Fix: memory leak in add relayd socket error path
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
41
42 #include "consumer.h"
43
44 struct lttng_consumer_global_data consumer_data = {
45 .stream_count = 0,
46 .need_update = 1,
47 .type = LTTNG_CONSUMER_UNKNOWN,
48 };
49
50 /*
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
54 * polling threads.
55 */
56 volatile int consumer_quit;
57
58 /*
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
62 */
63 static struct lttng_ht *metadata_ht;
64 static struct lttng_ht *data_ht;
65
66 /*
67 * This hash table contains the mapping between the session id of the sessiond
68 * and the relayd session id. Element of the ht are indexed by sessiond session
69 * id.
70 *
71 * Node can be added when a relayd communication is opened in the sessiond
72 * thread.
73 *
74 * Note that a session id of the session daemon is unique to a tracing session
75 * and not to a domain session. However, a domain session has one consumer
76 * which forces the 1-1 mapping between a consumer and a domain session (ex:
77 * UST). This means that we can't have duplicate in this ht.
78 */
79 static struct lttng_ht *relayd_session_id_ht;
80
81 /*
82 * Notify a thread pipe to poll back again. This usually means that some global
83 * state has changed so we just send back the thread in a poll wait call.
84 */
85 static void notify_thread_pipe(int wpipe)
86 {
87 int ret;
88
89 do {
90 struct lttng_consumer_stream *null_stream = NULL;
91
92 ret = write(wpipe, &null_stream, sizeof(null_stream));
93 } while (ret < 0 && errno == EINTR);
94 }
95
96 /*
97 * Find a stream. The consumer_data.lock must be locked during this
98 * call.
99 */
100 static struct lttng_consumer_stream *consumer_find_stream(int key,
101 struct lttng_ht *ht)
102 {
103 struct lttng_ht_iter iter;
104 struct lttng_ht_node_ulong *node;
105 struct lttng_consumer_stream *stream = NULL;
106
107 assert(ht);
108
109 /* Negative keys are lookup failures */
110 if (key < 0) {
111 return NULL;
112 }
113
114 rcu_read_lock();
115
116 lttng_ht_lookup(ht, (void *)((unsigned long) key), &iter);
117 node = lttng_ht_iter_get_node_ulong(&iter);
118 if (node != NULL) {
119 stream = caa_container_of(node, struct lttng_consumer_stream, node);
120 }
121
122 rcu_read_unlock();
123
124 return stream;
125 }
126
127 void consumer_steal_stream_key(int key, struct lttng_ht *ht)
128 {
129 struct lttng_consumer_stream *stream;
130
131 rcu_read_lock();
132 stream = consumer_find_stream(key, ht);
133 if (stream) {
134 stream->key = -1;
135 /*
136 * We don't want the lookup to match, but we still need
137 * to iterate on this stream when iterating over the hash table. Just
138 * change the node key.
139 */
140 stream->node.key = -1;
141 }
142 rcu_read_unlock();
143 }
144
145 /*
146 * Return a channel object for the given key.
147 *
148 * RCU read side lock MUST be acquired before calling this function and
149 * protects the channel ptr.
150 */
151 static struct lttng_consumer_channel *consumer_find_channel(int key)
152 {
153 struct lttng_ht_iter iter;
154 struct lttng_ht_node_ulong *node;
155 struct lttng_consumer_channel *channel = NULL;
156
157 /* Negative keys are lookup failures */
158 if (key < 0) {
159 return NULL;
160 }
161
162 lttng_ht_lookup(consumer_data.channel_ht, (void *)((unsigned long) key),
163 &iter);
164 node = lttng_ht_iter_get_node_ulong(&iter);
165 if (node != NULL) {
166 channel = caa_container_of(node, struct lttng_consumer_channel, node);
167 }
168
169 return channel;
170 }
171
172 static void consumer_steal_channel_key(int key)
173 {
174 struct lttng_consumer_channel *channel;
175
176 rcu_read_lock();
177 channel = consumer_find_channel(key);
178 if (channel) {
179 channel->key = -1;
180 /*
181 * We don't want the lookup to match, but we still need
182 * to iterate on this channel when iterating over the hash table. Just
183 * change the node key.
184 */
185 channel->node.key = -1;
186 }
187 rcu_read_unlock();
188 }
189
190 static
191 void consumer_free_stream(struct rcu_head *head)
192 {
193 struct lttng_ht_node_ulong *node =
194 caa_container_of(head, struct lttng_ht_node_ulong, head);
195 struct lttng_consumer_stream *stream =
196 caa_container_of(node, struct lttng_consumer_stream, node);
197
198 free(stream);
199 }
200
201 /*
202 * RCU protected relayd socket pair free.
203 */
204 static void consumer_rcu_free_relayd(struct rcu_head *head)
205 {
206 struct lttng_ht_node_ulong *node =
207 caa_container_of(head, struct lttng_ht_node_ulong, head);
208 struct consumer_relayd_sock_pair *relayd =
209 caa_container_of(node, struct consumer_relayd_sock_pair, node);
210
211 /*
212 * Close all sockets. This is done in the call RCU since we don't want the
213 * socket fds to be reassigned thus potentially creating bad state of the
214 * relayd object.
215 *
216 * We do not have to lock the control socket mutex here since at this stage
217 * there is no one referencing to this relayd object.
218 */
219 (void) relayd_close(&relayd->control_sock);
220 (void) relayd_close(&relayd->data_sock);
221
222 free(relayd);
223 }
224
225 /*
226 * Destroy and free relayd socket pair object.
227 *
228 * This function MUST be called with the consumer_data lock acquired.
229 */
230 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
231 {
232 int ret;
233 struct lttng_ht_iter iter;
234 struct lttng_ht_node_ulong *node;
235
236 if (relayd == NULL) {
237 return;
238 }
239
240 DBG("Consumer destroy and close relayd socket pair");
241
242 /* Loockup for a relayd node in the session id map hash table. */
243 lttng_ht_lookup(relayd_session_id_ht,
244 (void *)((unsigned long) relayd->sessiond_session_id), &iter);
245 node = lttng_ht_iter_get_node_ulong(&iter);
246 if (node != NULL) {
247 /* We assume the relayd is being or is destroyed */
248 return;
249 }
250
251 /*
252 * Try to delete it from the relayd session id ht. The return value is of
253 * no importance since either way we are going to try to delete the relayd
254 * from the global relayd_ht.
255 */
256 lttng_ht_del(relayd_session_id_ht, &iter);
257
258 iter.iter.node = &relayd->node.node;
259 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
260 if (ret != 0) {
261 /* We assume the relayd is being or is destroyed */
262 return;
263 }
264
265 /* RCU free() call */
266 call_rcu(&relayd->node.head, consumer_rcu_free_relayd);
267 }
268
269 /*
270 * Iterate over the relayd hash table and destroy each element. Finally,
271 * destroy the whole hash table.
272 */
273 static void cleanup_relayd_ht(void)
274 {
275 struct lttng_ht_iter iter;
276 struct consumer_relayd_sock_pair *relayd;
277
278 rcu_read_lock();
279
280 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
281 node.node) {
282 destroy_relayd(relayd);
283 }
284
285 lttng_ht_destroy(consumer_data.relayd_ht);
286 /* The destroy_relayd call makes sure that this ht is empty here. */
287 lttng_ht_destroy(relayd_session_id_ht);
288
289 rcu_read_unlock();
290 }
291
292 /*
293 * Update the end point status of all streams having the given network sequence
294 * index (relayd index).
295 *
296 * It's atomically set without having the stream mutex locked which is fine
297 * because we handle the write/read race with a pipe wakeup for each thread.
298 */
299 static void update_endpoint_status_by_netidx(int net_seq_idx,
300 enum consumer_endpoint_status status)
301 {
302 struct lttng_ht_iter iter;
303 struct lttng_consumer_stream *stream;
304
305 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
306
307 rcu_read_lock();
308
309 /* Let's begin with metadata */
310 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
311 if (stream->net_seq_idx == net_seq_idx) {
312 uatomic_set(&stream->endpoint_status, status);
313 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
314 }
315 }
316
317 /* Follow up by the data streams */
318 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
319 if (stream->net_seq_idx == net_seq_idx) {
320 uatomic_set(&stream->endpoint_status, status);
321 DBG("Delete flag set to data stream %d", stream->wait_fd);
322 }
323 }
324 rcu_read_unlock();
325 }
326
327 /*
328 * Cleanup a relayd object by flagging every associated streams for deletion,
329 * destroying the object meaning removing it from the relayd hash table,
330 * closing the sockets and freeing the memory in a RCU call.
331 *
332 * If a local data context is available, notify the threads that the streams'
333 * state have changed.
334 */
335 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
336 struct lttng_consumer_local_data *ctx)
337 {
338 int netidx;
339
340 assert(relayd);
341
342 DBG("Cleaning up relayd sockets");
343
344 /* Save the net sequence index before destroying the object */
345 netidx = relayd->net_seq_idx;
346
347 /*
348 * Delete the relayd from the relayd hash table, close the sockets and free
349 * the object in a RCU call.
350 */
351 destroy_relayd(relayd);
352
353 /* Set inactive endpoint to all streams */
354 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
355
356 /*
357 * With a local data context, notify the threads that the streams' state
358 * have changed. The write() action on the pipe acts as an "implicit"
359 * memory barrier ordering the updates of the end point status from the
360 * read of this status which happens AFTER receiving this notify.
361 */
362 if (ctx) {
363 notify_thread_pipe(ctx->consumer_data_pipe[1]);
364 notify_thread_pipe(ctx->consumer_metadata_pipe[1]);
365 }
366 }
367
368 /*
369 * Flag a relayd socket pair for destruction. Destroy it if the refcount
370 * reaches zero.
371 *
372 * RCU read side lock MUST be aquired before calling this function.
373 */
374 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
375 {
376 assert(relayd);
377
378 /* Set destroy flag for this object */
379 uatomic_set(&relayd->destroy_flag, 1);
380
381 /* Destroy the relayd if refcount is 0 */
382 if (uatomic_read(&relayd->refcount) == 0) {
383 destroy_relayd(relayd);
384 }
385 }
386
387 /*
388 * Remove a stream from the global list protected by a mutex. This
389 * function is also responsible for freeing its data structures.
390 */
391 void consumer_del_stream(struct lttng_consumer_stream *stream,
392 struct lttng_ht *ht)
393 {
394 int ret;
395 struct lttng_ht_iter iter;
396 struct lttng_consumer_channel *free_chan = NULL;
397 struct consumer_relayd_sock_pair *relayd;
398
399 assert(stream);
400
401 DBG("Consumer del stream %d", stream->wait_fd);
402
403 if (ht == NULL) {
404 /* Means the stream was allocated but not successfully added */
405 goto free_stream;
406 }
407
408 pthread_mutex_lock(&consumer_data.lock);
409 pthread_mutex_lock(&stream->lock);
410
411 switch (consumer_data.type) {
412 case LTTNG_CONSUMER_KERNEL:
413 if (stream->mmap_base != NULL) {
414 ret = munmap(stream->mmap_base, stream->mmap_len);
415 if (ret != 0) {
416 PERROR("munmap");
417 }
418 }
419 break;
420 case LTTNG_CONSUMER32_UST:
421 case LTTNG_CONSUMER64_UST:
422 lttng_ustconsumer_del_stream(stream);
423 break;
424 default:
425 ERR("Unknown consumer_data type");
426 assert(0);
427 goto end;
428 }
429
430 rcu_read_lock();
431 iter.iter.node = &stream->node.node;
432 ret = lttng_ht_del(ht, &iter);
433 assert(!ret);
434
435 /* Remove node session id from the consumer_data stream ht */
436 iter.iter.node = &stream->node_session_id.node;
437 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
438 assert(!ret);
439 rcu_read_unlock();
440
441 assert(consumer_data.stream_count > 0);
442 consumer_data.stream_count--;
443
444 if (stream->out_fd >= 0) {
445 ret = close(stream->out_fd);
446 if (ret) {
447 PERROR("close");
448 }
449 }
450 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
451 ret = close(stream->wait_fd);
452 if (ret) {
453 PERROR("close");
454 }
455 }
456 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
457 ret = close(stream->shm_fd);
458 if (ret) {
459 PERROR("close");
460 }
461 }
462
463 /* Check and cleanup relayd */
464 rcu_read_lock();
465 relayd = consumer_find_relayd(stream->net_seq_idx);
466 if (relayd != NULL) {
467 uatomic_dec(&relayd->refcount);
468 assert(uatomic_read(&relayd->refcount) >= 0);
469
470 /* Closing streams requires to lock the control socket. */
471 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
472 ret = relayd_send_close_stream(&relayd->control_sock,
473 stream->relayd_stream_id,
474 stream->next_net_seq_num - 1);
475 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
476 if (ret < 0) {
477 DBG("Unable to close stream on the relayd. Continuing");
478 /*
479 * Continue here. There is nothing we can do for the relayd.
