = close(ctx->consumer_should_quit[i]);
1175 if (err) {
1176 PERROR("close");
1177 }
1178 }
1179 error_poll_fcntl:
1180 error_quit_pipe:
1181 for (i = 0; i < 2; i++) {
1182 int err;
1183
1184 err = close(ctx->consumer_data_pipe[i]);
1185 if (err) {
1186 PERROR("close");
1187 }
1188 }
1189 error_poll_pipe:
1190 free(ctx);
1191 error:
1192 return NULL;
1193 }
1194
1195 /*
1196 * Close all fds associated with the instance and free the context.
1197 */
1198 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1199 {
1200 int ret;
1201
1202 DBG("Consumer destroying it. Closing everything.");
1203
1204 ret = close(ctx->consumer_error_socket);
1205 if (ret) {
1206 PERROR("close");
1207 }
1208 ret = close(ctx->consumer_thread_pipe[0]);
1209 if (ret) {
1210 PERROR("close");
1211 }
1212 ret = close(ctx->consumer_thread_pipe[1]);
1213 if (ret) {
1214 PERROR("close");
1215 }
1216 ret = close(ctx->consumer_data_pipe[0]);
1217 if (ret) {
1218 PERROR("close");
1219 }
1220 ret = close(ctx->consumer_data_pipe[1]);
1221 if (ret) {
1222 PERROR("close");
1223 }
1224 ret = close(ctx->consumer_should_quit[0]);
1225 if (ret) {
1226 PERROR("close");
1227 }
1228 ret = close(ctx->consumer_should_quit[1]);
1229 if (ret) {
1230 PERROR("close");
1231 }
1232 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1233
1234 unlink(ctx->consumer_command_sock_path);
1235 free(ctx);
1236 }
1237
1238 /*
1239 * Write the metadata stream id on the specified file descriptor.
1240 */
1241 static int write_relayd_metadata_id(int fd,
1242 struct lttng_consumer_stream *stream,
1243 struct consumer_relayd_sock_pair *relayd,
1244 unsigned long padding)
1245 {
1246 int ret;
1247 struct lttcomm_relayd_metadata_payload hdr;
1248
1249 hdr.stream_id = htobe64(stream->relayd_stream_id);
1250 hdr.padding_size = htobe32(padding);
1251 do {
1252 ret = write(fd, (void *) &hdr, sizeof(hdr));
1253 } while (ret < 0 && errno == EINTR);
1254 if (ret < 0) {
1255 PERROR("write metadata stream id");
1256 goto end;
1257 }
1258 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1259 stream->relayd_stream_id, padding);
1260
1261 end:
1262 return ret;
1263 }
1264
1265 /*
1266 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1267 * core function for writing trace buffers to either the local filesystem or
1268 * the network.
1269 *
1270 * Careful review MUST be put if any changes occur!
1271 *
1272 * Returns the number of bytes written
1273 */
1274 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1275 struct lttng_consumer_local_data *ctx,
1276 struct lttng_consumer_stream *stream, unsigned long len,
1277 unsigned long padding)
1278 {
1279 unsigned long mmap_offset;
1280 ssize_t ret = 0, written = 0;
1281 off_t orig_offset = stream->out_fd_offset;
1282 /* Default is on the disk */
1283 int outfd = stream->out_fd;
1284 struct consumer_relayd_sock_pair *relayd = NULL;
1285 unsigned int relayd_hang_up = 0;
1286
1287 /* RCU lock for the relayd pointer */
1288 rcu_read_lock();
1289
1290 /* Flag that the current stream if set for network streaming. */
1291 if (stream->net_seq_idx != -1) {
1292 relayd = consumer_find_relayd(stream->net_seq_idx);
1293 if (relayd == NULL) {
1294 goto end;
1295 }
1296 }
1297
1298 /* get the offset inside the fd to mmap */
1299 switch (consumer_data.type) {
1300 case LTTNG_CONSUMER_KERNEL:
1301 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1302 break;
1303 case LTTNG_CONSUMER32_UST:
1304 case LTTNG_CONSUMER64_UST:
1305 ret = lttng_ustctl_get_mmap_read_offset(stream->chan->handle,
1306 stream->buf, &mmap_offset);
1307 break;
1308 default:
1309 ERR("Unknown consumer_data type");
1310 assert(0);
1311 }
1312 if (ret != 0) {
1313 errno = -ret;
1314 PERROR("tracer ctl get_mmap_read_offset");
1315 written = ret;
1316 goto end;
1317 }
1318
1319 /* Handle stream on the relayd if the output is on the network */
1320 if (relayd) {
1321 unsigned long netlen = len;
1322
1323 /*
1324 * Lock the control socket for the complete duration of the function
1325 * since from this point on we will use the socket.
1326 */
1327 if (stream->metadata_flag) {
1328 /* Metadata requires the control socket. */
1329 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1330 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1331 }
1332
1333 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1334 if (ret >= 0) {
1335 /* Use the returned socket. */
1336 outfd = ret;
1337
1338 /* Write metadata stream id before payload */
1339 if (stream->metadata_flag) {
1340 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1341 if (ret < 0) {
1342 written = ret;
1343 /* Socket operation failed. We consider the relayd dead */
1344 if (ret == -EPIPE || ret == -EINVAL) {
1345 relayd_hang_up = 1;
1346 goto write_error;
1347 }
1348 goto end;
1349 }
1350 }
1351 } else {
1352 /* Socket operation failed. We consider the relayd dead */
1353 if (ret == -EPIPE || ret == -EINVAL) {
1354 relayd_hang_up = 1;
1355 goto write_error;
1356 }
1357 /* Else, use the default set before which is the filesystem. */
1358 }
1359 } else {
1360 /* No streaming, we have to set the len with the full padding */
1361 len += padding;
1362 }
1363
1364 while (len > 0) {
1365 do {
1366 ret = write(outfd, stream->mmap_base + mmap_offset, len);
1367 } while (ret < 0 && errno == EINTR);
1368 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1369 if (ret < 0) {
1370 PERROR("Error in file write");
1371 if (written == 0) {
1372 written = ret;
1373 }
1374 /* Socket operation failed. We consider the relayd dead */
1375 if (errno == EPIPE || errno == EINVAL) {
1376 relayd_hang_up = 1;
1377 goto write_error;
1378 }
1379 goto end;
1380 } else if (ret > len) {
1381 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1382 written += ret;
1383 goto end;
1384 } else {
1385 len -= ret;
1386 mmap_offset += ret;
1387 }
1388
1389 /* This call is useless on a socket so better save a syscall. */
1390 if (!relayd) {
1391 /* This won't block, but will start writeout asynchronously */
1392 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1393 SYNC_FILE_RANGE_WRITE);
1394 stream->out_fd_offset += ret;
1395 }
1396 written += ret;
1397 }
1398 lttng_consumer_sync_trace_file(stream, orig_offset);
1399
1400 write_error:
1401 /*
1402 * This is a special case that the relayd has closed its socket. Let's
1403 * cleanup the relayd object and all associated streams.
