Fix: remove adjustment on written var for metadata
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30
31 #include <common/common.h>
32 #include <common/kernel-ctl/kernel-ctl.h>
33 #include <common/sessiond-comm/relayd.h>
34 #include <common/sessiond-comm/sessiond-comm.h>
35 #include <common/kernel-consumer/kernel-consumer.h>
36 #include <common/relayd/relayd.h>
37 #include <common/ust-consumer/ust-consumer.h>
38
39 #include "consumer.h"
40
41 struct lttng_consumer_global_data consumer_data = {
42 .stream_count = 0,
43 .need_update = 1,
44 .type = LTTNG_CONSUMER_UNKNOWN,
45 };
46
47 /* timeout parameter, to control the polling thread grace period. */
48 int consumer_poll_timeout = -1;
49
50 /*
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
54 * polling threads.
55 */
56 volatile int consumer_quit = 0;
57
58 /*
59 * Find a stream. The consumer_data.lock must be locked during this
60 * call.
61 */
62 static struct lttng_consumer_stream *consumer_find_stream(int key)
63 {
64 struct lttng_ht_iter iter;
65 struct lttng_ht_node_ulong *node;
66 struct lttng_consumer_stream *stream = NULL;
67
68 /* Negative keys are lookup failures */
69 if (key < 0)
70 return NULL;
71
72 rcu_read_lock();
73
74 lttng_ht_lookup(consumer_data.stream_ht, (void *)((unsigned long) key),
75 &iter);
76 node = lttng_ht_iter_get_node_ulong(&iter);
77 if (node != NULL) {
78 stream = caa_container_of(node, struct lttng_consumer_stream, node);
79 }
80
81 rcu_read_unlock();
82
83 return stream;
84 }
85
86 static void consumer_steal_stream_key(int key)
87 {
88 struct lttng_consumer_stream *stream;
89
90 rcu_read_lock();
91 stream = consumer_find_stream(key);
92 if (stream) {
93 stream->key = -1;
94 /*
95 * We don't want the lookup to match, but we still need
96 * to iterate on this stream when iterating over the hash table. Just
97 * change the node key.
98 */
99 stream->node.key = -1;
100 }
101 rcu_read_unlock();
102 }
103
104 static struct lttng_consumer_channel *consumer_find_channel(int key)
105 {
106 struct lttng_ht_iter iter;
107 struct lttng_ht_node_ulong *node;
108 struct lttng_consumer_channel *channel = NULL;
109
110 /* Negative keys are lookup failures */
111 if (key < 0)
112 return NULL;
113
114 rcu_read_lock();
115
116 lttng_ht_lookup(consumer_data.channel_ht, (void *)((unsigned long) key),
117 &iter);
118 node = lttng_ht_iter_get_node_ulong(&iter);
119 if (node != NULL) {
120 channel = caa_container_of(node, struct lttng_consumer_channel, node);
121 }
122
123 rcu_read_unlock();
124
125 return channel;
126 }
127
128 static void consumer_steal_channel_key(int key)
129 {
130 struct lttng_consumer_channel *channel;
131
132 rcu_read_lock();
133 channel = consumer_find_channel(key);
134 if (channel) {
135 channel->key = -1;
136 /*
137 * We don't want the lookup to match, but we still need
138 * to iterate on this channel when iterating over the hash table. Just
139 * change the node key.
140 */
141 channel->node.key = -1;
142 }
143 rcu_read_unlock();
144 }
145
146 static
147 void consumer_free_stream(struct rcu_head *head)
148 {
149 struct lttng_ht_node_ulong *node =
150 caa_container_of(head, struct lttng_ht_node_ulong, head);
151 struct lttng_consumer_stream *stream =
152 caa_container_of(node, struct lttng_consumer_stream, node);
153
154 free(stream);
155 }
156
157 /*
158 * RCU protected relayd socket pair free.
159 */
160 static void consumer_rcu_free_relayd(struct rcu_head *head)
161 {
162 struct lttng_ht_node_ulong *node =
163 caa_container_of(head, struct lttng_ht_node_ulong, head);
164 struct consumer_relayd_sock_pair *relayd =
165 caa_container_of(node, struct consumer_relayd_sock_pair, node);
166
167 free(relayd);
168 }
169
170 /*
171 * Destroy and free relayd socket pair object.
172 *
173 * This function MUST be called with the consumer_data lock acquired.
174 */
175 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
176 {
177 int ret;
178 struct lttng_ht_iter iter;
179
180 if (relayd == NULL) {
181 return;
182 }
183
184 DBG("Consumer destroy and close relayd socket pair");
185
186 iter.iter.node = &relayd->node.node;
187 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
188 if (ret != 0) {
189 /* We assume the relayd was already destroyed */
190 return;
191 }
192
193 /* Close all sockets */
194 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
195 (void) relayd_close(&relayd->control_sock);
196 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
197 (void) relayd_close(&relayd->data_sock);
198
199 /* RCU free() call */
200 call_rcu(&relayd->node.head, consumer_rcu_free_relayd);
201 }
202
203 /*
204 * Remove a stream from the global list protected by a mutex. This
205 * function is also responsible for freeing its data structures.
