35df86dd81c922217a6dbf628af93fd79d5b3432
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31
32 #include <common/common.h>
33 #include <common/utils.h>
34 #include <common/compat/poll.h>
35 #include <common/kernel-ctl/kernel-ctl.h>
36 #include <common/sessiond-comm/relayd.h>
37 #include <common/sessiond-comm/sessiond-comm.h>
38 #include <common/kernel-consumer/kernel-consumer.h>
39 #include <common/relayd/relayd.h>
40 #include <common/ust-consumer/ust-consumer.h>
41
42 #include "consumer.h"
43
44 struct lttng_consumer_global_data consumer_data = {
45 .stream_count = 0,
46 .need_update = 1,
47 .type = LTTNG_CONSUMER_UNKNOWN,
48 };
49
50 /* timeout parameter, to control the polling thread grace period. */
51 int consumer_poll_timeout = -1;
52
53 /*
54 * Flag to inform the polling thread to quit when all fd hung up. Updated by
55 * the consumer_thread_receive_fds when it notices that all fds has hung up.
56 * Also updated by the signal handler (consumer_should_exit()). Read by the
57 * polling threads.
58 */
59 volatile int consumer_quit = 0;
60
61 /*
62 * The following two hash tables are visible by all threads which are separated
63 * in different source files.
64 *
65 * Global hash table containing respectively metadata and data streams. The
66 * stream element in this ht should only be updated by the metadata poll thread
67 * for the metadata and the data poll thread for the data.
68 */
69 struct lttng_ht *metadata_ht = NULL;
70 struct lttng_ht *data_ht = NULL;
71
72 /*
73 * Find a stream. The consumer_data.lock must be locked during this
74 * call.
75 */
76 static struct lttng_consumer_stream *consumer_find_stream(int key,
77 struct lttng_ht *ht)
78 {
79 struct lttng_ht_iter iter;
80 struct lttng_ht_node_ulong *node;
81 struct lttng_consumer_stream *stream = NULL;
82
83 assert(ht);
84
85 /* Negative keys are lookup failures */
86 if (key < 0) {
87 return NULL;
88 }
89
90 rcu_read_lock();
91
92 lttng_ht_lookup(ht, (void *)((unsigned long) key), &iter);
93 node = lttng_ht_iter_get_node_ulong(&iter);
94 if (node != NULL) {
95 stream = caa_container_of(node, struct lttng_consumer_stream, node);
96 }
97
98 rcu_read_unlock();
99
100 return stream;
101 }
102
103 void consumer_steal_stream_key(int key, struct lttng_ht *ht)
104 {
105 struct lttng_consumer_stream *stream;
106
107 rcu_read_lock();
108 stream = consumer_find_stream(key, ht);
109 if (stream) {
110 stream->key = -1;
111 /*
112 * We don't want the lookup to match, but we still need
113 * to iterate on this stream when iterating over the hash table. Just
114 * change the node key.
115 */
116 stream->node.key = -1;
117 }
118 rcu_read_unlock();
119 }
120
121 static struct lttng_consumer_channel *consumer_find_channel(int key)
122 {
123 struct lttng_ht_iter iter;
124 struct lttng_ht_node_ulong *node;
125 struct lttng_consumer_channel *channel = NULL;
126
127 /* Negative keys are lookup failures */
128 if (key < 0) {
129 return NULL;
130 }
131
132 rcu_read_lock();
133
134 lttng_ht_lookup(consumer_data.channel_ht, (void *)((unsigned long) key),
135 &iter);
136 node = lttng_ht_iter_get_node_ulong(&iter);
137 if (node != NULL) {
138 channel = caa_container_of(node, struct lttng_consumer_channel, node);
139 }
140
141 rcu_read_unlock();
142
143 return channel;
144 }
145
146 static void consumer_steal_channel_key(int key)
147 {
148 struct lttng_consumer_channel *channel;
149
150 rcu_read_lock();
151 channel = consumer_find_channel(key);
152 if (channel) {
153 channel->key = -1;
154 /*
155 * We don't want the lookup to match, but we still need
156 * to iterate on this channel when iterating over the hash table. Just
157 * change the node key.
158 */
159 channel->node.key = -1;
160 }
161 rcu_read_unlock();
162 }
163
164 static
165 void consumer_free_stream(struct rcu_head *head)
166 {
167 struct lttng_ht_node_ulong *node =
168 caa_container_of(head, struct lttng_ht_node_ulong, head);
169 struct lttng_consumer_stream *stream =
170 caa_container_of(node, struct lttng_consumer_stream, node);
171
172 free(stream);
173 }
174
175 /*
176 * RCU protected relayd socket pair free.
177 */
178 static void consumer_rcu_free_relayd(struct rcu_head *head)
179 {
180 struct lttng_ht_node_ulong *node =
181 caa_container_of(head, struct lttng_ht_node_ulong, head);
182 struct consumer_relayd_sock_pair *relayd =
183 caa_container_of(node, struct consumer_relayd_sock_pair, node);
184
185 free(relayd);
186 }
187
188 /*
189 * Destroy and free relayd socket pair object.
190 *
191 * This function MUST be called with the consumer_data lock acquired.
192 */
193 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
194 {
195 int ret;
196 struct lttng_ht_iter iter;
197
198 if (relayd == NULL) {
199 return;
200 }
201
202 DBG("Consumer destroy and close relayd socket pair");
203
204 iter.iter.node = &relayd->node.node;
205 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
206 if (ret != 0) {
207 /* We assume the relayd was already destroyed */
208 return;
209 }
210
211 /* Close all sockets */
212 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
213 (void) relayd_close(&relayd->control_sock);
214 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
215 (void) relayd_close(&relayd->data_sock);
216
217 /* RCU free() call */
218 call_rcu(&relayd->node.head, consumer_rcu_free_relayd);
219 }
220
221 /*
222 * Flag a relayd socket pair for destruction. Destroy it if the refcount
223 * reaches zero.
224 *
225 * RCU read side lock MUST be aquired before calling this function.
226 */
227 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
228 {
229 assert(relayd);
230
231 /* Set destroy flag for this object */
232 uatomic_set(&relayd->destroy_flag, 1);
233
234 /* Destroy the relayd if refcount is 0 */
235 if (uatomic_read(&relayd->refcount) == 0) {
236 destroy_relayd(relayd);
237 }
238 }
239
240 /*
241 * Remove a stream from the global list protected by a mutex. This
242 * function is also responsible for freeing its data structures.
243 */
244 void consumer_del_stream(struct lttng_consumer_stream *stream,
245 struct lttng_ht *ht)
246 {
247 int ret;
248 struct lttng_ht_iter iter;
249 struct lttng_consumer_channel *free_chan = NULL;
250 struct consumer_relayd_sock_pair *relayd;
251
252 assert(stream);
253
254 if (ht == NULL) {
255 /* Means the stream was allocated but not successfully added */
256 goto free_stream;
257 }
258
259 pthread_mutex_lock(&consumer_data.lock);
260
261 switch (consumer_data.type) {
262 case LTTNG_CONSUMER_KERNEL:
263 if (stream->mmap_base != NULL) {
264 ret = munmap(stream->mmap_base, stream->mmap_len);
265 if (ret != 0) {
266 PERROR("munmap");
267 }
268 }
269 break;
270 case LTTNG_CONSUMER32_UST:
271 case LTTNG_CONSUMER64_UST:
272 lttng_ustconsumer_del_stream(stream);
273 break;
274 default:
275 ERR("Unknown consumer_data type");
276 assert(0);
277 goto end;
278 }
279
280 rcu_read_lock();
281 iter.iter.node = &stream->node.node;
282 ret = lttng_ht_del(ht, &iter);
283 assert(!ret);
284
285 rcu_read_unlock();
286
287 if (consumer_data.stream_count <= 0) {
288 goto end;
289 }
290 consumer_data.stream_count--;
291 if (!stream) {
292 goto end;
293 }
294 if (stream->out_fd >= 0) {
295 ret = close(stream->out_fd);
296 if (ret) {
297 PERROR("close");
298 }
299 }
300 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
301 ret = close(stream->wait_fd);
302 if (ret) {
303 PERROR("close");
304 }
305 }
306 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
307 ret = close(stream->shm_fd);
308 if (ret) {
309 PERROR("close");
310 }
311 }
312
313 /* Check and cleanup relayd */
314 rcu_read_lock();
315 relayd = consumer_find_relayd(stream->net_seq_idx);
316 if (relayd != NULL) {
317 uatomic_dec(&relayd->refcount);
318 assert(uatomic_read(&relayd->refcount) >= 0);
319
320 /* Closing streams requires to lock the control socket. */
321 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
322 ret = relayd_send_close_stream(&relayd->control_sock,
323 stream->relayd_stream_id,
324 stream->next_net_seq_num - 1);
325 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
326 if (ret < 0) {
327 DBG("Unable to close stream on the relayd. Continuing");
328 /*
329 * Continue here. There is nothing we can do for the relayd.
330 * Chances are that the relayd has closed the socket so we just
331 * continue cleaning up.