1404 */
1405 if (relayd && relayd_hang_up) {
1406 cleanup_relayd(relayd, ctx);
1407 }
1408
1409 end:
1410 /* Unlock only if ctrl socket used */
1411 if (relayd && stream->metadata_flag) {
1412 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1413 }
1414
1415 rcu_read_unlock();
1416 return written;
1417 }
1418
1419 /*
1420 * Splice the data from the ring buffer to the tracefile.
1421 *
1422 * Returns the number of bytes spliced.
1423 */
1424 ssize_t lttng_consumer_on_read_subbuffer_splice(
1425 struct lttng_consumer_local_data *ctx,
1426 struct lttng_consumer_stream *stream, unsigned long len,
1427 unsigned long padding)
1428 {
1429 ssize_t ret = 0, written = 0, ret_splice = 0;
1430 loff_t offset = 0;
1431 off_t orig_offset = stream->out_fd_offset;
1432 int fd = stream->wait_fd;
1433 /* Default is on the disk */
1434 int outfd = stream->out_fd;
1435 struct consumer_relayd_sock_pair *relayd = NULL;
1436 int *splice_pipe;
1437 unsigned int relayd_hang_up = 0;
1438
1439 switch (consumer_data.type) {
1440 case LTTNG_CONSUMER_KERNEL:
1441 break;
1442 case LTTNG_CONSUMER32_UST:
1443 case LTTNG_CONSUMER64_UST:
1444 /* Not supported for user space tracing */
1445 return -ENOSYS;
1446 default:
1447 ERR("Unknown consumer_data type");
1448 assert(0);
1449 }
1450
1451 /* RCU lock for the relayd pointer */
1452 rcu_read_lock();
1453
1454 /* Flag that the current stream if set for network streaming. */
1455 if (stream->net_seq_idx != -1) {
1456 relayd = consumer_find_relayd(stream->net_seq_idx);
1457 if (relayd == NULL) {
1458 goto end;
1459 }
1460 }
1461
1462 /*
1463 * Choose right pipe for splice. Metadata and trace data are handled by
1464 * different threads hence the use of two pipes in order not to race or
1465 * corrupt the written data.
1466 */
1467 if (stream->metadata_flag) {
1468 splice_pipe = ctx->consumer_splice_metadata_pipe;
1469 } else {
1470 splice_pipe = ctx->consumer_thread_pipe;
1471 }
1472
1473 /* Write metadata stream id before payload */
1474 if (relayd) {
1475 int total_len = len;
1476
1477 if (stream->metadata_flag) {
1478 /*
1479 * Lock the control socket for the complete duration of the function
1480 * since from this point on we will use the socket.
1481 */
1482 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1483
1484 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1485 padding);
1486 if (ret < 0) {
1487 written = ret;
1488 /* Socket operation failed. We consider the relayd dead */
1489 if (ret == -EBADF) {
1490 WARN("Remote relayd disconnected. Stopping");
1491 relayd_hang_up = 1;
1492 goto write_error;
1493 }
1494 goto end;
1495 }
1496
1497 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1498 }
1499
1500 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1501 if (ret >= 0) {
1502 /* Use the returned socket. */
1503 outfd = ret;
1504 } else {
1505 /* Socket operation failed. We consider the relayd dead */
1506 if (ret == -EBADF) {
1507 WARN("Remote relayd disconnected. Stopping");
1508 relayd_hang_up = 1;
1509 goto write_error;
1510 }
1511 goto end;
1512 }
1513 } else {
1514 /* No streaming, we have to set the len with the full padding */
1515 len += padding;
1516 }
1517
1518 while (len > 0) {
1519 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1520 (unsigned long)offset, len, fd, splice_pipe[1]);
1521 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1522 SPLICE_F_MOVE | SPLICE_F_MORE);
1523 DBG("splice chan to pipe, ret %zd", ret_splice);
1524 if (ret_splice < 0) {
1525 PERROR("Error in relay splice");
1526 if (written == 0) {
1527 written = ret_splice;
1528 }
1529 ret = errno;
1530 goto splice_error;
1531 }
1532
1533 /* Handle stream on the relayd if the output is on the network */
1534 if (relayd) {
1535 if (stream->metadata_flag) {
1536 size_t metadata_payload_size =
1537 sizeof(struct lttcomm_relayd_metadata_payload);
1538
1539 /* Update counter to fit the spliced data */
1540 ret_splice += metadata_payload_size;
1541 len += metadata_payload_size;
1542 /*
1543 * We do this so the return value can match the len passed as
1544 * argument to this function.
1545 */
1546 written -= metadata_payload_size;
1547 }
1548 }
1549
1550 /* Splice data out */
1551 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1552 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1553 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1554 if (ret_splice < 0) {
1555 PERROR("Error in file splice");
1556 if (written == 0) {
1557 written = ret_splice;
1558 }
1559 /* Socket operation failed. We consider the relayd dead */
1560 if (errno == EBADF || errno == EPIPE) {
1561 WARN("Remote relayd disconnected. Stopping");
1562 relayd_hang_up = 1;
1563 goto write_error;
1564 }
1565 ret = errno;
1566 goto splice_error;
1567 } else if (ret_splice > len) {
1568 errno = EINVAL;
1569 PERROR("Wrote more data than requested %zd (len: %lu)",
1570 ret_splice, len);
1571 written += ret_splice;
1572 ret = errno;
1573 goto splice_error;
1574 }
1575 len -= ret_splice;
1576
1577 /* This call is useless on a socket so better save a syscall. */
1578 if (!relayd) {
1579 /* This won't block, but will start writeout asynchronously */
1580 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1581 SYNC_FILE_RANGE_WRITE);
1582 stream->out_fd_offset += ret_splice;
1583 }
1584 written += ret_splice;
1585 }
1586 lttng_consumer_sync_trace_file(stream, orig_offset);
1587
1588 ret = ret_splice;
1589
1590 goto end;
1591
1592 write_error:
1593 /*
1594 * This is a special case that the relayd has closed its socket. Let's
1595 * cleanup the relayd object and all associated streams.