206 */
207 void consumer_del_stream(struct lttng_consumer_stream *stream)
208 {
209 int ret;
210 struct lttng_ht_iter iter;
211 struct lttng_consumer_channel *free_chan = NULL;
212 struct consumer_relayd_sock_pair *relayd;
213
214 assert(stream);
215
216 pthread_mutex_lock(&consumer_data.lock);
217
218 switch (consumer_data.type) {
219 case LTTNG_CONSUMER_KERNEL:
220 if (stream->mmap_base != NULL) {
221 ret = munmap(stream->mmap_base, stream->mmap_len);
222 if (ret != 0) {
223 perror("munmap");
224 }
225 }
226 break;
227 case LTTNG_CONSUMER32_UST:
228 case LTTNG_CONSUMER64_UST:
229 lttng_ustconsumer_del_stream(stream);
230 break;
231 default:
232 ERR("Unknown consumer_data type");
233 assert(0);
234 goto end;
235 }
236
237 rcu_read_lock();
238 iter.iter.node = &stream->node.node;
239 ret = lttng_ht_del(consumer_data.stream_ht, &iter);
240 assert(!ret);
241
242 rcu_read_unlock();
243
244 if (consumer_data.stream_count <= 0) {
245 goto end;
246 }
247 consumer_data.stream_count--;
248 if (!stream) {
249 goto end;
250 }
251 if (stream->out_fd >= 0) {
252 ret = close(stream->out_fd);
253 if (ret) {
254 PERROR("close");
255 }
256 }
257 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
258 ret = close(stream->wait_fd);
259 if (ret) {
260 PERROR("close");
261 }
262 }
263 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
264 ret = close(stream->shm_fd);
265 if (ret) {
266 PERROR("close");
267 }
268 }
269
270 /* Check and cleanup relayd */
271 rcu_read_lock();
272 relayd = consumer_find_relayd(stream->net_seq_idx);
273 if (relayd != NULL) {
274 uatomic_dec(&relayd->refcount);
275 assert(uatomic_read(&relayd->refcount) >= 0);
276
277 ret = relayd_send_close_stream(&relayd->control_sock,
278 stream->relayd_stream_id,
279 stream->next_net_seq_num - 1);
280 if (ret < 0) {
281 ERR("Unable to close stream on the relayd. Continuing");
282 /* Continue here. There is nothing we can do for the relayd.*/
283 }
284
285 /* Both conditions are met, we destroy the relayd. */
286 if (uatomic_read(&relayd->refcount) == 0 &&
287 uatomic_read(&relayd->destroy_flag)) {
288 consumer_destroy_relayd(relayd);
289 }
290 }
291 rcu_read_unlock();
292
293 if (!--stream->chan->refcount) {
294 free_chan = stream->chan;
295 }
296
297
298 call_rcu(&stream->node.head, consumer_free_stream);
299 end:
300 consumer_data.need_update = 1;
301 pthread_mutex_unlock(&consumer_data.lock);
302
303 if (free_chan)
304 consumer_del_channel(free_chan);
305 }
306
307 struct lttng_consumer_stream *consumer_allocate_stream(
308 int channel_key, int stream_key,
309 int shm_fd, int wait_fd,
310 enum lttng_consumer_stream_state state,
311 uint64_t mmap_len,
312 enum lttng_event_output output,
313 const char *path_name,
314 uid_t uid,
315 gid_t gid,
316 int net_index,
317 int metadata_flag)
318 {
319 struct lttng_consumer_stream *stream;
320 int ret;
321
322 stream = zmalloc(sizeof(*stream));
323 if (stream == NULL) {
324 perror("malloc struct lttng_consumer_stream");
325 goto end;
326 }
327 stream->chan = consumer_find_channel(channel_key);
328 if (!stream->chan) {
329 perror("Unable to find channel key");
330 goto end;
331 }
332 stream->chan->refcount++;
333 stream->key = stream_key;
334 stream->shm_fd = shm_fd;
335 stream->wait_fd = wait_fd;
336 stream->out_fd = -1;
337 stream->out_fd_offset = 0;
338 stream->state = state;
339 stream->mmap_len = mmap_len;
340 stream->mmap_base = NULL;
341 stream->output = output;
342 stream->uid = uid;
343 stream->gid = gid;
344 stream->net_seq_idx = net_index;
345 stream->metadata_flag = metadata_flag;
346 strncpy(stream->path_name, path_name, sizeof(stream->path_name));
347 stream->path_name[sizeof(stream->path_name) - 1] = '\0';
348 lttng_ht_node_init_ulong(&stream->node, stream->key);
349 lttng_ht_node_init_ulong(&stream->waitfd_node, stream->wait_fd);
350
351 switch (consumer_data.type) {
352 case LTTNG_CONSUMER_KERNEL:
353 break;
354 case LTTNG_CONSUMER32_UST:
355 case LTTNG_CONSUMER64_UST:
356 stream->cpu = stream->chan->cpucount++;
357 ret = lttng_ustconsumer_allocate_stream(stream);
358 if (ret) {
359 free(stream);
360 return NULL;
361 }
362 break;
363 default:
364 ERR("Unknown consumer_data type");
365 assert(0);
366 goto end;
367 }
368 DBG("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, out_fd %d, net_seq_idx %d)",
369 stream->path_name, stream->key,
370 stream->shm_fd,
371 stream->wait_fd,
372 (unsigned long long) stream->mmap_len,
373 stream->out_fd,
374 stream->net_seq_idx);
375 end:
376 return stream;
377 }
378
379 /*
380 * Add a stream to the global list protected by a mutex.
381 */
382 int consumer_add_stream(struct lttng_consumer_stream *stream)
383 {
384 int ret = 0;
385 struct lttng_ht_node_ulong *node;
386 struct lttng_ht_iter iter;
387 struct consumer_relayd_sock_pair *relayd;
388
389 pthread_mutex_lock(&consumer_data.lock);
390 /* Steal stream identifier, for UST */
391 consumer_steal_stream_key(stream->key);
392
393 rcu_read_lock();
394 lttng_ht_lookup(consumer_data.stream_ht,
395 (void *)((unsigned long) stream->key), &iter);
396 node = lttng_ht_iter_get_node_ulong(&iter);
397 if (node != NULL) {
398 rcu_read_unlock();
399 /* Stream already exist. Ignore the insertion */
400 goto end;
401 }
402
403 lttng_ht_add_unique_ulong(consumer_data.stream_ht, &stream->node);
404
405 /* Check and cleanup relayd */
406 relayd = consumer_find_relayd(stream->net_seq_idx);
407 if (relayd != NULL) {
408 uatomic_inc(&relayd->refcount);
409 }
410 rcu_read_unlock();
411
412 /* Update consumer data */
413 consumer_data.stream_count++;
414 consumer_data.need_update = 1;
415
416 switch (consumer_data.type) {
417 case LTTNG_CONSUMER_KERNEL:
418 break;
419 case LTTNG_CONSUMER32_UST:
420 case LTTNG_CONSUMER64_UST:
421 /* Streams are in CPU number order (we rely on this) */
422 stream->cpu = stream->chan->nr_streams++;
423 break;
424 default:
425 ERR("Unknown consumer_data type");
426 assert(0);
427 goto end;
428 }
429
430 end:
431 pthread_mutex_unlock(&consumer_data.lock);
432
433 return ret;
434 }
435
436 /*
437 * Add relayd socket to global consumer data hashtable.
438 */
439 int consumer_add_relayd(struct consumer_relayd_sock_pair *relayd)
440 {
441 int ret = 0;
442 struct lttng_ht_node_ulong *node;
443 struct lttng_ht_iter iter;
444
445 if (relayd == NULL) {
446 ret = -1;
447 goto end;
448 }
449
450 rcu_read_lock();
451
452 lttng_ht_lookup(consumer_data.relayd_ht,
453 (void *)((unsigned long) relayd->net_seq_idx), &iter);
454 node = lttng_ht_iter_get_node_ulong(&iter);
455 if (node != NULL) {
456 rcu_read_unlock();
457 /* Relayd already exist. Ignore the insertion */
458 goto end;
459 }
460 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
461
462 rcu_read_unlock();
463
464 end:
465 return ret;
466 }
467
468 /*
469 * Allocate and return a consumer relayd socket.
470 */
471 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
472 int net_seq_idx)
473 {
474 struct consumer_relayd_sock_pair *obj = NULL;
475
476 /* Negative net sequence index is a failure */
477 if (net_seq_idx < 0) {
478 goto error;
479 }
480
481 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
482 if (obj == NULL) {
483 PERROR("zmalloc relayd sock");
484 goto error;
485 }
486
487 obj->net_seq_idx = net_seq_idx;
488 obj->refcount = 0;
489 obj->destroy_flag = 0;
490 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
491 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
492
493 error:
494 return obj;
495 }
496
497 /*
498 * Find a relayd socket pair in the global consumer data.
499 *
500 * Return the object if found else NULL.
501 * RCU read-side lock must be held across this call and while using the
502 * returned object.
503 */
504 struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
505 {
506 struct lttng_ht_iter iter;
507 struct lttng_ht_node_ulong *node;
508 struct consumer_relayd_sock_pair *relayd = NULL;
509
510 /* Negative keys are lookup failures */
511 if (key < 0) {
512 goto error;
513 }
514
515 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
516 &iter);
517 node = lttng_ht_iter_get_node_ulong(&iter);
518 if (node != NULL) {
519 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
520 }
521
522 error:
523 return relayd;
524 }
525
526 /*
527 * Handle stream for relayd transmission if the stream applies for network
528 * streaming where the net sequence index is set.