480 * Chances are that the relayd has closed the socket so we just
481 * continue cleaning up.
482 */
483 }
484
485 /* Both conditions are met, we destroy the relayd. */
486 if (uatomic_read(&relayd->refcount) == 0 &&
487 uatomic_read(&relayd->destroy_flag)) {
488 destroy_relayd(relayd);
489 }
490 }
491 rcu_read_unlock();
492
493 uatomic_dec(&stream->chan->refcount);
494 if (!uatomic_read(&stream->chan->refcount)
495 && !uatomic_read(&stream->chan->nb_init_streams)) {
496 free_chan = stream->chan;
497 }
498
499 end:
500 consumer_data.need_update = 1;
501 pthread_mutex_unlock(&stream->lock);
502 pthread_mutex_unlock(&consumer_data.lock);
503
504 if (free_chan) {
505 consumer_del_channel(free_chan);
506 }
507
508 free_stream:
509 call_rcu(&stream->node.head, consumer_free_stream);
510 }
511
512 struct lttng_consumer_stream *consumer_allocate_stream(
513 int channel_key, int stream_key,
514 int shm_fd, int wait_fd,
515 enum lttng_consumer_stream_state state,
516 uint64_t mmap_len,
517 enum lttng_event_output output,
518 const char *path_name,
519 uid_t uid,
520 gid_t gid,
521 int net_index,
522 int metadata_flag,
523 uint64_t session_id,
524 int *alloc_ret)
525 {
526 struct lttng_consumer_stream *stream;
527
528 stream = zmalloc(sizeof(*stream));
529 if (stream == NULL) {
530 PERROR("malloc struct lttng_consumer_stream");
531 *alloc_ret = -ENOMEM;
532 goto end;
533 }
534
535 rcu_read_lock();
536
537 /*
538 * Get stream's channel reference. Needed when adding the stream to the
539 * global hash table.
540 */
541 stream->chan = consumer_find_channel(channel_key);
542 if (!stream->chan) {
543 *alloc_ret = -ENOENT;
544 ERR("Unable to find channel for stream %d", stream_key);
545 goto error;
546 }
547
548 stream->key = stream_key;
549 stream->shm_fd = shm_fd;
550 stream->wait_fd = wait_fd;
551 stream->out_fd = -1;
552 stream->out_fd_offset = 0;
553 stream->state = state;
554 stream->mmap_len = mmap_len;
555 stream->mmap_base = NULL;
556 stream->output = output;
557 stream->uid = uid;
558 stream->gid = gid;
559 stream->net_seq_idx = net_index;
560 stream->metadata_flag = metadata_flag;
561 stream->session_id = session_id;
562 strncpy(stream->path_name, path_name, sizeof(stream->path_name));
563 stream->path_name[sizeof(stream->path_name) - 1] = '\0';
564 pthread_mutex_init(&stream->lock, NULL);
565
566 /*
567 * Index differently the metadata node because the thread is using an
568 * internal hash table to match streams in the metadata_ht to the epoll set
569 * file descriptor.
570 */
571 if (metadata_flag) {
572 lttng_ht_node_init_ulong(&stream->node, stream->wait_fd);
573 } else {
574 lttng_ht_node_init_ulong(&stream->node, stream->key);
575 }
576
577 /* Init session id node with the stream session id */
578 lttng_ht_node_init_ulong(&stream->node_session_id, stream->session_id);
579
580 /*
581 * The cpu number is needed before using any ustctl_* actions. Ignored for
582 * the kernel so the value does not matter.
583 */
584 pthread_mutex_lock(&consumer_data.lock);
585 stream->cpu = stream->chan->cpucount++;
586 pthread_mutex_unlock(&consumer_data.lock);
587
588 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
589 " out_fd %d, net_seq_idx %d, session_id %" PRIu64,
590 stream->path_name, stream->key, stream->shm_fd, stream->wait_fd,
591 (unsigned long long) stream->mmap_len, stream->out_fd,
592 stream->net_seq_idx, stream->session_id);
593
594 rcu_read_unlock();
595 return stream;
596
597 error:
598 rcu_read_unlock();
599 free(stream);
600 end:
601 return NULL;
602 }
603
604 /*
605 * Add a stream to the global list protected by a mutex.
606 */
607 static int consumer_add_stream(struct lttng_consumer_stream *stream,
608 struct lttng_ht *ht)
609 {
610 int ret = 0;
611 struct consumer_relayd_sock_pair *relayd;
612
613 assert(stream);
614 assert(ht);
615
616 DBG3("Adding consumer stream %d", stream->key);
617
618 pthread_mutex_lock(&consumer_data.lock);
619 pthread_mutex_lock(&stream->lock);
620 rcu_read_lock();
621
622 /* Steal stream identifier to avoid having streams with the same key */
623 consumer_steal_stream_key(stream->key, ht);
624
625 lttng_ht_add_unique_ulong(ht, &stream->node);
626
627 /*
628 * Add stream to the stream_list_ht of the consumer data. No need to steal
629 * the key since the HT does not use it and we allow to add redundant keys
630 * into this table.
631 */
632 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
633
634 /* Check and cleanup relayd */
635 relayd = consumer_find_relayd(stream->net_seq_idx);
636 if (relayd != NULL) {
637 uatomic_inc(&relayd->refcount);
638 }
639
640 /* Update channel refcount once added without error(s). */
641 uatomic_inc(&stream->chan->refcount);
642
643 /*
644 * When nb_init_streams reaches 0, we don't need to trigger any action in
645 * terms of destroying the associated channel, because the action that
646 * causes the count to become 0 also causes a stream to be added. The
647 * channel deletion will thus be triggered by the following removal of this
648 * stream.
649 */
650 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
651 uatomic_dec(&stream->chan->nb_init_streams);
652 }
653
654 /* Update consumer data once the node is inserted. */
655 consumer_data.stream_count++;
656 consumer_data.need_update = 1;
657
658 rcu_read_unlock();
659 pthread_mutex_unlock(&stream->lock);
660 pthread_mutex_unlock(&consumer_data.lock);
661
662 return ret;
663 }
664
665 /*
666 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
667 * be acquired before calling this.
668 */
669 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
670 {
671 int ret = 0;
672 struct lttng_ht_node_ulong *node;
673 struct lttng_ht_iter iter;
674
675 if (relayd == NULL) {
676 ret = -1;
677 goto end;
678 }
679
680 lttng_ht_lookup(consumer_data.relayd_ht,
681 (void *)((unsigned long) relayd->net_seq_idx), &iter);
682 node = lttng_ht_iter_get_node_ulong(&iter);
683 if (node != NULL) {
684 /* Relayd already exist. Ignore the insertion */
685 goto end;
686 }
687 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
688
689 end:
690 return ret;
691 }
692
693 /*
694 * Allocate and return a consumer relayd socket.
695 */
696 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
697 int net_seq_idx)
698 {
699 struct consumer_relayd_sock_pair *obj = NULL;
700
701 /* Negative net sequence index is a failure */
702 if (net_seq_idx < 0) {
703 goto error;
704 }
705
706 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
707 if (obj == NULL) {
708 PERROR("zmalloc relayd sock");
709 goto error;
710 }
711
712 obj->net_seq_idx = net_seq_idx;
713 obj->refcount = 0;
714 obj->destroy_flag = 0;
715 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
716 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
717
718 error:
719 return obj;
720 }
721
722 /*
723 * Find a relayd socket pair in the global consumer data.
724 *
725 * Return the object if found else NULL.
726 * RCU read-side lock must be held across this call and while using the
727 * returned object.
728 */
729 struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
730 {
731 struct lttng_ht_iter iter;
732 struct lttng_ht_node_ulong *node;
733 struct consumer_relayd_sock_pair *relayd = NULL;
734
735 /* Negative keys are lookup failures */
736 if (key < 0) {
737 goto error;
738 }
739
740 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
741 &iter);
742 node = lttng_ht_iter_get_node_ulong(&iter);
743 if (node != NULL) {
744 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
745 }
746
747 error:
748 return relayd;
749 }
750
751 /*
752 * Handle stream for relayd transmission if the stream applies for network
753 * streaming where the net sequence index is set.
754 *
755 * Return destination file descriptor or negative value on error.
756 */
757 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
758 size_t data_size, unsigned long padding,
759 struct consumer_relayd_sock_pair *relayd)
760 {
761 int outfd = -1, ret;
762 struct lttcomm_relayd_data_hdr data_hdr;
763
764 /* Safety net */
765 assert(stream);
766 assert(relayd);
767
768 /* Reset data header */
769 memset(&data_hdr, 0, sizeof(data_hdr));
770
771 if (stream->metadata_flag) {
772 /* Caller MUST acquire the relayd control socket lock */
773 ret = relayd_send_metadata(&relayd->control_sock, data_size);
774 if (ret < 0) {
775 goto error;
776 }
777
778 /* Metadata are always sent on the control socket. */
779 outfd = relayd->control_sock.fd;
780 } else {
781 /* Set header with stream information */
782 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
783 data_hdr.data_size = htobe32(data_size);
784 data_hdr.padding_size = htobe32(padding);
785 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num++);
786 /* Other fields are zeroed previously */
787
788 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
789 sizeof(data_hdr));
790 if (ret < 0) {
791 goto error;
792 }
793
794 /* Set to go on data socket */
795 outfd = relayd->data_sock.fd;
796 }
797
798 error:
799 return outfd;
800 }
801
802 static
803 void consumer_free_channel(struct rcu_head *head)
804 {
805 struct lttng_ht_node_ulong *node =
806 caa_container_of(head, struct lttng_ht_node_ulong, head);
807 struct lttng_consumer_channel *channel =
808 caa_container_of(node, struct lttng_consumer_channel, node);
809
810 free(channel);
811 }
812
813 /*
814 * Remove a channel from the global list protected by a mutex. This
815 * function is also responsible for freeing its data structures.