1596 */
1597 if (relayd && relayd_hang_up) {
1598 cleanup_relayd(relayd, ctx);
1599 /* Skip splice error so the consumer does not fail */
1600 goto end;
1601 }
1602
1603 splice_error:
1604 /* send the appropriate error description to sessiond */
1605 switch (ret) {
1606 case EINVAL:
1607 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1608 break;
1609 case ENOMEM:
1610 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1611 break;
1612 case ESPIPE:
1613 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1614 break;
1615 }
1616
1617 end:
1618 if (relayd && stream->metadata_flag) {
1619 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1620 }
1621
1622 rcu_read_unlock();
1623 return written;
1624 }
1625
1626 /*
1627 * Take a snapshot for a specific fd
1628 *
1629 * Returns 0 on success, < 0 on error
1630 */
1631 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data *ctx,
1632 struct lttng_consumer_stream *stream)
1633 {
1634 switch (consumer_data.type) {
1635 case LTTNG_CONSUMER_KERNEL:
1636 return lttng_kconsumer_take_snapshot(ctx, stream);
1637 case LTTNG_CONSUMER32_UST:
1638 case LTTNG_CONSUMER64_UST:
1639 return lttng_ustconsumer_take_snapshot(ctx, stream);
1640 default:
1641 ERR("Unknown consumer_data type");
1642 assert(0);
1643 return -ENOSYS;
1644 }
1645
1646 }
1647
1648 /*
1649 * Get the produced position
1650 *
1651 * Returns 0 on success, < 0 on error
1652 */
1653 int lttng_consumer_get_produced_snapshot(
1654 struct lttng_consumer_local_data *ctx,
1655 struct lttng_consumer_stream *stream,
1656 unsigned long *pos)
1657 {
1658 switch (consumer_data.type) {
1659 case LTTNG_CONSUMER_KERNEL:
1660 return lttng_kconsumer_get_produced_snapshot(ctx, stream, pos);
1661 case LTTNG_CONSUMER32_UST:
1662 case LTTNG_CONSUMER64_UST:
1663 return lttng_ustconsumer_get_produced_snapshot(ctx, stream, pos);
1664 default:
1665 ERR("Unknown consumer_data type");
1666 assert(0);
1667 return -ENOSYS;
1668 }
1669 }
1670
1671 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1672 int sock, struct pollfd *consumer_sockpoll)
1673 {
1674 switch (consumer_data.type) {
1675 case LTTNG_CONSUMER_KERNEL:
1676 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1677 case LTTNG_CONSUMER32_UST:
1678 case LTTNG_CONSUMER64_UST:
1679 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1680 default:
1681 ERR("Unknown consumer_data type");
1682 assert(0);
1683 return -ENOSYS;
1684 }
1685 }
1686
1687 /*
1688 * Iterate over all streams of the hashtable and free them properly.
1689 *
1690 * WARNING: *MUST* be used with data stream only.
1691 */
1692 static void destroy_data_stream_ht(struct lttng_ht *ht)
1693 {
1694 int ret;
1695 struct lttng_ht_iter iter;
1696 struct lttng_consumer_stream *stream;
1697
1698 if (ht == NULL) {
1699 return;
1700 }
1701
1702 rcu_read_lock();
1703 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1704 ret = lttng_ht_del(ht, &iter);
1705 assert(!ret);
1706
1707 call_rcu(&stream->node.head, consumer_free_stream);
1708 }
1709 rcu_read_unlock();
1710
1711 lttng_ht_destroy(ht);
1712 }
1713
1714 /*
1715 * Iterate over all streams of the hashtable and free them properly.
1716 *
1717 * XXX: Should not be only for metadata stream or else use an other name.
1718 */
1719 static void destroy_stream_ht(struct lttng_ht *ht)
1720 {
1721 int ret;
1722 struct lttng_ht_iter iter;
1723 struct lttng_consumer_stream *stream;
1724
1725 if (ht == NULL) {
1726 return;
1727 }
1728
1729 rcu_read_lock();
1730 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1731 ret = lttng_ht_del(ht, &iter);
1732 assert(!ret);
1733
1734 call_rcu(&stream->node.head, consumer_free_stream);
1735 }
1736 rcu_read_unlock();
1737
1738 lttng_ht_destroy(ht);
1739 }
1740
1741 /*
1742 * Clean up a metadata stream and free its memory.
1743 */
1744 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1745 struct lttng_ht *ht)
1746 {
1747 int ret;
1748 struct lttng_ht_iter iter;
1749 struct lttng_consumer_channel *free_chan = NULL;
1750 struct consumer_relayd_sock_pair *relayd;
1751
1752 assert(stream);
1753 /*
1754 * This call should NEVER receive regular stream. It must always be
1755 * metadata stream and this is crucial for data structure synchronization.
1756 */
1757 assert(stream->metadata_flag);
1758
1759 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1760
1761 if (ht == NULL) {
1762 /* Means the stream was allocated but not successfully added */
1763 goto free_stream;
1764 }
1765
1766 pthread_mutex_lock(&consumer_data.lock);
1767 pthread_mutex_lock(&stream->lock);
1768
1769 switch (consumer_data.type) {
1770 case LTTNG_CONSUMER_KERNEL:
1771 if (stream->mmap_base != NULL) {
1772 ret = munmap(stream->mmap_base, stream->mmap_len);
1773 if (ret != 0) {
1774 PERROR("munmap metadata stream");
1775 }
1776 }
1777 break;
1778 case LTTNG_CONSUMER32_UST:
1779 case LTTNG_CONSUMER64_UST:
1780 lttng_ustconsumer_del_stream(stream);
1781 break;
1782 default:
1783 ERR("Unknown consumer_data type");
1784 assert(0);
1785 goto end;
1786 }
1787
1788 rcu_read_lock();
1789 iter.iter.node = &stream->node.node;
1790 ret = lttng_ht_del(ht, &iter);
1791 assert(!ret);
1792
1793 /* Remove node session id from the consumer_data stream ht */
1794 iter.iter.node = &stream->node_session_id.node;
1795 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1796 assert(!ret);
1797 rcu_read_unlock();
1798
1799 if (stream->out_fd >= 0) {
1800 ret = close(stream->out_fd);
1801 if (ret) {
1802 PERROR("close");
1803 }
1804 }
1805
1806 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
1807 ret = close(stream->wait_fd);
1808 if (ret) {
1809 PERROR("close");
1810 }
1811 }
1812
1813 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
1814 ret = close(stream->shm_fd);
1815 if (ret) {
1816 PERROR("close");
1817 }
1818 }
1819
1820 /* Check and cleanup relayd */
1821 rcu_read_lock();
1822 relayd = consumer_find_relayd(stream->net_seq_idx);
1823 if (relayd != NULL) {
1824 uatomic_dec(&relayd->refcount);
1825 assert(uatomic_read(&relayd->refcount) >= 0);
1826
1827 /* Closing streams requires to lock the control socket. */
1828 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1829 ret = relayd_send_close_stream(&relayd->control_sock,
1830 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1831 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1832 if (ret < 0) {
1833 DBG("Unable to close stream on the relayd. Continuing");
1834 /*
1835 * Continue here. There is nothing we can do for the relayd.