529 *
530 * Return destination file descriptor or negative value on error.
531 */
532 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
533 size_t data_size, struct consumer_relayd_sock_pair *relayd)
534 {
535 int outfd = -1, ret;
536 struct lttcomm_relayd_data_hdr data_hdr;
537
538 /* Safety net */
539 assert(stream);
540 assert(relayd);
541
542 /* Reset data header */
543 memset(&data_hdr, 0, sizeof(data_hdr));
544
545 if (stream->metadata_flag) {
546 /* Caller MUST acquire the relayd control socket lock */
547 ret = relayd_send_metadata(&relayd->control_sock, data_size);
548 if (ret < 0) {
549 goto error;
550 }
551
552 /* Metadata are always sent on the control socket. */
553 outfd = relayd->control_sock.fd;
554 } else {
555 /* Set header with stream information */
556 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
557 data_hdr.data_size = htobe32(data_size);
558 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num++);
559 /* Other fields are zeroed previously */
560
561 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
562 sizeof(data_hdr));
563 if (ret < 0) {
564 goto error;
565 }
566
567 /* Set to go on data socket */
568 outfd = relayd->data_sock.fd;
569 }
570
571 error:
572 return outfd;
573 }
574
575 /*
576 * Update a stream according to what we just received.
577 */
578 void consumer_change_stream_state(int stream_key,
579 enum lttng_consumer_stream_state state)
580 {
581 struct lttng_consumer_stream *stream;
582
583 pthread_mutex_lock(&consumer_data.lock);
584 stream = consumer_find_stream(stream_key);
585 if (stream) {
586 stream->state = state;
587 }
588 consumer_data.need_update = 1;
589 pthread_mutex_unlock(&consumer_data.lock);
590 }
591
592 static
593 void consumer_free_channel(struct rcu_head *head)
594 {
595 struct lttng_ht_node_ulong *node =
596 caa_container_of(head, struct lttng_ht_node_ulong, head);
597 struct lttng_consumer_channel *channel =
598 caa_container_of(node, struct lttng_consumer_channel, node);
599
600 free(channel);
601 }
602
603 /*
604 * Remove a channel from the global list protected by a mutex. This
605 * function is also responsible for freeing its data structures.
606 */
607 void consumer_del_channel(struct lttng_consumer_channel *channel)
608 {
609 int ret;
610 struct lttng_ht_iter iter;
611
612 pthread_mutex_lock(&consumer_data.lock);
613
614 switch (consumer_data.type) {
615 case LTTNG_CONSUMER_KERNEL:
616 break;
617 case LTTNG_CONSUMER32_UST:
618 case LTTNG_CONSUMER64_UST:
619 lttng_ustconsumer_del_channel(channel);
620 break;
621 default:
622 ERR("Unknown consumer_data type");
623 assert(0);
624 goto end;
625 }
626
627 rcu_read_lock();
628 iter.iter.node = &channel->node.node;
629 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
630 assert(!ret);
631 rcu_read_unlock();
632
633 if (channel->mmap_base != NULL) {
634 ret = munmap(channel->mmap_base, channel->mmap_len);
635 if (ret != 0) {
636 perror("munmap");
637 }
638 }
639 if (channel->wait_fd >= 0 && !channel->wait_fd_is_copy) {
640 ret = close(channel->wait_fd);
641 if (ret) {
642 PERROR("close");
643 }
644 }
645 if (channel->shm_fd >= 0 && channel->wait_fd != channel->shm_fd) {
646 ret = close(channel->shm_fd);
647 if (ret) {
648 PERROR("close");
649 }
650 }
651
652 call_rcu(&channel->node.head, consumer_free_channel);
653 end:
654 pthread_mutex_unlock(&consumer_data.lock);
655 }
656
657 struct lttng_consumer_channel *consumer_allocate_channel(
658 int channel_key,
659 int shm_fd, int wait_fd,
660 uint64_t mmap_len,
661 uint64_t max_sb_size)
662 {
663 struct lttng_consumer_channel *channel;
664 int ret;
665
666 channel = zmalloc(sizeof(*channel));
667 if (channel == NULL) {
668 perror("malloc struct lttng_consumer_channel");
669 goto end;
670 }
671 channel->key = channel_key;
672 channel->shm_fd = shm_fd;
673 channel->wait_fd = wait_fd;
674 channel->mmap_len = mmap_len;
675 channel->max_sb_size = max_sb_size;
676 channel->refcount = 0;
677 channel->nr_streams = 0;
678 lttng_ht_node_init_ulong(&channel->node, channel->key);
679
680 switch (consumer_data.type) {
681 case LTTNG_CONSUMER_KERNEL:
682 channel->mmap_base = NULL;
683 channel->mmap_len = 0;
684 break;
685 case LTTNG_CONSUMER32_UST:
686 case LTTNG_CONSUMER64_UST:
687 ret = lttng_ustconsumer_allocate_channel(channel);
688 if (ret) {
689 free(channel);
690 return NULL;
691 }
692 break;
693 default:
694 ERR("Unknown consumer_data type");
695 assert(0);
696 goto end;
697 }
698 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
699 channel->key, channel->shm_fd, channel->wait_fd,
700 (unsigned long long) channel->mmap_len,
701 (unsigned long long) channel->max_sb_size);
702 end:
703 return channel;
704 }
705
706 /*
707 * Add a channel to the global list protected by a mutex.
708 */
709 int consumer_add_channel(struct lttng_consumer_channel *channel)
710 {
711 struct lttng_ht_node_ulong *node;
712 struct lttng_ht_iter iter;
713
714 pthread_mutex_lock(&consumer_data.lock);
715 /* Steal channel identifier, for UST */
716 consumer_steal_channel_key(channel->key);
717 rcu_read_lock();
718
719 lttng_ht_lookup(consumer_data.channel_ht,
720 (void *)((unsigned long) channel->key), &iter);
721 node = lttng_ht_iter_get_node_ulong(&iter);
722 if (node != NULL) {
723 /* Channel already exist. Ignore the insertion */
724 goto end;
725 }
726
727 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
728
729 end:
730 rcu_read_unlock();
731 pthread_mutex_unlock(&consumer_data.lock);
732
733 return 0;
734 }
735
736 /*
737 * Allocate the pollfd structure and the local view of the out fds to avoid
738 * doing a lookup in the linked list and concurrency issues when writing is
739 * needed. Called with consumer_data.lock held.
740 *
741 * Returns the number of fds in the structures.
