relayd protocol: reply path for close chunk and create session 2.11
[lttng-tools.git] / src / bin / lttng-sessiond / consumer.c
1 /*
2 * Copyright (C) 2012 - David Goulet <dgoulet@efficios.com>
3 * 2018 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License, version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 51
16 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #define _LGPL_SOURCE
20 #include <assert.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <sys/stat.h>
25 #include <sys/types.h>
26 #include <unistd.h>
27 #include <inttypes.h>
28
29 #include <common/common.h>
30 #include <common/defaults.h>
31 #include <common/uri.h>
32 #include <common/relayd/relayd.h>
33 #include <common/string-utils/format.h>
34
35 #include "consumer.h"
36 #include "health-sessiond.h"
37 #include "ust-app.h"
38 #include "utils.h"
39 #include "lttng-sessiond.h"
40
41 /*
42 * Send a data payload using a given consumer socket of size len.
43 *
44 * The consumer socket lock MUST be acquired before calling this since this
45 * function can change the fd value.
46 *
47 * Return 0 on success else a negative value on error.
48 */
49 int consumer_socket_send(struct consumer_socket *socket, void *msg, size_t len)
50 {
51 int fd;
52 ssize_t size;
53
54 assert(socket);
55 assert(socket->fd_ptr);
56 assert(msg);
57
58 /* Consumer socket is invalid. Stopping. */
59 fd = *socket->fd_ptr;
60 if (fd < 0) {
61 goto error;
62 }
63
64 size = lttcomm_send_unix_sock(fd, msg, len);
65 if (size < 0) {
66 /* The above call will print a PERROR on error. */
67 DBG("Error when sending data to consumer on sock %d", fd);
68 /*
69 * At this point, the socket is not usable anymore thus closing it and
70 * setting the file descriptor to -1 so it is not reused.
71 */
72
73 /* This call will PERROR on error. */
74 (void) lttcomm_close_unix_sock(fd);
75 *socket->fd_ptr = -1;
76 goto error;
77 }
78
79 return 0;
80
81 error:
82 return -1;
83 }
84
85 /*
86 * Receive a data payload using a given consumer socket of size len.
87 *
88 * The consumer socket lock MUST be acquired before calling this since this
89 * function can change the fd value.
90 *
91 * Return 0 on success else a negative value on error.
92 */
93 int consumer_socket_recv(struct consumer_socket *socket, void *msg, size_t len)
94 {
95 int fd;
96 ssize_t size;
97
98 assert(socket);
99 assert(socket->fd_ptr);
100 assert(msg);
101
102 /* Consumer socket is invalid. Stopping. */
103 fd = *socket->fd_ptr;
104 if (fd < 0) {
105 goto error;
106 }
107
108 size = lttcomm_recv_unix_sock(fd, msg, len);
109 if (size <= 0) {
110 /* The above call will print a PERROR on error. */
111 DBG("Error when receiving data from the consumer socket %d", fd);
112 /*
113 * At this point, the socket is not usable anymore thus closing it and
114 * setting the file descriptor to -1 so it is not reused.
115 */
116
117 /* This call will PERROR on error. */
118 (void) lttcomm_close_unix_sock(fd);
119 *socket->fd_ptr = -1;
120 goto error;
121 }
122
123 return 0;
124
125 error:
126 return -1;
127 }
128
129 /*
130 * Receive a reply command status message from the consumer. Consumer socket
131 * lock MUST be acquired before calling this function.
132 *
133 * Return 0 on success, -1 on recv error or a negative lttng error code which
134 * was possibly returned by the consumer.
135 */
136 int consumer_recv_status_reply(struct consumer_socket *sock)
137 {
138 int ret;
139 struct lttcomm_consumer_status_msg reply;
140
141 assert(sock);
142
143 ret = consumer_socket_recv(sock, &reply, sizeof(reply));
144 if (ret < 0) {
145 goto end;
146 }
147
148 if (reply.ret_code == LTTCOMM_CONSUMERD_SUCCESS) {
149 /* All good. */
150 ret = 0;
151 } else {
152 ret = -reply.ret_code;
153 DBG("Consumer ret code %d", ret);
154 }
155
156 end:
157 return ret;
158 }
159
160 /*
161 * Once the ASK_CHANNEL command is sent to the consumer, the channel
162 * information are sent back. This call receives that data and populates key
163 * and stream_count.
164 *
165 * On success return 0 and both key and stream_count are set. On error, a
166 * negative value is sent back and both parameters are untouched.
167 */
168 int consumer_recv_status_channel(struct consumer_socket *sock,
169 uint64_t *key, unsigned int *stream_count)
170 {
171 int ret;
172 struct lttcomm_consumer_status_channel reply;
173
174 assert(sock);
175 assert(stream_count);
176 assert(key);
177
178 ret = consumer_socket_recv(sock, &reply, sizeof(reply));
179 if (ret < 0) {
180 goto end;
181 }
182
183 /* An error is possible so don't touch the key and stream_count. */
184 if (reply.ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
185 ret = -1;
186 goto end;
187 }
188
189 *key = reply.key;
190 *stream_count = reply.stream_count;
191 ret = 0;
192
193 end:
194 return ret;
195 }
196
197 /*
198 * Send destroy relayd command to consumer.
199 *
200 * On success return positive value. On error, negative value.
201 */
202 int consumer_send_destroy_relayd(struct consumer_socket *sock,
203 struct consumer_output *consumer)
204 {
205 int ret;
206 struct lttcomm_consumer_msg msg;
207
208 assert(consumer);
209 assert(sock);
210
211 DBG2("Sending destroy relayd command to consumer sock %d", *sock->fd_ptr);
212
213 memset(&msg, 0, sizeof(msg));
214 msg.cmd_type = LTTNG_CONSUMER_DESTROY_RELAYD;
215 msg.u.destroy_relayd.net_seq_idx = consumer->net_seq_index;
216
217 pthread_mutex_lock(sock->lock);
218 ret = consumer_socket_send(sock, &msg, sizeof(msg));
219 if (ret < 0) {
220 goto error;
221 }
222
223 /* Don't check the return value. The caller will do it. */
224 ret = consumer_recv_status_reply(sock);
225
226 DBG2("Consumer send destroy relayd command done");
227
228 error:
229 pthread_mutex_unlock(sock->lock);
230 return ret;
231 }
232
233 /*
234 * For each consumer socket in the consumer output object, send a destroy
235 * relayd command.
236 */
237 void consumer_output_send_destroy_relayd(struct consumer_output *consumer)
238 {
239 struct lttng_ht_iter iter;
240 struct consumer_socket *socket;
241
242 assert(consumer);
243
244 /* Destroy any relayd connection */
245 if (consumer->type == CONSUMER_DST_NET) {
246 rcu_read_lock();
247 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
248 node.node) {
249 int ret;
250
251 /* Send destroy relayd command */
252 ret = consumer_send_destroy_relayd(socket, consumer);
253 if (ret < 0) {
254 DBG("Unable to send destroy relayd command to consumer");
255 /* Continue since we MUST delete everything at this point. */
256 }
257 }
258 rcu_read_unlock();
259 }
260 }
261
262 /*
263 * From a consumer_data structure, allocate and add a consumer socket to the
264 * consumer output.
265 *
266 * Return 0 on success, else negative value on error
267 */
268 int consumer_create_socket(struct consumer_data *data,
269 struct consumer_output *output)
270 {
271 int ret = 0;
272 struct consumer_socket *socket;
273
274 assert(data);
275
276 if (output == NULL || data->cmd_sock < 0) {
277 /*
278 * Not an error. Possible there is simply not spawned consumer or it's
279 * disabled for the tracing session asking the socket.
280 */
281 goto error;
282 }
283
284 rcu_read_lock();
285 socket = consumer_find_socket(data->cmd_sock, output);
286 rcu_read_unlock();
287 if (socket == NULL) {
288 socket = consumer_allocate_socket(&data->cmd_sock);
289 if (socket == NULL) {
290 ret = -1;
291 goto error;
292 }
293
294 socket->registered = 0;
295 socket->lock = &data->lock;
296 rcu_read_lock();
297 consumer_add_socket(socket, output);
298 rcu_read_unlock();
299 }
300
301 socket->type = data->type;
302
303 DBG3("Consumer socket created (fd: %d) and added to output",
304 data->cmd_sock);
305
306 error:
307 return ret;
308 }
309
310 /*
311 * Return the consumer socket from the given consumer output with the right
312 * bitness. On error, returns NULL.
313 *
314 * The caller MUST acquire a rcu read side lock and keep it until the socket
315 * object reference is not needed anymore.