1836 * Chances are that the relayd has closed the socket so we just
1837 * continue cleaning up.
1838 */
1839 }
1840
1841 /* Both conditions are met, we destroy the relayd. */
1842 if (uatomic_read(&relayd->refcount) == 0 &&
1843 uatomic_read(&relayd->destroy_flag)) {
1844 destroy_relayd(relayd);
1845 }
1846 }
1847 rcu_read_unlock();
1848
1849 /* Atomically decrement channel refcount since other threads can use it. */
1850 uatomic_dec(&stream->chan->refcount);
1851 if (!uatomic_read(&stream->chan->refcount)
1852 && !uatomic_read(&stream->chan->nb_init_streams)) {
1853 /* Go for channel deletion! */
1854 free_chan = stream->chan;
1855 }
1856
1857 end:
1858 pthread_mutex_unlock(&stream->lock);
1859 pthread_mutex_unlock(&consumer_data.lock);
1860
1861 if (free_chan) {
1862 consumer_del_channel(free_chan);
1863 }
1864
1865 free_stream:
1866 call_rcu(&stream->node.head, consumer_free_stream);
1867 }
1868
1869 /*
1870 * Action done with the metadata stream when adding it to the consumer internal
1871 * data structures to handle it.
1872 */
1873 static int consumer_add_metadata_stream(struct lttng_consumer_stream *stream,
1874 struct lttng_ht *ht)
1875 {
1876 int ret = 0;
1877 struct consumer_relayd_sock_pair *relayd;
1878 struct lttng_ht_iter iter;
1879 struct lttng_ht_node_ulong *node;
1880
1881 assert(stream);
1882 assert(ht);
1883
1884 DBG3("Adding metadata stream %d to hash table", stream->wait_fd);
1885
1886 pthread_mutex_lock(&consumer_data.lock);
1887 pthread_mutex_lock(&stream->lock);
1888
1889 /*
1890 * From here, refcounts are updated so be _careful_ when returning an error
1891 * after this point.
1892 */
1893
1894 rcu_read_lock();
1895
1896 /*
1897 * Lookup the stream just to make sure it does not exist in our internal
1898 * state. This should NEVER happen.
1899 */
1900 lttng_ht_lookup(ht, (void *)((unsigned long) stream->wait_fd), &iter);
1901 node = lttng_ht_iter_get_node_ulong(&iter);
1902 assert(!node);
1903
1904 /* Find relayd and, if one is found, increment refcount. */
1905 relayd = consumer_find_relayd(stream->net_seq_idx);
1906 if (relayd != NULL) {
1907 uatomic_inc(&relayd->refcount);
1908 }
1909
1910 /* Update channel refcount once added without error(s). */
1911 uatomic_inc(&stream->chan->refcount);
1912
1913 /*
1914 * When nb_init_streams reaches 0, we don't need to trigger any action in
1915 * terms of destroying the associated channel, because the action that
1916 * causes the count to become 0 also causes a stream to be added. The
1917 * channel deletion will thus be triggered by the following removal of this
1918 * stream.
1919 */
1920 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
1921 uatomic_dec(&stream->chan->nb_init_streams);
1922 }
1923
1924 lttng_ht_add_unique_ulong(ht, &stream->node);
1925
1926 /*
1927 * Add stream to the stream_list_ht of the consumer data. No need to steal
1928 * the key since the HT does not use it and we allow to add redundant keys
1929 * into this table.
1930 */
1931 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
1932
1933 rcu_read_unlock();
1934
1935 pthread_mutex_unlock(&stream->lock);
1936 pthread_mutex_unlock(&consumer_data.lock);
1937 return ret;
1938 }
1939
1940 /*
1941 * Delete data stream that are flagged for deletion (endpoint_status).
1942 */
1943 static void validate_endpoint_status_data_stream(void)
1944 {
1945 struct lttng_ht_iter iter;
1946 struct lttng_consumer_stream *stream;
1947
1948 DBG("Consumer delete flagged data stream");
1949
1950 rcu_read_lock();
1951 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
1952 /* Validate delete flag of the stream */
1953 if (stream->endpoint_status != CONSUMER_ENDPOINT_INACTIVE) {
1954 continue;
1955 }
1956 /* Delete it right now */
1957 consumer_del_stream(stream, data_ht);
1958 }
1959 rcu_read_unlock();
1960 }
1961
1962 /*
1963 * Delete metadata stream that are flagged for deletion (endpoint_status).
1964 */
1965 static void validate_endpoint_status_metadata_stream(
1966 struct lttng_poll_event *pollset)
1967 {
1968 struct lttng_ht_iter iter;
1969 struct lttng_consumer_stream *stream;
1970
1971 DBG("Consumer delete flagged metadata stream");
1972
1973 assert(pollset);
1974
1975 rcu_read_lock();
1976 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
1977 /* Validate delete flag of the stream */
1978 if (!stream->endpoint_status) {
1979 continue;
1980 }
1981 /*
1982 * Remove from pollset so the metadata thread can continue without
1983 * blocking on a deleted stream.
1984 */
1985 lttng_poll_del(pollset, stream->wait_fd);
1986
1987 /* Delete it right now */
1988 consumer_del_metadata_stream(stream, metadata_ht);
1989 }
1990 rcu_read_unlock();
1991 }
1992
1993 /*
1994 * Thread polls on metadata file descriptor and write them on disk or on the
1995 * network.