742 */
743 int consumer_update_poll_array(
744 struct lttng_consumer_local_data *ctx, struct pollfd **pollfd,
745 struct lttng_consumer_stream **local_stream,
746 struct lttng_ht *metadata_ht)
747 {
748 int i = 0;
749 struct lttng_ht_iter iter;
750 struct lttng_consumer_stream *stream;
751
752 DBG("Updating poll fd array");
753 rcu_read_lock();
754 cds_lfht_for_each_entry(consumer_data.stream_ht->ht, &iter.iter, stream,
755 node.node) {
756 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM) {
757 continue;
758 }
759 DBG("Active FD %d", stream->wait_fd);
760 (*pollfd)[i].fd = stream->wait_fd;
761 (*pollfd)[i].events = POLLIN | POLLPRI;
762 if (stream->metadata_flag && metadata_ht) {
763 lttng_ht_add_unique_ulong(metadata_ht, &stream->waitfd_node);
764 DBG("Active FD added to metadata hash table");
765 }
766 local_stream[i] = stream;
767 i++;
768 }
769 rcu_read_unlock();
770
771 /*
772 * Insert the consumer_poll_pipe at the end of the array and don't
773 * increment i so nb_fd is the number of real FD.
774 */
775 (*pollfd)[i].fd = ctx->consumer_poll_pipe[0];
776 (*pollfd)[i].events = POLLIN | POLLPRI;
777 return i;
778 }
779
780 /*
781 * Poll on the should_quit pipe and the command socket return -1 on error and
782 * should exit, 0 if data is available on the command socket
783 */
784 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
785 {
786 int num_rdy;
787
788 restart:
789 num_rdy = poll(consumer_sockpoll, 2, -1);
790 if (num_rdy == -1) {
791 /*
792 * Restart interrupted system call.
793 */
794 if (errno == EINTR) {
795 goto restart;
796 }
797 perror("Poll error");
798 goto exit;
799 }
800 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
801 DBG("consumer_should_quit wake up");
802 goto exit;
803 }
804 return 0;
805
806 exit:
807 return -1;
808 }
809
810 /*
811 * Set the error socket.
812 */
813 void lttng_consumer_set_error_sock(
814 struct lttng_consumer_local_data *ctx, int sock)
815 {
816 ctx->consumer_error_socket = sock;
817 }
818
819 /*
820 * Set the command socket path.
821 */
822 void lttng_consumer_set_command_sock_path(
823 struct lttng_consumer_local_data *ctx, char *sock)
824 {
825 ctx->consumer_command_sock_path = sock;
826 }
827
828 /*
829 * Send return code to the session daemon.
830 * If the socket is not defined, we return 0, it is not a fatal error
831 */
832 int lttng_consumer_send_error(
833 struct lttng_consumer_local_data *ctx, int cmd)
834 {
835 if (ctx->consumer_error_socket > 0) {
836 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
837 sizeof(enum lttcomm_sessiond_command));
838 }
839
840 return 0;
841 }
842
843 /*
844 * Close all the tracefiles and stream fds, should be called when all instances
845 * are destroyed.
846 */
847 void lttng_consumer_cleanup(void)
848 {
849 struct lttng_ht_iter iter;
850 struct lttng_ht_node_ulong *node;
851
852 rcu_read_lock();
853
854 /*
855 * close all outfd. Called when there are no more threads running (after
856 * joining on the threads), no need to protect list iteration with mutex.
857 */
858 cds_lfht_for_each_entry(consumer_data.stream_ht->ht, &iter.iter, node,
859 node) {
860 struct lttng_consumer_stream *stream =
861 caa_container_of(node, struct lttng_consumer_stream, node);
862 consumer_del_stream(stream);
863 }
864
865 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, node,
866 node) {
867 struct lttng_consumer_channel *channel =
868 caa_container_of(node, struct lttng_consumer_channel, node);
869 consumer_del_channel(channel);
870 }
871
872 rcu_read_unlock();
873
874 lttng_ht_destroy(consumer_data.stream_ht);
875 lttng_ht_destroy(consumer_data.channel_ht);
876 }
877
878 /*
879 * Called from signal handler.
880 */
881 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
882 {
883 int ret;
884 consumer_quit = 1;
885 do {
886 ret = write(ctx->consumer_should_quit[1], "4", 1);
887 } while (ret < 0 && errno == EINTR);
888 if (ret < 0) {
889 perror("write consumer quit");
890 }
891 }
892
893 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
894 off_t orig_offset)
895 {
896 int outfd = stream->out_fd;
897
898 /*
899 * This does a blocking write-and-wait on any page that belongs to the
900 * subbuffer prior to the one we just wrote.
901 * Don't care about error values, as these are just hints and ways to
902 * limit the amount of page cache used.
903 */
904 if (orig_offset < stream->chan->max_sb_size) {
905 return;
906 }
907 lttng_sync_file_range(outfd, orig_offset - stream->chan->max_sb_size,
908 stream->chan->max_sb_size,
909 SYNC_FILE_RANGE_WAIT_BEFORE
910 | SYNC_FILE_RANGE_WRITE
911 | SYNC_FILE_RANGE_WAIT_AFTER);
912 /*
913 * Give hints to the kernel about how we access the file:
914 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
915 * we write it.
916 *
917 * We need to call fadvise again after the file grows because the
918 * kernel does not seem to apply fadvise to non-existing parts of the
919 * file.
920 *
921 * Call fadvise _after_ having waited for the page writeback to
922 * complete because the dirty page writeback semantic is not well
923 * defined. So it can be expected to lead to lower throughput in
924 * streaming.
925 */
926 posix_fadvise(outfd, orig_offset - stream->chan->max_sb_size,
927 stream->chan->max_sb_size, POSIX_FADV_DONTNEED);
928 }
929
930 /*
931 * Initialise the necessary environnement :
932 * - create a new context
933 * - create the poll_pipe
934 * - create the should_quit pipe (for signal handler)
935 * - create the thread pipe (for splice)
936 *
937 * Takes a function pointer as argument, this function is called when data is
938 * available on a buffer. This function is responsible to do the
939 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
940 * buffer configuration and then kernctl_put_next_subbuf at the end.
941 *
942 * Returns a pointer to the new context or NULL on error.
943 */
944 struct lttng_consumer_local_data *lttng_consumer_create(
945 enum lttng_consumer_type type,
946 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
947 struct lttng_consumer_local_data *ctx),
948 int (*recv_channel)(struct lttng_consumer_channel *channel),
949 int (*recv_stream)(struct lttng_consumer_stream *stream),
950 int (*update_stream)(int stream_key, uint32_t state))
951 {
952 int ret, i;
953 struct lttng_consumer_local_data *ctx;
954
955 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
956 consumer_data.type == type);
957 consumer_data.type = type;
958
959 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
960 if (ctx == NULL) {
961 perror("allocating context");
962 goto error;
963 }
964
965 ctx->consumer_error_socket = -1;
966 /* assign the callbacks */
967 ctx->on_buffer_ready = buffer_ready;
968 ctx->on_recv_channel = recv_channel;
969 ctx->on_recv_stream = recv_stream;
970 ctx->on_update_stream = update_stream;
971
972 ret = pipe(ctx->consumer_poll_pipe);
973 if (ret < 0) {
974 perror("Error creating poll pipe");
975 goto error_poll_pipe;
976 }
977
978 /* set read end of the pipe to non-blocking */
979 ret = fcntl(ctx->consumer_poll_pipe[0], F_SETFL, O_NONBLOCK);
980 if (ret < 0) {
981 perror("fcntl O_NONBLOCK");
982 goto error_poll_fcntl;
983 }
984
985 /* set write end of the pipe to non-blocking */
986 ret = fcntl(ctx->consumer_poll_pipe[1], F_SETFL, O_NONBLOCK);
987 if (ret < 0) {
988 perror("fcntl O_NONBLOCK");
989 goto error_poll_fcntl;
990 }
991
992 ret = pipe(ctx->consumer_should_quit);
993 if (ret < 0) {
994 perror("Error creating recv pipe");
995 goto error_quit_pipe;
996 }
997
998 ret = pipe(ctx->consumer_thread_pipe);
999 if (ret < 0) {
1000 perror("Error creating thread pipe");
1001 goto error_thread_pipe;
1002 }
1003
1004 return ctx;
1005
1006
1007 error_thread_pipe:
1008 for (i = 0; i < 2; i++) {
1009 int err;
1010
1011 err = close(ctx->consumer_should_quit[i]);
1012 if (err) {
1013 PERROR("close");
1014 }
1015 }
1016 error_poll_fcntl:
1017 error_quit_pipe:
1018 for (i = 0; i < 2; i++) {
1019 int err;
1020
1021 err = close(ctx->consumer_poll_pipe[i]);
1022 if (err) {
1023 PERROR("close");
1024 }
1025 }
1026 error_poll_pipe:
1027 free(ctx);
1028 error:
1029 return NULL;
1030 }
1031
1032 /*
1033 * Close all fds associated with the instance and free the context.