332 */
333 }
334
335 /* Both conditions are met, we destroy the relayd. */
336 if (uatomic_read(&relayd->refcount) == 0 &&
337 uatomic_read(&relayd->destroy_flag)) {
338 destroy_relayd(relayd);
339 }
340 }
341 rcu_read_unlock();
342
343 uatomic_dec(&stream->chan->refcount);
344 if (!uatomic_read(&stream->chan->refcount)
345 && !uatomic_read(&stream->chan->nb_init_streams)) {
346 free_chan = stream->chan;
347 }
348
349 end:
350 consumer_data.need_update = 1;
351 pthread_mutex_unlock(&consumer_data.lock);
352
353 if (free_chan) {
354 consumer_del_channel(free_chan);
355 }
356
357 free_stream:
358 call_rcu(&stream->node.head, consumer_free_stream);
359 }
360
361 struct lttng_consumer_stream *consumer_allocate_stream(
362 int channel_key, int stream_key,
363 int shm_fd, int wait_fd,
364 enum lttng_consumer_stream_state state,
365 uint64_t mmap_len,
366 enum lttng_event_output output,
367 const char *path_name,
368 uid_t uid,
369 gid_t gid,
370 int net_index,
371 int metadata_flag,
372 int *alloc_ret)
373 {
374 struct lttng_consumer_stream *stream;
375
376 stream = zmalloc(sizeof(*stream));
377 if (stream == NULL) {
378 PERROR("malloc struct lttng_consumer_stream");
379 *alloc_ret = -ENOMEM;
380 goto end;
381 }
382
383 /*
384 * Get stream's channel reference. Needed when adding the stream to the
385 * global hash table.
386 */
387 stream->chan = consumer_find_channel(channel_key);
388 if (!stream->chan) {
389 *alloc_ret = -ENOENT;
390 ERR("Unable to find channel for stream %d", stream_key);
391 goto error;
392 }
393
394 stream->key = stream_key;
395 stream->shm_fd = shm_fd;
396 stream->wait_fd = wait_fd;
397 stream->out_fd = -1;
398 stream->out_fd_offset = 0;
399 stream->state = state;
400 stream->mmap_len = mmap_len;
401 stream->mmap_base = NULL;
402 stream->output = output;
403 stream->uid = uid;
404 stream->gid = gid;
405 stream->net_seq_idx = net_index;
406 stream->metadata_flag = metadata_flag;
407 strncpy(stream->path_name, path_name, sizeof(stream->path_name));
408 stream->path_name[sizeof(stream->path_name) - 1] = '\0';
409
410 /*
411 * Index differently the metadata node because the thread is using an
412 * internal hash table to match streams in the metadata_ht to the epoll set
413 * file descriptor.
414 */
415 if (metadata_flag) {
416 lttng_ht_node_init_ulong(&stream->node, stream->wait_fd);
417 } else {
418 lttng_ht_node_init_ulong(&stream->node, stream->key);
419 }
420
421 /*
422 * The cpu number is needed before using any ustctl_* actions. Ignored for
423 * the kernel so the value does not matter.
424 */
425 pthread_mutex_lock(&consumer_data.lock);
426 stream->cpu = stream->chan->cpucount++;
427 pthread_mutex_unlock(&consumer_data.lock);
428
429 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
430 " out_fd %d, net_seq_idx %d)", stream->path_name, stream->key,
431 stream->shm_fd, stream->wait_fd,
432 (unsigned long long) stream->mmap_len, stream->out_fd,
433 stream->net_seq_idx);
434 return stream;
435
436 error:
437 free(stream);
438 end:
439 return NULL;
440 }
441
442 /*
443 * Add a stream to the global list protected by a mutex.
444 */
445 static int consumer_add_stream(struct lttng_consumer_stream *stream,
446 struct lttng_ht *ht)
447 {
448 int ret = 0;
449 struct consumer_relayd_sock_pair *relayd;
450
451 assert(stream);
452 assert(ht);
453
454 DBG3("Adding consumer stream %d", stream->key);
455
456 pthread_mutex_lock(&consumer_data.lock);
457 rcu_read_lock();
458
459 /* Steal stream identifier to avoid having streams with the same key */
460 consumer_steal_stream_key(stream->key, ht);
461
462 lttng_ht_add_unique_ulong(ht, &stream->node);
463
464 /* Check and cleanup relayd */
465 relayd = consumer_find_relayd(stream->net_seq_idx);
466 if (relayd != NULL) {
467 uatomic_inc(&relayd->refcount);
468 }
469
470 /* Update channel refcount once added without error(s). */
471 uatomic_inc(&stream->chan->refcount);
472
473 /*
474 * When nb_init_streams reaches 0, we don't need to trigger any action in
475 * terms of destroying the associated channel, because the action that
476 * causes the count to become 0 also causes a stream to be added. The
477 * channel deletion will thus be triggered by the following removal of this
478 * stream.
479 */
480 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
481 uatomic_dec(&stream->chan->nb_init_streams);
482 }
483
484 /* Update consumer data once the node is inserted. */
485 consumer_data.stream_count++;
486 consumer_data.need_update = 1;
487
488 rcu_read_unlock();
489 pthread_mutex_unlock(&consumer_data.lock);
490
491 return ret;
492 }
493
494 /*
495 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
496 * be acquired before calling this.
497 */
498 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
499 {
500 int ret = 0;
501 struct lttng_ht_node_ulong *node;
502 struct lttng_ht_iter iter;
503
504 if (relayd == NULL) {
505 ret = -1;
506 goto end;
507 }
508
509 lttng_ht_lookup(consumer_data.relayd_ht,
510 (void *)((unsigned long) relayd->net_seq_idx), &iter);
511 node = lttng_ht_iter_get_node_ulong(&iter);
512 if (node != NULL) {
513 /* Relayd already exist. Ignore the insertion */
514 goto end;
515 }
516 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
517
518 end:
519 return ret;
520 }
521
522 /*
523 * Allocate and return a consumer relayd socket.
524 */
525 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
526 int net_seq_idx)
527 {
528 struct consumer_relayd_sock_pair *obj = NULL;
529
530 /* Negative net sequence index is a failure */
531 if (net_seq_idx < 0) {
532 goto error;
533 }
534
535 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
536 if (obj == NULL) {
537 PERROR("zmalloc relayd sock");
538 goto error;
539 }
540
541 obj->net_seq_idx = net_seq_idx;
542 obj->refcount = 0;
543 obj->destroy_flag = 0;
544 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
545 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
546
547 error:
548 return obj;
549 }
550
551 /*
552 * Find a relayd socket pair in the global consumer data.
553 *
554 * Return the object if found else NULL.
555 * RCU read-side lock must be held across this call and while using the
556 * returned object.
557 */
558 struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
559 {
560 struct lttng_ht_iter iter;
561 struct lttng_ht_node_ulong *node;
562 struct consumer_relayd_sock_pair *relayd = NULL;
563
564 /* Negative keys are lookup failures */
565 if (key < 0) {
566 goto error;
567 }
568
569 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
570 &iter);
571 node = lttng_ht_iter_get_node_ulong(&iter);
572 if (node != NULL) {
573 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
574 }
575
576 error:
577 return relayd;
578 }
579
580 /*
581 * Handle stream for relayd transmission if the stream applies for network
582 * streaming where the net sequence index is set.
583 *
584 * Return destination file descriptor or negative value on error.
585 */
586 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
587 size_t data_size, unsigned long padding,
588 struct consumer_relayd_sock_pair *relayd)
589 {
590 int outfd = -1, ret;
591 struct lttcomm_relayd_data_hdr data_hdr;
592
593 /* Safety net */
594 assert(stream);
595 assert(relayd);
596
597 /* Reset data header */
598 memset(&data_hdr, 0, sizeof(data_hdr));
599
600 if (stream->metadata_flag) {
601 /* Caller MUST acquire the relayd control socket lock */
602 ret = relayd_send_metadata(&relayd->control_sock, data_size);
603 if (ret < 0) {
604 goto error;
605 }
606
607 /* Metadata are always sent on the control socket. */
608 outfd = relayd->control_sock.fd;
609 } else {
610 /* Set header with stream information */
611 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
612 data_hdr.data_size = htobe32(data_size);
613 data_hdr.padding_size = htobe32(padding);
614 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num++);
615 /* Other fields are zeroed previously */
616
617 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
618 sizeof(data_hdr));
619 if (ret < 0) {
620 goto error;
621 }
622
623 /* Set to go on data socket */
624 outfd = relayd->data_sock.fd;
625 }
626
627 error:
628 return outfd;
629 }
630
631 /*
632 * Update a stream according to what we just received.
633 */
634 void consumer_change_stream_state(int stream_key,
635 enum lttng_consumer_stream_state state)
636 {
637 struct lttng_consumer_stream *stream;
638
639 pthread_mutex_lock(&consumer_data.lock);
640 stream = consumer_find_stream(stream_key, consumer_data.stream_ht);
641 if (stream) {
642 stream->state = state;
643 }
644 consumer_data.need_update = 1;
645 pthread_mutex_unlock(&consumer_data.lock);
646 }
647
648 static
649 void consumer_free_channel(struct rcu_head *head)
650 {
651 struct lttng_ht_node_ulong *node =
652 caa_container_of(head, struct lttng_ht_node_ulong, head);
653 struct lttng_consumer_channel *channel =
654 caa_container_of(node, struct lttng_consumer_channel, node);
655
656 free(channel);
657 }
658
659 /*
660 * Remove a channel from the global list protected by a mutex. This
661 * function is also responsible for freeing its data structures.