316 */
317 struct consumer_socket *consumer_find_socket_by_bitness(int bits,
318 const struct consumer_output *consumer)
319 {
320 int consumer_fd;
321 struct consumer_socket *socket = NULL;
322
323 switch (bits) {
324 case 64:
325 consumer_fd = uatomic_read(&ust_consumerd64_fd);
326 break;
327 case 32:
328 consumer_fd = uatomic_read(&ust_consumerd32_fd);
329 break;
330 default:
331 assert(0);
332 goto end;
333 }
334
335 socket = consumer_find_socket(consumer_fd, consumer);
336 if (!socket) {
337 ERR("Consumer socket fd %d not found in consumer obj %p",
338 consumer_fd, consumer);
339 }
340
341 end:
342 return socket;
343 }
344
345 /*
346 * Find a consumer_socket in a consumer_output hashtable. Read side lock must
347 * be acquired before calling this function and across use of the
348 * returned consumer_socket.
349 */
350 struct consumer_socket *consumer_find_socket(int key,
351 const struct consumer_output *consumer)
352 {
353 struct lttng_ht_iter iter;
354 struct lttng_ht_node_ulong *node;
355 struct consumer_socket *socket = NULL;
356
357 /* Negative keys are lookup failures */
358 if (key < 0 || consumer == NULL) {
359 return NULL;
360 }
361
362 lttng_ht_lookup(consumer->socks, (void *)((unsigned long) key),
363 &iter);
364 node = lttng_ht_iter_get_node_ulong(&iter);
365 if (node != NULL) {
366 socket = caa_container_of(node, struct consumer_socket, node);
367 }
368
369 return socket;
370 }
371
372 /*
373 * Allocate a new consumer_socket and return the pointer.
374 */
375 struct consumer_socket *consumer_allocate_socket(int *fd)
376 {
377 struct consumer_socket *socket = NULL;
378
379 assert(fd);
380
381 socket = zmalloc(sizeof(struct consumer_socket));
382 if (socket == NULL) {
383 PERROR("zmalloc consumer socket");
384 goto error;
385 }
386
387 socket->fd_ptr = fd;
388 lttng_ht_node_init_ulong(&socket->node, *fd);
389
390 error:
391 return socket;
392 }
393
394 /*
395 * Add consumer socket to consumer output object. Read side lock must be
396 * acquired before calling this function.
397 */
398 void consumer_add_socket(struct consumer_socket *sock,
399 struct consumer_output *consumer)
400 {
401 assert(sock);
402 assert(consumer);
403
404 lttng_ht_add_unique_ulong(consumer->socks, &sock->node);
405 }
406
407 /*
408 * Delete consumer socket to consumer output object. Read side lock must be
409 * acquired before calling this function.
410 */
411 void consumer_del_socket(struct consumer_socket *sock,
412 struct consumer_output *consumer)
413 {
414 int ret;
415 struct lttng_ht_iter iter;
416
417 assert(sock);
418 assert(consumer);
419
420 iter.iter.node = &sock->node.node;
421 ret = lttng_ht_del(consumer->socks, &iter);
422 assert(!ret);
423 }
424
425 /*
426 * RCU destroy call function.
427 */
428 static void destroy_socket_rcu(struct rcu_head *head)
429 {
430 struct lttng_ht_node_ulong *node =
431 caa_container_of(head, struct lttng_ht_node_ulong, head);
432 struct consumer_socket *socket =
433 caa_container_of(node, struct consumer_socket, node);
434
435 free(socket);
436 }
437
438 /*
439 * Destroy and free socket pointer in a call RCU. Read side lock must be
440 * acquired before calling this function.
441 */
442 void consumer_destroy_socket(struct consumer_socket *sock)
443 {
444 assert(sock);
445
446 /*
447 * We DO NOT close the file descriptor here since it is global to the
448 * session daemon and is closed only if the consumer dies or a custom
449 * consumer was registered,
450 */
451 if (sock->registered) {
452 DBG3("Consumer socket was registered. Closing fd %d", *sock->fd_ptr);
453 lttcomm_close_unix_sock(*sock->fd_ptr);
454 }
455
456 call_rcu(&sock->node.head, destroy_socket_rcu);
457 }
458
459 /*
460 * Allocate and assign data to a consumer_output object.
461 *
462 * Return pointer to structure.
463 */
464 struct consumer_output *consumer_create_output(enum consumer_dst_type type)
465 {
466 struct consumer_output *output = NULL;
467
468 output = zmalloc(sizeof(struct consumer_output));
469 if (output == NULL) {
470 PERROR("zmalloc consumer_output");
471 goto error;
472 }
473
474 /* By default, consumer output is enabled */
475 output->enabled = 1;
476 output->type = type;
477 output->net_seq_index = (uint64_t) -1ULL;
478 urcu_ref_init(&output->ref);
479
480 output->socks = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
481
482 error:
483 return output;
484 }
485
486 /*
487 * Iterate over the consumer output socket hash table and destroy them. The
488 * socket file descriptor are only closed if the consumer output was
489 * registered meaning it's an external consumer.
490 */
491 void consumer_destroy_output_sockets(struct consumer_output *obj)
492 {
493 struct lttng_ht_iter iter;
494 struct consumer_socket *socket;
495
496 if (!obj->socks) {
497 return;
498 }
499
500 rcu_read_lock();
501 cds_lfht_for_each_entry(obj->socks->ht, &iter.iter, socket, node.node) {
502 consumer_del_socket(socket, obj);
503 consumer_destroy_socket(socket);
504 }
505 rcu_read_unlock();
506 }
507
508 /*
509 * Delete the consumer_output object from the list and free the ptr.
510 *
511 * Should *NOT* be called with RCU read-side lock held.
512 */
513 static void consumer_release_output(struct urcu_ref *ref)
514 {
515 struct consumer_output *obj =
516 caa_container_of(ref, struct consumer_output, ref);
517
518 consumer_destroy_output_sockets(obj);
519
520 if (obj->socks) {
521 /* Finally destroy HT */
522 ht_cleanup_push(obj->socks);
523 }
524
525 free(obj);
526 }
527
528 /*
529 * Get the consumer_output object.
530 */
531 void consumer_output_get(struct consumer_output *obj)
532 {
533 urcu_ref_get(&obj->ref);
534 }
535
536 /*
537 * Put the consumer_output object.
538 *
539 * Should *NOT* be called with RCU read-side lock held.
540 */
541 void consumer_output_put(struct consumer_output *obj)
542 {
543 if (!obj) {
544 return;
545 }
546 urcu_ref_put(&obj->ref, consumer_release_output);
547 }
548
549 /*
550 * Copy consumer output and returned the newly allocated copy.
551 *
552 * Should *NOT* be called with RCU read-side lock held.
553 */
554 struct consumer_output *consumer_copy_output(struct consumer_output *src)
555 {
556 int ret;
557 struct consumer_output *output;
558
559 assert(src);
560
561 output = consumer_create_output(src->type);
562 if (output == NULL) {
563 goto end;
564 }
565 output->enabled = src->enabled;
566 output->net_seq_index = src->net_seq_index;
567 memcpy(output->domain_subdir, src->domain_subdir,
568 sizeof(output->domain_subdir));
569 output->snapshot = src->snapshot;
570 output->relay_major_version = src->relay_major_version;
571 output->relay_minor_version = src->relay_minor_version;
572 memcpy(&output->dst, &src->dst, sizeof(output->dst));
573 ret = consumer_copy_sockets(output, src);
574 if (ret < 0) {
575 goto error_put;
576 }
577 end:
578 return output;
579
580 error_put:
581 consumer_output_put(output);
582 return NULL;
583 }
584
585 /*
586 * Copy consumer sockets from src to dst.
587 *
588 * Return 0 on success or else a negative value.
589 */
590 int consumer_copy_sockets(struct consumer_output *dst,
591 struct consumer_output *src)
592 {
593 int ret = 0;
594 struct lttng_ht_iter iter;
595 struct consumer_socket *socket, *copy_sock;
596
597 assert(dst);
598 assert(src);
599
600 rcu_read_lock();
601 cds_lfht_for_each_entry(src->socks->ht, &iter.iter, socket, node.node) {
602 /* Ignore socket that are already there. */
603 copy_sock = consumer_find_socket(*socket->fd_ptr, dst);
604 if (copy_sock) {
605 continue;
606 }
607
608 /* Create new socket object. */
609 copy_sock = consumer_allocate_socket(socket->fd_ptr);
610 if (copy_sock == NULL) {
611 rcu_read_unlock();
612 ret = -ENOMEM;
613 goto error;
614 }
615
616 copy_sock->registered = socket->registered;
617 /*
618 * This is valid because this lock is shared accross all consumer
619 * object being the global lock of the consumer data structure of the
620 * session daemon.