1034 */
1035 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1036 {
1037 int ret;
1038
1039 ret = close(ctx->consumer_error_socket);
1040 if (ret) {
1041 PERROR("close");
1042 }
1043 ret = close(ctx->consumer_thread_pipe[0]);
1044 if (ret) {
1045 PERROR("close");
1046 }
1047 ret = close(ctx->consumer_thread_pipe[1]);
1048 if (ret) {
1049 PERROR("close");
1050 }
1051 ret = close(ctx->consumer_poll_pipe[0]);
1052 if (ret) {
1053 PERROR("close");
1054 }
1055 ret = close(ctx->consumer_poll_pipe[1]);
1056 if (ret) {
1057 PERROR("close");
1058 }
1059 ret = close(ctx->consumer_should_quit[0]);
1060 if (ret) {
1061 PERROR("close");
1062 }
1063 ret = close(ctx->consumer_should_quit[1]);
1064 if (ret) {
1065 PERROR("close");
1066 }
1067 unlink(ctx->consumer_command_sock_path);
1068 free(ctx);
1069 }
1070
1071 /*
1072 * Write the metadata stream id on the specified file descriptor.
1073 */
1074 static int write_relayd_metadata_id(int fd,
1075 struct lttng_consumer_stream *stream,
1076 struct consumer_relayd_sock_pair *relayd)
1077 {
1078 int ret;
1079 uint64_t metadata_id;
1080
1081 metadata_id = htobe64(stream->relayd_stream_id);
1082 do {
1083 ret = write(fd, (void *) &metadata_id,
1084 sizeof(stream->relayd_stream_id));
1085 } while (ret < 0 && errno == EINTR);
1086 if (ret < 0) {
1087 PERROR("write metadata stream id");
1088 goto end;
1089 }
1090 DBG("Metadata stream id %zu written before data",
1091 stream->relayd_stream_id);
1092
1093 end:
1094 return ret;
1095 }
1096
1097 /*
1098 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1099 * core function for writing trace buffers to either the local filesystem or
1100 * the network.
1101 *
1102 * Careful review MUST be put if any changes occur!
1103 *
1104 * Returns the number of bytes written
1105 */
1106 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1107 struct lttng_consumer_local_data *ctx,
1108 struct lttng_consumer_stream *stream, unsigned long len)
1109 {
1110 unsigned long mmap_offset;
1111 ssize_t ret = 0, written = 0;
1112 off_t orig_offset = stream->out_fd_offset;
1113 /* Default is on the disk */
1114 int outfd = stream->out_fd;
1115 struct consumer_relayd_sock_pair *relayd = NULL;
1116
1117 /* RCU lock for the relayd pointer */
1118 rcu_read_lock();
1119
1120 /* Flag that the current stream if set for network streaming. */
1121 if (stream->net_seq_idx != -1) {
1122 relayd = consumer_find_relayd(stream->net_seq_idx);
1123 if (relayd == NULL) {
1124 goto end;
1125 }
1126 }
1127
1128 /* get the offset inside the fd to mmap */
1129 switch (consumer_data.type) {
1130 case LTTNG_CONSUMER_KERNEL:
1131 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1132 break;
1133 case LTTNG_CONSUMER32_UST:
1134 case LTTNG_CONSUMER64_UST:
1135 ret = lttng_ustctl_get_mmap_read_offset(stream->chan->handle,
1136 stream->buf, &mmap_offset);
1137 break;
1138 default:
1139 ERR("Unknown consumer_data type");
1140 assert(0);
1141 }
1142 if (ret != 0) {
1143 errno = -ret;
1144 PERROR("tracer ctl get_mmap_read_offset");
1145 written = ret;
1146 goto end;
1147 }
1148
1149 /* Handle stream on the relayd if the output is on the network */
1150 if (relayd) {
1151 unsigned long netlen = len;
1152
1153 /*
1154 * Lock the control socket for the complete duration of the function
1155 * since from this point on we will use the socket.
1156 */
1157 if (stream->metadata_flag) {
1158 /* Metadata requires the control socket. */
1159 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1160 netlen += sizeof(stream->relayd_stream_id);
1161 }
1162
1163 ret = write_relayd_stream_header(stream, netlen, relayd);
1164 if (ret >= 0) {
1165 /* Use the returned socket. */
1166 outfd = ret;
1167
1168 /* Write metadata stream id before payload */
1169 if (stream->metadata_flag) {
1170 ret = write_relayd_metadata_id(outfd, stream, relayd);
1171 if (ret < 0) {
1172 written = ret;
1173 goto end;
1174 }
1175 }
1176 }
1177 /* Else, use the default set before which is the filesystem. */
1178 }
1179
1180 while (len > 0) {
1181 do {
1182 ret = write(outfd, stream->mmap_base + mmap_offset, len);
1183 } while (ret < 0 && errno == EINTR);
1184 if (ret < 0) {
1185 PERROR("Error in file write");
1186 if (written == 0) {
1187 written = ret;
1188 }
1189 goto end;
1190 } else if (ret > len) {
1191 PERROR("Error in file write (ret %ld > len %lu)", ret, len);
1192 written += ret;
1193 goto end;
1194 } else {
1195 len -= ret;
1196 mmap_offset += ret;
1197 }
1198 DBG("Consumer mmap write() ret %ld (len %lu)", ret, len);
1199
1200 /* This call is useless on a socket so better save a syscall. */
1201 if (!relayd) {
1202 /* This won't block, but will start writeout asynchronously */
1203 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1204 SYNC_FILE_RANGE_WRITE);
1205 stream->out_fd_offset += ret;
1206 }
1207 written += ret;
1208 }
1209 lttng_consumer_sync_trace_file(stream, orig_offset);
1210
1211 end:
1212 /* Unlock only if ctrl socket used */
1213 if (relayd && stream->metadata_flag) {
1214 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1215 }
1216
1217 rcu_read_unlock();
1218 return written;
1219 }
1220
1221 /*
1222 * Splice the data from the ring buffer to the tracefile.
1223 *
1224 * Returns the number of bytes spliced.