1996 */
1997 void *consumer_thread_metadata_poll(void *data)
1998 {
1999 int ret, i, pollfd;
2000 uint32_t revents, nb_fd;
2001 struct lttng_consumer_stream *stream = NULL;
2002 struct lttng_ht_iter iter;
2003 struct lttng_ht_node_ulong *node;
2004 struct lttng_poll_event events;
2005 struct lttng_consumer_local_data *ctx = data;
2006 ssize_t len;
2007
2008 rcu_register_thread();
2009
2010 DBG("Thread metadata poll started");
2011
2012 /* Size is set to 1 for the consumer_metadata pipe */
2013 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2014 if (ret < 0) {
2015 ERR("Poll set creation failed");
2016 goto end;
2017 }
2018
2019 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
2020 if (ret < 0) {
2021 goto end;
2022 }
2023
2024 /* Main loop */
2025 DBG("Metadata main loop started");
2026
2027 while (1) {
2028 lttng_poll_reset(&events);
2029
2030 nb_fd = LTTNG_POLL_GETNB(&events);
2031
2032 /* Only the metadata pipe is set */
2033 if (nb_fd == 0 && consumer_quit == 1) {
2034 goto end;
2035 }
2036
2037 restart:
2038 DBG("Metadata poll wait with %d fd(s)", nb_fd);
2039 ret = lttng_poll_wait(&events, -1);
2040 DBG("Metadata event catched in thread");
2041 if (ret < 0) {
2042 if (errno == EINTR) {
2043 ERR("Poll EINTR catched");
2044 goto restart;
2045 }
2046 goto error;
2047 }
2048
2049 /* From here, the event is a metadata wait fd */
2050 for (i = 0; i < nb_fd; i++) {
2051 revents = LTTNG_POLL_GETEV(&events, i);
2052 pollfd = LTTNG_POLL_GETFD(&events, i);
2053
2054 /* Just don't waste time if no returned events for the fd */
2055 if (!revents) {
2056 continue;
2057 }
2058
2059 if (pollfd == ctx->consumer_metadata_pipe[0]) {
2060 if (revents & (LPOLLERR | LPOLLHUP )) {
2061 DBG("Metadata thread pipe hung up");
2062 /*
2063 * Remove the pipe from the poll set and continue the loop
2064 * since their might be data to consume.
2065 */
2066 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
2067 ret = close(ctx->consumer_metadata_pipe[0]);
2068 if (ret < 0) {
2069 PERROR("close metadata pipe");
2070 }
2071 continue;
2072 } else if (revents & LPOLLIN) {
2073 do {
2074 /* Get the stream pointer received */
2075 ret = read(pollfd, &stream, sizeof(stream));
2076 } while (ret < 0 && errno == EINTR);
2077 if (ret < 0 ||
2078 ret < sizeof(struct lttng_consumer_stream *)) {
2079 PERROR("read metadata stream");
2080 /*
2081 * Let's continue here and hope we can still work
2082 * without stopping the consumer. XXX: Should we?
2083 */
2084 continue;
2085 }
2086
2087 /* A NULL stream means that the state has changed. */
2088 if (stream == NULL) {
2089 /* Check for deleted streams. */
2090 validate_endpoint_status_metadata_stream(&events);
2091 continue;
2092 }
2093
2094 DBG("Adding metadata stream %d to poll set",
2095 stream->wait_fd);
2096
2097 ret = consumer_add_metadata_stream(stream, metadata_ht);
2098 if (ret) {
2099 ERR("Unable to add metadata stream");
2100 /* Stream was not setup properly. Continuing. */
2101 consumer_del_metadata_stream(stream, NULL);
2102 continue;
2103 }
2104
2105 /* Add metadata stream to the global poll events list */
2106 lttng_poll_add(&events, stream->wait_fd,
2107 LPOLLIN | LPOLLPRI);
2108 }
2109
2110 /* Handle other stream */
2111 continue;
2112 }
2113
2114 rcu_read_lock();
2115 lttng_ht_lookup(metadata_ht, (void *)((unsigned long) pollfd),
2116 &iter);
2117 node = lttng_ht_iter_get_node_ulong(&iter);
2118 assert(node);
2119
2120 stream = caa_container_of(node, struct lttng_consumer_stream,
2121 node);
2122
2123 /* Check for error event */
2124 if (revents & (LPOLLERR | LPOLLHUP)) {
2125 DBG("Metadata fd %d is hup|err.", pollfd);
2126 if (!stream->hangup_flush_done
2127 && (consumer_data.type == LTTNG_CONSUMER32_UST
2128 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2129 DBG("Attempting to flush and consume the UST buffers");
2130 lttng_ustconsumer_on_stream_hangup(stream);
2131
2132 /* We just flushed the stream now read it. */
2133 do {
2134 len = ctx->on_buffer_ready(stream, ctx);
2135 /*
2136 * We don't check the return value here since if we get
2137 * a negative len, it means an error occured thus we
2138 * simply remove it from the poll set and free the
2139 * stream.
2140 */
2141 } while (len > 0);
2142 }
2143
2144 lttng_poll_del(&events, stream->wait_fd);
2145 /*
2146 * This call update the channel states, closes file descriptors
2147 * and securely free the stream.
2148 */
2149 consumer_del_metadata_stream(stream, metadata_ht);
2150 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2151 /* Get the data out of the metadata file descriptor */
2152 DBG("Metadata available on fd %d", pollfd);
2153 assert(stream->wait_fd == pollfd);
2154
2155 len = ctx->on_buffer_ready(stream, ctx);
2156 /* It's ok to have an unavailable sub-buffer */
2157 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2158 /* Clean up stream from consumer and free it. */
2159 lttng_poll_del(&events, stream->wait_fd);
2160 consumer_del_metadata_stream(stream, metadata_ht);
2161 } else if (len > 0) {
2162 stream->data_read = 1;
2163 }
2164 }
2165
2166 /* Release RCU lock for the stream looked up */
2167 rcu_read_unlock();
2168 }
2169 }
2170
2171 error:
2172 end:
2173 DBG("Metadata poll thread exiting");
2174 lttng_poll_clean(&events);
2175
2176 if (metadata_ht) {
2177 destroy_stream_ht(metadata_ht);
2178 }
2179
2180 rcu_unregister_thread();
2181 return NULL;
2182 }
2183
2184 /*
2185 * This thread polls the fds in the set to consume the data and write
2186 * it to tracefile if necessary.