662 */
663 void consumer_del_channel(struct lttng_consumer_channel *channel)
664 {
665 int ret;
666 struct lttng_ht_iter iter;
667
668 pthread_mutex_lock(&consumer_data.lock);
669
670 switch (consumer_data.type) {
671 case LTTNG_CONSUMER_KERNEL:
672 break;
673 case LTTNG_CONSUMER32_UST:
674 case LTTNG_CONSUMER64_UST:
675 lttng_ustconsumer_del_channel(channel);
676 break;
677 default:
678 ERR("Unknown consumer_data type");
679 assert(0);
680 goto end;
681 }
682
683 rcu_read_lock();
684 iter.iter.node = &channel->node.node;
685 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
686 assert(!ret);
687 rcu_read_unlock();
688
689 if (channel->mmap_base != NULL) {
690 ret = munmap(channel->mmap_base, channel->mmap_len);
691 if (ret != 0) {
692 PERROR("munmap");
693 }
694 }
695 if (channel->wait_fd >= 0 && !channel->wait_fd_is_copy) {
696 ret = close(channel->wait_fd);
697 if (ret) {
698 PERROR("close");
699 }
700 }
701 if (channel->shm_fd >= 0 && channel->wait_fd != channel->shm_fd) {
702 ret = close(channel->shm_fd);
703 if (ret) {
704 PERROR("close");
705 }
706 }
707
708 call_rcu(&channel->node.head, consumer_free_channel);
709 end:
710 pthread_mutex_unlock(&consumer_data.lock);
711 }
712
713 struct lttng_consumer_channel *consumer_allocate_channel(
714 int channel_key,
715 int shm_fd, int wait_fd,
716 uint64_t mmap_len,
717 uint64_t max_sb_size,
718 unsigned int nb_init_streams)
719 {
720 struct lttng_consumer_channel *channel;
721 int ret;
722
723 channel = zmalloc(sizeof(*channel));
724 if (channel == NULL) {
725 PERROR("malloc struct lttng_consumer_channel");
726 goto end;
727 }
728 channel->key = channel_key;
729 channel->shm_fd = shm_fd;
730 channel->wait_fd = wait_fd;
731 channel->mmap_len = mmap_len;
732 channel->max_sb_size = max_sb_size;
733 channel->refcount = 0;
734 channel->nb_init_streams = nb_init_streams;
735 lttng_ht_node_init_ulong(&channel->node, channel->key);
736
737 switch (consumer_data.type) {
738 case LTTNG_CONSUMER_KERNEL:
739 channel->mmap_base = NULL;
740 channel->mmap_len = 0;
741 break;
742 case LTTNG_CONSUMER32_UST:
743 case LTTNG_CONSUMER64_UST:
744 ret = lttng_ustconsumer_allocate_channel(channel);
745 if (ret) {
746 free(channel);
747 return NULL;
748 }
749 break;
750 default:
751 ERR("Unknown consumer_data type");
752 assert(0);
753 goto end;
754 }
755 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
756 channel->key, channel->shm_fd, channel->wait_fd,
757 (unsigned long long) channel->mmap_len,
758 (unsigned long long) channel->max_sb_size);
759 end:
760 return channel;
761 }
762
763 /*
764 * Add a channel to the global list protected by a mutex.
765 */
766 int consumer_add_channel(struct lttng_consumer_channel *channel)
767 {
768 struct lttng_ht_node_ulong *node;
769 struct lttng_ht_iter iter;
770
771 pthread_mutex_lock(&consumer_data.lock);
772 /* Steal channel identifier, for UST */
773 consumer_steal_channel_key(channel->key);
774 rcu_read_lock();
775
776 lttng_ht_lookup(consumer_data.channel_ht,
777 (void *)((unsigned long) channel->key), &iter);
778 node = lttng_ht_iter_get_node_ulong(&iter);
779 if (node != NULL) {
780 /* Channel already exist. Ignore the insertion */
781 goto end;
782 }
783
784 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
785
786 end:
787 rcu_read_unlock();
788 pthread_mutex_unlock(&consumer_data.lock);
789
790 return 0;
791 }
792
793 /*
794 * Allocate the pollfd structure and the local view of the out fds to avoid
795 * doing a lookup in the linked list and concurrency issues when writing is
796 * needed. Called with consumer_data.lock held.
797 *
798 * Returns the number of fds in the structures.
799 */
800 static int consumer_update_poll_array(
801 struct lttng_consumer_local_data *ctx, struct pollfd **pollfd,
802 struct lttng_consumer_stream **local_stream, struct lttng_ht *ht)
803 {
804 int i = 0;
805 struct lttng_ht_iter iter;
806 struct lttng_consumer_stream *stream;
807
808 DBG("Updating poll fd array");
809 rcu_read_lock();
810 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
811 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM) {
812 continue;
813 }
814 DBG("Active FD %d", stream->wait_fd);
815 (*pollfd)[i].fd = stream->wait_fd;
816 (*pollfd)[i].events = POLLIN | POLLPRI;
817 local_stream[i] = stream;
818 i++;
819 }
820 rcu_read_unlock();
821
822 /*
823 * Insert the consumer_poll_pipe at the end of the array and don't
824 * increment i so nb_fd is the number of real FD.
825 */
826 (*pollfd)[i].fd = ctx->consumer_poll_pipe[0];
827 (*pollfd)[i].events = POLLIN | POLLPRI;
828 return i;
829 }
830
831 /*
832 * Poll on the should_quit pipe and the command socket return -1 on error and
833 * should exit, 0 if data is available on the command socket
834 */
835 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
836 {
837 int num_rdy;
838
839 restart:
840 num_rdy = poll(consumer_sockpoll, 2, -1);
841 if (num_rdy == -1) {
842 /*
843 * Restart interrupted system call.
844 */
845 if (errno == EINTR) {
846 goto restart;
847 }
848 PERROR("Poll error");
849 goto exit;
850 }
851 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
852 DBG("consumer_should_quit wake up");
853 goto exit;
854 }
855 return 0;
856
857 exit:
858 return -1;
859 }
860
861 /*
862 * Set the error socket.
863 */
864 void lttng_consumer_set_error_sock(
865 struct lttng_consumer_local_data *ctx, int sock)
866 {
867 ctx->consumer_error_socket = sock;
868 }
869
870 /*
871 * Set the command socket path.
872 */
873 void lttng_consumer_set_command_sock_path(
874 struct lttng_consumer_local_data *ctx, char *sock)
875 {
876 ctx->consumer_command_sock_path = sock;
877 }
878
879 /*
880 * Send return code to the session daemon.
881 * If the socket is not defined, we return 0, it is not a fatal error
882 */
883 int lttng_consumer_send_error(
884 struct lttng_consumer_local_data *ctx, int cmd)
885 {
886 if (ctx->consumer_error_socket > 0) {
887 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
888 sizeof(enum lttcomm_sessiond_command));
889 }
890
891 return 0;
892 }
893
894 /*
895 * Close all the tracefiles and stream fds, should be called when all instances
896 * are destroyed.
897 */
898 void lttng_consumer_cleanup(void)
899 {
900 struct lttng_ht_iter iter;
901 struct lttng_ht_node_ulong *node;
902
903 rcu_read_lock();
904
905 /*
906 * close all outfd. Called when there are no more threads running (after
907 * joining on the threads), no need to protect list iteration with mutex.
908 */
909 cds_lfht_for_each_entry(consumer_data.stream_ht->ht, &iter.iter, node,
910 node) {
911 struct lttng_consumer_stream *stream =
912 caa_container_of(node, struct lttng_consumer_stream, node);
913 consumer_del_stream(stream, consumer_data.stream_ht);
914 }
915
916 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, node,
917 node) {
918 struct lttng_consumer_channel *channel =
919 caa_container_of(node, struct lttng_consumer_channel, node);
920 consumer_del_channel(channel);
921 }
922
923 rcu_read_unlock();
924
925 lttng_ht_destroy(consumer_data.stream_ht);
926 lttng_ht_destroy(consumer_data.channel_ht);
927 }
928
929 /*
930 * Called from signal handler.
931 */
932 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
933 {
934 int ret;
935 consumer_quit = 1;
936 do {
937 ret = write(ctx->consumer_should_quit[1], "4", 1);
938 } while (ret < 0 && errno == EINTR);
939 if (ret < 0) {
940 PERROR("write consumer quit");
941 }
942 }
943
944 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
945 off_t orig_offset)
946 {
947 int outfd = stream->out_fd;
948
949 /*
950 * This does a blocking write-and-wait on any page that belongs to the
951 * subbuffer prior to the one we just wrote.
952 * Don't care about error values, as these are just hints and ways to
953 * limit the amount of page cache used.
954 */
955 if (orig_offset < stream->chan->max_sb_size) {
956 return;
957 }
958 lttng_sync_file_range(outfd, orig_offset - stream->chan->max_sb_size,
959 stream->chan->max_sb_size,
960 SYNC_FILE_RANGE_WAIT_BEFORE
961 | SYNC_FILE_RANGE_WRITE
962 | SYNC_FILE_RANGE_WAIT_AFTER);
963 /*
964 * Give hints to the kernel about how we access the file:
965 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
966 * we write it.