1225 */
1226 ssize_t lttng_consumer_on_read_subbuffer_splice(
1227 struct lttng_consumer_local_data *ctx,
1228 struct lttng_consumer_stream *stream, unsigned long len)
1229 {
1230 ssize_t ret = 0, written = 0, ret_splice = 0;
1231 loff_t offset = 0;
1232 off_t orig_offset = stream->out_fd_offset;
1233 int fd = stream->wait_fd;
1234 /* Default is on the disk */
1235 int outfd = stream->out_fd;
1236 struct consumer_relayd_sock_pair *relayd = NULL;
1237
1238 switch (consumer_data.type) {
1239 case LTTNG_CONSUMER_KERNEL:
1240 break;
1241 case LTTNG_CONSUMER32_UST:
1242 case LTTNG_CONSUMER64_UST:
1243 /* Not supported for user space tracing */
1244 return -ENOSYS;
1245 default:
1246 ERR("Unknown consumer_data type");
1247 assert(0);
1248 }
1249
1250 /* RCU lock for the relayd pointer */
1251 rcu_read_lock();
1252
1253 /* Flag that the current stream if set for network streaming. */
1254 if (stream->net_seq_idx != -1) {
1255 relayd = consumer_find_relayd(stream->net_seq_idx);
1256 if (relayd == NULL) {
1257 goto end;
1258 }
1259 }
1260
1261 /* Write metadata stream id before payload */
1262 if (stream->metadata_flag && relayd) {
1263 /*
1264 * Lock the control socket for the complete duration of the function
1265 * since from this point on we will use the socket.
1266 */
1267 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1268
1269 ret = write_relayd_metadata_id(ctx->consumer_thread_pipe[1],
1270 stream, relayd);
1271 if (ret < 0) {
1272 written = ret;
1273 goto end;
1274 }
1275 }
1276
1277 while (len > 0) {
1278 DBG("splice chan to pipe offset %lu of len %lu (fd : %d)",
1279 (unsigned long)offset, len, fd);
1280 ret_splice = splice(fd, &offset, ctx->consumer_thread_pipe[1], NULL, len,
1281 SPLICE_F_MOVE | SPLICE_F_MORE);
1282 DBG("splice chan to pipe, ret %zd", ret_splice);
1283 if (ret_splice < 0) {
1284 PERROR("Error in relay splice");
1285 if (written == 0) {
1286 written = ret_splice;
1287 }
1288 ret = errno;
1289 goto splice_error;
1290 }
1291
1292 /* Handle stream on the relayd if the output is on the network */
1293 if (relayd) {
1294 if (stream->metadata_flag) {
1295 /* Update counter to fit the spliced data */
1296 ret_splice += sizeof(stream->relayd_stream_id);
1297 len += sizeof(stream->relayd_stream_id);
1298 /*
1299 * We do this so the return value can match the len passed as
1300 * argument to this function.
1301 */
1302 written -= sizeof(stream->relayd_stream_id);
1303 }
1304
1305 ret = write_relayd_stream_header(stream, ret_splice, relayd);
1306 if (ret >= 0) {
1307 /* Use the returned socket. */
1308 outfd = ret;
1309 } else {
1310 ERR("Remote relayd disconnected. Stopping");
1311 goto end;
1312 }
1313 }
1314
1315 /* Splice data out */
1316 ret_splice = splice(ctx->consumer_thread_pipe[0], NULL, outfd, NULL,
1317 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1318 DBG("Kernel consumer splice pipe to file, ret %zd", ret_splice);
1319 if (ret_splice < 0) {
1320 PERROR("Error in file splice");
1321 if (written == 0) {
1322 written = ret_splice;
1323 }
1324 ret = errno;
1325 goto splice_error;
1326 } else if (ret_splice > len) {
1327 errno = EINVAL;
1328 PERROR("Wrote more data than requested %zd (len: %lu)",
1329 ret_splice, len);
1330 written += ret_splice;
1331 ret = errno;
1332 goto splice_error;
1333 }
1334 len -= ret_splice;
1335
1336 /* This call is useless on a socket so better save a syscall. */
1337 if (!relayd) {
1338 /* This won't block, but will start writeout asynchronously */
1339 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1340 SYNC_FILE_RANGE_WRITE);
1341 stream->out_fd_offset += ret_splice;
1342 }
1343 written += ret_splice;
1344 }
1345 lttng_consumer_sync_trace_file(stream, orig_offset);
1346
1347 ret = ret_splice;
1348
1349 goto end;
1350
1351 splice_error:
1352 /* send the appropriate error description to sessiond */
1353 switch (ret) {
1354 case EBADF:
1355 lttng_consumer_send_error(ctx, CONSUMERD_SPLICE_EBADF);
1356 break;
1357 case EINVAL:
1358 lttng_consumer_send_error(ctx, CONSUMERD_SPLICE_EINVAL);
1359 break;
1360 case ENOMEM:
1361 lttng_consumer_send_error(ctx, CONSUMERD_SPLICE_ENOMEM);
1362 break;
1363 case ESPIPE:
1364 lttng_consumer_send_error(ctx, CONSUMERD_SPLICE_ESPIPE);
1365 break;
1366 }
1367
1368 end:
1369 if (relayd && stream->metadata_flag) {
1370 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1371 }
1372
1373 rcu_read_unlock();
1374 return written;
1375 }
1376
1377 /*
1378 * Take a snapshot for a specific fd
1379 *
1380 * Returns 0 on success, < 0 on error
1381 */
1382 int lttng_consumer_take_snapshot(struct lttng_consumer_local_data *ctx,
1383 struct lttng_consumer_stream *stream)
1384 {
1385 switch (consumer_data.type) {
1386 case LTTNG_CONSUMER_KERNEL:
1387 return lttng_kconsumer_take_snapshot(ctx, stream);
1388 case LTTNG_CONSUMER32_UST:
1389 case LTTNG_CONSUMER64_UST:
1390 return lttng_ustconsumer_take_snapshot(ctx, stream);
1391 default:
1392 ERR("Unknown consumer_data type");
1393 assert(0);
1394 return -ENOSYS;
1395 }
1396
1397 }
1398
1399 /*
1400 * Get the produced position
1401 *
1402 * Returns 0 on success, < 0 on error
1403 */
1404 int lttng_consumer_get_produced_snapshot(
1405 struct lttng_consumer_local_data *ctx,
1406 struct lttng_consumer_stream *stream,
1407 unsigned long *pos)
1408 {
1409 switch (consumer_data.type) {
1410 case LTTNG_CONSUMER_KERNEL:
1411 return lttng_kconsumer_get_produced_snapshot(ctx, stream, pos);
1412 case LTTNG_CONSUMER32_UST:
1413 case LTTNG_CONSUMER64_UST:
1414 return lttng_ustconsumer_get_produced_snapshot(ctx, stream, pos);
1415 default:
1416 ERR("Unknown consumer_data type");
1417 assert(0);
1418 return -ENOSYS;
1419 }
1420 }
1421
1422 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1423 int sock, struct pollfd *consumer_sockpoll)
1424 {
1425 switch (consumer_data.type) {
1426 case LTTNG_CONSUMER_KERNEL:
1427 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1428 case LTTNG_CONSUMER32_UST:
1429 case LTTNG_CONSUMER64_UST:
1430 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1431 default:
1432 ERR("Unknown consumer_data type");
1433 assert(0);
1434 return -ENOSYS;
1435 }
1436 }
1437
1438 /*
1439 * This thread polls the fds in the set to consume the data and write
1440 * it to tracefile if necessary.