621 */
622 copy_sock->lock = socket->lock;
623 consumer_add_socket(copy_sock, dst);
624 }
625 rcu_read_unlock();
626
627 error:
628 return ret;
629 }
630
631 /*
632 * Set network URI to the consumer output.
633 *
634 * Return 0 on success. Return 1 if the URI were equal. Else, negative value on
635 * error.
636 */
637 int consumer_set_network_uri(const struct ltt_session *session,
638 struct consumer_output *output,
639 struct lttng_uri *uri)
640 {
641 int ret;
642 struct lttng_uri *dst_uri = NULL;
643
644 /* Code flow error safety net. */
645 assert(output);
646 assert(uri);
647
648 switch (uri->stype) {
649 case LTTNG_STREAM_CONTROL:
650 dst_uri = &output->dst.net.control;
651 output->dst.net.control_isset = 1;
652 if (uri->port == 0) {
653 /* Assign default port. */
654 uri->port = DEFAULT_NETWORK_CONTROL_PORT;
655 } else {
656 if (output->dst.net.data_isset && uri->port ==
657 output->dst.net.data.port) {
658 ret = -LTTNG_ERR_INVALID;
659 goto error;
660 }
661 }
662 DBG3("Consumer control URI set with port %d", uri->port);
663 break;
664 case LTTNG_STREAM_DATA:
665 dst_uri = &output->dst.net.data;
666 output->dst.net.data_isset = 1;
667 if (uri->port == 0) {
668 /* Assign default port. */
669 uri->port = DEFAULT_NETWORK_DATA_PORT;
670 } else {
671 if (output->dst.net.control_isset && uri->port ==
672 output->dst.net.control.port) {
673 ret = -LTTNG_ERR_INVALID;
674 goto error;
675 }
676 }
677 DBG3("Consumer data URI set with port %d", uri->port);
678 break;
679 default:
680 ERR("Set network uri type unknown %d", uri->stype);
681 ret = -LTTNG_ERR_INVALID;
682 goto error;
683 }
684
685 ret = uri_compare(dst_uri, uri);
686 if (!ret) {
687 /* Same URI, don't touch it and return success. */
688 DBG3("URI network compare are the same");
689 goto equal;
690 }
691
692 /* URIs were not equal, replacing it. */
693 memcpy(dst_uri, uri, sizeof(struct lttng_uri));
694 output->type = CONSUMER_DST_NET;
695 if (dst_uri->stype != LTTNG_STREAM_CONTROL) {
696 /* Only the control uri needs to contain the path. */
697 goto end;
698 }
699
700 /*
701 * If the user has specified a subdir as part of the control
702 * URL, the session's base output directory is:
703 * /RELAYD_OUTPUT_PATH/HOSTNAME/USER_SPECIFIED_DIR
704 *
705 * Hence, the "base_dir" from which all stream files and
706 * session rotation chunks are created takes the form
707 * /HOSTNAME/USER_SPECIFIED_DIR
708 *
709 * If the user has not specified an output directory as part of
710 * the control URL, the base output directory has the form:
711 * /RELAYD_OUTPUT_PATH/HOSTNAME/SESSION_NAME-CREATION_TIME
712 *
713 * Hence, the "base_dir" from which all stream files and
714 * session rotation chunks are created takes the form
715 * /HOSTNAME/SESSION_NAME-CREATION_TIME
716 *
717 * Note that automatically generated session names already
718 * contain the session's creation time. In that case, the
719 * creation time is omitted to prevent it from being duplicated
720 * in the final directory hierarchy.
721 */
722 if (*uri->subdir) {
723 if (strstr(uri->subdir, "../")) {
724 ERR("Network URI subdirs are not allowed to walk up the path hierarchy");
725 ret = -LTTNG_ERR_INVALID;
726 goto error;
727 }
728 ret = snprintf(output->dst.net.base_dir,
729 sizeof(output->dst.net.base_dir),
730 "/%s/%s/", session->hostname, uri->subdir);
731 } else {
732 if (session->has_auto_generated_name) {
733 ret = snprintf(output->dst.net.base_dir,
734 sizeof(output->dst.net.base_dir),
735 "/%s/%s/", session->hostname,
736 session->name);
737 } else {
738 char session_creation_datetime[16];
739 size_t strftime_ret;
740 struct tm *timeinfo;
741
742 timeinfo = localtime(&session->creation_time);
743 if (!timeinfo) {
744 ret = -LTTNG_ERR_FATAL;
745 goto error;
746 }
747 strftime_ret = strftime(session_creation_datetime,
748 sizeof(session_creation_datetime),
749 "%Y%m%d-%H%M%S", timeinfo);
750 if (strftime_ret == 0) {
751 ERR("Failed to format session creation timestamp while setting network URI");
752 ret = -LTTNG_ERR_FATAL;
753 goto error;
754 }
755 ret = snprintf(output->dst.net.base_dir,
756 sizeof(output->dst.net.base_dir),
757 "/%s/%s-%s/", session->hostname,
758 session->name,
759 session_creation_datetime);
760 }
761 }
762 if (ret >= sizeof(output->dst.net.base_dir)) {
763 ret = -LTTNG_ERR_INVALID;
764 ERR("Truncation occurred while setting network output base directory");
765 goto error;
766 } else if (ret == -1) {
767 ret = -LTTNG_ERR_INVALID;
768 PERROR("Error occurred while setting network output base directory");
769 goto error;
770 }
771
772 DBG3("Consumer set network uri base_dir path %s",
773 output->dst.net.base_dir);
774
775 end:
776 return 0;
777 equal:
778 return 1;
779 error:
780 return ret;
781 }
782
783 /*
784 * Send file descriptor to consumer via sock.
785 *
786 * The consumer socket lock must be held by the caller.
787 */
788 int consumer_send_fds(struct consumer_socket *sock, const int *fds,
789 size_t nb_fd)
790 {
791 int ret;
792
793 assert(fds);
794 assert(sock);
795 assert(nb_fd > 0);
796 assert(pthread_mutex_trylock(sock->lock) == EBUSY);
797
798 ret = lttcomm_send_fds_unix_sock(*sock->fd_ptr, fds, nb_fd);
799 if (ret < 0) {
800 /* The above call will print a PERROR on error. */
801 DBG("Error when sending consumer fds on sock %d", *sock->fd_ptr);
802 goto error;
803 }
804
805 ret = consumer_recv_status_reply(sock);
806 error:
807 return ret;
808 }
809
810 /*
811 * Consumer send communication message structure to consumer.
812 *
813 * The consumer socket lock must be held by the caller.
814 */
815 int consumer_send_msg(struct consumer_socket *sock,
816 struct lttcomm_consumer_msg *msg)
817 {
818 int ret;
819
820 assert(msg);
821 assert(sock);
822 assert(pthread_mutex_trylock(sock->lock) == EBUSY);
823
824 ret = consumer_socket_send(sock, msg, sizeof(struct lttcomm_consumer_msg));
825 if (ret < 0) {
826 goto error;
827 }
828
829 ret = consumer_recv_status_reply(sock);
830
831 error:
832 return ret;
833 }
834
835 /*
836 * Consumer send channel communication message structure to consumer.
837 *
838 * The consumer socket lock must be held by the caller.
839 */
840 int consumer_send_channel(struct consumer_socket *sock,
841 struct lttcomm_consumer_msg *msg)
842 {
843 int ret;
844
845 assert(msg);
846 assert(sock);
847
848 ret = consumer_send_msg(sock, msg);
849 if (ret < 0) {
850 goto error;
851 }
852
853 error:
854 return ret;
855 }
856
857 /*
858 * Populate the given consumer msg structure with the ask_channel command
859 * information.