967 *
968 * We need to call fadvise again after the file grows because the
969 * kernel does not seem to apply fadvise to non-existing parts of the
970 * file.
971 *
972 * Call fadvise _after_ having waited for the page writeback to
973 * complete because the dirty page writeback semantic is not well
974 * defined. So it can be expected to lead to lower throughput in
975 * streaming.
976 */
977 posix_fadvise(outfd, orig_offset - stream->chan->max_sb_size,
978 stream->chan->max_sb_size, POSIX_FADV_DONTNEED);
979 }
980
981 /*
982 * Initialise the necessary environnement :
983 * - create a new context
984 * - create the poll_pipe
985 * - create the should_quit pipe (for signal handler)
986 * - create the thread pipe (for splice)
987 *
988 * Takes a function pointer as argument, this function is called when data is
989 * available on a buffer. This function is responsible to do the
990 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
991 * buffer configuration and then kernctl_put_next_subbuf at the end.
992 *
993 * Returns a pointer to the new context or NULL on error.
994 */
995 struct lttng_consumer_local_data *lttng_consumer_create(
996 enum lttng_consumer_type type,
997 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
998 struct lttng_consumer_local_data *ctx),
999 int (*recv_channel)(struct lttng_consumer_channel *channel),
1000 int (*recv_stream)(struct lttng_consumer_stream *stream),
1001 int (*update_stream)(int stream_key, uint32_t state))
1002 {
1003 int ret, i;
1004 struct lttng_consumer_local_data *ctx;
1005
1006 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1007 consumer_data.type == type);
1008 consumer_data.type = type;
1009
1010 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1011 if (ctx == NULL) {
1012 PERROR("allocating context");
1013 goto error;
1014 }
1015
1016 ctx->consumer_error_socket = -1;
1017 /* assign the callbacks */
1018 ctx->on_buffer_ready = buffer_ready;
1019 ctx->on_recv_channel = recv_channel;
1020 ctx->on_recv_stream = recv_stream;
1021 ctx->on_update_stream = update_stream;
1022
1023 ret = pipe(ctx->consumer_poll_pipe);
1024 if (ret < 0) {
1025 PERROR("Error creating poll pipe");
1026 goto error_poll_pipe;
1027 }
1028
1029 /* set read end of the pipe to non-blocking */
1030 ret = fcntl(ctx->consumer_poll_pipe[0], F_SETFL, O_NONBLOCK);
1031 if (ret < 0) {
1032 PERROR("fcntl O_NONBLOCK");
1033 goto error_poll_fcntl;
1034 }
1035
1036 /* set write end of the pipe to non-blocking */
1037 ret = fcntl(ctx->consumer_poll_pipe[1], F_SETFL, O_NONBLOCK);
1038 if (ret < 0) {
1039 PERROR("fcntl O_NONBLOCK");
1040 goto error_poll_fcntl;
1041 }
1042
1043 ret = pipe(ctx->consumer_should_quit);
1044 if (ret < 0) {
1045 PERROR("Error creating recv pipe");
1046 goto error_quit_pipe;
1047 }
1048
1049 ret = pipe(ctx->consumer_thread_pipe);
1050 if (ret < 0) {
1051 PERROR("Error creating thread pipe");
1052 goto error_thread_pipe;
1053 }
1054
1055 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1056 if (ret < 0) {
1057 goto error_metadata_pipe;
1058 }
1059
1060 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1061 if (ret < 0) {
1062 goto error_splice_pipe;
1063 }
1064
1065 return ctx;
1066
1067 error_splice_pipe:
1068 utils_close_pipe(ctx->consumer_metadata_pipe);
1069 error_metadata_pipe:
1070 utils_close_pipe(ctx->consumer_thread_pipe);
1071 error_thread_pipe:
1072 for (i = 0; i < 2; i++) {
1073 int err;
1074
1075 err = close(ctx->consumer_should_quit[i]);
1076 if (err) {
1077 PERROR("close");
1078 }
1079 }
1080 error_poll_fcntl:
1081 error_quit_pipe:
1082 for (i = 0; i < 2; i++) {
1083 int err;
1084
1085 err = close(ctx->consumer_poll_pipe[i]);
1086 if (err) {
1087 PERROR("close");
1088 }
1089 }
1090 error_poll_pipe:
1091 free(ctx);
1092 error:
1093 return NULL;
1094 }
1095
1096 /*
1097 * Close all fds associated with the instance and free the context.
1098 */
1099 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1100 {
1101 int ret;
1102
1103 ret = close(ctx->consumer_error_socket);
1104 if (ret) {
1105 PERROR("close");
1106 }
1107 ret = close(ctx->consumer_thread_pipe[0]);
1108 if (ret) {
1109 PERROR("close");
1110 }
1111 ret = close(ctx->consumer_thread_pipe[1]);
1112 if (ret) {
1113 PERROR("close");
1114 }
1115 ret = close(ctx->consumer_poll_pipe[0]);
1116 if (ret) {
1117 PERROR("close");
1118 }
1119 ret = close(ctx->consumer_poll_pipe[1]);
1120 if (ret) {
1121 PERROR("close");
1122 }
1123 ret = close(ctx->consumer_should_quit[0]);
1124 if (ret) {
1125 PERROR("close");
1126 }
1127 ret = close(ctx->consumer_should_quit[1]);
1128 if (ret) {
1129 PERROR("close");
1130 }
1131 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1132
1133 unlink(ctx->consumer_command_sock_path);
1134 free(ctx);
1135 }
1136
1137 /*
1138 * Write the metadata stream id on the specified file descriptor.
1139 */
1140 static int write_relayd_metadata_id(int fd,
1141 struct lttng_consumer_stream *stream,
1142 struct consumer_relayd_sock_pair *relayd,
1143 unsigned long padding)
1144 {
1145 int ret;
1146 struct lttcomm_relayd_metadata_payload hdr;
1147
1148 hdr.stream_id = htobe64(stream->relayd_stream_id);
1149 hdr.padding_size = htobe32(padding);
1150 do {
1151 ret = write(fd, (void *) &hdr, sizeof(hdr));
1152 } while (ret < 0 && errno == EINTR);
1153 if (ret < 0) {
1154 PERROR("write metadata stream id");
1155 goto end;
1156 }
1157 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1158 stream->relayd_stream_id, padding);
1159
1160 end:
1161 return ret;
1162 }
1163
1164 /*
1165 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1166 * core function for writing trace buffers to either the local filesystem or
1167 * the network.
1168 *
1169 * Careful review MUST be put if any changes occur!
1170 *
1171 * Returns the number of bytes written
1172 */
1173 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1174 struct lttng_consumer_local_data *ctx,
1175 struct lttng_consumer_stream *stream, unsigned long len,
1176 unsigned long padding)
1177 {
1178 unsigned long mmap_offset;
1179 ssize_t ret = 0, written = 0;
1180 off_t orig_offset = stream->out_fd_offset;
1181 /* Default is on the disk */
1182 int outfd = stream->out_fd;
1183 struct consumer_relayd_sock_pair *relayd = NULL;
1184
1185 /* RCU lock for the relayd pointer */
1186 rcu_read_lock();
1187
1188 /* Flag that the current stream if set for network streaming. */
1189 if (stream->net_seq_idx != -1) {
1190 relayd = consumer_find_relayd(stream->net_seq_idx);
1191 if (relayd == NULL) {
1192 goto end;
1193 }
1194 }
1195
1196 /* get the offset inside the fd to mmap */
1197 switch (consumer_data.type) {
1198 case LTTNG_CONSUMER_KERNEL:
1199 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1200 break;
1201 case LTTNG_CONSUMER32_UST:
1202 case LTTNG_CONSUMER64_UST:
1203 ret = lttng_ustctl_get_mmap_read_offset(stream->chan->handle,
1204 stream->buf, &mmap_offset);
1205 break;
1206 default:
1207 ERR("Unknown consumer_data type");
1208 assert(0);
1209 }
1210 if (ret != 0) {
1211 errno = -ret;
1212 PERROR("tracer ctl get_mmap_read_offset");
1213 written = ret;
1214 goto end;
1215 }
1216
1217 /* Handle stream on the relayd if the output is on the network */
1218 if (relayd) {
1219 unsigned long netlen = len;
1220
1221 /*
1222 * Lock the control socket for the complete duration of the function
1223 * since from this point on we will use the socket.