2187 */
2188 void *consumer_thread_data_poll(void *data)
2189 {
2190 int num_rdy, num_hup, high_prio, ret, i;
2191 struct pollfd *pollfd = NULL;
2192 /* local view of the streams */
2193 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2194 /* local view of consumer_data.fds_count */
2195 int nb_fd = 0;
2196 struct lttng_consumer_local_data *ctx = data;
2197 ssize_t len;
2198
2199 rcu_register_thread();
2200
2201 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2202 if (data_ht == NULL) {
2203 goto end;
2204 }
2205
2206 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2207
2208 while (1) {
2209 high_prio = 0;
2210 num_hup = 0;
2211
2212 /*
2213 * the fds set has been updated, we need to update our
2214 * local array as well
2215 */
2216 pthread_mutex_lock(&consumer_data.lock);
2217 if (consumer_data.need_update) {
2218 if (pollfd != NULL) {
2219 free(pollfd);
2220 pollfd = NULL;
2221 }
2222 if (local_stream != NULL) {
2223 free(local_stream);
2224 local_stream = NULL;
2225 }
2226
2227 /* allocate for all fds + 1 for the consumer_data_pipe */
2228 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2229 if (pollfd == NULL) {
2230 PERROR("pollfd malloc");
2231 pthread_mutex_unlock(&consumer_data.lock);
2232 goto end;
2233 }
2234
2235 /* allocate for all fds + 1 for the consumer_data_pipe */
2236 local_stream = zmalloc((consumer_data.stream_count + 1) *
2237 sizeof(struct lttng_consumer_stream));
2238 if (local_stream == NULL) {
2239 PERROR("local_stream malloc");
2240 pthread_mutex_unlock(&consumer_data.lock);
2241 goto end;
2242 }
2243 ret = consumer_update_poll_array(ctx, &pollfd, local_stream,
2244 data_ht);
2245 if (ret < 0) {
2246 ERR("Error in allocating pollfd or local_outfds");
2247 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2248 pthread_mutex_unlock(&consumer_data.lock);
2249 goto end;
2250 }
2251 nb_fd = ret;
2252 consumer_data.need_update = 0;
2253 }
2254 pthread_mutex_unlock(&consumer_data.lock);
2255
2256 /* No FDs and consumer_quit, consumer_cleanup the thread */
2257 if (nb_fd == 0 && consumer_quit == 1) {
2258 goto end;
2259 }
2260 /* poll on the array of fds */
2261 restart:
2262 DBG("polling on %d fd", nb_fd + 1);
2263 num_rdy = poll(pollfd, nb_fd + 1, -1);
2264 DBG("poll num_rdy : %d", num_rdy);
2265 if (num_rdy == -1) {
2266 /*
2267 * Restart interrupted system call.
2268 */
2269 if (errno == EINTR) {
2270 goto restart;
2271 }
2272 PERROR("Poll error");
2273 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2274 goto end;
2275 } else if (num_rdy == 0) {
2276 DBG("Polling thread timed out");
2277 goto end;
2278 }
2279
2280 /*
2281 * If the consumer_data_pipe triggered poll go directly to the
2282 * beginning of the loop to update the array. We want to prioritize
2283 * array update over low-priority reads.
2284 */
2285 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2286 size_t pipe_readlen;
2287
2288 DBG("consumer_data_pipe wake up");
2289 /* Consume 1 byte of pipe data */
2290 do {
2291 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2292 sizeof(new_stream));
2293 } while (pipe_readlen == -1 && errno == EINTR);
2294
2295 /*
2296 * If the stream is NULL, just ignore it. It's also possible that
2297 * the sessiond poll thread changed the consumer_quit state and is
2298 * waking us up to test it.
2299 */
2300 if (new_stream == NULL) {
2301 validate_endpoint_status_data_stream();
2302 continue;
2303 }
2304
2305 ret = consumer_add_stream(new_stream, data_ht);
2306 if (ret) {
2307 ERR("Consumer add stream %d failed. Continuing",
2308 new_stream->key);
2309 /*
2310 * At this point, if the add_stream fails, it is not in the
2311 * hash table thus passing the NULL value here.
2312 */
2313 consumer_del_stream(new_stream, NULL);
2314 }
2315
2316 /* Continue to update the local streams and handle prio ones */
2317 continue;
2318 }
2319
2320 /* Take care of high priority channels first. */
2321 for (i = 0; i < nb_fd; i++) {
2322 if (local_stream[i] == NULL) {
2323 continue;
2324 }
2325 if (pollfd[i].revents & POLLPRI) {
2326 DBG("Urgent read on fd %d", pollfd[i].fd);
2327 high_prio = 1;
2328 len = ctx->on_buffer_ready(local_stream[i], ctx);
2329 /* it's ok to have an unavailable sub-buffer */
2330 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2331 /* Clean the stream and free it. */
2332 consumer_del_stream(local_stream[i], data_ht);
2333 local_stream[i] = NULL;
2334 } else if (len > 0) {
2335 local_stream[i]->data_read = 1;
2336 }
2337 }
2338 }
2339
2340 /*
2341 * If we read high prio channel in this loop, try again
2342 * for more high prio data.
2343 */
2344 if (high_prio) {
2345 continue;
2346 }
2347
2348 /* Take care of low priority channels. */
2349 for (i = 0; i < nb_fd; i++) {
2350 if (local_stream[i] == NULL) {
2351 continue;
2352 }
2353 if ((pollfd[i].revents & POLLIN) ||
2354 local_stream[i]->hangup_flush_done) {
2355 DBG("Normal read on fd %d", pollfd[i].fd);
2356 len = ctx->on_buffer_ready(local_stream[i], ctx);
2357 /* it's ok to have an unavailable sub-buffer */
2358 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2359 /* Clean the stream and free it. */
2360 consumer_del_stream(local_stream[i], data_ht);
2361 local_stream[i] = NULL;
2362 } else if (len > 0) {
2363 local_stream[i]->data_read = 1;
2364 }
2365 }
2366 }
2367
2368 /* Handle hangup and errors */
2369 for (i = 0; i < nb_fd; i++) {
2370 if (local_stream[i] == NULL) {
2371 continue;
2372 }
2373 if (!local_stream[i]->hangup_flush_done
2374 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2375 && (consumer_data.type == LTTNG_CONSUMER32_UST
2376 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2377 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2378 pollfd[i].fd);
2379 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2380 /* Attempt read again, for the data we just flushed. */
2381 local_stream[i]->data_read = 1;
2382 }
2383 /*
2384 * If the poll flag is HUP/ERR/NVAL and we have
2385 * read no data in this pass, we can remove the
2386 * stream from its hash table.
2387 */
2388 if ((pollfd[i].revents & POLLHUP)) {
2389 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2390 if (!local_stream[i]->data_read) {
2391 consumer_del_stream(local_stream[i], data_ht);
2392 local_stream[i] = NULL;
2393 num_hup++;
2394 }
2395 } else if (pollfd[i].revents & POLLERR) {
2396 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2397 if (!local_stream[i]->data_read) {
2398 consumer_del_stream(local_stream[i], data_ht);
2399 local_stream[i] = NULL;
2400 num_hup++;
2401 }
2402 } else if (pollfd[i].revents & POLLNVAL) {
2403 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2404 if (!local_stream[i]->data_read) {
2405 consumer_del_stream(local_stream[i], data_ht);
2406 local_stream[i] = NULL;
2407 num_hup++;
2408 }
2409 }
2410 if (local_stream[i] != NULL) {
2411 local_stream[i]->data_read = 0;
2412 }
2413 }
2414 }
2415 end:
2416 DBG("polling thread exiting");
2417 if (pollfd != NULL) {
2418 free(pollfd);
2419 pollfd = NULL;
2420 }
2421 if (local_stream != NULL) {
2422 free(local_stream);
2423 local_stream = NULL;
2424 }
2425
2426 /*
2427 * Close the write side of the pipe so epoll_wait() in
2428 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2429 * read side of the pipe. If we close them both, epoll_wait strangely does
2430 * not return and could create a endless wait period if the pipe is the
2431 * only tracked fd in the poll set. The thread will take care of closing
2432 * the read side.