860 */
861 void consumer_init_ask_channel_comm_msg(struct lttcomm_consumer_msg *msg,
862 uint64_t subbuf_size,
863 uint64_t num_subbuf,
864 int overwrite,
865 unsigned int switch_timer_interval,
866 unsigned int read_timer_interval,
867 unsigned int live_timer_interval,
868 unsigned int monitor_timer_interval,
869 int output,
870 int type,
871 uint64_t session_id,
872 const char *pathname,
873 const char *name,
874 uint64_t relayd_id,
875 uint64_t key,
876 unsigned char *uuid,
877 uint32_t chan_id,
878 uint64_t tracefile_size,
879 uint64_t tracefile_count,
880 uint64_t session_id_per_pid,
881 unsigned int monitor,
882 uint32_t ust_app_uid,
883 int64_t blocking_timeout,
884 const char *root_shm_path,
885 const char *shm_path,
886 struct lttng_trace_chunk *trace_chunk,
887 const struct lttng_credentials *buffer_credentials)
888 {
889 assert(msg);
890
891 /* Zeroed structure */
892 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
893 msg->u.ask_channel.buffer_credentials.uid = UINT32_MAX;
894 msg->u.ask_channel.buffer_credentials.gid = UINT32_MAX;
895
896 if (trace_chunk) {
897 uint64_t chunk_id;
898 enum lttng_trace_chunk_status chunk_status;
899
900 chunk_status = lttng_trace_chunk_get_id(trace_chunk, &chunk_id);
901 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
902 LTTNG_OPTIONAL_SET(&msg->u.ask_channel.chunk_id, chunk_id);
903 }
904 msg->u.ask_channel.buffer_credentials.uid = buffer_credentials->uid;
905 msg->u.ask_channel.buffer_credentials.gid = buffer_credentials->gid;
906
907 msg->cmd_type = LTTNG_CONSUMER_ASK_CHANNEL_CREATION;
908 msg->u.ask_channel.subbuf_size = subbuf_size;
909 msg->u.ask_channel.num_subbuf = num_subbuf ;
910 msg->u.ask_channel.overwrite = overwrite;
911 msg->u.ask_channel.switch_timer_interval = switch_timer_interval;
912 msg->u.ask_channel.read_timer_interval = read_timer_interval;
913 msg->u.ask_channel.live_timer_interval = live_timer_interval;
914 msg->u.ask_channel.monitor_timer_interval = monitor_timer_interval;
915 msg->u.ask_channel.output = output;
916 msg->u.ask_channel.type = type;
917 msg->u.ask_channel.session_id = session_id;
918 msg->u.ask_channel.session_id_per_pid = session_id_per_pid;
919 msg->u.ask_channel.relayd_id = relayd_id;
920 msg->u.ask_channel.key = key;
921 msg->u.ask_channel.chan_id = chan_id;
922 msg->u.ask_channel.tracefile_size = tracefile_size;
923 msg->u.ask_channel.tracefile_count = tracefile_count;
924 msg->u.ask_channel.monitor = monitor;
925 msg->u.ask_channel.ust_app_uid = ust_app_uid;
926 msg->u.ask_channel.blocking_timeout = blocking_timeout;
927
928 memcpy(msg->u.ask_channel.uuid, uuid, sizeof(msg->u.ask_channel.uuid));
929
930 if (pathname) {
931 strncpy(msg->u.ask_channel.pathname, pathname,
932 sizeof(msg->u.ask_channel.pathname));
933 msg->u.ask_channel.pathname[sizeof(msg->u.ask_channel.pathname)-1] = '\0';
934 }
935
936 strncpy(msg->u.ask_channel.name, name, sizeof(msg->u.ask_channel.name));
937 msg->u.ask_channel.name[sizeof(msg->u.ask_channel.name) - 1] = '\0';
938
939 if (root_shm_path) {
940 strncpy(msg->u.ask_channel.root_shm_path, root_shm_path,
941 sizeof(msg->u.ask_channel.root_shm_path));
942 msg->u.ask_channel.root_shm_path[sizeof(msg->u.ask_channel.root_shm_path) - 1] = '\0';
943 }
944 if (shm_path) {
945 strncpy(msg->u.ask_channel.shm_path, shm_path,
946 sizeof(msg->u.ask_channel.shm_path));
947 msg->u.ask_channel.shm_path[sizeof(msg->u.ask_channel.shm_path) - 1] = '\0';
948 }
949 }
950
951 /*
952 * Init channel communication message structure.
953 */
954 void consumer_init_add_channel_comm_msg(struct lttcomm_consumer_msg *msg,
955 uint64_t channel_key,
956 uint64_t session_id,
957 const char *pathname,
958 uid_t uid,
959 gid_t gid,
960 uint64_t relayd_id,
961 const char *name,
962 unsigned int nb_init_streams,
963 enum lttng_event_output output,
964 int type,
965 uint64_t tracefile_size,
966 uint64_t tracefile_count,
967 unsigned int monitor,
968 unsigned int live_timer_interval,
969 unsigned int monitor_timer_interval,
970 struct lttng_trace_chunk *trace_chunk)
971 {
972 assert(msg);
973
974 /* Zeroed structure */
975 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
976
977 if (trace_chunk) {
978 uint64_t chunk_id;
979 enum lttng_trace_chunk_status chunk_status;
980
981 chunk_status = lttng_trace_chunk_get_id(trace_chunk, &chunk_id);
982 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
983 LTTNG_OPTIONAL_SET(&msg->u.channel.chunk_id, chunk_id);
984 }
985
986 /* Send channel */
987 msg->cmd_type = LTTNG_CONSUMER_ADD_CHANNEL;
988 msg->u.channel.channel_key = channel_key;
989 msg->u.channel.session_id = session_id;
990 msg->u.channel.relayd_id = relayd_id;
991 msg->u.channel.nb_init_streams = nb_init_streams;
992 msg->u.channel.output = output;
993 msg->u.channel.type = type;
994 msg->u.channel.tracefile_size = tracefile_size;
995 msg->u.channel.tracefile_count = tracefile_count;
996 msg->u.channel.monitor = monitor;
997 msg->u.channel.live_timer_interval = live_timer_interval;
998 msg->u.channel.monitor_timer_interval = monitor_timer_interval;
999
1000 strncpy(msg->u.channel.pathname, pathname,
1001 sizeof(msg->u.channel.pathname));
1002 msg->u.channel.pathname[sizeof(msg->u.channel.pathname) - 1] = '\0';
1003
1004 strncpy(msg->u.channel.name, name, sizeof(msg->u.channel.name));
1005 msg->u.channel.name[sizeof(msg->u.channel.name) - 1] = '\0';
1006 }
1007
1008 /*
1009 * Init stream communication message structure.
1010 */
1011 void consumer_init_add_stream_comm_msg(struct lttcomm_consumer_msg *msg,
1012 uint64_t channel_key,
1013 uint64_t stream_key,
1014 int32_t cpu)
1015 {
1016 assert(msg);
1017
1018 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1019
1020 msg->cmd_type = LTTNG_CONSUMER_ADD_STREAM;
1021 msg->u.stream.channel_key = channel_key;
1022 msg->u.stream.stream_key = stream_key;
1023 msg->u.stream.cpu = cpu;
1024 }
1025
1026 void consumer_init_streams_sent_comm_msg(struct lttcomm_consumer_msg *msg,
1027 enum lttng_consumer_command cmd,
1028 uint64_t channel_key, uint64_t net_seq_idx)
1029 {
1030 assert(msg);
1031
1032 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1033
1034 msg->cmd_type = cmd;
1035 msg->u.sent_streams.channel_key = channel_key;
1036 msg->u.sent_streams.net_seq_idx = net_seq_idx;
1037 }
1038
1039 /*
1040 * Send stream communication structure to the consumer.
1041 */
1042 int consumer_send_stream(struct consumer_socket *sock,
1043 struct consumer_output *dst, struct lttcomm_consumer_msg *msg,
1044 const int *fds, size_t nb_fd)
1045 {
1046 int ret;
1047
1048 assert(msg);
1049 assert(dst);
1050 assert(sock);
1051 assert(fds);
1052
1053 ret = consumer_send_msg(sock, msg);
1054 if (ret < 0) {
1055 goto error;
1056 }
1057
1058 ret = consumer_send_fds(sock, fds, nb_fd);
1059 if (ret < 0) {
1060 goto error;
1061 }
1062
1063 error:
1064 return ret;
1065 }
1066
1067 /*
1068 * Send relayd socket to consumer associated with a session name.
1069 *
1070 * The consumer socket lock must be held by the caller.
1071 *
1072 * On success return positive value. On error, negative value.