1224 */
1225 if (stream->metadata_flag) {
1226 /* Metadata requires the control socket. */
1227 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1228 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1229 }
1230
1231 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1232 if (ret >= 0) {
1233 /* Use the returned socket. */
1234 outfd = ret;
1235
1236 /* Write metadata stream id before payload */
1237 if (stream->metadata_flag) {
1238 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1239 if (ret < 0) {
1240 written = ret;
1241 goto end;
1242 }
1243 }
1244 }
1245 /* Else, use the default set before which is the filesystem. */
1246 } else {
1247 /* No streaming, we have to set the len with the full padding */
1248 len += padding;
1249 }
1250
1251 while (len > 0) {
1252 do {
1253 ret = write(outfd, stream->mmap_base + mmap_offset, len);
1254 } while (ret < 0 && errno == EINTR);
1255 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1256 if (ret < 0) {
1257 PERROR("Error in file write");
1258 if (written == 0) {
1259 written = ret;
1260 }
1261 goto end;
1262 } else if (ret > len) {
1263 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1264 written += ret;
1265 goto end;
1266 } else {
1267 len -= ret;
1268 mmap_offset += ret;
1269 }
1270
1271 /* This call is useless on a socket so better save a syscall. */
1272 if (!relayd) {
1273 /* This won't block, but will start writeout asynchronously */
1274 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1275 SYNC_FILE_RANGE_WRITE);
1276 stream->out_fd_offset += ret;
1277 }
1278 written += ret;
1279 }
1280 lttng_consumer_sync_trace_file(stream, orig_offset);
1281
1282 end:
1283 /* Unlock only if ctrl socket used */
1284 if (relayd && stream->metadata_flag) {
1285 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1286 }
1287
1288 rcu_read_unlock();
1289 return written;
1290 }
1291
1292 /*
1293 * Splice the data from the ring buffer to the tracefile.
1294 *
1295 * Returns the number of bytes spliced.
1296 */
1297 ssize_t lttng_consumer_on_read_subbuffer_splice(
1298 struct lttng_consumer_local_data *ctx,
1299 struct lttng_consumer_stream *stream, unsigned long len,
1300 unsigned long padding)
1301 {
1302 ssize_t ret = 0, written = 0, ret_splice = 0;
1303 loff_t offset = 0;
1304 off_t orig_offset = stream->out_fd_offset;
1305 int fd = stream->wait_fd;
1306 /* Default is on the disk */
1307 int outfd = stream->out_fd;
1308 struct consumer_relayd_sock_pair *relayd = NULL;
1309 int *splice_pipe;
1310
1311 switch (consumer_data.type) {
1312 case LTTNG_CONSUMER_KERNEL:
1313 break;
1314 case LTTNG_CONSUMER32_UST:
1315 case LTTNG_CONSUMER64_UST:
1316 /* Not supported for user space tracing */
1317 return -ENOSYS;
1318 default:
1319 ERR("Unknown consumer_data type");
1320 assert(0);
1321 }
1322
1323 /* RCU lock for the relayd pointer */
1324 rcu_read_lock();
1325
1326 /* Flag that the current stream if set for network streaming. */
1327 if (stream->net_seq_idx != -1) {
1328 relayd = consumer_find_relayd(stream->net_seq_idx);
1329 if (relayd == NULL) {
1330 goto end;
1331 }
1332 }
1333
1334 /*
1335 * Choose right pipe for splice. Metadata and trace data are handled by
1336 * different threads hence the use of two pipes in order not to race or
1337 * corrupt the written data.
1338 */
1339 if (stream->metadata_flag) {
1340 splice_pipe = ctx->consumer_splice_metadata_pipe;
1341 } else {
1342 splice_pipe = ctx->consumer_thread_pipe;
1343 }
1344
1345 /* Write metadata stream id before payload */
1346 if (relayd) {
1347 int total_len = len;
1348
1349 if (stream->metadata_flag) {
1350 /*
1351 * Lock the control socket for the complete duration of the function
1352 * since from this point on we will use the socket.
1353 */
1354 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1355
1356 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1357 padding);
1358 if (ret < 0) {
1359 written = ret;
1360 goto end;
1361 }
1362
1363 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1364 }
1365
1366 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1367 if (ret >= 0) {
1368 /* Use the returned socket. */
1369 outfd = ret;
1370 } else {
1371 ERR("Remote relayd disconnected. Stopping");
1372 goto end;
1373 }
1374 } else {
1375 /* No streaming, we have to set the len with the full padding */
1376 len += padding;
1377 }
1378
1379 while (len > 0) {
1380 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1381 (unsigned long)offset, len, fd, splice_pipe[1]);
1382 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1383 SPLICE_F_MOVE | SPLICE_F_MORE);
1384 DBG("splice chan to pipe, ret %zd", ret_splice);
1385 if (ret_splice < 0) {
1386 PERROR("Error in relay splice");
1387 if (written == 0) {
1388 written = ret_splice;
1389 }
1390 ret = errno;
1391 goto splice_error;
1392 }
1393
1394 /* Handle stream on the relayd if the output is on the network */
1395 if (relayd) {
1396 if (stream->metadata_flag) {
1397 size_t metadata_payload_size =
1398 sizeof(struct lttcomm_relayd_metadata_payload);
1399
1400 /* Update counter to fit the spliced data */
1401 ret_splice += metadata_payload_size;
1402 len += metadata_payload_size;
1403 /*
1404 * We do this so the return value can match the len passed as
1405 * argument to this function.
1406 */
1407 written -= metadata_payload_size;
1408 }
1409 }
1410
1411 /* Splice data out */
1412 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1413 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1414 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1415 if (ret_splice < 0) {
1416 PERROR("Error in file splice");
1417 if (written == 0) {
1418 written = ret_splice;
1419 }
1420 ret = errno;
1421 goto splice_error;
1422 } else if (ret_splice > len) {
1423 errno = EINVAL;
1424 PERROR("Wrote more data than requested %zd (len: %lu)",
1425 ret_splice, len);
1426 written += ret_splice;
1427 ret = errno;
1428 goto splice_error;
1429 }
1430 len -= ret_splice;
1431
1432 /* This call is useless on a socket so better save a syscall. */
1433 if (!relayd) {
1434 /* This won't block, but will start writeout asynchronously */
1435 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1436 SYNC_FILE_RANGE_WRITE);
1437 stream->out_fd_offset += ret_splice;
1438 }
1439 written += ret_splice;
1440 }
1441 lttng_consumer_sync_trace_file(stream, orig_offset);
1442
1443 ret = ret_splice;
1444
1445 goto end;
1446
1447 splice_error:
1448 /* send the appropriate error description to sessiond */
1449 switch (ret) {
1450 case EBADF:
1451 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EBADF);
1452 break;
1453 case EINVAL:
1454 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1455 break;
1456 case ENOMEM:
1457 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1458 break;
1459 case ESPIPE:
1460 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1461 break;
1462 }
1463
1464 end:
1465 if (relayd && stream->metadata_flag) {
1466 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1467 }
1468
1469 rcu_read_unlock();
1470 return written;
1471 }
1472
1473 /*
1474 * Take a snapshot for a specific fd
1475 *
1476 * Returns 0 on success, < 0 on error
1477 */
1478 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data *ctx,
1479 struct lttng_consumer_stream *stream)
1480 {
1481 switch (consumer_data.type) {
1482 case LTTNG_CONSUMER_KERNEL:
1483 return lttng_kconsumer_take_snapshot(ctx, stream);
1484 case LTTNG_CONSUMER32_UST:
1485 case LTTNG_CONSUMER64_UST:
1486 return lttng_ustconsumer_take_snapshot(ctx, stream);
1487 default:
1488 ERR("Unknown consumer_data type");
1489 assert(0);
1490 return -ENOSYS;
1491 }
1492
1493 }
1494
1495 /*
1496 * Get the produced position
1497 *
1498 * Returns 0 on success, < 0 on error
1499 */
1500 int lttng_consumer_get_produced_snapshot(
1501 struct lttng_consumer_local_data *ctx,
1502 struct lttng_consumer_stream *stream,
1503 unsigned long *pos)
1504 {
1505 switch (consumer_data.type) {
1506 case LTTNG_CONSUMER_KERNEL:
1507 return lttng_kconsumer_get_produced_snapshot(ctx, stream, pos);
1508 case LTTNG_CONSUMER32_UST:
1509 case LTTNG_CONSUMER64_UST:
1510 return lttng_ustconsumer_get_produced_snapshot(ctx, stream, pos);
1511 default:
1512 ERR("Unknown consumer_data type");
1513 assert(0);
1514 return -ENOSYS;
1515 }
1516 }
1517
1518 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1519 int sock, struct pollfd *consumer_sockpoll)
1520 {
1521 switch (consumer_data.type) {
1522 case LTTNG_CONSUMER_KERNEL:
1523 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1524 case LTTNG_CONSUMER32_UST:
1525 case LTTNG_CONSUMER64_UST:
1526 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1527 default:
1528 ERR("Unknown consumer_data type");
1529 assert(0);
1530 return -ENOSYS;
1531 }
1532 }
1533
1534 /*
1535 * Iterate over all streams of the hashtable and free them properly.
1536 *
1537 * WARNING: *MUST* be used with data stream only.
1538 */
1539 static void destroy_data_stream_ht(struct lttng_ht *ht)
1540 {
1541 int ret;
1542 struct lttng_ht_iter iter;
1543 struct lttng_consumer_stream *stream;
1544
1545 if (ht == NULL) {
1546 return;
1547 }
1548
1549 rcu_read_lock();
1550 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1551 ret = lttng_ht_del(ht, &iter);
1552 assert(!ret);
1553
1554 call_rcu(&stream->node.head, consumer_free_stream);
1555 }
1556 rcu_read_unlock();
1557
1558 lttng_ht_destroy(ht);
1559 }
1560
1561 /*
1562 * Iterate over all streams of the hashtable and free them properly.
1563 *
1564 * XXX: Should not be only for metadata stream or else use an other name.