2433 */
2434 ret = close(ctx->consumer_metadata_pipe[1]);
2435 if (ret < 0) {
2436 PERROR("close data pipe");
2437 }
2438
2439 if (data_ht) {
2440 destroy_data_stream_ht(data_ht);
2441 }
2442
2443 rcu_unregister_thread();
2444 return NULL;
2445 }
2446
2447 /*
2448 * This thread listens on the consumerd socket and receives the file
2449 * descriptors from the session daemon.
2450 */
2451 void *consumer_thread_sessiond_poll(void *data)
2452 {
2453 int sock, client_socket, ret;
2454 /*
2455 * structure to poll for incoming data on communication socket avoids
2456 * making blocking sockets.
2457 */
2458 struct pollfd consumer_sockpoll[2];
2459 struct lttng_consumer_local_data *ctx = data;
2460
2461 rcu_register_thread();
2462
2463 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2464 unlink(ctx->consumer_command_sock_path);
2465 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2466 if (client_socket < 0) {
2467 ERR("Cannot create command socket");
2468 goto end;
2469 }
2470
2471 ret = lttcomm_listen_unix_sock(client_socket);
2472 if (ret < 0) {
2473 goto end;
2474 }
2475
2476 DBG("Sending ready command to lttng-sessiond");
2477 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2478 /* return < 0 on error, but == 0 is not fatal */
2479 if (ret < 0) {
2480 ERR("Error sending ready command to lttng-sessiond");
2481 goto end;
2482 }
2483
2484 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2485 if (ret < 0) {
2486 PERROR("fcntl O_NONBLOCK");
2487 goto end;
2488 }
2489
2490 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2491 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2492 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2493 consumer_sockpoll[1].fd = client_socket;
2494 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2495
2496 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2497 goto end;
2498 }
2499 DBG("Connection on client_socket");
2500
2501 /* Blocking call, waiting for transmission */
2502 sock = lttcomm_accept_unix_sock(client_socket);
2503 if (sock <= 0) {
2504 WARN("On accept");
2505 goto end;
2506 }
2507 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2508 if (ret < 0) {
2509 PERROR("fcntl O_NONBLOCK");
2510 goto end;
2511 }
2512
2513 /* update the polling structure to poll on the established socket */
2514 consumer_sockpoll[1].fd = sock;
2515 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2516
2517 while (1) {
2518 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2519 goto end;
2520 }
2521 DBG("Incoming command on sock");
2522 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2523 if (ret == -ENOENT) {
2524 DBG("Received STOP command");
2525 goto end;
2526 }
2527 if (ret <= 0) {
2528 /*
2529 * This could simply be a session daemon quitting. Don't output
2530 * ERR() here.
2531 */
2532 DBG("Communication interrupted on command socket");
2533 goto end;
2534 }
2535 if (consumer_quit) {
2536 DBG("consumer_thread_receive_fds received quit from signal");
2537 goto end;
2538 }
2539 DBG("received fds on sock");
2540 }
2541 end:
2542 DBG("consumer_thread_receive_fds exiting");
2543
2544 /*
2545 * when all fds have hung up, the polling thread
2546 * can exit cleanly
2547 */
2548 consumer_quit = 1;
2549
2550 /*
2551 * Notify the data poll thread to poll back again and test the
2552 * consumer_quit state that we just set so to quit gracefully.
2553 */
2554 notify_thread_pipe(ctx->consumer_data_pipe[1]);
2555
2556 rcu_unregister_thread();
2557 return NULL;
2558 }
2559
2560 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2561 struct lttng_consumer_local_data *ctx)
2562 {
2563 ssize_t ret;
2564
2565 pthread_mutex_lock(&stream->lock);
2566
2567 switch (consumer_data.type) {
2568 case LTTNG_CONSUMER_KERNEL:
2569 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2570 break;
2571 case LTTNG_CONSUMER32_UST:
2572 case LTTNG_CONSUMER64_UST:
2573 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
2574 break;
2575 default:
2576 ERR("Unknown consumer_data type");
2577 assert(0);
2578 ret = -ENOSYS;
2579 break;
2580 }
2581
2582 pthread_mutex_unlock(&stream->lock);
2583 return ret;
2584 }
2585
2586 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2587 {
2588 switch (consumer_data.type) {
2589 case LTTNG_CONSUMER_KERNEL:
2590 return lttng_kconsumer_on_recv_stream(stream);
2591 case LTTNG_CONSUMER32_UST:
2592 case LTTNG_CONSUMER64_UST:
2593 return lttng_ustconsumer_on_recv_stream(stream);
2594 default:
2595 ERR("Unknown consumer_data type");
2596 assert(0);
2597 return -ENOSYS;
2598 }
2599 }
2600
2601 /*
2602 * Allocate and set consumer data hash tables.
2603 */
2604 void lttng_consumer_init(void)
2605 {
2606 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2607 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2608 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2609
2610 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2611 assert(metadata_ht);
2612 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2613 assert(data_ht);
2614 }
2615
2616 /*
2617 * Process the ADD_RELAYD command receive by a consumer.
2618 *
2619 * This will create a relayd socket pair and add it to the relayd hash table.
2620 * The caller MUST acquire a RCU read side lock before calling it.