1073 */
1074 int consumer_send_relayd_socket(struct consumer_socket *consumer_sock,
1075 struct lttcomm_relayd_sock *rsock, struct consumer_output *consumer,
1076 enum lttng_stream_type type, uint64_t session_id,
1077 const char *session_name, const char *hostname,
1078 const char *base_path, int session_live_timer,
1079 const uint64_t *current_chunk_id, time_t session_creation_time,
1080 bool session_name_contains_creation_time)
1081 {
1082 int ret;
1083 struct lttcomm_consumer_msg msg;
1084
1085 /* Code flow error. Safety net. */
1086 assert(rsock);
1087 assert(consumer);
1088 assert(consumer_sock);
1089
1090 memset(&msg, 0, sizeof(msg));
1091 /* Bail out if consumer is disabled */
1092 if (!consumer->enabled) {
1093 ret = LTTNG_OK;
1094 goto error;
1095 }
1096
1097 if (type == LTTNG_STREAM_CONTROL) {
1098 char output_path[LTTNG_PATH_MAX] = {};
1099
1100 ret = relayd_create_session(rsock,
1101 &msg.u.relayd_sock.relayd_session_id,
1102 session_name, hostname, base_path,
1103 session_live_timer,
1104 consumer->snapshot, session_id,
1105 sessiond_uuid, current_chunk_id,
1106 session_creation_time,
1107 session_name_contains_creation_time,
1108 output_path);
1109 if (ret < 0) {
1110 /* Close the control socket. */
1111 (void) relayd_close(rsock);
1112 goto error;
1113 }
1114 DBG("Created session on relay, output path reply: %s",
1115 output_path);
1116 }
1117
1118 msg.cmd_type = LTTNG_CONSUMER_ADD_RELAYD_SOCKET;
1119 /*
1120 * Assign network consumer output index using the temporary consumer since
1121 * this call should only be made from within a set_consumer_uri() function
1122 * call in the session daemon.
1123 */
1124 msg.u.relayd_sock.net_index = consumer->net_seq_index;
1125 msg.u.relayd_sock.type = type;
1126 msg.u.relayd_sock.session_id = session_id;
1127 memcpy(&msg.u.relayd_sock.sock, rsock, sizeof(msg.u.relayd_sock.sock));
1128
1129 DBG3("Sending relayd sock info to consumer on %d", *consumer_sock->fd_ptr);
1130 ret = consumer_send_msg(consumer_sock, &msg);
1131 if (ret < 0) {
1132 goto error;
1133 }
1134
1135 DBG3("Sending relayd socket file descriptor to consumer");
1136 ret = consumer_send_fds(consumer_sock, &rsock->sock.fd, 1);
1137 if (ret < 0) {
1138 goto error;
1139 }
1140
1141 DBG2("Consumer relayd socket sent");
1142
1143 error:
1144 return ret;
1145 }
1146
1147 static
1148 int consumer_send_pipe(struct consumer_socket *consumer_sock,
1149 enum lttng_consumer_command cmd, int pipe)
1150 {
1151 int ret;
1152 struct lttcomm_consumer_msg msg;
1153 const char *pipe_name;
1154 const char *command_name;
1155
1156 switch (cmd) {
1157 case LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE:
1158 pipe_name = "channel monitor";
1159 command_name = "SET_CHANNEL_MONITOR_PIPE";
1160 break;
1161 default:
1162 ERR("Unexpected command received in %s (cmd = %d)", __func__,
1163 (int) cmd);
1164 abort();
1165 }
1166
1167 /* Code flow error. Safety net. */
1168
1169 memset(&msg, 0, sizeof(msg));
1170 msg.cmd_type = cmd;
1171
1172 pthread_mutex_lock(consumer_sock->lock);
1173 DBG3("Sending %s command to consumer", command_name);
1174 ret = consumer_send_msg(consumer_sock, &msg);
1175 if (ret < 0) {
1176 goto error;
1177 }
1178
1179 DBG3("Sending %s pipe %d to consumer on socket %d",
1180 pipe_name,
1181 pipe, *consumer_sock->fd_ptr);
1182 ret = consumer_send_fds(consumer_sock, &pipe, 1);
1183 if (ret < 0) {
1184 goto error;
1185 }
1186
1187 DBG2("%s pipe successfully sent", pipe_name);
1188 error:
1189 pthread_mutex_unlock(consumer_sock->lock);
1190 return ret;
1191 }
1192
1193 int consumer_send_channel_monitor_pipe(struct consumer_socket *consumer_sock,
1194 int pipe)
1195 {
1196 return consumer_send_pipe(consumer_sock,
1197 LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE, pipe);
1198 }
1199
1200 /*
1201 * Ask the consumer if the data is pending for the specific session id.
1202 * Returns 1 if data is pending, 0 otherwise, or < 0 on error.
1203 */
1204 int consumer_is_data_pending(uint64_t session_id,
1205 struct consumer_output *consumer)
1206 {
1207 int ret;
1208 int32_t ret_code = 0; /* Default is that the data is NOT pending */
1209 struct consumer_socket *socket;
1210 struct lttng_ht_iter iter;
1211 struct lttcomm_consumer_msg msg;
1212
1213 assert(consumer);
1214
1215 DBG3("Consumer data pending for id %" PRIu64, session_id);
1216
1217 memset(&msg, 0, sizeof(msg));
1218 msg.cmd_type = LTTNG_CONSUMER_DATA_PENDING;
1219 msg.u.data_pending.session_id = session_id;
1220
1221 /* Send command for each consumer */
1222 rcu_read_lock();
1223 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1224 node.node) {
1225 pthread_mutex_lock(socket->lock);
1226 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1227 if (ret < 0) {
1228 pthread_mutex_unlock(socket->lock);
1229 goto error_unlock;
1230 }
1231
1232 /*
1233 * No need for a recv reply status because the answer to the command is
1234 * the reply status message.
1235 */
1236
1237 ret = consumer_socket_recv(socket, &ret_code, sizeof(ret_code));
1238 if (ret < 0) {
1239 pthread_mutex_unlock(socket->lock);
1240 goto error_unlock;
1241 }
1242 pthread_mutex_unlock(socket->lock);
1243
1244 if (ret_code == 1) {
1245 break;
1246 }
1247 }
1248 rcu_read_unlock();
1249
1250 DBG("Consumer data is %s pending for session id %" PRIu64,
1251 ret_code == 1 ? "" : "NOT", session_id);
1252 return ret_code;
1253
1254 error_unlock:
1255 rcu_read_unlock();
1256 return -1;
1257 }
1258
1259 /*
1260 * Send a flush command to consumer using the given channel key.
1261 *
1262 * Return 0 on success else a negative value.
1263 */
1264 int consumer_flush_channel(struct consumer_socket *socket, uint64_t key)
1265 {
1266 int ret;
1267 struct lttcomm_consumer_msg msg;
1268
1269 assert(socket);
1270
1271 DBG2("Consumer flush channel key %" PRIu64, key);
1272
1273 memset(&msg, 0, sizeof(msg));
1274 msg.cmd_type = LTTNG_CONSUMER_FLUSH_CHANNEL;
1275 msg.u.flush_channel.key = key;
1276
1277 pthread_mutex_lock(socket->lock);
1278 health_code_update();
1279
1280 ret = consumer_send_msg(socket, &msg);
1281 if (ret < 0) {
1282 goto end;
1283 }
1284
1285 end:
1286 health_code_update();
1287 pthread_mutex_unlock(socket->lock);
1288 return ret;
1289 }
1290
1291 /*
1292 * Send a clear quiescent command to consumer using the given channel key.
1293 *
1294 * Return 0 on success else a negative value.
1295 */
1296 int consumer_clear_quiescent_channel(struct consumer_socket *socket, uint64_t key)
1297 {
1298 int ret;
1299 struct lttcomm_consumer_msg msg;
1300
1301 assert(socket);
1302
1303 DBG2("Consumer clear quiescent channel key %" PRIu64, key);
1304
1305 memset(&msg, 0, sizeof(msg));
1306 msg.cmd_type = LTTNG_CONSUMER_CLEAR_QUIESCENT_CHANNEL;
1307 msg.u.clear_quiescent_channel.key = key;
1308
1309 pthread_mutex_lock(socket->lock);
1310 health_code_update();
1311
1312 ret = consumer_send_msg(socket, &msg);
1313 if (ret < 0) {
1314 goto end;
1315 }
1316
1317 end:
1318 health_code_update();
1319 pthread_mutex_unlock(socket->lock);
1320 return ret;
1321 }
1322
1323 /*
1324 * Send a close metadata command to consumer using the given channel key.
1325 * Called with registry lock held.
1326 *
1327 * Return 0 on success else a negative value.