1565 */
1566 static void destroy_stream_ht(struct lttng_ht *ht)
1567 {
1568 int ret;
1569 struct lttng_ht_iter iter;
1570 struct lttng_consumer_stream *stream;
1571
1572 if (ht == NULL) {
1573 return;
1574 }
1575
1576 rcu_read_lock();
1577 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1578 ret = lttng_ht_del(ht, &iter);
1579 assert(!ret);
1580
1581 call_rcu(&stream->node.head, consumer_free_stream);
1582 }
1583 rcu_read_unlock();
1584
1585 lttng_ht_destroy(ht);
1586 }
1587
1588 /*
1589 * Clean up a metadata stream and free its memory.
1590 */
1591 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1592 struct lttng_ht *ht)
1593 {
1594 int ret;
1595 struct lttng_ht_iter iter;
1596 struct lttng_consumer_channel *free_chan = NULL;
1597 struct consumer_relayd_sock_pair *relayd;
1598
1599 assert(stream);
1600 /*
1601 * This call should NEVER receive regular stream. It must always be
1602 * metadata stream and this is crucial for data structure synchronization.
1603 */
1604 assert(stream->metadata_flag);
1605
1606 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1607
1608 if (ht == NULL) {
1609 /* Means the stream was allocated but not successfully added */
1610 goto free_stream;
1611 }
1612
1613 pthread_mutex_lock(&consumer_data.lock);
1614 switch (consumer_data.type) {
1615 case LTTNG_CONSUMER_KERNEL:
1616 if (stream->mmap_base != NULL) {
1617 ret = munmap(stream->mmap_base, stream->mmap_len);
1618 if (ret != 0) {
1619 PERROR("munmap metadata stream");
1620 }
1621 }
1622 break;
1623 case LTTNG_CONSUMER32_UST:
1624 case LTTNG_CONSUMER64_UST:
1625 lttng_ustconsumer_del_stream(stream);
1626 break;
1627 default:
1628 ERR("Unknown consumer_data type");
1629 assert(0);
1630 goto end;
1631 }
1632
1633 rcu_read_lock();
1634 iter.iter.node = &stream->node.node;
1635 ret = lttng_ht_del(ht, &iter);
1636 assert(!ret);
1637 rcu_read_unlock();
1638
1639 if (stream->out_fd >= 0) {
1640 ret = close(stream->out_fd);
1641 if (ret) {
1642 PERROR("close");
1643 }
1644 }
1645
1646 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
1647 ret = close(stream->wait_fd);
1648 if (ret) {
1649 PERROR("close");
1650 }
1651 }
1652
1653 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
1654 ret = close(stream->shm_fd);
1655 if (ret) {
1656 PERROR("close");
1657 }
1658 }
1659
1660 /* Check and cleanup relayd */
1661 rcu_read_lock();
1662 relayd = consumer_find_relayd(stream->net_seq_idx);
1663 if (relayd != NULL) {
1664 uatomic_dec(&relayd->refcount);
1665 assert(uatomic_read(&relayd->refcount) >= 0);
1666
1667 /* Closing streams requires to lock the control socket. */
1668 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1669 ret = relayd_send_close_stream(&relayd->control_sock,
1670 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1671 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1672 if (ret < 0) {
1673 DBG("Unable to close stream on the relayd. Continuing");
1674 /*
1675 * Continue here. There is nothing we can do for the relayd.
1676 * Chances are that the relayd has closed the socket so we just
1677 * continue cleaning up.
1678 */
1679 }
1680
1681 /* Both conditions are met, we destroy the relayd. */
1682 if (uatomic_read(&relayd->refcount) == 0 &&
1683 uatomic_read(&relayd->destroy_flag)) {
1684 destroy_relayd(relayd);
1685 }
1686 }
1687 rcu_read_unlock();
1688
1689 /* Atomically decrement channel refcount since other threads can use it. */
1690 uatomic_dec(&stream->chan->refcount);
1691 if (!uatomic_read(&stream->chan->refcount)
1692 && !uatomic_read(&stream->chan->nb_init_streams)) {
1693 /* Go for channel deletion! */
1694 free_chan = stream->chan;
1695 }
1696
1697 end:
1698 pthread_mutex_unlock(&consumer_data.lock);
1699
1700 if (free_chan) {
1701 consumer_del_channel(free_chan);
1702 }
1703
1704 free_stream:
1705 call_rcu(&stream->node.head, consumer_free_stream);
1706 }
1707
1708 /*
1709 * Action done with the metadata stream when adding it to the consumer internal
1710 * data structures to handle it.
1711 */
1712 static int consumer_add_metadata_stream(struct lttng_consumer_stream *stream,
1713 struct lttng_ht *ht)
1714 {
1715 int ret = 0;
1716 struct consumer_relayd_sock_pair *relayd;
1717
1718 assert(stream);
1719 assert(ht);
1720
1721 DBG3("Adding metadata stream %d to hash table", stream->wait_fd);
1722
1723 pthread_mutex_lock(&consumer_data.lock);
1724
1725 /*
1726 * From here, refcounts are updated so be _careful_ when returning an error
1727 * after this point.
1728 */
1729
1730 rcu_read_lock();
1731 /* Find relayd and, if one is found, increment refcount. */
1732 relayd = consumer_find_relayd(stream->net_seq_idx);
1733 if (relayd != NULL) {
1734 uatomic_inc(&relayd->refcount);
1735 }
1736
1737 /* Update channel refcount once added without error(s). */
1738 uatomic_inc(&stream->chan->refcount);
1739
1740 /*
1741 * When nb_init_streams reaches 0, we don't need to trigger any action in
1742 * terms of destroying the associated channel, because the action that
1743 * causes the count to become 0 also causes a stream to be added. The
1744 * channel deletion will thus be triggered by the following removal of this
1745 * stream.
1746 */
1747 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
1748 uatomic_dec(&stream->chan->nb_init_streams);
1749 }
1750
1751 /* Steal stream identifier to avoid having streams with the same key */
1752 consumer_steal_stream_key(stream->key, ht);
1753
1754 lttng_ht_add_unique_ulong(ht, &stream->node);
1755 rcu_read_unlock();
1756
1757 pthread_mutex_unlock(&consumer_data.lock);
1758 return ret;
1759 }
1760
1761 /*
1762 * Thread polls on metadata file descriptor and write them on disk or on the
1763 * network.
1764 */
1765 void *consumer_thread_metadata_poll(void *data)
1766 {
1767 int ret, i, pollfd;
1768 uint32_t revents, nb_fd;
1769 struct lttng_consumer_stream *stream = NULL;
1770 struct lttng_ht_iter iter;
1771 struct lttng_ht_node_ulong *node;
1772 struct lttng_poll_event events;
1773 struct lttng_consumer_local_data *ctx = data;
1774 ssize_t len;
1775
1776 rcu_register_thread();
1777
1778 DBG("Thread metadata poll started");
1779
1780 /* Size is set to 1 for the consumer_metadata pipe */
1781 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
1782 if (ret < 0) {
1783 ERR("Poll set creation failed");
1784 goto end;
1785 }
1786
1787 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
1788 if (ret < 0) {
1789 goto end;
1790 }
1791
1792 /* Main loop */
1793 DBG("Metadata main loop started");
1794
1795 while (1) {
1796 lttng_poll_reset(&events);
1797
1798 nb_fd = LTTNG_POLL_GETNB(&events);
1799
1800 /* Only the metadata pipe is set */
1801 if (nb_fd == 0 && consumer_quit == 1) {
1802 goto end;
1803 }
1804
1805 restart:
1806 DBG("Metadata poll wait with %d fd(s)", nb_fd);
1807 ret = lttng_poll_wait(&events, -1);
1808 DBG("Metadata event catched in thread");
1809 if (ret < 0) {
1810 if (errno == EINTR) {
1811 ERR("Poll EINTR catched");
1812 goto restart;
1813 }
1814 goto error;
1815 }
1816
1817 /* From here, the event is a metadata wait fd */
1818 for (i = 0; i < nb_fd; i++) {
1819 revents = LTTNG_POLL_GETEV(&events, i);
1820 pollfd = LTTNG_POLL_GETFD(&events, i);
1821
1822 /* Just don't waste time if no returned events for the fd */
1823 if (!revents) {
1824 continue;
1825 }
1826
1827 if (pollfd == ctx->consumer_metadata_pipe[0]) {
1828 if (revents & (LPOLLERR | LPOLLHUP )) {
1829 DBG("Metadata thread pipe hung up");
1830 /*
1831 * Remove the pipe from the poll set and continue the loop
1832 * since their might be data to consume.
1833 */
1834 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
1835 close(ctx->consumer_metadata_pipe[0]);
1836 continue;
1837 } else if (revents & LPOLLIN) {
1838 do {
1839 /* Get the stream pointer received */
1840 ret = read(pollfd, &stream, sizeof(stream));
1841 } while (ret < 0 && errno == EINTR);
1842 if (ret < 0 ||
1843 ret < sizeof(struct lttng_consumer_stream *)) {
1844 PERROR("read metadata stream");
1845 /*
1846 * Let's continue here and hope we can still work
1847 * without stopping the consumer. XXX: Should we?