816 */
817 void consumer_del_channel(struct lttng_consumer_channel *channel)
818 {
819 int ret;
820 struct lttng_ht_iter iter;
821
822 DBG("Consumer delete channel key %d", channel->key);
823
824 pthread_mutex_lock(&consumer_data.lock);
825
826 switch (consumer_data.type) {
827 case LTTNG_CONSUMER_KERNEL:
828 break;
829 case LTTNG_CONSUMER32_UST:
830 case LTTNG_CONSUMER64_UST:
831 lttng_ustconsumer_del_channel(channel);
832 break;
833 default:
834 ERR("Unknown consumer_data type");
835 assert(0);
836 goto end;
837 }
838
839 rcu_read_lock();
840 iter.iter.node = &channel->node.node;
841 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
842 assert(!ret);
843 rcu_read_unlock();
844
845 if (channel->mmap_base != NULL) {
846 ret = munmap(channel->mmap_base, channel->mmap_len);
847 if (ret != 0) {
848 PERROR("munmap");
849 }
850 }
851 if (channel->wait_fd >= 0 && !channel->wait_fd_is_copy) {
852 ret = close(channel->wait_fd);
853 if (ret) {
854 PERROR("close");
855 }
856 }
857 if (channel->shm_fd >= 0 && channel->wait_fd != channel->shm_fd) {
858 ret = close(channel->shm_fd);
859 if (ret) {
860 PERROR("close");
861 }
862 }
863
864 call_rcu(&channel->node.head, consumer_free_channel);
865 end:
866 pthread_mutex_unlock(&consumer_data.lock);
867 }
868
869 struct lttng_consumer_channel *consumer_allocate_channel(
870 int channel_key,
871 int shm_fd, int wait_fd,
872 uint64_t mmap_len,
873 uint64_t max_sb_size,
874 unsigned int nb_init_streams)
875 {
876 struct lttng_consumer_channel *channel;
877 int ret;
878
879 channel = zmalloc(sizeof(*channel));
880 if (channel == NULL) {
881 PERROR("malloc struct lttng_consumer_channel");
882 goto end;
883 }
884 channel->key = channel_key;
885 channel->shm_fd = shm_fd;
886 channel->wait_fd = wait_fd;
887 channel->mmap_len = mmap_len;
888 channel->max_sb_size = max_sb_size;
889 channel->refcount = 0;
890 channel->nb_init_streams = nb_init_streams;
891 lttng_ht_node_init_ulong(&channel->node, channel->key);
892
893 switch (consumer_data.type) {
894 case LTTNG_CONSUMER_KERNEL:
895 channel->mmap_base = NULL;
896 channel->mmap_len = 0;
897 break;
898 case LTTNG_CONSUMER32_UST:
899 case LTTNG_CONSUMER64_UST:
900 ret = lttng_ustconsumer_allocate_channel(channel);
901 if (ret) {
902 free(channel);
903 return NULL;
904 }
905 break;
906 default:
907 ERR("Unknown consumer_data type");
908 assert(0);
909 goto end;
910 }
911 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
912 channel->key, channel->shm_fd, channel->wait_fd,
913 (unsigned long long) channel->mmap_len,
914 (unsigned long long) channel->max_sb_size);
915 end:
916 return channel;
917 }
918
919 /*
920 * Add a channel to the global list protected by a mutex.
921 */
922 int consumer_add_channel(struct lttng_consumer_channel *channel)
923 {
924 struct lttng_ht_node_ulong *node;
925 struct lttng_ht_iter iter;
926
927 pthread_mutex_lock(&consumer_data.lock);
928 /* Steal channel identifier, for UST */
929 consumer_steal_channel_key(channel->key);
930 rcu_read_lock();
931
932 lttng_ht_lookup(consumer_data.channel_ht,
933 (void *)((unsigned long) channel->key), &iter);
934 node = lttng_ht_iter_get_node_ulong(&iter);
935 if (node != NULL) {
936 /* Channel already exist. Ignore the insertion */
937 goto end;
938 }
939
940 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
941
942 end:
943 rcu_read_unlock();
944 pthread_mutex_unlock(&consumer_data.lock);
945
946 return 0;
947 }
948
949 /*
950 * Allocate the pollfd structure and the local view of the out fds to avoid
951 * doing a lookup in the linked list and concurrency issues when writing is
952 * needed. Called with consumer_data.lock held.
953 *
954 * Returns the number of fds in the structures.
955 */
956 static int consumer_update_poll_array(
957 struct lttng_consumer_local_data *ctx, struct pollfd **pollfd,
958 struct lttng_consumer_stream **local_stream, struct lttng_ht *ht)
959 {
960 int i = 0;
961 struct lttng_ht_iter iter;
962 struct lttng_consumer_stream *stream;
963
964 DBG("Updating poll fd array");
965 rcu_read_lock();
966 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
967 /*
968 * Only active streams with an active end point can be added to the
969 * poll set and local stream storage of the thread.
970 *
971 * There is a potential race here for endpoint_status to be updated
972 * just after the check. However, this is OK since the stream(s) will
973 * be deleted once the thread is notified that the end point state has
974 * changed where this function will be called back again.
975 */
976 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
977 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
978 continue;
979 }
980 DBG("Active FD %d", stream->wait_fd);
981 (*pollfd)[i].fd = stream->wait_fd;
982 (*pollfd)[i].events = POLLIN | POLLPRI;
983 local_stream[i] = stream;
984 i++;
985 }
986 rcu_read_unlock();
987
988 /*
989 * Insert the consumer_data_pipe at the end of the array and don't
990 * increment i so nb_fd is the number of real FD.
991 */
992 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
993 (*pollfd)[i].events = POLLIN | POLLPRI;
994 return i;
995 }
996
997 /*
998 * Poll on the should_quit pipe and the command socket return -1 on error and
999 * should exit, 0 if data is available on the command socket
1000 */
1001 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1002 {
1003 int num_rdy;
1004
1005 restart:
1006 num_rdy = poll(consumer_sockpoll, 2, -1);
1007 if (num_rdy == -1) {
1008 /*
1009 * Restart interrupted system call.
1010 */
1011 if (errno == EINTR) {
1012 goto restart;
1013 }
1014 PERROR("Poll error");
1015 goto exit;
1016 }
1017 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1018 DBG("consumer_should_quit wake up");
1019 goto exit;
1020 }
1021 return 0;
1022
1023 exit:
1024 return -1;
1025 }
1026
1027 /*
1028 * Set the error socket.
1029 */
1030 void lttng_consumer_set_error_sock(
1031 struct lttng_consumer_local_data *ctx, int sock)
1032 {
1033 ctx->consumer_error_socket = sock;
1034 }
1035
1036 /*
1037 * Set the command socket path.
1038 */
1039 void lttng_consumer_set_command_sock_path(
1040 struct lttng_consumer_local_data *ctx, char *sock)
1041 {
1042 ctx->consumer_command_sock_path = sock;
1043 }
1044
1045 /*
1046 * Send return code to the session daemon.
1047 * If the socket is not defined, we return 0, it is not a fatal error
1048 */
1049 int lttng_consumer_send_error(
1050 struct lttng_consumer_local_data *ctx, int cmd)
1051 {
1052 if (ctx->consumer_error_socket > 0) {
1053 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1054 sizeof(enum lttcomm_sessiond_command));
1055 }
1056
1057 return 0;
1058 }
1059
1060 /*
1061 * Close all the tracefiles and stream fds and MUST be called when all
1062 * instances are destroyed i.e. when all threads were joined and are ended.
1063 */
1064 void lttng_consumer_cleanup(void)
1065 {
1066 struct lttng_ht_iter iter;
1067 struct lttng_ht_node_ulong *node;
1068
1069 rcu_read_lock();
1070
1071 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, node,
1072 node) {
1073 struct lttng_consumer_channel *channel =
1074 caa_container_of(node, struct lttng_consumer_channel, node);
1075 consumer_del_channel(channel);
1076 }
1077
1078 rcu_read_unlock();
1079
1080 lttng_ht_destroy(consumer_data.channel_ht);
1081
1082 cleanup_relayd_ht();
1083
1084 /*
1085 * This HT contains streams that are freed by either the metadata thread or
1086 * the data thread so we do *nothing* on the hash table and simply destroy
1087 * it.
1088 */
1089 lttng_ht_destroy(consumer_data.stream_list_ht);
1090 }
1091
1092 /*
1093 * Called from signal handler.
1094 */
1095 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1096 {
1097 int ret;
1098 consumer_quit = 1;
1099 do {
1100 ret = write(ctx->consumer_should_quit[1], "4", 1);
1101 } while (ret < 0 && errno == EINTR);
1102 if (ret < 0) {
1103 PERROR("write consumer quit");
1104 }
1105
1106 DBG("Consumer flag that it should quit");
1107 }
1108
1109 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1110 off_t orig_offset)
1111 {
1112 int outfd = stream->out_fd;
1113
1114 /*
1115 * This does a blocking write-and-wait on any page that belongs to the
1116 * subbuffer prior to the one we just wrote.
1117 * Don't care about error values, as these are just hints and ways to
1118 * limit the amount of page cache used.
1119 */
1120 if (orig_offset < stream->chan->max_sb_size) {
1121 return;
1122 }
1123 lttng_sync_file_range(outfd, orig_offset - stream->chan->max_sb_size,
1124 stream->chan->max_sb_size,
1125 SYNC_FILE_RANGE_WAIT_BEFORE
1126 | SYNC_FILE_RANGE_WRITE
1127 | SYNC_FILE_RANGE_WAIT_AFTER);
1128 /*
1129 * Give hints to the kernel about how we access the file:
1130 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1131 * we write it.
1132 *
1133 * We need to call fadvise again after the file grows because the
1134 * kernel does not seem to apply fadvise to non-existing parts of the
1135 * file.
1136 *
1137 * Call fadvise _after_ having waited for the page writeback to
1138 * complete because the dirty page writeback semantic is not well
1139 * defined. So it can be expected to lead to lower throughput in
1140 * streaming.
1141 */
1142 posix_fadvise(outfd, orig_offset - stream->chan->max_sb_size,
1143 stream->chan->max_sb_size, POSIX_FADV_DONTNEED);
1144 }
1145
1146 /*
1147 * Initialise the necessary environnement :
1148 * - create a new context
1149 * - create the poll_pipe
1150 * - create the should_quit pipe (for signal handler)
1151 * - create the thread pipe (for splice)
1152 *
1153 * Takes a function pointer as argument, this function is called when data is
1154 * available on a buffer. This function is responsible to do the
1155 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1156 * buffer configuration and then kernctl_put_next_subbuf at the end.
1157 *
1158 * Returns a pointer to the new context or NULL on error.
1159 */
1160 struct lttng_consumer_local_data *lttng_consumer_create(
1161 enum lttng_consumer_type type,
1162 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1163 struct lttng_consumer_local_data *ctx),
1164 int (*recv_channel)(struct lttng_consumer_channel *channel),
1165 int (*recv_stream)(struct lttng_consumer_stream *stream),
1166 int (*update_stream)(int stream_key, uint32_t state))
1167 {
1168 int ret, i;
1169 struct lttng_consumer_local_data *ctx;
1170
1171 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1172 consumer_data.type == type);
1173 consumer_data.type = type;
1174
1175 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1176 if (ctx == NULL) {
1177 PERROR("allocating context");
1178 goto error;
1179 }
1180
1181 ctx->consumer_error_socket = -1;
1182 /* assign the callbacks */
1183 ctx->on_buffer_ready = buffer_ready;
1184 ctx->on_recv_channel = recv_channel;
1185 ctx->on_recv_stream = recv_stream;
1186 ctx->on_update_stream = update_stream;
1187
1188 ret = pipe(ctx->consumer_data_pipe);
1189 if (ret < 0) {
1190 PERROR("Error creating poll pipe");
1191 goto error_poll_pipe;
1192 }
1193
1194 /* set read end of the pipe to non-blocking */
1195 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1196 if (ret < 0) {
1197 PERROR("fcntl O_NONBLOCK");
1198 goto error_poll_fcntl;
1199 }
1200
1201 /* set write end of the pipe to non-blocking */
1202 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1203 if (ret < 0) {
1204 PERROR("fcntl O_NONBLOCK");
1205 goto error_poll_fcntl;
1206 }
1207
1208 ret = pipe(ctx->consumer_should_quit);
1209 if (ret < 0) {
1210 PERROR("Error creating recv pipe");
1211 goto error_quit_pipe;
1212 }
1213
1214 ret = pipe(ctx->consumer_thread_pipe);
1215 if (ret < 0) {
1216 PERROR("Error creating thread pipe");
1217 goto error_thread_pipe;
1218 }
1219
1220 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1221 if (ret < 0) {
1222 goto error_metadata_pipe;
1223 }
1224
1225 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1226 if (ret < 0) {
1227 goto error_splice_pipe;
1228 }
1229
1230 return ctx;
1231
1232 error_splice_pipe:
1233 utils_close_pipe(ctx->consumer_metadata_pipe);
1234 error_metadata_pipe:
1235 utils_close_pipe(ctx->consumer_thread_pipe);
1236 error_thread_pipe:
1237 for (i = 0; i < 2; i++) {
1238 int err;
1239
1240 err = close(ctx->consumer_should_quit[i]);
1241 if (err) {
1242 PERROR("close");
1243 }
1244 }
1245 error_poll_fcntl:
1246 error_quit_pipe:
1247 for (i = 0; i < 2; i++) {
1248 int err;
1249
1250 err = close(ctx->consumer_data_pipe[i]);
1251 if (err) {
1252 PERROR("close");
1253 }
1254 }
1255 error_poll_pipe:
1256 free(ctx);
1257 error:
1258 return NULL;
1259 }
1260
1261 /*
1262 * Close all fds associated with the instance and free the context.
