Clean-up: remove dead assignment in setup_channel_trace_path
[lttng-tools.git] / src / bin / lttng-sessiond / consumer.c
1 /*
2 * Copyright (C) 2012 - David Goulet <dgoulet@efficios.com>
3 * 2018 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License, version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 51
16 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #define _LGPL_SOURCE
20 #include <assert.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <sys/stat.h>
25 #include <sys/types.h>
26 #include <unistd.h>
27 #include <inttypes.h>
28
29 #include <common/common.h>
30 #include <common/defaults.h>
31 #include <common/uri.h>
32 #include <common/relayd/relayd.h>
33 #include <common/string-utils/format.h>
34
35 #include "consumer.h"
36 #include "health-sessiond.h"
37 #include "ust-app.h"
38 #include "utils.h"
39 #include "lttng-sessiond.h"
40
41 /*
42 * Return allocated full pathname of the session using the consumer trace path
43 * and subdir if available.
44 *
45 * The caller can safely free(3) the returned value. On error, NULL is
46 * returned.
47 */
48 char *setup_channel_trace_path(struct consumer_output *consumer,
49 const char *session_path)
50 {
51 int ret;
52 char *pathname;
53
54 assert(consumer);
55 assert(session_path);
56
57 health_code_update();
58
59 /*
60 * Allocate the string ourself to make sure we never exceed
61 * LTTNG_PATH_MAX.
62 */
63 pathname = zmalloc(LTTNG_PATH_MAX);
64 if (!pathname) {
65 goto error;
66 }
67
68 /* Get correct path name destination */
69 if (consumer->type == CONSUMER_DST_NET &&
70 consumer->relay_major_version == 2 &&
71 consumer->relay_minor_version < 11) {
72 ret = snprintf(pathname, LTTNG_PATH_MAX, "%s%s/%s%s",
73 consumer->dst.net.base_dir,
74 consumer->chunk_path, consumer->domain_subdir,
75 session_path);
76 } else {
77 ret = snprintf(pathname, LTTNG_PATH_MAX, "%s%s",
78 consumer->domain_subdir, session_path);
79 }
80 DBG3("Consumer trace path relative to current trace chunk: \"%s\"",
81 pathname);
82 if (ret < 0) {
83 PERROR("Failed to format channel path");
84 goto error;
85 } else if (ret >= LTTNG_PATH_MAX) {
86 ERR("Truncation occurred while formatting channel path");
87 goto error;
88 }
89
90 return pathname;
91 error:
92 free(pathname);
93 return NULL;
94 }
95
96 /*
97 * Send a data payload using a given consumer socket of size len.
98 *
99 * The consumer socket lock MUST be acquired before calling this since this
100 * function can change the fd value.
101 *
102 * Return 0 on success else a negative value on error.
103 */
104 int consumer_socket_send(struct consumer_socket *socket, void *msg, size_t len)
105 {
106 int fd;
107 ssize_t size;
108
109 assert(socket);
110 assert(socket->fd_ptr);
111 assert(msg);
112
113 /* Consumer socket is invalid. Stopping. */
114 fd = *socket->fd_ptr;
115 if (fd < 0) {
116 goto error;
117 }
118
119 size = lttcomm_send_unix_sock(fd, msg, len);
120 if (size < 0) {
121 /* The above call will print a PERROR on error. */
122 DBG("Error when sending data to consumer on sock %d", fd);
123 /*
124 * At this point, the socket is not usable anymore thus closing it and
125 * setting the file descriptor to -1 so it is not reused.
126 */
127
128 /* This call will PERROR on error. */
129 (void) lttcomm_close_unix_sock(fd);
130 *socket->fd_ptr = -1;
131 goto error;
132 }
133
134 return 0;
135
136 error:
137 return -1;
138 }
139
140 /*
141 * Receive a data payload using a given consumer socket of size len.
142 *
143 * The consumer socket lock MUST be acquired before calling this since this
144 * function can change the fd value.
145 *
146 * Return 0 on success else a negative value on error.