1848 */
1849 continue;
1850 }
1851
1852 DBG("Adding metadata stream %d to poll set",
1853 stream->wait_fd);
1854
1855 ret = consumer_add_metadata_stream(stream, metadata_ht);
1856 if (ret) {
1857 ERR("Unable to add metadata stream");
1858 /* Stream was not setup properly. Continuing. */
1859 consumer_del_metadata_stream(stream, NULL);
1860 continue;
1861 }
1862
1863 /* Add metadata stream to the global poll events list */
1864 lttng_poll_add(&events, stream->wait_fd,
1865 LPOLLIN | LPOLLPRI);
1866 }
1867
1868 /* Handle other stream */
1869 continue;
1870 }
1871
1872 rcu_read_lock();
1873 lttng_ht_lookup(metadata_ht, (void *)((unsigned long) pollfd),
1874 &iter);
1875 node = lttng_ht_iter_get_node_ulong(&iter);
1876 assert(node);
1877
1878 stream = caa_container_of(node, struct lttng_consumer_stream,
1879 node);
1880
1881 /* Check for error event */
1882 if (revents & (LPOLLERR | LPOLLHUP)) {
1883 DBG("Metadata fd %d is hup|err.", pollfd);
1884 if (!stream->hangup_flush_done
1885 && (consumer_data.type == LTTNG_CONSUMER32_UST
1886 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
1887 DBG("Attempting to flush and consume the UST buffers");
1888 lttng_ustconsumer_on_stream_hangup(stream);
1889
1890 /* We just flushed the stream now read it. */
1891 do {
1892 len = ctx->on_buffer_ready(stream, ctx);
1893 /*
1894 * We don't check the return value here since if we get
1895 * a negative len, it means an error occured thus we
1896 * simply remove it from the poll set and free the
1897 * stream.
1898 */
1899 } while (len > 0);
1900 }
1901
1902 lttng_poll_del(&events, stream->wait_fd);
1903 /*
1904 * This call update the channel states, closes file descriptors
1905 * and securely free the stream.
1906 */
1907 consumer_del_metadata_stream(stream, metadata_ht);
1908 } else if (revents & (LPOLLIN | LPOLLPRI)) {
1909 /* Get the data out of the metadata file descriptor */
1910 DBG("Metadata available on fd %d", pollfd);
1911 assert(stream->wait_fd == pollfd);
1912
1913 len = ctx->on_buffer_ready(stream, ctx);
1914 /* It's ok to have an unavailable sub-buffer */
1915 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
1916 rcu_read_unlock();
1917 goto end;
1918 } else if (len > 0) {
1919 stream->data_read = 1;
1920 }
1921 }
1922
1923 /* Release RCU lock for the stream looked up */
1924 rcu_read_unlock();
1925 }
1926 }
1927
1928 error:
1929 end:
1930 DBG("Metadata poll thread exiting");
1931 lttng_poll_clean(&events);
1932
1933 if (metadata_ht) {
1934 destroy_stream_ht(metadata_ht);
1935 }
1936
1937 rcu_unregister_thread();
1938 return NULL;
1939 }
1940
1941 /*
1942 * This thread polls the fds in the set to consume the data and write
1943 * it to tracefile if necessary.
1944 */
1945 void *consumer_thread_data_poll(void *data)
1946 {
1947 int num_rdy, num_hup, high_prio, ret, i;
1948 struct pollfd *pollfd = NULL;
1949 /* local view of the streams */
1950 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
1951 /* local view of consumer_data.fds_count */
1952 int nb_fd = 0;
1953 struct lttng_consumer_local_data *ctx = data;
1954 ssize_t len;
1955
1956 rcu_register_thread();
1957
1958 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
1959 if (data_ht == NULL) {
1960 goto end;
1961 }
1962
1963 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
1964
1965 while (1) {
1966 high_prio = 0;
1967 num_hup = 0;
1968
1969 /*
1970 * the fds set has been updated, we need to update our
1971 * local array as well
1972 */
1973 pthread_mutex_lock(&consumer_data.lock);
1974 if (consumer_data.need_update) {
1975 if (pollfd != NULL) {
1976 free(pollfd);
1977 pollfd = NULL;
1978 }
1979 if (local_stream != NULL) {
1980 free(local_stream);
1981 local_stream = NULL;
1982 }
1983
1984 /* allocate for all fds + 1 for the consumer_poll_pipe */
1985 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
1986 if (pollfd == NULL) {
1987 PERROR("pollfd malloc");
1988 pthread_mutex_unlock(&consumer_data.lock);
1989 goto end;
1990 }
1991
1992 /* allocate for all fds + 1 for the consumer_poll_pipe */
1993 local_stream = zmalloc((consumer_data.stream_count + 1) *
1994 sizeof(struct lttng_consumer_stream));
1995 if (local_stream == NULL) {
1996 PERROR("local_stream malloc");
1997 pthread_mutex_unlock(&consumer_data.lock);
1998 goto end;
1999 }
2000 ret = consumer_update_poll_array(ctx, &pollfd, local_stream,
2001 data_ht);
2002 if (ret < 0) {
2003 ERR("Error in allocating pollfd or local_outfds");
2004 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2005 pthread_mutex_unlock(&consumer_data.lock);
2006 goto end;
2007 }
2008 nb_fd = ret;
2009 consumer_data.need_update = 0;
2010 }
2011 pthread_mutex_unlock(&consumer_data.lock);
2012
2013 /* No FDs and consumer_quit, consumer_cleanup the thread */
2014 if (nb_fd == 0 && consumer_quit == 1) {
2015 goto end;
2016 }
2017 /* poll on the array of fds */
2018 restart:
2019 DBG("polling on %d fd", nb_fd + 1);
2020 num_rdy = poll(pollfd, nb_fd + 1, consumer_poll_timeout);
2021 DBG("poll num_rdy : %d", num_rdy);
2022 if (num_rdy == -1) {
2023 /*
2024 * Restart interrupted system call.
2025 */
2026 if (errno == EINTR) {
2027 goto restart;
2028 }
2029 PERROR("Poll error");
2030 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2031 goto end;
2032 } else if (num_rdy == 0) {
2033 DBG("Polling thread timed out");
2034 goto end;
2035 }
2036
2037 /*
2038 * If the consumer_poll_pipe triggered poll go directly to the
2039 * beginning of the loop to update the array. We want to prioritize
2040 * array update over low-priority reads.
2041 */
2042 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2043 size_t pipe_readlen;
2044
2045 DBG("consumer_poll_pipe wake up");
2046 /* Consume 1 byte of pipe data */
2047 do {
2048 pipe_readlen = read(ctx->consumer_poll_pipe[0], &new_stream,
2049 sizeof(new_stream));
2050 } while (pipe_readlen == -1 && errno == EINTR);
2051
2052 /*
2053 * If the stream is NULL, just ignore it. It's also possible that
2054 * the sessiond poll thread changed the consumer_quit state and is
2055 * waking us up to test it.
2056 */
2057 if (new_stream == NULL) {
2058 continue;
2059 }
2060
2061 ret = consumer_add_stream(new_stream, data_ht);
2062 if (ret) {
2063 ERR("Consumer add stream %d failed. Continuing",
2064 new_stream->key);
2065 /*
2066 * At this point, if the add_stream fails, it is not in the
2067 * hash table thus passing the NULL value here.
2068 */
2069 consumer_del_stream(new_stream, NULL);
2070 }
2071
2072 /* Continue to update the local streams and handle prio ones */
2073 continue;
2074 }
2075
2076 /* Take care of high priority channels first. */
2077 for (i = 0; i < nb_fd; i++) {
2078 if (pollfd[i].revents & POLLPRI) {
2079 DBG("Urgent read on fd %d", pollfd[i].fd);
2080 high_prio = 1;
2081 len = ctx->on_buffer_ready(local_stream[i], ctx);
2082 /* it's ok to have an unavailable sub-buffer */
2083 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2084 goto end;
2085 } else if (len > 0) {
2086 local_stream[i]->data_read = 1;
2087 }
2088 }
2089 }
2090
2091 /*
2092 * If we read high prio channel in this loop, try again
2093 * for more high prio data.
2094 */
2095 if (high_prio) {
2096 continue;
2097 }
2098
2099 /* Take care of low priority channels. */
2100 for (i = 0; i < nb_fd; i++) {
2101 if ((pollfd[i].revents & POLLIN) ||
2102 local_stream[i]->hangup_flush_done) {
2103 DBG("Normal read on fd %d", pollfd[i].fd);
2104 len = ctx->on_buffer_ready(local_stream[i], ctx);
2105 /* it's ok to have an unavailable sub-buffer */
2106 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2107 goto end;
2108 } else if (len > 0) {
2109 local_stream[i]->data_read = 1;
2110 }
2111 }
2112 }
2113
2114 /* Handle hangup and errors */
2115 for (i = 0; i < nb_fd; i++) {
2116 if (!local_stream[i]->hangup_flush_done
2117 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2118 && (consumer_data.type == LTTNG_CONSUMER32_UST
2119 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2120 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2121 pollfd[i].fd);
2122 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2123 /* Attempt read again, for the data we just flushed. */
2124 local_stream[i]->data_read = 1;
2125 }
2126 /*
2127 * If the poll flag is HUP/ERR/NVAL and we have
2128 * read no data in this pass, we can remove the
2129 * stream from its hash table.