1263 */
1264 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1265 {
1266 int ret;
1267
1268 DBG("Consumer destroying it. Closing everything.");
1269
1270 ret = close(ctx->consumer_error_socket);
1271 if (ret) {
1272 PERROR("close");
1273 }
1274 ret = close(ctx->consumer_thread_pipe[0]);
1275 if (ret) {
1276 PERROR("close");
1277 }
1278 ret = close(ctx->consumer_thread_pipe[1]);
1279 if (ret) {
1280 PERROR("close");
1281 }
1282 ret = close(ctx->consumer_data_pipe[0]);
1283 if (ret) {
1284 PERROR("close");
1285 }
1286 ret = close(ctx->consumer_data_pipe[1]);
1287 if (ret) {
1288 PERROR("close");
1289 }
1290 ret = close(ctx->consumer_should_quit[0]);
1291 if (ret) {
1292 PERROR("close");
1293 }
1294 ret = close(ctx->consumer_should_quit[1]);
1295 if (ret) {
1296 PERROR("close");
1297 }
1298 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1299
1300 unlink(ctx->consumer_command_sock_path);
1301 free(ctx);
1302 }
1303
1304 /*
1305 * Write the metadata stream id on the specified file descriptor.
1306 */
1307 static int write_relayd_metadata_id(int fd,
1308 struct lttng_consumer_stream *stream,
1309 struct consumer_relayd_sock_pair *relayd,
1310 unsigned long padding)
1311 {
1312 int ret;
1313 struct lttcomm_relayd_metadata_payload hdr;
1314
1315 hdr.stream_id = htobe64(stream->relayd_stream_id);
1316 hdr.padding_size = htobe32(padding);
1317 do {
1318 ret = write(fd, (void *) &hdr, sizeof(hdr));
1319 } while (ret < 0 && errno == EINTR);
1320 if (ret < 0) {
1321 PERROR("write metadata stream id");
1322 goto end;
1323 }
1324 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1325 stream->relayd_stream_id, padding);
1326
1327 end:
1328 return ret;
1329 }
1330
1331 /*
1332 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1333 * core function for writing trace buffers to either the local filesystem or
1334 * the network.
1335 *
1336 * It must be called with the stream lock held.
1337 *
1338 * Careful review MUST be put if any changes occur!
1339 *
1340 * Returns the number of bytes written
1341 */
1342 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1343 struct lttng_consumer_local_data *ctx,
1344 struct lttng_consumer_stream *stream, unsigned long len,
1345 unsigned long padding)
1346 {
1347 unsigned long mmap_offset;
1348 ssize_t ret = 0, written = 0;
1349 off_t orig_offset = stream->out_fd_offset;
1350 /* Default is on the disk */
1351 int outfd = stream->out_fd;
1352 struct consumer_relayd_sock_pair *relayd = NULL;
1353 unsigned int relayd_hang_up = 0;
1354
1355 /* RCU lock for the relayd pointer */
1356 rcu_read_lock();
1357
1358 /* Flag that the current stream if set for network streaming. */
1359 if (stream->net_seq_idx != -1) {
1360 relayd = consumer_find_relayd(stream->net_seq_idx);
1361 if (relayd == NULL) {
1362 goto end;
1363 }
1364 }
1365
1366 /* get the offset inside the fd to mmap */
1367 switch (consumer_data.type) {
1368 case LTTNG_CONSUMER_KERNEL:
1369 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1370 break;
1371 case LTTNG_CONSUMER32_UST:
1372 case LTTNG_CONSUMER64_UST:
1373 ret = lttng_ustctl_get_mmap_read_offset(stream->chan->handle,
1374 stream->buf, &mmap_offset);
1375 break;
1376 default:
1377 ERR("Unknown consumer_data type");
1378 assert(0);
1379 }
1380 if (ret != 0) {
1381 errno = -ret;
1382 PERROR("tracer ctl get_mmap_read_offset");
1383 written = ret;
1384 goto end;
1385 }
1386
1387 /* Handle stream on the relayd if the output is on the network */
1388 if (relayd) {
1389 unsigned long netlen = len;
1390
1391 /*
1392 * Lock the control socket for the complete duration of the function
1393 * since from this point on we will use the socket.
1394 */
1395 if (stream->metadata_flag) {
1396 /* Metadata requires the control socket. */
1397 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1398 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1399 }
1400
1401 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1402 if (ret >= 0) {
1403 /* Use the returned socket. */
1404 outfd = ret;
1405
1406 /* Write metadata stream id before payload */
1407 if (stream->metadata_flag) {
1408 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1409 if (ret < 0) {
1410 written = ret;
1411 /* Socket operation failed. We consider the relayd dead */
1412 if (ret == -EPIPE || ret == -EINVAL) {
1413 relayd_hang_up = 1;
1414 goto write_error;
1415 }
1416 goto end;
1417 }
1418 }
1419 } else {
1420 /* Socket operation failed. We consider the relayd dead */
1421 if (ret == -EPIPE || ret == -EINVAL) {
1422 relayd_hang_up = 1;
1423 goto write_error;
1424 }
1425 /* Else, use the default set before which is the filesystem. */
1426 }
1427 } else {
1428 /* No streaming, we have to set the len with the full padding */
1429 len += padding;
1430 }
1431
1432 while (len > 0) {
1433 do {
1434 ret = write(outfd, stream->mmap_base + mmap_offset, len);
1435 } while (ret < 0 && errno == EINTR);
1436 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1437 if (ret < 0) {
1438 PERROR("Error in file write");
1439 if (written == 0) {
1440 written = ret;
1441 }
1442 /* Socket operation failed. We consider the relayd dead */
1443 if (errno == EPIPE || errno == EINVAL) {
1444 relayd_hang_up = 1;
1445 goto write_error;
1446 }
1447 goto end;
1448 } else if (ret > len) {
1449 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1450 written += ret;
1451 goto end;
1452 } else {
1453 len -= ret;
1454 mmap_offset += ret;
1455 }
1456
1457 /* This call is useless on a socket so better save a syscall. */
1458 if (!relayd) {
1459 /* This won't block, but will start writeout asynchronously */
1460 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1461 SYNC_FILE_RANGE_WRITE);
1462 stream->out_fd_offset += ret;
1463 }
1464 written += ret;
1465 }
1466 lttng_consumer_sync_trace_file(stream, orig_offset);
1467
1468 write_error:
1469 /*
1470 * This is a special case that the relayd has closed its socket. Let's
1471 * cleanup the relayd object and all associated streams.
1472 */
1473 if (relayd && relayd_hang_up) {
1474 cleanup_relayd(relayd, ctx);
1475 }
1476
1477 end:
1478 /* Unlock only if ctrl socket used */
1479 if (relayd && stream->metadata_flag) {
1480 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1481 }
1482
1483 rcu_read_unlock();
1484 return written;
1485 }
1486
1487 /*
1488 * Splice the data from the ring buffer to the tracefile.
1489 *
1490 * It must be called with the stream lock held.
1491 *
1492 * Returns the number of bytes spliced.
1493 */
1494 ssize_t lttng_consumer_on_read_subbuffer_splice(
1495 struct lttng_consumer_local_data *ctx,
1496 struct lttng_consumer_stream *stream, unsigned long len,
1497 unsigned long padding)
1498 {
1499 ssize_t ret = 0, written = 0, ret_splice = 0;
1500 loff_t offset = 0;
1501 off_t orig_offset = stream->out_fd_offset;
1502 int fd = stream->wait_fd;
1503 /* Default is on the disk */
1504 int outfd = stream->out_fd;
1505 struct consumer_relayd_sock_pair *relayd = NULL;
1506 int *splice_pipe;
1507 unsigned int relayd_hang_up = 0;
1508
1509 switch (consumer_data.type) {
1510 case LTTNG_CONSUMER_KERNEL:
1511 break;
1512 case LTTNG_CONSUMER32_UST:
1513 case LTTNG_CONSUMER64_UST:
1514 /* Not supported for user space tracing */
1515 return -ENOSYS;
1516 default:
1517 ERR("Unknown consumer_data type");
1518 assert(0);
1519 }
1520
1521 /* RCU lock for the relayd pointer */
1522 rcu_read_lock();
1523
1524 /* Flag that the current stream if set for network streaming. */
1525 if (stream->net_seq_idx != -1) {
1526 relayd = consumer_find_relayd(stream->net_seq_idx);
1527 if (relayd == NULL) {
1528 goto end;
1529 }
1530 }
1531
1532 /*
1533 * Choose right pipe for splice. Metadata and trace data are handled by
1534 * different threads hence the use of two pipes in order not to race or
1535 * corrupt the written data.
1536 */
1537 if (stream->metadata_flag) {
1538 splice_pipe = ctx->consumer_splice_metadata_pipe;
1539 } else {
1540 splice_pipe = ctx->consumer_thread_pipe;
1541 }
1542
1543 /* Write metadata stream id before payload */
1544 if (relayd) {
1545 int total_len = len;
1546
1547 if (stream->metadata_flag) {
1548 /*
1549 * Lock the control socket for the complete duration of the function
1550 * since from this point on we will use the socket.
1551 */
1552 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1553
1554 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1555 padding);
1556 if (ret < 0) {
1557 written = ret;
1558 /* Socket operation failed. We consider the relayd dead */
1559 if (ret == -EBADF) {
1560 WARN("Remote relayd disconnected. Stopping");
1561 relayd_hang_up = 1;
1562 goto write_error;
1563 }
1564 goto end;
1565 }
1566
1567 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1568 }
1569
1570 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1571 if (ret >= 0) {
1572 /* Use the returned socket. */
1573 outfd = ret;
1574 } else {
1575 /* Socket operation failed. We consider the relayd dead */
1576 if (ret == -EBADF) {
1577 WARN("Remote relayd disconnected. Stopping");
1578 relayd_hang_up = 1;
1579 goto write_error;
1580 }
1581 goto end;
1582 }
1583 } else {
1584 /* No streaming, we have to set the len with the full padding */
1585 len += padding;
1586 }
1587
1588 while (len > 0) {
1589 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1590 (unsigned long)offset, len, fd, splice_pipe[1]);
1591 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1592 SPLICE_F_MOVE | SPLICE_F_MORE);
1593 DBG("splice chan to pipe, ret %zd", ret_splice);
1594 if (ret_splice < 0) {
1595 PERROR("Error in relay splice");
1596 if (written == 0) {
1597 written = ret_splice;
1598 }
1599 ret = errno;
1600 goto splice_error;
1601 }
1602
1603 /* Handle stream on the relayd if the output is on the network */
1604 if (relayd) {
1605 if (stream->metadata_flag) {
1606 size_t metadata_payload_size =
1607 sizeof(struct lttcomm_relayd_metadata_payload);
1608
1609 /* Update counter to fit the spliced data */
1610 ret_splice += metadata_payload_size;
1611 len += metadata_payload_size;
1612 /*
1613 * We do this so the return value can match the len passed as
1614 * argument to this function.