1328 */
1329 int consumer_close_metadata(struct consumer_socket *socket,
1330 uint64_t metadata_key)
1331 {
1332 int ret;
1333 struct lttcomm_consumer_msg msg;
1334
1335 assert(socket);
1336
1337 DBG2("Consumer close metadata channel key %" PRIu64, metadata_key);
1338
1339 memset(&msg, 0, sizeof(msg));
1340 msg.cmd_type = LTTNG_CONSUMER_CLOSE_METADATA;
1341 msg.u.close_metadata.key = metadata_key;
1342
1343 pthread_mutex_lock(socket->lock);
1344 health_code_update();
1345
1346 ret = consumer_send_msg(socket, &msg);
1347 if (ret < 0) {
1348 goto end;
1349 }
1350
1351 end:
1352 health_code_update();
1353 pthread_mutex_unlock(socket->lock);
1354 return ret;
1355 }
1356
1357 /*
1358 * Send a setup metdata command to consumer using the given channel key.
1359 *
1360 * Return 0 on success else a negative value.
1361 */
1362 int consumer_setup_metadata(struct consumer_socket *socket,
1363 uint64_t metadata_key)
1364 {
1365 int ret;
1366 struct lttcomm_consumer_msg msg;
1367
1368 assert(socket);
1369
1370 DBG2("Consumer setup metadata channel key %" PRIu64, metadata_key);
1371
1372 memset(&msg, 0, sizeof(msg));
1373 msg.cmd_type = LTTNG_CONSUMER_SETUP_METADATA;
1374 msg.u.setup_metadata.key = metadata_key;
1375
1376 pthread_mutex_lock(socket->lock);
1377 health_code_update();
1378
1379 ret = consumer_send_msg(socket, &msg);
1380 if (ret < 0) {
1381 goto end;
1382 }
1383
1384 end:
1385 health_code_update();
1386 pthread_mutex_unlock(socket->lock);
1387 return ret;
1388 }
1389
1390 /*
1391 * Send metadata string to consumer.
1392 * RCU read-side lock must be held to guarantee existence of socket.
1393 *
1394 * Return 0 on success else a negative value.
1395 */
1396 int consumer_push_metadata(struct consumer_socket *socket,
1397 uint64_t metadata_key, char *metadata_str, size_t len,
1398 size_t target_offset, uint64_t version)
1399 {
1400 int ret;
1401 struct lttcomm_consumer_msg msg;
1402
1403 assert(socket);
1404
1405 DBG2("Consumer push metadata to consumer socket %d", *socket->fd_ptr);
1406
1407 pthread_mutex_lock(socket->lock);
1408
1409 memset(&msg, 0, sizeof(msg));
1410 msg.cmd_type = LTTNG_CONSUMER_PUSH_METADATA;
1411 msg.u.push_metadata.key = metadata_key;
1412 msg.u.push_metadata.target_offset = target_offset;
1413 msg.u.push_metadata.len = len;
1414 msg.u.push_metadata.version = version;
1415
1416 health_code_update();
1417 ret = consumer_send_msg(socket, &msg);
1418 if (ret < 0 || len == 0) {
1419 goto end;
1420 }
1421
1422 DBG3("Consumer pushing metadata on sock %d of len %zu", *socket->fd_ptr,
1423 len);
1424
1425 ret = consumer_socket_send(socket, metadata_str, len);
1426 if (ret < 0) {
1427 goto end;
1428 }
1429
1430 health_code_update();
1431 ret = consumer_recv_status_reply(socket);
1432 if (ret < 0) {
1433 goto end;
1434 }
1435
1436 end:
1437 pthread_mutex_unlock(socket->lock);
1438 health_code_update();
1439 return ret;
1440 }
1441
1442 /*
1443 * Ask the consumer to snapshot a specific channel using the key.
1444 *
1445 * Returns LTTNG_OK on success or else an LTTng error code.
1446 */
1447 enum lttng_error_code consumer_snapshot_channel(struct consumer_socket *socket,
1448 uint64_t key, const struct consumer_output *output, int metadata,
1449 uid_t uid, gid_t gid, const char *channel_path, int wait,
1450 uint64_t nb_packets_per_stream)
1451 {
1452 int ret;
1453 enum lttng_error_code status = LTTNG_OK;
1454 struct lttcomm_consumer_msg msg;
1455
1456 assert(socket);
1457 assert(output);
1458
1459 DBG("Consumer snapshot channel key %" PRIu64, key);
1460
1461 memset(&msg, 0, sizeof(msg));
1462 msg.cmd_type = LTTNG_CONSUMER_SNAPSHOT_CHANNEL;
1463 msg.u.snapshot_channel.key = key;
1464 msg.u.snapshot_channel.nb_packets_per_stream = nb_packets_per_stream;
1465 msg.u.snapshot_channel.metadata = metadata;
1466
1467 if (output->type == CONSUMER_DST_NET) {
1468 msg.u.snapshot_channel.relayd_id =
1469 output->net_seq_index;
1470 msg.u.snapshot_channel.use_relayd = 1;
1471 } else {
1472 msg.u.snapshot_channel.relayd_id = (uint64_t) -1ULL;
1473 }
1474 ret = lttng_strncpy(msg.u.snapshot_channel.pathname,
1475 channel_path,
1476 sizeof(msg.u.snapshot_channel.pathname));
1477 if (ret < 0) {
1478 ERR("Snapshot path exceeds the maximal allowed length of %zu bytes (%zu bytes required) with path \"%s\"",
1479 sizeof(msg.u.snapshot_channel.pathname),
1480 strlen(channel_path),
1481 channel_path);
1482 status = LTTNG_ERR_SNAPSHOT_FAIL;
1483 goto error;
1484 }
1485
1486 health_code_update();
1487 pthread_mutex_lock(socket->lock);
1488 ret = consumer_send_msg(socket, &msg);
1489 pthread_mutex_unlock(socket->lock);
1490 if (ret < 0) {
1491 switch (-ret) {
1492 case LTTCOMM_CONSUMERD_CHAN_NOT_FOUND:
1493 status = LTTNG_ERR_CHAN_NOT_FOUND;
1494 break;
1495 default:
1496 status = LTTNG_ERR_SNAPSHOT_FAIL;
1497 break;
1498 }
1499 goto error;
1500 }
1501
1502 error:
1503 health_code_update();
1504 return status;
1505 }
1506
1507 /*
1508 * Ask the consumer the number of discarded events for a channel.
1509 */
1510 int consumer_get_discarded_events(uint64_t session_id, uint64_t channel_key,
1511 struct consumer_output *consumer, uint64_t *discarded)
1512 {
1513 int ret;
1514 struct consumer_socket *socket;
1515 struct lttng_ht_iter iter;
1516 struct lttcomm_consumer_msg msg;
1517
1518 assert(consumer);
1519
1520 DBG3("Consumer discarded events id %" PRIu64, session_id);
1521
1522 memset(&msg, 0, sizeof(msg));
1523 msg.cmd_type = LTTNG_CONSUMER_DISCARDED_EVENTS;
1524 msg.u.discarded_events.session_id = session_id;
1525 msg.u.discarded_events.channel_key = channel_key;
1526
1527 *discarded = 0;
1528
1529 /* Send command for each consumer */
1530 rcu_read_lock();
1531 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1532 node.node) {
1533 uint64_t consumer_discarded = 0;
1534 pthread_mutex_lock(socket->lock);
1535 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1536 if (ret < 0) {
1537 pthread_mutex_unlock(socket->lock);
1538 goto end;
1539 }
1540
1541 /*
1542 * No need for a recv reply status because the answer to the
1543 * command is the reply status message.
1544 */
1545 ret = consumer_socket_recv(socket, &consumer_discarded,
1546 sizeof(consumer_discarded));
1547 if (ret < 0) {
1548 ERR("get discarded events");
1549 pthread_mutex_unlock(socket->lock);
1550 goto end;
1551 }
1552 pthread_mutex_unlock(socket->lock);
1553 *discarded += consumer_discarded;
1554 }
1555 ret = 0;
1556 DBG("Consumer discarded %" PRIu64 " events in session id %" PRIu64,
1557 *discarded, session_id);
1558
1559 end:
1560 rcu_read_unlock();
1561 return ret;
1562 }
1563
1564 /*
1565 * Ask the consumer the number of lost packets for a channel.
1566 */
1567 int consumer_get_lost_packets(uint64_t session_id, uint64_t channel_key,
1568 struct consumer_output *consumer, uint64_t *lost)
1569 {
1570 int ret;
1571 struct consumer_socket *socket;
1572 struct lttng_ht_iter iter;
1573 struct lttcomm_consumer_msg msg;
1574
1575 assert(consumer);
1576
1577 DBG3("Consumer lost packets id %" PRIu64, session_id);
1578
1579 memset(&msg, 0, sizeof(msg));
1580 msg.cmd_type = LTTNG_CONSUMER_LOST_PACKETS;
1581 msg.u.lost_packets.session_id = session_id;
1582 msg.u.lost_packets.channel_key = channel_key;
1583
1584 *lost = 0;
1585
1586 /* Send command for each consumer */
1587 rcu_read_lock();
1588 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1589 node.node) {
1590 uint64_t consumer_lost = 0;
1591 pthread_mutex_lock(socket->lock);
1592 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1593 if (ret < 0) {
1594 pthread_mutex_unlock(socket->lock);
1595 goto end;
1596 }
1597
1598 /*
1599 * No need for a recv reply status because the answer to the
1600 * command is the reply status message.