2621 */
2622 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
2623 struct lttng_consumer_local_data *ctx, int sock,
2624 struct pollfd *consumer_sockpoll, struct lttcomm_sock *relayd_sock)
2625 {
2626 int fd, ret = -1;
2627 struct consumer_relayd_sock_pair *relayd;
2628
2629 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
2630
2631 /* Get relayd reference if exists. */
2632 relayd = consumer_find_relayd(net_seq_idx);
2633 if (relayd == NULL) {
2634 /* Not found. Allocate one. */
2635 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
2636 if (relayd == NULL) {
2637 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
2638 goto error;
2639 }
2640 }
2641
2642 /* Poll on consumer socket. */
2643 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2644 ret = -EINTR;
2645 goto error;
2646 }
2647
2648 /* Get relayd socket from session daemon */
2649 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
2650 if (ret != sizeof(fd)) {
2651 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
2652 ret = -1;
2653 goto error;
2654 }
2655
2656 /* Copy socket information and received FD */
2657 switch (sock_type) {
2658 case LTTNG_STREAM_CONTROL:
2659 /* Copy received lttcomm socket */
2660 lttcomm_copy_sock(&relayd->control_sock, relayd_sock);
2661 ret = lttcomm_create_sock(&relayd->control_sock);
2662 if (ret < 0) {
2663 goto error;
2664 }
2665
2666 /* Close the created socket fd which is useless */
2667 ret = close(relayd->control_sock.fd);
2668 if (ret < 0) {
2669 PERROR("close relayd control socket");
2670 }
2671
2672 /* Assign new file descriptor */
2673 relayd->control_sock.fd = fd;
2674 break;
2675 case LTTNG_STREAM_DATA:
2676 /* Copy received lttcomm socket */
2677 lttcomm_copy_sock(&relayd->data_sock, relayd_sock);
2678 ret = lttcomm_create_sock(&relayd->data_sock);
2679 if (ret < 0) {
2680 goto error;
2681 }
2682
2683 /* Close the created socket fd which is useless */
2684 ret = close(relayd->data_sock.fd);
2685 if (ret < 0) {
2686 PERROR("close relayd control socket");
2687 }
2688
2689 /* Assign new file descriptor */
2690 relayd->data_sock.fd = fd;
2691 break;
2692 default:
2693 ERR("Unknown relayd socket type (%d)", sock_type);
2694 goto error;
2695 }
2696
2697 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2698 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
2699 relayd->net_seq_idx, fd);
2700
2701 /*
2702 * Add relayd socket pair to consumer data hashtable. If object already
2703 * exists or on error, the function gracefully returns.
2704 */
2705 add_relayd(relayd);
2706
2707 /* All good! */
2708 ret = 0;
2709
2710 error:
2711 return ret;
2712 }
2713
2714 /*
2715 * Try to lock the stream mutex.
2716 *
2717 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2718 */
2719 static int stream_try_lock(struct lttng_consumer_stream *stream)
2720 {
2721 int ret;
2722
2723 assert(stream);
2724
2725 /*
2726 * Try to lock the stream mutex. On failure, we know that the stream is
2727 * being used else where hence there is data still being extracted.
2728 */
2729 ret = pthread_mutex_trylock(&stream->lock);
2730 if (ret) {
2731 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2732 ret = 0;
2733 goto end;
2734 }
2735
2736 ret = 1;
2737
2738 end:
2739 return ret;
2740 }
2741
2742 /*
2743 * Check if for a given session id there is still data needed to be extract
2744 * from the buffers.
2745 *
2746 * Return 1 if data is pending or else 0 meaning ready to be read.
2747 */
2748 int consumer_data_pending(uint64_t id)
2749 {
2750 int ret;
2751 struct lttng_ht_iter iter;
2752 struct lttng_ht *ht;
2753 struct lttng_consumer_stream *stream;
2754 struct consumer_relayd_sock_pair *relayd;
2755 int (*data_pending)(struct lttng_consumer_stream *);
2756
2757 DBG("Consumer data pending command on session id %" PRIu64, id);
2758
2759 rcu_read_lock();
2760 pthread_mutex_lock(&consumer_data.lock);
2761
2762 switch (consumer_data.type) {
2763 case LTTNG_CONSUMER_KERNEL:
2764 data_pending = lttng_kconsumer_data_pending;
2765 break;
2766 case LTTNG_CONSUMER32_UST:
2767 case LTTNG_CONSUMER64_UST:
2768 data_pending = lttng_ustconsumer_data_pending;
2769 break;
2770 default:
2771 ERR("Unknown consumer data type");
2772 assert(0);
2773 }
2774
2775 /* Ease our life a bit */
2776 ht = consumer_data.stream_list_ht;
2777
2778 cds_lfht_for_each_entry_duplicate(ht->ht,
2779 ht->hash_fct((void *)((unsigned long) id), lttng_ht_seed),
2780 ht->match_fct, (void *)((unsigned long) id),
2781 &iter.iter, stream, node_session_id.node) {
2782 /* If this call fails, the stream is being used hence data pending. */
2783 ret = stream_try_lock(stream);
2784 if (!ret) {
2785 goto data_not_pending;
2786 }
2787
2788 /*
2789 * A removed node from the hash table indicates that the stream has
2790 * been deleted thus having a guarantee that the buffers are closed
2791 * on the consumer side. However, data can still be transmitted
2792 * over the network so don't skip the relayd check.
2793 */
2794 ret = cds_lfht_is_node_deleted(&stream->node.node);
2795 if (!ret) {
2796 /* Check the stream if there is data in the buffers. */
2797 ret = data_pending(stream);
2798 if (ret == 1) {
2799 pthread_mutex_unlock(&stream->lock);
2800 goto data_not_pending;
2801 }
2802 }
2803
2804 /* Relayd check */
2805 if (stream->net_seq_idx != -1) {
2806 relayd = consumer_find_relayd(stream->net_seq_idx);
2807 if (!relayd) {
2808 /*
2809 * At this point, if the relayd object is not available for the
2810 * given stream, it is because the relayd is being cleaned up
2811 * so every stream associated with it (for a session id value)
2812 * are or will be marked for deletion hence no data pending.
2813 */
2814 pthread_mutex_unlock(&stream->lock);
2815 goto data_not_pending;
2816 }
2817
2818 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2819 if (stream->metadata_flag) {
2820 ret = relayd_quiescent_control(&relayd->control_sock);
2821 } else {
2822 ret = relayd_data_pending(&relayd->control_sock,
2823 stream->relayd_stream_id, stream->next_net_seq_num);
2824 }
2825 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2826 if (ret == 1) {
2827 pthread_mutex_unlock(&stream->lock);
2828 goto data_not_pending;
2829 }
2830 }
2831 pthread_mutex_unlock(&stream->lock);
2832 }
2833
2834 /*
2835 * Finding _no_ node in the hash table means that the stream(s) have been
2836 * removed thus data is guaranteed to be available for analysis from the
2837 * trace files. This is *only* true for local consumer and not network
2838 * streaming.
2839 */
2840
2841 /* Data is available to be read by a viewer. */
2842 pthread_mutex_unlock(&consumer_data.lock);
2843 rcu_read_unlock();
2844 return 0;
2845
2846 data_not_pending:
2847 /* Data is still being extracted from buffers. */
2848 pthread_mutex_unlock(&consumer_data.lock);
2849 rcu_read_unlock();
2850 return 1;
2851 }
This page took 0.122675 seconds and 4 git commands to generate.