1615 */
1616 written -= metadata_payload_size;
1617 }
1618 }
1619
1620 /* Splice data out */
1621 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1622 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1623 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1624 if (ret_splice < 0) {
1625 PERROR("Error in file splice");
1626 if (written == 0) {
1627 written = ret_splice;
1628 }
1629 /* Socket operation failed. We consider the relayd dead */
1630 if (errno == EBADF || errno == EPIPE) {
1631 WARN("Remote relayd disconnected. Stopping");
1632 relayd_hang_up = 1;
1633 goto write_error;
1634 }
1635 ret = errno;
1636 goto splice_error;
1637 } else if (ret_splice > len) {
1638 errno = EINVAL;
1639 PERROR("Wrote more data than requested %zd (len: %lu)",
1640 ret_splice, len);
1641 written += ret_splice;
1642 ret = errno;
1643 goto splice_error;
1644 }
1645 len -= ret_splice;
1646
1647 /* This call is useless on a socket so better save a syscall. */
1648 if (!relayd) {
1649 /* This won't block, but will start writeout asynchronously */
1650 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1651 SYNC_FILE_RANGE_WRITE);
1652 stream->out_fd_offset += ret_splice;
1653 }
1654 written += ret_splice;
1655 }
1656 lttng_consumer_sync_trace_file(stream, orig_offset);
1657
1658 ret = ret_splice;
1659
1660 goto end;
1661
1662 write_error:
1663 /*
1664 * This is a special case that the relayd has closed its socket. Let's
1665 * cleanup the relayd object and all associated streams.
1666 */
1667 if (relayd && relayd_hang_up) {
1668 cleanup_relayd(relayd, ctx);
1669 /* Skip splice error so the consumer does not fail */
1670 goto end;
1671 }
1672
1673 splice_error:
1674 /* send the appropriate error description to sessiond */
1675 switch (ret) {
1676 case EINVAL:
1677 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1678 break;
1679 case ENOMEM:
1680 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1681 break;
1682 case ESPIPE:
1683 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1684 break;
1685 }
1686
1687 end:
1688 if (relayd && stream->metadata_flag) {
1689 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1690 }
1691
1692 rcu_read_unlock();
1693 return written;
1694 }
1695
1696 /*
1697 * Take a snapshot for a specific fd
1698 *
1699 * Returns 0 on success, < 0 on error
1700 */
1701 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data *ctx,
1702 struct lttng_consumer_stream *stream)
1703 {
1704 switch (consumer_data.type) {
1705 case LTTNG_CONSUMER_KERNEL:
1706 return lttng_kconsumer_take_snapshot(ctx, stream);
1707 case LTTNG_CONSUMER32_UST:
1708 case LTTNG_CONSUMER64_UST:
1709 return lttng_ustconsumer_take_snapshot(ctx, stream);
1710 default:
1711 ERR("Unknown consumer_data type");
1712 assert(0);
1713 return -ENOSYS;
1714 }
1715
1716 }
1717
1718 /*
1719 * Get the produced position
1720 *
1721 * Returns 0 on success, < 0 on error
1722 */
1723 int lttng_consumer_get_produced_snapshot(
1724 struct lttng_consumer_local_data *ctx,
1725 struct lttng_consumer_stream *stream,
1726 unsigned long *pos)
1727 {
1728 switch (consumer_data.type) {
1729 case LTTNG_CONSUMER_KERNEL:
1730 return lttng_kconsumer_get_produced_snapshot(ctx, stream, pos);
1731 case LTTNG_CONSUMER32_UST:
1732 case LTTNG_CONSUMER64_UST:
1733 return lttng_ustconsumer_get_produced_snapshot(ctx, stream, pos);
1734 default:
1735 ERR("Unknown consumer_data type");
1736 assert(0);
1737 return -ENOSYS;
1738 }
1739 }
1740
1741 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1742 int sock, struct pollfd *consumer_sockpoll)
1743 {
1744 switch (consumer_data.type) {
1745 case LTTNG_CONSUMER_KERNEL:
1746 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1747 case LTTNG_CONSUMER32_UST:
1748 case LTTNG_CONSUMER64_UST:
1749 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1750 default:
1751 ERR("Unknown consumer_data type");
1752 assert(0);
1753 return -ENOSYS;
1754 }
1755 }
1756
1757 /*
1758 * Iterate over all streams of the hashtable and free them properly.
1759 *
1760 * WARNING: *MUST* be used with data stream only.
1761 */
1762 static void destroy_data_stream_ht(struct lttng_ht *ht)
1763 {
1764 struct lttng_ht_iter iter;
1765 struct lttng_consumer_stream *stream;
1766
1767 if (ht == NULL) {
1768 return;
1769 }
1770
1771 rcu_read_lock();
1772 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1773 /*
1774 * Ignore return value since we are currently cleaning up so any error
1775 * can't be handled.
1776 */
1777 (void) consumer_del_stream(stream, ht);
1778 }
1779 rcu_read_unlock();
1780
1781 lttng_ht_destroy(ht);
1782 }
1783
1784 /*
1785 * Iterate over all streams of the hashtable and free them properly.
1786 *
1787 * XXX: Should not be only for metadata stream or else use an other name.
1788 */
1789 static void destroy_stream_ht(struct lttng_ht *ht)
1790 {
1791 struct lttng_ht_iter iter;
1792 struct lttng_consumer_stream *stream;
1793
1794 if (ht == NULL) {
1795 return;
1796 }
1797
1798 rcu_read_lock();
1799 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1800 /*
1801 * Ignore return value since we are currently cleaning up so any error
1802 * can't be handled.
1803 */
1804 (void) consumer_del_metadata_stream(stream, ht);
1805 }
1806 rcu_read_unlock();
1807
1808 lttng_ht_destroy(ht);
1809 }
1810
1811 /*
1812 * Clean up a metadata stream and free its memory.
1813 */
1814 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1815 struct lttng_ht *ht)
1816 {
1817 int ret;
1818 struct lttng_ht_iter iter;
1819 struct lttng_consumer_channel *free_chan = NULL;
1820 struct consumer_relayd_sock_pair *relayd;
1821
1822 assert(stream);
1823 /*
1824 * This call should NEVER receive regular stream. It must always be
1825 * metadata stream and this is crucial for data structure synchronization.
1826 */
1827 assert(stream->metadata_flag);
1828
1829 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1830
1831 if (ht == NULL) {
1832 /* Means the stream was allocated but not successfully added */
1833 goto free_stream;
1834 }
1835
1836 pthread_mutex_lock(&consumer_data.lock);
1837 pthread_mutex_lock(&stream->lock);
1838
1839 switch (consumer_data.type) {
1840 case LTTNG_CONSUMER_KERNEL:
1841 if (stream->mmap_base != NULL) {
1842 ret = munmap(stream->mmap_base, stream->mmap_len);
1843 if (ret != 0) {
1844 PERROR("munmap metadata stream");
1845 }
1846 }
1847 break;
1848 case LTTNG_CONSUMER32_UST:
1849 case LTTNG_CONSUMER64_UST:
1850 lttng_ustconsumer_del_stream(stream);
1851 break;
1852 default:
1853 ERR("Unknown consumer_data type");
1854 assert(0);
1855 goto end;
1856 }
1857
1858 rcu_read_lock();
1859 iter.iter.node = &stream->node.node;
1860 ret = lttng_ht_del(ht, &iter);
1861 assert(!ret);
1862
1863 /* Remove node session id from the consumer_data stream ht */
1864 iter.iter.node = &stream->node_session_id.node;
1865 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1866 assert(!ret);
1867 rcu_read_unlock();
1868
1869 if (stream->out_fd >= 0) {
1870 ret = close(stream->out_fd);
1871 if (ret) {
1872 PERROR("close");
1873 }
1874 }
1875
1876 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
1877 ret = close(stream->wait_fd);
1878 if (ret) {
1879 PERROR("close");
1880 }
1881 }
1882
1883 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
1884 ret = close(stream->shm_fd);
1885 if (ret) {
1886 PERROR("close");
1887 }
1888 }
1889
1890 /* Check and cleanup relayd */
1891 rcu_read_lock();
1892 relayd = consumer_find_relayd(stream->net_seq_idx);
1893 if (relayd != NULL) {
1894 uatomic_dec(&relayd->refcount);
1895 assert(uatomic_read(&relayd->refcount) >= 0);
1896
1897 /* Closing streams requires to lock the control socket. */
1898 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1899 ret = relayd_send_close_stream(&relayd->control_sock,
1900 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1901 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1902 if (ret < 0) {
1903 DBG("Unable to close stream on the relayd. Continuing");
1904 /*
1905 * Continue here. There is nothing we can do for the relayd.
1906 * Chances are that the relayd has closed the socket so we just
1907 * continue cleaning up.
1908 */
1909 }
1910
1911 /* Both conditions are met, we destroy the relayd. */
1912 if (uatomic_read(&relayd->refcount) == 0 &&
1913 uatomic_read(&relayd->destroy_flag)) {
1914 destroy_relayd(relayd);
1915 }
1916 }
1917 rcu_read_unlock();
1918
1919 /* Atomically decrement channel refcount since other threads can use it. */
1920 uatomic_dec(&stream->chan->refcount);
1921 if (!uatomic_read(&stream->chan->refcount)
1922 && !uatomic_read(&stream->chan->nb_init_streams)) {
1923 /* Go for channel deletion! */
1924 free_chan = stream->chan;
1925 }
1926
1927 end:
1928 pthread_mutex_unlock(&stream->lock);
1929 pthread_mutex_unlock(&consumer_data.lock);
1930
1931 if (free_chan) {
1932 consumer_del_channel(free_chan);
1933 }
1934
1935 free_stream:
1936 call_rcu(&stream->node.head, consumer_free_stream);
1937 }
1938
1939 /*
1940 * Action done with the metadata stream when adding it to the consumer internal
1941 * data structures to handle it.
1942 */
1943 static int consumer_add_metadata_stream(struct lttng_consumer_stream *stream,
1944 struct lttng_ht *ht)
1945 {
1946 int ret = 0;
1947 struct consumer_relayd_sock_pair *relayd;
1948 struct lttng_ht_iter iter;
1949 struct lttng_ht_node_ulong *node;
1950
1951 assert(stream);
1952 assert(ht);
1953
1954 DBG3("Adding metadata stream %d to hash table", stream->wait_fd);
1955
1956 pthread_mutex_lock(&consumer_data.lock);
1957 pthread_mutex_lock(&stream->lock);
1958
1959 /*
1960 * From here, refcounts are updated so be _careful_ when returning an error
1961 * after this point.
1962 */
1963
1964 rcu_read_lock();
1965
1966 /*
1967 * Lookup the stream just to make sure it does not exist in our internal
1968 * state. This should NEVER happen.