147 */
148 int consumer_socket_recv(struct consumer_socket *socket, void *msg, size_t len)
149 {
150 int fd;
151 ssize_t size;
152
153 assert(socket);
154 assert(socket->fd_ptr);
155 assert(msg);
156
157 /* Consumer socket is invalid. Stopping. */
158 fd = *socket->fd_ptr;
159 if (fd < 0) {
160 goto error;
161 }
162
163 size = lttcomm_recv_unix_sock(fd, msg, len);
164 if (size <= 0) {
165 /* The above call will print a PERROR on error. */
166 DBG("Error when receiving data from the consumer socket %d", fd);
167 /*
168 * At this point, the socket is not usable anymore thus closing it and
169 * setting the file descriptor to -1 so it is not reused.
170 */
171
172 /* This call will PERROR on error. */
173 (void) lttcomm_close_unix_sock(fd);
174 *socket->fd_ptr = -1;
175 goto error;
176 }
177
178 return 0;
179
180 error:
181 return -1;
182 }
183
184 /*
185 * Receive a reply command status message from the consumer. Consumer socket
186 * lock MUST be acquired before calling this function.
187 *
188 * Return 0 on success, -1 on recv error or a negative lttng error code which
189 * was possibly returned by the consumer.
190 */
191 int consumer_recv_status_reply(struct consumer_socket *sock)
192 {
193 int ret;
194 struct lttcomm_consumer_status_msg reply;
195
196 assert(sock);
197
198 ret = consumer_socket_recv(sock, &reply, sizeof(reply));
199 if (ret < 0) {
200 goto end;
201 }
202
203 if (reply.ret_code == LTTCOMM_CONSUMERD_SUCCESS) {
204 /* All good. */
205 ret = 0;
206 } else {
207 ret = -reply.ret_code;
208 DBG("Consumer ret code %d", ret);
209 }
210
211 end:
212 return ret;
213 }
214
215 /*
216 * Once the ASK_CHANNEL command is sent to the consumer, the channel
217 * information are sent back. This call receives that data and populates key
218 * and stream_count.
219 *
220 * On success return 0 and both key and stream_count are set. On error, a
221 * negative value is sent back and both parameters are untouched.
222 */
223 int consumer_recv_status_channel(struct consumer_socket *sock,
224 uint64_t *key, unsigned int *stream_count)
225 {
226 int ret;
227 struct lttcomm_consumer_status_channel reply;
228
229 assert(sock);
230 assert(stream_count);
231 assert(key);
232
233 ret = consumer_socket_recv(sock, &reply, sizeof(reply));
234 if (ret < 0) {
235 goto end;
236 }
237
238 /* An error is possible so don't touch the key and stream_count. */
239 if (reply.ret_code != LTTCOMM_CONSUMERD_SUCCESS) {
240 ret = -1;
241 goto end;
242 }
243
244 *key = reply.key;
245 *stream_count = reply.stream_count;
246 ret = 0;
247
248 end:
249 return ret;
250 }
251
252 /*
253 * Send destroy relayd command to consumer.
254 *
255 * On success return positive value. On error, negative value.
256 */
257 int consumer_send_destroy_relayd(struct consumer_socket *sock,
258 struct consumer_output *consumer)
259 {
260 int ret;
261 struct lttcomm_consumer_msg msg;
262
263 assert(consumer);
264 assert(sock);
265
266 DBG2("Sending destroy relayd command to consumer sock %d", *sock->fd_ptr);
267
268 memset(&msg, 0, sizeof(msg));
269 msg.cmd_type = LTTNG_CONSUMER_DESTROY_RELAYD;
270 msg.u.destroy_relayd.net_seq_idx = consumer->net_seq_index;
271
272 pthread_mutex_lock(sock->lock);
273 ret = consumer_socket_send(sock, &msg, sizeof(msg));
274 if (ret < 0) {
275 goto error;
276 }
277
278 /* Don't check the return value. The caller will do it. */
279 ret = consumer_recv_status_reply(sock);
280
281 DBG2("Consumer send destroy relayd command done");
282
283 error:
284 pthread_mutex_unlock(sock->lock);
285 return ret;
286 }
287
288 /*
289 * For each consumer socket in the consumer output object, send a destroy
290 * relayd command.