1441 */
1442 void *lttng_consumer_thread_poll_fds(void *data)
1443 {
1444 int num_rdy, num_hup, high_prio, ret, i;
1445 struct pollfd *pollfd = NULL;
1446 /* local view of the streams */
1447 struct lttng_consumer_stream **local_stream = NULL;
1448 /* local view of consumer_data.fds_count */
1449 int nb_fd = 0;
1450 struct lttng_consumer_local_data *ctx = data;
1451 struct lttng_ht *metadata_ht;
1452 struct lttng_ht_iter iter;
1453 struct lttng_ht_node_ulong *node;
1454 struct lttng_consumer_stream *metadata_stream;
1455 ssize_t len;
1456
1457 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
1458
1459 rcu_register_thread();
1460
1461 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
1462
1463 while (1) {
1464 high_prio = 0;
1465 num_hup = 0;
1466
1467 /*
1468 * the fds set has been updated, we need to update our
1469 * local array as well
1470 */
1471 pthread_mutex_lock(&consumer_data.lock);
1472 if (consumer_data.need_update) {
1473 if (pollfd != NULL) {
1474 free(pollfd);
1475 pollfd = NULL;
1476 }
1477 if (local_stream != NULL) {
1478 free(local_stream);
1479 local_stream = NULL;
1480 }
1481
1482 /* allocate for all fds + 1 for the consumer_poll_pipe */
1483 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
1484 if (pollfd == NULL) {
1485 perror("pollfd malloc");
1486 pthread_mutex_unlock(&consumer_data.lock);
1487 goto end;
1488 }
1489
1490 /* allocate for all fds + 1 for the consumer_poll_pipe */
1491 local_stream = zmalloc((consumer_data.stream_count + 1) *
1492 sizeof(struct lttng_consumer_stream));
1493 if (local_stream == NULL) {
1494 perror("local_stream malloc");
1495 pthread_mutex_unlock(&consumer_data.lock);
1496 goto end;
1497 }
1498 ret = consumer_update_poll_array(ctx, &pollfd, local_stream,
1499 metadata_ht);
1500 if (ret < 0) {
1501 ERR("Error in allocating pollfd or local_outfds");
1502 lttng_consumer_send_error(ctx, CONSUMERD_POLL_ERROR);
1503 pthread_mutex_unlock(&consumer_data.lock);
1504 goto end;
1505 }
1506 nb_fd = ret;
1507 consumer_data.need_update = 0;
1508 }
1509 pthread_mutex_unlock(&consumer_data.lock);
1510
1511 /* No FDs and consumer_quit, consumer_cleanup the thread */
1512 if (nb_fd == 0 && consumer_quit == 1) {
1513 goto end;
1514 }
1515 /* poll on the array of fds */
1516 restart:
1517 DBG("polling on %d fd", nb_fd + 1);
1518 num_rdy = poll(pollfd, nb_fd + 1, consumer_poll_timeout);
1519 DBG("poll num_rdy : %d", num_rdy);
1520 if (num_rdy == -1) {
1521 /*
1522 * Restart interrupted system call.
1523 */
1524 if (errno == EINTR) {
1525 goto restart;
1526 }
1527 perror("Poll error");
1528 lttng_consumer_send_error(ctx, CONSUMERD_POLL_ERROR);
1529 goto end;
1530 } else if (num_rdy == 0) {
1531 DBG("Polling thread timed out");
1532 goto end;
1533 }
1534
1535 /*
1536 * If the consumer_poll_pipe triggered poll go directly to the
1537 * beginning of the loop to update the array. We want to prioritize
1538 * array update over low-priority reads.
1539 */
1540 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
1541 size_t pipe_readlen;
1542 char tmp;
1543
1544 DBG("consumer_poll_pipe wake up");
1545 /* Consume 1 byte of pipe data */
1546 do {
1547 pipe_readlen = read(ctx->consumer_poll_pipe[0], &tmp, 1);
1548 } while (pipe_readlen == -1 && errno == EINTR);
1549 continue;
1550 }
1551
1552 /* Take care of high priority channels first. */
1553 for (i = 0; i < nb_fd; i++) {
1554 /* Lookup for metadata which is the highest priority */
1555 lttng_ht_lookup(metadata_ht,
1556 (void *)((unsigned long) pollfd[i].fd), &iter);
1557 node = lttng_ht_iter_get_node_ulong(&iter);
1558 if (node != NULL &&
1559 (pollfd[i].revents & (POLLIN | POLLPRI))) {
1560 DBG("Urgent metadata read on fd %d", pollfd[i].fd);
1561 metadata_stream = caa_container_of(node,
1562 struct lttng_consumer_stream, waitfd_node);
1563 high_prio = 1;
1564 len = ctx->on_buffer_ready(metadata_stream, ctx);
1565 /* it's ok to have an unavailable sub-buffer */
1566 if (len < 0 && len != -EAGAIN) {
1567 goto end;
1568 } else if (len > 0) {
1569 metadata_stream->data_read = 1;
1570 }
1571 } else if (pollfd[i].revents & POLLPRI) {
1572 DBG("Urgent read on fd %d", pollfd[i].fd);
1573 high_prio = 1;
1574 len = ctx->on_buffer_ready(local_stream[i], ctx);
1575 /* it's ok to have an unavailable sub-buffer */
1576 if (len < 0 && len != -EAGAIN) {
1577 goto end;
1578 } else if (len > 0) {
1579 local_stream[i]->data_read = 1;
1580 }
1581 }
1582 }
1583
1584 /*
1585 * If we read high prio channel in this loop, try again
1586 * for more high prio data.
1587 */
1588 if (high_prio) {
1589 continue;
1590 }
1591
1592 /* Take care of low priority channels. */
1593 for (i = 0; i < nb_fd; i++) {
1594 if ((pollfd[i].revents & POLLIN) ||
1595 local_stream[i]->hangup_flush_done) {
1596 DBG("Normal read on fd %d", pollfd[i].fd);
1597 len = ctx->on_buffer_ready(local_stream[i], ctx);
1598 /* it's ok to have an unavailable sub-buffer */
1599 if (len < 0 && len != -EAGAIN) {
1600 goto end;
1601 } else if (len > 0) {
1602 local_stream[i]->data_read = 1;
1603 }
1604 }
1605 }
1606
1607 /* Handle hangup and errors */
1608 for (i = 0; i < nb_fd; i++) {
1609 if (!local_stream[i]->hangup_flush_done
1610 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
1611 && (consumer_data.type == LTTNG_CONSUMER32_UST
1612 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
1613 DBG("fd %d is hup|err|nval. Attempting flush and read.",
1614 pollfd[i].fd);
1615 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
1616 /* Attempt read again, for the data we just flushed. */
1617 local_stream[i]->data_read = 1;
1618 }
1619 /*
1620 * If the poll flag is HUP/ERR/NVAL and we have
1621 * read no data in this pass, we can remove the
1622 * stream from its hash table.