1969 */
1970 lttng_ht_lookup(ht, (void *)((unsigned long) stream->wait_fd), &iter);
1971 node = lttng_ht_iter_get_node_ulong(&iter);
1972 assert(!node);
1973
1974 /* Find relayd and, if one is found, increment refcount. */
1975 relayd = consumer_find_relayd(stream->net_seq_idx);
1976 if (relayd != NULL) {
1977 uatomic_inc(&relayd->refcount);
1978 }
1979
1980 /* Update channel refcount once added without error(s). */
1981 uatomic_inc(&stream->chan->refcount);
1982
1983 /*
1984 * When nb_init_streams reaches 0, we don't need to trigger any action in
1985 * terms of destroying the associated channel, because the action that
1986 * causes the count to become 0 also causes a stream to be added. The
1987 * channel deletion will thus be triggered by the following removal of this
1988 * stream.
1989 */
1990 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
1991 uatomic_dec(&stream->chan->nb_init_streams);
1992 }
1993
1994 lttng_ht_add_unique_ulong(ht, &stream->node);
1995
1996 /*
1997 * Add stream to the stream_list_ht of the consumer data. No need to steal
1998 * the key since the HT does not use it and we allow to add redundant keys
1999 * into this table.
2000 */
2001 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
2002
2003 rcu_read_unlock();
2004
2005 pthread_mutex_unlock(&stream->lock);
2006 pthread_mutex_unlock(&consumer_data.lock);
2007 return ret;
2008 }
2009
2010 /*
2011 * Delete data stream that are flagged for deletion (endpoint_status).
2012 */
2013 static void validate_endpoint_status_data_stream(void)
2014 {
2015 struct lttng_ht_iter iter;
2016 struct lttng_consumer_stream *stream;
2017
2018 DBG("Consumer delete flagged data stream");
2019
2020 rcu_read_lock();
2021 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2022 /* Validate delete flag of the stream */
2023 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2024 continue;
2025 }
2026 /* Delete it right now */
2027 consumer_del_stream(stream, data_ht);
2028 }
2029 rcu_read_unlock();
2030 }
2031
2032 /*
2033 * Delete metadata stream that are flagged for deletion (endpoint_status).
2034 */
2035 static void validate_endpoint_status_metadata_stream(
2036 struct lttng_poll_event *pollset)
2037 {
2038 struct lttng_ht_iter iter;
2039 struct lttng_consumer_stream *stream;
2040
2041 DBG("Consumer delete flagged metadata stream");
2042
2043 assert(pollset);
2044
2045 rcu_read_lock();
2046 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2047 /* Validate delete flag of the stream */
2048 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2049 continue;
2050 }
2051 /*
2052 * Remove from pollset so the metadata thread can continue without
2053 * blocking on a deleted stream.
2054 */
2055 lttng_poll_del(pollset, stream->wait_fd);
2056
2057 /* Delete it right now */
2058 consumer_del_metadata_stream(stream, metadata_ht);
2059 }
2060 rcu_read_unlock();
2061 }
2062
2063 /*
2064 * Thread polls on metadata file descriptor and write them on disk or on the
2065 * network.
2066 */
2067 void *consumer_thread_metadata_poll(void *data)
2068 {
2069 int ret, i, pollfd;
2070 uint32_t revents, nb_fd;
2071 struct lttng_consumer_stream *stream = NULL;
2072 struct lttng_ht_iter iter;
2073 struct lttng_ht_node_ulong *node;
2074 struct lttng_poll_event events;
2075 struct lttng_consumer_local_data *ctx = data;
2076 ssize_t len;
2077
2078 rcu_register_thread();
2079
2080 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2081 if (!metadata_ht) {
2082 /* ENOMEM at this point. Better to bail out. */
2083 goto error;
2084 }
2085
2086 DBG("Thread metadata poll started");
2087
2088 /* Size is set to 1 for the consumer_metadata pipe */
2089 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2090 if (ret < 0) {
2091 ERR("Poll set creation failed");
2092 goto end;
2093 }
2094
2095 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
2096 if (ret < 0) {
2097 goto end;
2098 }
2099
2100 /* Main loop */
2101 DBG("Metadata main loop started");
2102
2103 while (1) {
2104 lttng_poll_reset(&events);
2105
2106 nb_fd = LTTNG_POLL_GETNB(&events);
2107
2108 /* Only the metadata pipe is set */
2109 if (nb_fd == 0 && consumer_quit == 1) {
2110 goto end;
2111 }
2112
2113 restart:
2114 DBG("Metadata poll wait with %d fd(s)", nb_fd);
2115 ret = lttng_poll_wait(&events, -1);
2116 DBG("Metadata event catched in thread");
2117 if (ret < 0) {
2118 if (errno == EINTR) {
2119 ERR("Poll EINTR catched");
2120 goto restart;
2121 }
2122 goto error;
2123 }
2124
2125 /* From here, the event is a metadata wait fd */
2126 for (i = 0; i < nb_fd; i++) {
2127 revents = LTTNG_POLL_GETEV(&events, i);
2128 pollfd = LTTNG_POLL_GETFD(&events, i);
2129
2130 /* Just don't waste time if no returned events for the fd */
2131 if (!revents) {
2132 continue;
2133 }
2134
2135 if (pollfd == ctx->consumer_metadata_pipe[0]) {
2136 if (revents & (LPOLLERR | LPOLLHUP )) {
2137 DBG("Metadata thread pipe hung up");
2138 /*
2139 * Remove the pipe from the poll set and continue the loop
2140 * since their might be data to consume.
2141 */
2142 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
2143 ret = close(ctx->consumer_metadata_pipe[0]);
2144 if (ret < 0) {
2145 PERROR("close metadata pipe");
2146 }
2147 continue;
2148 } else if (revents & LPOLLIN) {
2149 do {
2150 /* Get the stream pointer received */
2151 ret = read(pollfd, &stream, sizeof(stream));
2152 } while (ret < 0 && errno == EINTR);
2153 if (ret < 0 ||
2154 ret < sizeof(struct lttng_consumer_stream *)) {
2155 PERROR("read metadata stream");
2156 /*
2157 * Let's continue here and hope we can still work
2158 * without stopping the consumer. XXX: Should we?
2159 */
2160 continue;
2161 }
2162
2163 /* A NULL stream means that the state has changed. */
2164 if (stream == NULL) {
2165 /* Check for deleted streams. */
2166 validate_endpoint_status_metadata_stream(&events);
2167 continue;
2168 }
2169
2170 DBG("Adding metadata stream %d to poll set",
2171 stream->wait_fd);
2172
2173 ret = consumer_add_metadata_stream(stream, metadata_ht);
2174 if (ret) {
2175 ERR("Unable to add metadata stream");
2176 /* Stream was not setup properly. Continuing. */
2177 consumer_del_metadata_stream(stream, NULL);
2178 continue;
2179 }
2180
2181 /* Add metadata stream to the global poll events list */
2182 lttng_poll_add(&events, stream->wait_fd,
2183 LPOLLIN | LPOLLPRI);
2184 }
2185
2186 /* Handle other stream */
2187 continue;
2188 }
2189
2190 rcu_read_lock();
2191 lttng_ht_lookup(metadata_ht, (void *)((unsigned long) pollfd),
2192 &iter);
2193 node = lttng_ht_iter_get_node_ulong(&iter);
2194 assert(node);
2195
2196 stream = caa_container_of(node, struct lttng_consumer_stream,
2197 node);
2198
2199 /* Check for error event */
2200 if (revents & (LPOLLERR | LPOLLHUP)) {
2201 DBG("Metadata fd %d is hup|err.", pollfd);
2202 if (!stream->hangup_flush_done
2203 && (consumer_data.type == LTTNG_CONSUMER32_UST
2204 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2205 DBG("Attempting to flush and consume the UST buffers");
2206 lttng_ustconsumer_on_stream_hangup(stream);
2207
2208 /* We just flushed the stream now read it. */
2209 do {
2210 len = ctx->on_buffer_ready(stream, ctx);
2211 /*
2212 * We don't check the return value here since if we get
2213 * a negative len, it means an error occured thus we
2214 * simply remove it from the poll set and free the
2215 * stream.
2216 */
2217 } while (len > 0);
2218 }
2219
2220 lttng_poll_del(&events, stream->wait_fd);
2221 /*
2222 * This call update the channel states, closes file descriptors
2223 * and securely free the stream.
2224 */
2225 consumer_del_metadata_stream(stream, metadata_ht);
2226 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2227 /* Get the data out of the metadata file descriptor */
2228 DBG("Metadata available on fd %d", pollfd);
2229 assert(stream->wait_fd == pollfd);
2230
2231 len = ctx->on_buffer_ready(stream, ctx);
2232 /* It's ok to have an unavailable sub-buffer */
2233 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2234 /* Clean up stream from consumer and free it. */
2235 lttng_poll_del(&events, stream->wait_fd);
2236 consumer_del_metadata_stream(stream, metadata_ht);
2237 } else if (len > 0) {
2238 stream->data_read = 1;
2239 }
2240 }
2241
2242 /* Release RCU lock for the stream looked up */
2243 rcu_read_unlock();
2244 }
2245 }
2246
2247 error:
2248 end:
2249 DBG("Metadata poll thread exiting");
2250 lttng_poll_clean(&events);
2251
2252 destroy_stream_ht(metadata_ht);
2253
2254 rcu_unregister_thread();
2255 return NULL;
2256 }
2257
2258 /*
2259 * This thread polls the fds in the set to consume the data and write
2260 * it to tracefile if necessary.
2261 */
2262 void *consumer_thread_data_poll(void *data)
2263 {
2264 int num_rdy, num_hup, high_prio, ret, i;
2265 struct pollfd *pollfd = NULL;
2266 /* local view of the streams */
2267 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2268 /* local view of consumer_data.fds_count */
2269 int nb_fd = 0;
2270 struct lttng_consumer_local_data *ctx = data;
2271 ssize_t len;
2272
2273 rcu_register_thread();
2274
2275 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2276 if (data_ht == NULL) {
2277 /* ENOMEM at this point. Better to bail out. */
2278 goto end;
2279 }
2280
2281 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2282
2283 while (1) {
2284 high_prio = 0;
2285 num_hup = 0;
2286
2287 /*
2288 * the fds set has been updated, we need to update our
2289 * local array as well
2290 */
2291 pthread_mutex_lock(&consumer_data.lock);
2292 if (consumer_data.need_update) {
2293 if (pollfd != NULL) {
2294 free(pollfd);
2295 pollfd = NULL;
2296 }
2297 if (local_stream != NULL) {
2298 free(local_stream);
2299 local_stream = NULL;
2300 }
2301
2302 /* allocate for all fds + 1 for the consumer_data_pipe */
2303 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2304 if (pollfd == NULL) {
2305 PERROR("pollfd malloc");
2306 pthread_mutex_unlock(&consumer_data.lock);
2307 goto end;
2308 }
2309
2310 /* allocate for all fds + 1 for the consumer_data_pipe */
2311 local_stream = zmalloc((consumer_data.stream_count + 1) *
2312 sizeof(struct lttng_consumer_stream));
2313 if (local_stream == NULL) {
2314 PERROR("local_stream malloc");
2315 pthread_mutex_unlock(&consumer_data.lock);
2316 goto end;
2317 }
2318 ret = consumer_update_poll_array(ctx, &pollfd, local_stream,
2319 data_ht);
2320 if (ret < 0) {
2321 ERR("Error in allocating pollfd or local_outfds");
2322 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2323 pthread_mutex_unlock(&consumer_data.lock);
2324 goto end;
2325 }
2326 nb_fd = ret;
2327 consumer_data.need_update = 0;
2328 }
2329 pthread_mutex_unlock(&consumer_data.lock);
2330
2331 /* No FDs and consumer_quit, consumer_cleanup the thread */
2332 if (nb_fd == 0 && consumer_quit == 1) {
2333 goto end;
2334 }
2335 /* poll on the array of fds */
2336 restart:
2337 DBG("polling on %d fd", nb_fd + 1);
2338 num_rdy = poll(pollfd, nb_fd + 1, -1);
2339 DBG("poll num_rdy : %d", num_rdy);
2340 if (num_rdy == -1) {
2341 /*
2342 * Restart interrupted system call.