1601 */
1602 ret = consumer_socket_recv(socket, &consumer_lost,
1603 sizeof(consumer_lost));
1604 if (ret < 0) {
1605 ERR("get lost packets");
1606 pthread_mutex_unlock(socket->lock);
1607 goto end;
1608 }
1609 pthread_mutex_unlock(socket->lock);
1610 *lost += consumer_lost;
1611 }
1612 ret = 0;
1613 DBG("Consumer lost %" PRIu64 " packets in session id %" PRIu64,
1614 *lost, session_id);
1615
1616 end:
1617 rcu_read_unlock();
1618 return ret;
1619 }
1620
1621 /*
1622 * Ask the consumer to rotate a channel.
1623 *
1624 * The new_chunk_id is the session->rotate_count that has been incremented
1625 * when the rotation started. On the relay, this allows to keep track in which
1626 * chunk each stream is currently writing to (for the rotate_pending operation).
1627 */
1628 int consumer_rotate_channel(struct consumer_socket *socket, uint64_t key,
1629 uid_t uid, gid_t gid, struct consumer_output *output,
1630 bool is_metadata_channel)
1631 {
1632 int ret;
1633 struct lttcomm_consumer_msg msg;
1634
1635 assert(socket);
1636
1637 DBG("Consumer rotate channel key %" PRIu64, key);
1638
1639 pthread_mutex_lock(socket->lock);
1640 memset(&msg, 0, sizeof(msg));
1641 msg.cmd_type = LTTNG_CONSUMER_ROTATE_CHANNEL;
1642 msg.u.rotate_channel.key = key;
1643 msg.u.rotate_channel.metadata = !!is_metadata_channel;
1644
1645 if (output->type == CONSUMER_DST_NET) {
1646 msg.u.rotate_channel.relayd_id = output->net_seq_index;
1647 } else {
1648 msg.u.rotate_channel.relayd_id = (uint64_t) -1ULL;
1649 }
1650
1651 health_code_update();
1652 ret = consumer_send_msg(socket, &msg);
1653 if (ret < 0) {
1654 switch (-ret) {
1655 case LTTCOMM_CONSUMERD_CHAN_NOT_FOUND:
1656 ret = -LTTNG_ERR_CHAN_NOT_FOUND;
1657 break;
1658 default:
1659 ret = -LTTNG_ERR_ROTATION_FAIL_CONSUMER;
1660 break;
1661 }
1662 goto error;
1663 }
1664 error:
1665 pthread_mutex_unlock(socket->lock);
1666 health_code_update();
1667 return ret;
1668 }
1669
1670 int consumer_init(struct consumer_socket *socket,
1671 const lttng_uuid sessiond_uuid)
1672 {
1673 int ret;
1674 struct lttcomm_consumer_msg msg = {
1675 .cmd_type = LTTNG_CONSUMER_INIT,
1676 };
1677
1678 assert(socket);
1679
1680 DBG("Sending consumer initialization command");
1681 lttng_uuid_copy(msg.u.init.sessiond_uuid, sessiond_uuid);
1682
1683 health_code_update();
1684 ret = consumer_send_msg(socket, &msg);
1685 if (ret < 0) {
1686 goto error;
1687 }
1688
1689 error:
1690 health_code_update();
1691 return ret;
1692 }
1693
1694 /*
1695 * Ask the consumer to create a new chunk for a given session.
1696 *
1697 * Called with the consumer socket lock held.
1698 */
1699 int consumer_create_trace_chunk(struct consumer_socket *socket,
1700 uint64_t relayd_id, uint64_t session_id,
1701 struct lttng_trace_chunk *chunk)
1702 {
1703 int ret;
1704 enum lttng_trace_chunk_status chunk_status;
1705 struct lttng_credentials chunk_credentials;
1706 const struct lttng_directory_handle *chunk_directory_handle;
1707 int chunk_dirfd;
1708 const char *chunk_name;
1709 bool chunk_name_overridden;
1710 uint64_t chunk_id;
1711 time_t creation_timestamp;
1712 char creation_timestamp_buffer[ISO8601_STR_LEN];
1713 const char *creation_timestamp_str = "(none)";
1714 const bool chunk_has_local_output = relayd_id == -1ULL;
1715 struct lttcomm_consumer_msg msg = {
1716 .cmd_type = LTTNG_CONSUMER_CREATE_TRACE_CHUNK,
1717 .u.create_trace_chunk.session_id = session_id,
1718 };
1719
1720 assert(socket);
1721 assert(chunk);
1722
1723 if (relayd_id != -1ULL) {
1724 LTTNG_OPTIONAL_SET(&msg.u.create_trace_chunk.relayd_id,
1725 relayd_id);
1726 }
1727
1728 chunk_status = lttng_trace_chunk_get_name(chunk, &chunk_name,
1729 &chunk_name_overridden);
1730 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK &&
1731 chunk_status != LTTNG_TRACE_CHUNK_STATUS_NONE) {
1732 ERR("Failed to get name of trace chunk");
1733 ret = -LTTNG_ERR_FATAL;
1734 goto error;
1735 }
1736 if (chunk_name_overridden) {
1737 ret = lttng_strncpy(msg.u.create_trace_chunk.override_name,
1738 chunk_name,
1739 sizeof(msg.u.create_trace_chunk.override_name));
1740 if (ret) {
1741 ERR("Trace chunk name \"%s\" exceeds the maximal length allowed by the consumer protocol",
1742 chunk_name);
1743 ret = -LTTNG_ERR_FATAL;
1744 goto error;
1745 }
1746 }
1747
1748 chunk_status = lttng_trace_chunk_get_creation_timestamp(chunk,
1749 &creation_timestamp);
1750 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1751 ret = -LTTNG_ERR_FATAL;
1752 goto error;
1753 }
1754 msg.u.create_trace_chunk.creation_timestamp =
1755 (uint64_t) creation_timestamp;
1756 /* Only used for logging purposes. */
1757 ret = time_to_iso8601_str(creation_timestamp,
1758 creation_timestamp_buffer,
1759 sizeof(creation_timestamp_buffer));
1760 creation_timestamp_str = !ret ? creation_timestamp_buffer :
1761 "(formatting error)";
1762
1763 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
1764 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1765 /*
1766 * Anonymous trace chunks should never be transmitted
1767 * to remote peers (consumerd and relayd). They are used
1768 * internally for backward-compatibility purposes.
1769 */
1770 ret = -LTTNG_ERR_FATAL;
1771 goto error;
1772 }
1773 msg.u.create_trace_chunk.chunk_id = chunk_id;
1774
1775 if (chunk_has_local_output) {
1776 chunk_status = lttng_trace_chunk_get_chunk_directory_handle(
1777 chunk, &chunk_directory_handle);
1778 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1779 ret = -LTTNG_ERR_FATAL;
1780 goto error;
1781 }
1782
1783 /*
1784 * This will only compile on platforms that support
1785 * dirfd (POSIX.2008). This is fine as the session daemon
1786 * is only built for such platforms.
1787 *
1788 * The ownership of the chunk directory handle's is maintained
1789 * by the trace chunk.
1790 */
1791 chunk_dirfd = lttng_directory_handle_get_dirfd(
1792 chunk_directory_handle);
1793 assert(chunk_dirfd >= 0);
1794
1795 chunk_status = lttng_trace_chunk_get_credentials(
1796 chunk, &chunk_credentials);
1797 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1798 /*
1799 * Not associating credentials to a sessiond chunk is a
1800 * fatal internal error.