1623 */
1624 if ((pollfd[i].revents & POLLHUP)) {
1625 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
1626 if (!local_stream[i]->data_read) {
1627 if (local_stream[i]->metadata_flag) {
1628 iter.iter.node = &local_stream[i]->waitfd_node.node;
1629 ret = lttng_ht_del(metadata_ht, &iter);
1630 assert(!ret);
1631 }
1632 consumer_del_stream(local_stream[i]);
1633 num_hup++;
1634 }
1635 } else if (pollfd[i].revents & POLLERR) {
1636 ERR("Error returned in polling fd %d.", pollfd[i].fd);
1637 if (!local_stream[i]->data_read) {
1638 if (local_stream[i]->metadata_flag) {
1639 iter.iter.node = &local_stream[i]->waitfd_node.node;
1640 ret = lttng_ht_del(metadata_ht, &iter);
1641 assert(!ret);
1642 }
1643 consumer_del_stream(local_stream[i]);
1644 num_hup++;
1645 }
1646 } else if (pollfd[i].revents & POLLNVAL) {
1647 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
1648 if (!local_stream[i]->data_read) {
1649 if (local_stream[i]->metadata_flag) {
1650 iter.iter.node = &local_stream[i]->waitfd_node.node;
1651 ret = lttng_ht_del(metadata_ht, &iter);
1652 assert(!ret);
1653 }
1654 consumer_del_stream(local_stream[i]);
1655 num_hup++;
1656 }
1657 }
1658 local_stream[i]->data_read = 0;
1659 }
1660 }
1661 end:
1662 DBG("polling thread exiting");
1663 if (pollfd != NULL) {
1664 free(pollfd);
1665 pollfd = NULL;
1666 }
1667 if (local_stream != NULL) {
1668 free(local_stream);
1669 local_stream = NULL;
1670 }
1671 rcu_unregister_thread();
1672 return NULL;
1673 }
1674
1675 /*
1676 * This thread listens on the consumerd socket and receives the file
1677 * descriptors from the session daemon.
1678 */
1679 void *lttng_consumer_thread_receive_fds(void *data)
1680 {
1681 int sock, client_socket, ret;
1682 /*
1683 * structure to poll for incoming data on communication socket avoids
1684 * making blocking sockets.
1685 */
1686 struct pollfd consumer_sockpoll[2];
1687 struct lttng_consumer_local_data *ctx = data;
1688
1689 rcu_register_thread();
1690
1691 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
1692 unlink(ctx->consumer_command_sock_path);
1693 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
1694 if (client_socket < 0) {
1695 ERR("Cannot create command socket");
1696 goto end;
1697 }
1698
1699 ret = lttcomm_listen_unix_sock(client_socket);
1700 if (ret < 0) {
1701 goto end;
1702 }
1703
1704 DBG("Sending ready command to lttng-sessiond");
1705 ret = lttng_consumer_send_error(ctx, CONSUMERD_COMMAND_SOCK_READY);
1706 /* return < 0 on error, but == 0 is not fatal */
1707 if (ret < 0) {
1708 ERR("Error sending ready command to lttng-sessiond");
1709 goto end;
1710 }
1711
1712 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
1713 if (ret < 0) {
1714 perror("fcntl O_NONBLOCK");
1715 goto end;
1716 }
1717
1718 /* prepare the FDs to poll : to client socket and the should_quit pipe */
1719 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
1720 consumer_sockpoll[0].events = POLLIN | POLLPRI;
1721 consumer_sockpoll[1].fd = client_socket;
1722 consumer_sockpoll[1].events = POLLIN | POLLPRI;
1723
1724 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
1725 goto end;
1726 }
1727 DBG("Connection on client_socket");
1728
1729 /* Blocking call, waiting for transmission */
1730 sock = lttcomm_accept_unix_sock(client_socket);
1731 if (sock <= 0) {
1732 WARN("On accept");
1733 goto end;
1734 }
1735 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
1736 if (ret < 0) {
1737 perror("fcntl O_NONBLOCK");
1738 goto end;
1739 }
1740
1741 /* update the polling structure to poll on the established socket */
1742 consumer_sockpoll[1].fd = sock;
1743 consumer_sockpoll[1].events = POLLIN | POLLPRI;
1744
1745 while (1) {
1746 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
1747 goto end;
1748 }
1749 DBG("Incoming command on sock");
1750 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
1751 if (ret == -ENOENT) {
1752 DBG("Received STOP command");
1753 goto end;
1754 }
1755 if (ret < 0) {
1756 ERR("Communication interrupted on command socket");
1757 goto end;
1758 }
1759 if (consumer_quit) {
1760 DBG("consumer_thread_receive_fds received quit from signal");
1761 goto end;
1762 }
1763 DBG("received fds on sock");
1764 }
1765 end:
1766 DBG("consumer_thread_receive_fds exiting");
1767
1768 /*
1769 * when all fds have hung up, the polling thread
1770 * can exit cleanly
1771 */
1772 consumer_quit = 1;
1773
1774 /*
1775 * 2s of grace period, if no polling events occur during
1776 * this period, the polling thread will exit even if there
1777 * are still open FDs (should not happen, but safety mechanism).
1778 */
1779 consumer_poll_timeout = LTTNG_CONSUMER_POLL_TIMEOUT;
1780
1781 /*
1782 * Wake-up the other end by writing a null byte in the pipe
1783 * (non-blocking). Important note: Because writing into the
1784 * pipe is non-blocking (and therefore we allow dropping wakeup
1785 * data, as long as there is wakeup data present in the pipe
1786 * buffer to wake up the other end), the other end should
1787 * perform the following sequence for waiting:
1788 * 1) empty the pipe (reads).
1789 * 2) perform update operation.
1790 * 3) wait on the pipe (poll).
1791 */
1792 do {
1793 ret = write(ctx->consumer_poll_pipe[1], "", 1);
1794 } while (ret < 0 && errno == EINTR);
1795 rcu_unregister_thread();
1796 return NULL;
1797 }
1798
1799 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
1800 struct lttng_consumer_local_data *ctx)
1801 {
1802 switch (consumer_data.type) {
1803 case LTTNG_CONSUMER_KERNEL:
1804 return lttng_kconsumer_read_subbuffer(stream, ctx);
1805 case LTTNG_CONSUMER32_UST:
1806 case LTTNG_CONSUMER64_UST:
1807 return lttng_ustconsumer_read_subbuffer(stream, ctx);
1808 default:
1809 ERR("Unknown consumer_data type");
1810 assert(0);
1811 return -ENOSYS;
1812 }
1813 }
1814
1815 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
1816 {
1817 switch (consumer_data.type) {
1818 case LTTNG_CONSUMER_KERNEL:
1819 return lttng_kconsumer_on_recv_stream(stream);
1820 case LTTNG_CONSUMER32_UST:
1821 case LTTNG_CONSUMER64_UST:
1822 return lttng_ustconsumer_on_recv_stream(stream);
1823 default:
1824 ERR("Unknown consumer_data type");
1825 assert(0);
1826 return -ENOSYS;
1827 }
1828 }
1829
1830 /*
1831 * Allocate and set consumer data hash tables.
1832 */
1833 void lttng_consumer_init(void)
1834 {
1835 consumer_data.stream_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
1836 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
1837 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
1838 }
This page took 0.108995 seconds and 4 git commands to generate.