2343 */
2344 if (errno == EINTR) {
2345 goto restart;
2346 }
2347 PERROR("Poll error");
2348 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2349 goto end;
2350 } else if (num_rdy == 0) {
2351 DBG("Polling thread timed out");
2352 goto end;
2353 }
2354
2355 /*
2356 * If the consumer_data_pipe triggered poll go directly to the
2357 * beginning of the loop to update the array. We want to prioritize
2358 * array update over low-priority reads.
2359 */
2360 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2361 size_t pipe_readlen;
2362
2363 DBG("consumer_data_pipe wake up");
2364 /* Consume 1 byte of pipe data */
2365 do {
2366 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2367 sizeof(new_stream));
2368 } while (pipe_readlen == -1 && errno == EINTR);
2369
2370 /*
2371 * If the stream is NULL, just ignore it. It's also possible that
2372 * the sessiond poll thread changed the consumer_quit state and is
2373 * waking us up to test it.
2374 */
2375 if (new_stream == NULL) {
2376 validate_endpoint_status_data_stream();
2377 continue;
2378 }
2379
2380 ret = consumer_add_stream(new_stream, data_ht);
2381 if (ret) {
2382 ERR("Consumer add stream %d failed. Continuing",
2383 new_stream->key);
2384 /*
2385 * At this point, if the add_stream fails, it is not in the
2386 * hash table thus passing the NULL value here.
2387 */
2388 consumer_del_stream(new_stream, NULL);
2389 }
2390
2391 /* Continue to update the local streams and handle prio ones */
2392 continue;
2393 }
2394
2395 /* Take care of high priority channels first. */
2396 for (i = 0; i < nb_fd; i++) {
2397 if (local_stream[i] == NULL) {
2398 continue;
2399 }
2400 if (pollfd[i].revents & POLLPRI) {
2401 DBG("Urgent read on fd %d", pollfd[i].fd);
2402 high_prio = 1;
2403 len = ctx->on_buffer_ready(local_stream[i], ctx);
2404 /* it's ok to have an unavailable sub-buffer */
2405 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2406 /* Clean the stream and free it. */
2407 consumer_del_stream(local_stream[i], data_ht);
2408 local_stream[i] = NULL;
2409 } else if (len > 0) {
2410 local_stream[i]->data_read = 1;
2411 }
2412 }
2413 }
2414
2415 /*
2416 * If we read high prio channel in this loop, try again
2417 * for more high prio data.
2418 */
2419 if (high_prio) {
2420 continue;
2421 }
2422
2423 /* Take care of low priority channels. */
2424 for (i = 0; i < nb_fd; i++) {
2425 if (local_stream[i] == NULL) {
2426 continue;
2427 }
2428 if ((pollfd[i].revents & POLLIN) ||
2429 local_stream[i]->hangup_flush_done) {
2430 DBG("Normal read on fd %d", pollfd[i].fd);
2431 len = ctx->on_buffer_ready(local_stream[i], ctx);
2432 /* it's ok to have an unavailable sub-buffer */
2433 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2434 /* Clean the stream and free it. */
2435 consumer_del_stream(local_stream[i], data_ht);
2436 local_stream[i] = NULL;
2437 } else if (len > 0) {
2438 local_stream[i]->data_read = 1;
2439 }
2440 }
2441 }
2442
2443 /* Handle hangup and errors */
2444 for (i = 0; i < nb_fd; i++) {
2445 if (local_stream[i] == NULL) {
2446 continue;
2447 }
2448 if (!local_stream[i]->hangup_flush_done
2449 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2450 && (consumer_data.type == LTTNG_CONSUMER32_UST
2451 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2452 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2453 pollfd[i].fd);
2454 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2455 /* Attempt read again, for the data we just flushed. */
2456 local_stream[i]->data_read = 1;
2457 }
2458 /*
2459 * If the poll flag is HUP/ERR/NVAL and we have
2460 * read no data in this pass, we can remove the
2461 * stream from its hash table.
2462 */
2463 if ((pollfd[i].revents & POLLHUP)) {
2464 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2465 if (!local_stream[i]->data_read) {
2466 consumer_del_stream(local_stream[i], data_ht);
2467 local_stream[i] = NULL;
2468 num_hup++;
2469 }
2470 } else if (pollfd[i].revents & POLLERR) {
2471 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2472 if (!local_stream[i]->data_read) {
2473 consumer_del_stream(local_stream[i], data_ht);
2474 local_stream[i] = NULL;
2475 num_hup++;
2476 }
2477 } else if (pollfd[i].revents & POLLNVAL) {
2478 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2479 if (!local_stream[i]->data_read) {
2480 consumer_del_stream(local_stream[i], data_ht);
2481 local_stream[i] = NULL;
2482 num_hup++;
2483 }
2484 }
2485 if (local_stream[i] != NULL) {
2486 local_stream[i]->data_read = 0;
2487 }
2488 }
2489 }
2490 end:
2491 DBG("polling thread exiting");
2492 if (pollfd != NULL) {
2493 free(pollfd);
2494 pollfd = NULL;
2495 }
2496 if (local_stream != NULL) {
2497 free(local_stream);
2498 local_stream = NULL;
2499 }
2500
2501 /*
2502 * Close the write side of the pipe so epoll_wait() in
2503 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2504 * read side of the pipe. If we close them both, epoll_wait strangely does
2505 * not return and could create a endless wait period if the pipe is the
2506 * only tracked fd in the poll set. The thread will take care of closing
2507 * the read side.
2508 */
2509 ret = close(ctx->consumer_metadata_pipe[1]);
2510 if (ret < 0) {
2511 PERROR("close data pipe");
2512 }
2513
2514 destroy_data_stream_ht(data_ht);
2515
2516 rcu_unregister_thread();
2517 return NULL;
2518 }
2519
2520 /*
2521 * This thread listens on the consumerd socket and receives the file
2522 * descriptors from the session daemon.
2523 */
2524 void *consumer_thread_sessiond_poll(void *data)
2525 {
2526 int sock = -1, client_socket, ret;
2527 /*
2528 * structure to poll for incoming data on communication socket avoids
2529 * making blocking sockets.
2530 */
2531 struct pollfd consumer_sockpoll[2];
2532 struct lttng_consumer_local_data *ctx = data;
2533
2534 rcu_register_thread();
2535
2536 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2537 unlink(ctx->consumer_command_sock_path);
2538 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2539 if (client_socket < 0) {
2540 ERR("Cannot create command socket");
2541 goto end;
2542 }
2543
2544 ret = lttcomm_listen_unix_sock(client_socket);
2545 if (ret < 0) {
2546 goto end;
2547 }
2548
2549 DBG("Sending ready command to lttng-sessiond");
2550 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2551 /* return < 0 on error, but == 0 is not fatal */
2552 if (ret < 0) {
2553 ERR("Error sending ready command to lttng-sessiond");
2554 goto end;
2555 }
2556
2557 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2558 if (ret < 0) {
2559 PERROR("fcntl O_NONBLOCK");
2560 goto end;
2561 }
2562
2563 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2564 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2565 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2566 consumer_sockpoll[1].fd = client_socket;
2567 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2568
2569 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2570 goto end;
2571 }
2572 DBG("Connection on client_socket");
2573
2574 /* Blocking call, waiting for transmission */
2575 sock = lttcomm_accept_unix_sock(client_socket);
2576 if (sock <= 0) {
2577 WARN("On accept");
2578 goto end;
2579 }
2580 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2581 if (ret < 0) {
2582 PERROR("fcntl O_NONBLOCK");
2583 goto end;
2584 }
2585
2586 /* This socket is not useful anymore. */
2587 ret = close(client_socket);
2588 if (ret < 0) {
2589 PERROR("close client_socket");
2590 }
2591 client_socket = -1;
2592
2593 /* update the polling structure to poll on the established socket */
2594 consumer_sockpoll[1].fd = sock;
2595 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2596
2597 while (1) {
2598 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2599 goto end;
2600 }
2601 DBG("Incoming command on sock");
2602 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2603 if (ret == -ENOENT) {
2604 DBG("Received STOP command");
2605 goto end;
2606 }
2607 if (ret <= 0) {
2608 /*
2609 * This could simply be a session daemon quitting. Don't output
2610 * ERR() here.
2611 */
2612 DBG("Communication interrupted on command socket");
2613 goto end;
2614 }
2615 if (consumer_quit) {
2616 DBG("consumer_thread_receive_fds received quit from signal");
2617 goto end;
2618 }
2619 DBG("received fds on sock");
2620 }
2621 end:
2622 DBG("consumer_thread_receive_fds exiting");
2623
2624 /*
2625 * when all fds have hung up, the polling thread
2626 * can exit cleanly
2627 */
2628 consumer_quit = 1;
2629
2630 /*
2631 * Notify the data poll thread to poll back again and test the
2632 * consumer_quit state that we just set so to quit gracefully.
2633 */
2634 notify_thread_pipe(ctx->consumer_data_pipe[1]);
2635
2636 /* Cleaning up possibly open sockets. */
2637 if (sock >= 0) {
2638 ret = close(sock);
2639 if (ret < 0) {
2640 PERROR("close sock sessiond poll");
2641 }
2642 }
2643 if (client_socket >= 0) {
2644 ret = close(sock);
2645 if (ret < 0) {
2646 PERROR("close client_socket sessiond poll");
2647 }
2648 }
2649
2650 rcu_unregister_thread();
2651 return NULL;
2652 }
2653
2654 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2655 struct lttng_consumer_local_data *ctx)
2656 {
2657 ssize_t ret;
2658
2659 pthread_mutex_lock(&stream->lock);
2660
2661 switch (consumer_data.type) {
2662 case LTTNG_CONSUMER_KERNEL:
2663 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2664 break;
2665 case LTTNG_CONSUMER32_UST:
2666 case LTTNG_CONSUMER64_UST:
2667 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
2668 break;
2669 default:
2670 ERR("Unknown consumer_data type");
2671 assert(0);
2672 ret = -ENOSYS;
2673 break;
2674 }
2675
2676 pthread_mutex_unlock(&stream->lock);
2677 return ret;
2678 }
2679
2680 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2681 {
2682 switch (consumer_data.type) {
2683 case LTTNG_CONSUMER_KERNEL:
2684 return lttng_kconsumer_on_recv_stream(stream);
2685 case LTTNG_CONSUMER32_UST:
2686 case LTTNG_CONSUMER64_UST:
2687 return lttng_ustconsumer_on_recv_stream(stream);
2688 default:
2689 ERR("Unknown consumer_data type");
2690 assert(0);
2691 return -ENOSYS;
2692 }
2693 }
2694
2695 /*
2696 * Allocate and set consumer data hash tables.
2697 */
2698 void lttng_consumer_init(void)
2699 {
2700 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2701 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2702 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2703 relayd_session_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2704 }
2705
2706 /*
2707 * Process the ADD_RELAYD command receive by a consumer.
2708 *
2709 * This will create a relayd socket pair and add it to the relayd hash table.
2710 * The caller MUST acquire a RCU read side lock before calling it.