1801 */
1802 ret = -LTTNG_ERR_FATAL;
1803 goto error;
1804 }
1805 msg.u.create_trace_chunk.credentials.value.uid =
1806 chunk_credentials.uid;
1807 msg.u.create_trace_chunk.credentials.value.gid =
1808 chunk_credentials.gid;
1809 msg.u.create_trace_chunk.credentials.is_set = 1;
1810 }
1811
1812 DBG("Sending consumer create trace chunk command: relayd_id = %" PRId64
1813 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
1814 ", creation_timestamp = %s",
1815 relayd_id, session_id, chunk_id,
1816 creation_timestamp_str);
1817 health_code_update();
1818 ret = consumer_send_msg(socket, &msg);
1819 health_code_update();
1820 if (ret < 0) {
1821 ERR("Trace chunk creation error on consumer");
1822 ret = -LTTNG_ERR_CREATE_TRACE_CHUNK_FAIL_CONSUMER;
1823 goto error;
1824 }
1825
1826 if (chunk_has_local_output) {
1827 DBG("Sending trace chunk directory fd to consumer");
1828 health_code_update();
1829 ret = consumer_send_fds(socket, &chunk_dirfd, 1);
1830 health_code_update();
1831 if (ret < 0) {
1832 ERR("Trace chunk creation error on consumer");
1833 ret = -LTTNG_ERR_CREATE_TRACE_CHUNK_FAIL_CONSUMER;
1834 goto error;
1835 }
1836 }
1837 error:
1838 return ret;
1839 }
1840
1841 /*
1842 * Ask the consumer to close a trace chunk for a given session.
1843 *
1844 * Called with the consumer socket lock held.
1845 */
1846 int consumer_close_trace_chunk(struct consumer_socket *socket,
1847 uint64_t relayd_id, uint64_t session_id,
1848 struct lttng_trace_chunk *chunk,
1849 char *closed_trace_chunk_path)
1850 {
1851 int ret;
1852 enum lttng_trace_chunk_status chunk_status;
1853 struct lttcomm_consumer_msg msg = {
1854 .cmd_type = LTTNG_CONSUMER_CLOSE_TRACE_CHUNK,
1855 .u.close_trace_chunk.session_id = session_id,
1856 };
1857 struct lttcomm_consumer_close_trace_chunk_reply reply;
1858 uint64_t chunk_id;
1859 time_t close_timestamp;
1860 enum lttng_trace_chunk_command_type close_command;
1861 const char *close_command_name = "none";
1862 struct lttng_dynamic_buffer path_reception_buffer;
1863
1864 assert(socket);
1865 lttng_dynamic_buffer_init(&path_reception_buffer);
1866
1867 if (relayd_id != -1ULL) {
1868 LTTNG_OPTIONAL_SET(
1869 &msg.u.close_trace_chunk.relayd_id, relayd_id);
1870 }
1871
1872 chunk_status = lttng_trace_chunk_get_close_command(
1873 chunk, &close_command);
1874 switch (chunk_status) {
1875 case LTTNG_TRACE_CHUNK_STATUS_OK:
1876 LTTNG_OPTIONAL_SET(&msg.u.close_trace_chunk.close_command,
1877 (uint32_t) close_command);
1878 break;
1879 case LTTNG_TRACE_CHUNK_STATUS_NONE:
1880 break;
1881 default:
1882 ERR("Failed to get trace chunk close command");
1883 ret = -1;
1884 goto error;
1885 }
1886
1887 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
1888 /*
1889 * Anonymous trace chunks should never be transmitted to remote peers
1890 * (consumerd and relayd). They are used internally for
1891 * backward-compatibility purposes.
1892 */
1893 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
1894 msg.u.close_trace_chunk.chunk_id = chunk_id;
1895
1896 chunk_status = lttng_trace_chunk_get_close_timestamp(chunk,
1897 &close_timestamp);
1898 /*
1899 * A trace chunk should be closed locally before being closed remotely.
1900 * Otherwise, the close timestamp would never be transmitted to the
1901 * peers.
1902 */
1903 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
1904 msg.u.close_trace_chunk.close_timestamp = (uint64_t) close_timestamp;
1905
1906 if (msg.u.close_trace_chunk.close_command.is_set) {
1907 close_command_name = lttng_trace_chunk_command_type_get_name(
1908 close_command);
1909 }
1910 DBG("Sending consumer close trace chunk command: relayd_id = %" PRId64
1911 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
1912 ", close command = \"%s\"",
1913 relayd_id, session_id, chunk_id, close_command_name);
1914
1915 health_code_update();
1916 ret = consumer_socket_send(socket, &msg, sizeof(struct lttcomm_consumer_msg));
1917 if (ret < 0) {
1918 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
1919 goto error;
1920 }
1921 ret = consumer_socket_recv(socket, &reply, sizeof(reply));
1922 if (ret < 0) {
1923 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
1924 goto error;
1925 }
1926 if (reply.path_length >= LTTNG_PATH_MAX) {
1927 ERR("Invalid path returned by relay daemon: %" PRIu32 "bytes exceeds maximal allowed length of %d bytes",
1928 reply.path_length, LTTNG_PATH_MAX);
1929 ret = -LTTNG_ERR_INVALID_PROTOCOL;
1930 goto error;
1931 }
1932 ret = lttng_dynamic_buffer_set_size(&path_reception_buffer,
1933 reply.path_length);
1934 if (ret) {
1935 ERR("Failed to allocate reception buffer of path returned by the \"close trace chunk\" command");
1936 ret = -LTTNG_ERR_NOMEM;
1937 goto error;
1938 }
1939 ret = consumer_socket_recv(socket, path_reception_buffer.data,
1940 path_reception_buffer.size);
1941 if (ret < 0) {
1942 ERR("Communication error while receiving path of closed trace chunk");
1943 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
1944 goto error;
1945 }
1946 if (path_reception_buffer.data[path_reception_buffer.size - 1] != '\0') {
1947 ERR("Invalid path returned by relay daemon: not null-terminated");
1948 ret = -LTTNG_ERR_INVALID_PROTOCOL;
1949 goto error;
1950 }
1951 if (closed_trace_chunk_path) {
1952 /*
1953 * closed_trace_chunk_path is assumed to have a length >=
1954 * LTTNG_PATH_MAX
1955 */
1956 memcpy(closed_trace_chunk_path, path_reception_buffer.data,
1957 path_reception_buffer.size);
1958 }
1959 error:
1960 lttng_dynamic_buffer_reset(&path_reception_buffer);
1961 health_code_update();
1962 return ret;
1963 }
1964
1965 /*
1966 * Ask the consumer if a trace chunk exists.
1967 *
1968 * Called with the consumer socket lock held.
1969 * Returns 0 on success, or a negative value on error.
1970 */
1971 int consumer_trace_chunk_exists(struct consumer_socket *socket,
1972 uint64_t relayd_id, uint64_t session_id,
1973 struct lttng_trace_chunk *chunk,
1974 enum consumer_trace_chunk_exists_status *result)
1975 {
1976 int ret;
1977 enum lttng_trace_chunk_status chunk_status;
1978 struct lttcomm_consumer_msg msg = {
1979 .cmd_type = LTTNG_CONSUMER_TRACE_CHUNK_EXISTS,
1980 .u.trace_chunk_exists.session_id = session_id,
1981 };
1982 uint64_t chunk_id;
1983 const char *consumer_reply_str;
1984
1985 assert(socket);
1986
1987 if (relayd_id != -1ULL) {
1988 LTTNG_OPTIONAL_SET(&msg.u.trace_chunk_exists.relayd_id,
1989 relayd_id);
1990 }
1991
1992 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
1993 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1994 /*
1995 * Anonymous trace chunks should never be transmitted
1996 * to remote peers (consumerd and relayd). They are used
1997 * internally for backward-compatibility purposes.
1998 */
1999 ret = -LTTNG_ERR_FATAL;
2000 goto error;
2001 }
2002 msg.u.trace_chunk_exists.chunk_id = chunk_id;
2003
2004 DBG("Sending consumer trace chunk exists command: relayd_id = %" PRId64
2005 ", session_id = %" PRIu64
2006 ", chunk_id = %" PRIu64, relayd_id, session_id, chunk_id);
2007
2008 health_code_update();
2009 ret = consumer_send_msg(socket, &msg);
2010 switch (-ret) {
2011 case LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK:
2012 consumer_reply_str = "unknown trace chunk";
2013 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_UNKNOWN_CHUNK;
2014 break;
2015 case LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL:
2016 consumer_reply_str = "trace chunk exists locally";
2017 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_EXISTS_LOCAL;
2018 break;
2019 case LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE:
2020 consumer_reply_str = "trace chunk exists on remote peer";
2021 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_EXISTS_REMOTE;
2022 break;
2023 default:
2024 ERR("Consumer returned an error from TRACE_CHUNK_EXISTS command");
2025 ret = -1;
2026 goto error;
2027 }
2028 DBG("Consumer reply to TRACE_CHUNK_EXISTS command: %s",
2029 consumer_reply_str);
2030 ret = 0;
2031 error:
2032 health_code_update();
2033 return ret;
2034 }
This page took 0.109343 seconds and 5 git commands to generate.