2130 */
2131 if ((pollfd[i].revents & POLLHUP)) {
2132 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2133 if (!local_stream[i]->data_read) {
2134 consumer_del_stream(local_stream[i], data_ht);
2135 num_hup++;
2136 }
2137 } else if (pollfd[i].revents & POLLERR) {
2138 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2139 if (!local_stream[i]->data_read) {
2140 consumer_del_stream(local_stream[i], data_ht);
2141 num_hup++;
2142 }
2143 } else if (pollfd[i].revents & POLLNVAL) {
2144 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2145 if (!local_stream[i]->data_read) {
2146 consumer_del_stream(local_stream[i], data_ht);
2147 num_hup++;
2148 }
2149 }
2150 local_stream[i]->data_read = 0;
2151 }
2152 }
2153 end:
2154 DBG("polling thread exiting");
2155 if (pollfd != NULL) {
2156 free(pollfd);
2157 pollfd = NULL;
2158 }
2159 if (local_stream != NULL) {
2160 free(local_stream);
2161 local_stream = NULL;
2162 }
2163
2164 /*
2165 * Close the write side of the pipe so epoll_wait() in
2166 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2167 * read side of the pipe. If we close them both, epoll_wait strangely does
2168 * not return and could create a endless wait period if the pipe is the
2169 * only tracked fd in the poll set. The thread will take care of closing
2170 * the read side.
2171 */
2172 close(ctx->consumer_metadata_pipe[1]);
2173
2174 if (data_ht) {
2175 destroy_data_stream_ht(data_ht);
2176 }
2177
2178 rcu_unregister_thread();
2179 return NULL;
2180 }
2181
2182 /*
2183 * This thread listens on the consumerd socket and receives the file
2184 * descriptors from the session daemon.
2185 */
2186 void *consumer_thread_sessiond_poll(void *data)
2187 {
2188 int sock, client_socket, ret;
2189 /*
2190 * structure to poll for incoming data on communication socket avoids
2191 * making blocking sockets.
2192 */
2193 struct pollfd consumer_sockpoll[2];
2194 struct lttng_consumer_local_data *ctx = data;
2195
2196 rcu_register_thread();
2197
2198 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2199 unlink(ctx->consumer_command_sock_path);
2200 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2201 if (client_socket < 0) {
2202 ERR("Cannot create command socket");
2203 goto end;
2204 }
2205
2206 ret = lttcomm_listen_unix_sock(client_socket);
2207 if (ret < 0) {
2208 goto end;
2209 }
2210
2211 DBG("Sending ready command to lttng-sessiond");
2212 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2213 /* return < 0 on error, but == 0 is not fatal */
2214 if (ret < 0) {
2215 ERR("Error sending ready command to lttng-sessiond");
2216 goto end;
2217 }
2218
2219 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2220 if (ret < 0) {
2221 PERROR("fcntl O_NONBLOCK");
2222 goto end;
2223 }
2224
2225 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2226 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2227 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2228 consumer_sockpoll[1].fd = client_socket;
2229 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2230
2231 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2232 goto end;
2233 }
2234 DBG("Connection on client_socket");
2235
2236 /* Blocking call, waiting for transmission */
2237 sock = lttcomm_accept_unix_sock(client_socket);
2238 if (sock <= 0) {
2239 WARN("On accept");
2240 goto end;
2241 }
2242 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2243 if (ret < 0) {
2244 PERROR("fcntl O_NONBLOCK");
2245 goto end;
2246 }
2247
2248 /* update the polling structure to poll on the established socket */
2249 consumer_sockpoll[1].fd = sock;
2250 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2251
2252 while (1) {
2253 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2254 goto end;
2255 }
2256 DBG("Incoming command on sock");
2257 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2258 if (ret == -ENOENT) {
2259 DBG("Received STOP command");
2260 goto end;
2261 }
2262 if (ret <= 0) {
2263 /*
2264 * This could simply be a session daemon quitting. Don't output
2265 * ERR() here.
2266 */
2267 DBG("Communication interrupted on command socket");
2268 goto end;
2269 }
2270 if (consumer_quit) {
2271 DBG("consumer_thread_receive_fds received quit from signal");
2272 goto end;
2273 }
2274 DBG("received fds on sock");
2275 }
2276 end:
2277 DBG("consumer_thread_receive_fds exiting");
2278
2279 /*
2280 * when all fds have hung up, the polling thread
2281 * can exit cleanly
2282 */
2283 consumer_quit = 1;
2284
2285 /*
2286 * 2s of grace period, if no polling events occur during
2287 * this period, the polling thread will exit even if there
2288 * are still open FDs (should not happen, but safety mechanism).
2289 */
2290 consumer_poll_timeout = LTTNG_CONSUMER_POLL_TIMEOUT;
2291
2292 /*
2293 * Notify the data poll thread to poll back again and test the
2294 * consumer_quit state to quit gracefully.
2295 */
2296 do {
2297 struct lttng_consumer_stream *null_stream = NULL;
2298
2299 ret = write(ctx->consumer_poll_pipe[1], &null_stream,
2300 sizeof(null_stream));
2301 } while (ret < 0 && errno == EINTR);
2302
2303 rcu_unregister_thread();
2304 return NULL;
2305 }
2306
2307 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2308 struct lttng_consumer_local_data *ctx)
2309 {
2310 switch (consumer_data.type) {
2311 case LTTNG_CONSUMER_KERNEL:
2312 return lttng_kconsumer_read_subbuffer(stream, ctx);
2313 case LTTNG_CONSUMER32_UST:
2314 case LTTNG_CONSUMER64_UST:
2315 return lttng_ustconsumer_read_subbuffer(stream, ctx);
2316 default:
2317 ERR("Unknown consumer_data type");
2318 assert(0);
2319 return -ENOSYS;
2320 }
2321 }
2322
2323 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2324 {
2325 switch (consumer_data.type) {
2326 case LTTNG_CONSUMER_KERNEL:
2327 return lttng_kconsumer_on_recv_stream(stream);
2328 case LTTNG_CONSUMER32_UST:
2329 case LTTNG_CONSUMER64_UST:
2330 return lttng_ustconsumer_on_recv_stream(stream);
2331 default:
2332 ERR("Unknown consumer_data type");
2333 assert(0);
2334 return -ENOSYS;
2335 }
2336 }
2337
2338 /*
2339 * Allocate and set consumer data hash tables.
2340 */
2341 void lttng_consumer_init(void)
2342 {
2343 consumer_data.stream_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2344 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2345 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2346
2347 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2348 assert(metadata_ht);
2349 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2350 assert(data_ht);
2351 }
2352
2353 /*
2354 * Process the ADD_RELAYD command receive by a consumer.
2355 *
2356 * This will create a relayd socket pair and add it to the relayd hash table.
2357 * The caller MUST acquire a RCU read side lock before calling it.
2358 */
2359 int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
2360 struct lttng_consumer_local_data *ctx, int sock,
2361 struct pollfd *consumer_sockpoll, struct lttcomm_sock *relayd_sock)
2362 {
2363 int fd, ret = -1;
2364 struct consumer_relayd_sock_pair *relayd;
2365
2366 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
2367
2368 /* Get relayd reference if exists. */
2369 relayd = consumer_find_relayd(net_seq_idx);
2370 if (relayd == NULL) {
2371 /* Not found. Allocate one. */
2372 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
2373 if (relayd == NULL) {
2374 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
2375 goto error;
2376 }
2377 }
2378
2379 /* Poll on consumer socket. */
2380 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2381 ret = -EINTR;
2382 goto error;
2383 }
2384
2385 /* Get relayd socket from session daemon */
2386 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
2387 if (ret != sizeof(fd)) {
2388 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
2389 ret = -1;
2390 goto error;
2391 }
2392
2393 /* Copy socket information and received FD */
2394 switch (sock_type) {
2395 case LTTNG_STREAM_CONTROL:
2396 /* Copy received lttcomm socket */
2397 lttcomm_copy_sock(&relayd->control_sock, relayd_sock);
2398 ret = lttcomm_create_sock(&relayd->control_sock);
2399 if (ret < 0) {
2400 goto error;
2401 }
2402
2403 /* Close the created socket fd which is useless */
2404 close(relayd->control_sock.fd);
2405
2406 /* Assign new file descriptor */
2407 relayd->control_sock.fd = fd;
2408 break;
2409 case LTTNG_STREAM_DATA:
2410 /* Copy received lttcomm socket */
2411 lttcomm_copy_sock(&relayd->data_sock, relayd_sock);
2412 ret = lttcomm_create_sock(&relayd->data_sock);
2413 if (ret < 0) {
2414 goto error;
2415 }
2416
2417 /* Close the created socket fd which is useless */
2418 close(relayd->data_sock.fd);
2419
2420 /* Assign new file descriptor */
2421 relayd->data_sock.fd = fd;
2422 break;
2423 default:
2424 ERR("Unknown relayd socket type (%d)", sock_type);
2425 goto error;
2426 }
2427
2428 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2429 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
2430 relayd->net_seq_idx, fd);
2431
2432 /*
2433 * Add relayd socket pair to consumer data hashtable. If object already
2434 * exists or on error, the function gracefully returns.
2435 */
2436 add_relayd(relayd);
2437
2438 /* All good! */
2439 ret = 0;
2440
2441 error:
2442 return ret;
2443 }
This page took 0.113003 seconds and 3 git commands to generate.