2711 */
2712 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
2713 struct lttng_consumer_local_data *ctx, int sock,
2714 struct pollfd *consumer_sockpoll, struct lttcomm_sock *relayd_sock,
2715 unsigned int sessiond_id)
2716 {
2717 int fd = -1, ret = -1, relayd_created = 0;
2718 enum lttng_error_code ret_code = LTTNG_OK;
2719 struct consumer_relayd_sock_pair *relayd;
2720 struct consumer_relayd_session_id *relayd_id_node;
2721
2722 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
2723
2724 /* First send a status message before receiving the fds. */
2725 ret = consumer_send_status_msg(sock, ret_code);
2726 if (ret < 0) {
2727 /* Somehow, the session daemon is not responding anymore. */
2728 goto error;
2729 }
2730
2731 /* Get relayd reference if exists. */
2732 relayd = consumer_find_relayd(net_seq_idx);
2733 if (relayd == NULL) {
2734 /* Not found. Allocate one. */
2735 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
2736 if (relayd == NULL) {
2737 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
2738 goto error;
2739 }
2740 relayd->sessiond_session_id = (uint64_t) sessiond_id;
2741 relayd_created = 1;
2742 }
2743
2744 /* Poll on consumer socket. */
2745 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2746 ret = -EINTR;
2747 goto error;
2748 }
2749
2750 /* Get relayd socket from session daemon */
2751 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
2752 if (ret != sizeof(fd)) {
2753 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
2754 ret = -1;
2755 fd = -1; /* Just in case it gets set with an invalid value. */
2756 goto error;
2757 }
2758
2759 /* We have the fds without error. Send status back. */
2760 ret = consumer_send_status_msg(sock, ret_code);
2761 if (ret < 0) {
2762 /* Somehow, the session daemon is not responding anymore. */
2763 goto error;
2764 }
2765
2766 /* Copy socket information and received FD */
2767 switch (sock_type) {
2768 case LTTNG_STREAM_CONTROL:
2769 /* Copy received lttcomm socket */
2770 lttcomm_copy_sock(&relayd->control_sock, relayd_sock);
2771 ret = lttcomm_create_sock(&relayd->control_sock);
2772 /* Immediately try to close the created socket if valid. */
2773 if (relayd->control_sock.fd >= 0) {
2774 if (close(relayd->control_sock.fd)) {
2775 PERROR("close relayd control socket");
2776 }
2777 }
2778 /* Handle create_sock error. */
2779 if (ret < 0) {
2780 goto error;
2781 }
2782
2783 /* Assign new file descriptor */
2784 relayd->control_sock.fd = fd;
2785
2786 /*
2787 * Create a session on the relayd and store the returned id. No need to
2788 * grab the socket lock since the relayd object is not yet visible.
2789 */
2790 ret = relayd_create_session(&relayd->control_sock,
2791 &relayd->relayd_session_id);
2792 if (ret < 0) {
2793 goto error;
2794 }
2795
2796 /* Set up a relayd session id node. */
2797 relayd_id_node = zmalloc(sizeof(struct consumer_relayd_session_id));
2798 if (!relayd_id_node) {
2799 PERROR("zmalloc relayd id node");
2800 goto error;
2801 }
2802
2803 relayd_id_node->relayd_id = relayd->relayd_session_id;
2804 relayd_id_node->sessiond_id = (uint64_t) sessiond_id;
2805
2806 /* Indexed by session id of the sessiond. */
2807 lttng_ht_node_init_ulong(&relayd_id_node->node,
2808 relayd_id_node->sessiond_id);
2809 rcu_read_lock();
2810 lttng_ht_add_unique_ulong(relayd_session_id_ht, &relayd_id_node->node);
2811 rcu_read_unlock();
2812
2813 break;
2814 case LTTNG_STREAM_DATA:
2815 /* Copy received lttcomm socket */
2816 lttcomm_copy_sock(&relayd->data_sock, relayd_sock);
2817 ret = lttcomm_create_sock(&relayd->data_sock);
2818 /* Immediately try to close the created socket if valid. */
2819 if (relayd->data_sock.fd >= 0) {
2820 if (close(relayd->data_sock.fd)) {
2821 PERROR("close relayd data socket");
2822 }
2823 }
2824 /* Handle create_sock error. */
2825 if (ret < 0) {
2826 goto error;
2827 }
2828
2829 /* Assign new file descriptor */
2830 relayd->data_sock.fd = fd;
2831 break;
2832 default:
2833 ERR("Unknown relayd socket type (%d)", sock_type);
2834 goto error;
2835 }
2836
2837 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2838 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
2839 relayd->net_seq_idx, fd);
2840
2841 /*
2842 * Add relayd socket pair to consumer data hashtable. If object already
2843 * exists or on error, the function gracefully returns.
2844 */
2845 add_relayd(relayd);
2846
2847 /* All good! */
2848 return 0;
2849
2850 error:
2851 /* Close received socket if valid. */
2852 if (fd >= 0) {
2853 if (close(fd)) {
2854 PERROR("close received socket");
2855 }
2856 }
2857
2858 if (relayd_created) {
2859 /* We just want to cleanup. Ignore ret value. */
2860 (void) relayd_close(&relayd->control_sock);
2861 (void) relayd_close(&relayd->data_sock);
2862 free(relayd);
2863 }
2864
2865 return ret;
2866 }
2867
2868 /*
2869 * Try to lock the stream mutex.
2870 *
2871 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2872 */
2873 static int stream_try_lock(struct lttng_consumer_stream *stream)
2874 {
2875 int ret;
2876
2877 assert(stream);
2878
2879 /*
2880 * Try to lock the stream mutex. On failure, we know that the stream is
2881 * being used else where hence there is data still being extracted.
2882 */
2883 ret = pthread_mutex_trylock(&stream->lock);
2884 if (ret) {
2885 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2886 ret = 0;
2887 goto end;
2888 }
2889
2890 ret = 1;
2891
2892 end:
2893 return ret;
2894 }
2895
2896 /*
2897 * Search for a relayd associated to the session id and return the reference.
2898 *
2899 * A rcu read side lock MUST be acquire before calling this function and locked
2900 * until the relayd object is no longer necessary.
2901 */
2902 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
2903 {
2904 struct lttng_ht_iter iter;
2905 struct lttng_ht_node_ulong *node;
2906 struct consumer_relayd_sock_pair *relayd = NULL;
2907 struct consumer_relayd_session_id *session_id_map;
2908
2909 /* Get the session id map. */
2910 lttng_ht_lookup(relayd_session_id_ht, (void *)((unsigned long) id), &iter);
2911 node = lttng_ht_iter_get_node_ulong(&iter);
2912 if (node == NULL) {
2913 goto end;
2914 }
2915
2916 session_id_map = caa_container_of(node, struct consumer_relayd_session_id,
2917 node);
2918
2919 /* Iterate over all relayd since they are indexed by net_seq_idx. */
2920 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
2921 node.node) {
2922 if (relayd->relayd_session_id == session_id_map->relayd_id) {
2923 /* Found the relayd. There can be only one per id. */
2924 break;
2925 }
2926 }
2927
2928 end:
2929 return relayd;
2930 }
2931
2932 /*
2933 * Check if for a given session id there is still data needed to be extract
2934 * from the buffers.
2935 *
2936 * Return 1 if data is pending or else 0 meaning ready to be read.
2937 */
2938 int consumer_data_pending(uint64_t id)
2939 {
2940 int ret;
2941 struct lttng_ht_iter iter;
2942 struct lttng_ht *ht;
2943 struct lttng_consumer_stream *stream;
2944 struct consumer_relayd_sock_pair *relayd = NULL;
2945 int (*data_pending)(struct lttng_consumer_stream *);
2946
2947 DBG("Consumer data pending command on session id %" PRIu64, id);
2948
2949 rcu_read_lock();
2950 pthread_mutex_lock(&consumer_data.lock);
2951
2952 switch (consumer_data.type) {
2953 case LTTNG_CONSUMER_KERNEL:
2954 data_pending = lttng_kconsumer_data_pending;
2955 break;
2956 case LTTNG_CONSUMER32_UST:
2957 case LTTNG_CONSUMER64_UST:
2958 data_pending = lttng_ustconsumer_data_pending;
2959 break;
2960 default:
2961 ERR("Unknown consumer data type");
2962 assert(0);
2963 }
2964
2965 /* Ease our life a bit */
2966 ht = consumer_data.stream_list_ht;
2967
2968 relayd = find_relayd_by_session_id(id);
2969 if (relayd) {
2970 /* Send init command for data pending. */
2971 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2972 ret = relayd_begin_data_pending(&relayd->control_sock,
2973 relayd->relayd_session_id);
2974 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2975 if (ret < 0) {
2976 /* Communication error thus the relayd so no data pending. */
2977 goto data_not_pending;
2978 }
2979 }
2980
2981 cds_lfht_for_each_entry_duplicate(ht->ht,
2982 ht->hash_fct((void *)((unsigned long) id), lttng_ht_seed),
2983 ht->match_fct, (void *)((unsigned long) id),
2984 &iter.iter, stream, node_session_id.node) {
2985 /* If this call fails, the stream is being used hence data pending. */
2986 ret = stream_try_lock(stream);
2987 if (!ret) {
2988 goto data_pending;
2989 }
2990
2991 /*
2992 * A removed node from the hash table indicates that the stream has
2993 * been deleted thus having a guarantee that the buffers are closed
2994 * on the consumer side. However, data can still be transmitted
2995 * over the network so don't skip the relayd check.
2996 */
2997 ret = cds_lfht_is_node_deleted(&stream->node.node);
2998 if (!ret) {
2999 /* Check the stream if there is data in the buffers. */
3000 ret = data_pending(stream);
3001 if (ret == 1) {
3002 pthread_mutex_unlock(&stream->lock);
3003 goto data_pending;
3004 }
3005 }
3006
3007 /* Relayd check */
3008 if (relayd) {
3009 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3010 if (stream->metadata_flag) {
3011 ret = relayd_quiescent_control(&relayd->control_sock);
3012 } else {
3013 ret = relayd_data_pending(&relayd->control_sock,
3014 stream->relayd_stream_id, stream->next_net_seq_num);
3015 }
3016 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3017 if (ret == 1) {
3018 pthread_mutex_unlock(&stream->lock);
3019 goto data_pending;
3020 }
3021 }
3022 pthread_mutex_unlock(&stream->lock);
3023 }
3024
3025 if (relayd) {
3026 unsigned int is_data_inflight = 0;
3027
3028 /* Send init command for data pending. */
3029 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3030 ret = relayd_end_data_pending(&relayd->control_sock,
3031 relayd->relayd_session_id, &is_data_inflight);
3032 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3033 if (ret < 0 || !is_data_inflight) {
3034 /* On error or if NO data inflight, no data is pending. */
3035 goto data_not_pending;
3036 }
3037 }
3038
3039 /*
3040 * Finding _no_ node in the hash table and no inflight data means that the
3041 * stream(s) have been removed thus data is guaranteed to be available for
3042 * analysis from the trace files.
3043 */
3044
3045 data_not_pending:
3046 /* Data is available to be read by a viewer. */
3047 pthread_mutex_unlock(&consumer_data.lock);
3048 rcu_read_unlock();
3049 return 0;
3050
3051 data_pending:
3052 /* Data is still being extracted from buffers. */
3053 pthread_mutex_unlock(&consumer_data.lock);
3054 rcu_read_unlock();
3055 return 1;
3056 }
3057
3058 /*
3059 * Send a ret code status message to the sessiond daemon.
3060 *
3061 * Return the sendmsg() return value.
3062 */
3063 int consumer_send_status_msg(int sock, int ret_code)
3064 {
3065 struct lttcomm_consumer_status_msg msg;
3066
3067 msg.ret_code = ret_code;
3068
3069 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3070 }
This page took 0.165357 seconds and 4 git commands to generate.