291 */
292 void consumer_output_send_destroy_relayd(struct consumer_output *consumer)
293 {
294 struct lttng_ht_iter iter;
295 struct consumer_socket *socket;
296
297 assert(consumer);
298
299 /* Destroy any relayd connection */
300 if (consumer->type == CONSUMER_DST_NET) {
301 rcu_read_lock();
302 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
303 node.node) {
304 int ret;
305
306 /* Send destroy relayd command */
307 ret = consumer_send_destroy_relayd(socket, consumer);
308 if (ret < 0) {
309 DBG("Unable to send destroy relayd command to consumer");
310 /* Continue since we MUST delete everything at this point. */
311 }
312 }
313 rcu_read_unlock();
314 }
315 }
316
317 /*
318 * From a consumer_data structure, allocate and add a consumer socket to the
319 * consumer output.
320 *
321 * Return 0 on success, else negative value on error
322 */
323 int consumer_create_socket(struct consumer_data *data,
324 struct consumer_output *output)
325 {
326 int ret = 0;
327 struct consumer_socket *socket;
328
329 assert(data);
330
331 if (output == NULL || data->cmd_sock < 0) {
332 /*
333 * Not an error. Possible there is simply not spawned consumer or it's
334 * disabled for the tracing session asking the socket.
335 */
336 goto error;
337 }
338
339 rcu_read_lock();
340 socket = consumer_find_socket(data->cmd_sock, output);
341 rcu_read_unlock();
342 if (socket == NULL) {
343 socket = consumer_allocate_socket(&data->cmd_sock);
344 if (socket == NULL) {
345 ret = -1;
346 goto error;
347 }
348
349 socket->registered = 0;
350 socket->lock = &data->lock;
351 rcu_read_lock();
352 consumer_add_socket(socket, output);
353 rcu_read_unlock();
354 }
355
356 socket->type = data->type;
357
358 DBG3("Consumer socket created (fd: %d) and added to output",
359 data->cmd_sock);
360
361 error:
362 return ret;
363 }
364
365 /*
366 * Return the consumer socket from the given consumer output with the right
367 * bitness. On error, returns NULL.
368 *
369 * The caller MUST acquire a rcu read side lock and keep it until the socket
370 * object reference is not needed anymore.
371 */
372 struct consumer_socket *consumer_find_socket_by_bitness(int bits,
373 const struct consumer_output *consumer)
374 {
375 int consumer_fd;
376 struct consumer_socket *socket = NULL;
377
378 switch (bits) {
379 case 64:
380 consumer_fd = uatomic_read(&ust_consumerd64_fd);
381 break;
382 case 32:
383 consumer_fd = uatomic_read(&ust_consumerd32_fd);
384 break;
385 default:
386 assert(0);
387 goto end;
388 }
389
390 socket = consumer_find_socket(consumer_fd, consumer);
391 if (!socket) {
392 ERR("Consumer socket fd %d not found in consumer obj %p",
393 consumer_fd, consumer);
394 }
395
396 end:
397 return socket;
398 }
399
400 /*
401 * Find a consumer_socket in a consumer_output hashtable. Read side lock must
402 * be acquired before calling this function and across use of the
403 * returned consumer_socket.
404 */
405 struct consumer_socket *consumer_find_socket(int key,
406 const struct consumer_output *consumer)
407 {
408 struct lttng_ht_iter iter;
409 struct lttng_ht_node_ulong *node;
410 struct consumer_socket *socket = NULL;
411
412 /* Negative keys are lookup failures */
413 if (key < 0 || consumer == NULL) {
414 return NULL;
415 }
416
417 lttng_ht_lookup(consumer->socks, (void *)((unsigned long) key),
418 &iter);
419 node = lttng_ht_iter_get_node_ulong(&iter);
420 if (node != NULL) {
421 socket = caa_container_of(node, struct consumer_socket, node);
422 }
423
424 return socket;
425 }
426
427 /*
428 * Allocate a new consumer_socket and return the pointer.
429 */
430 struct consumer_socket *consumer_allocate_socket(int *fd)
431 {
432 struct consumer_socket *socket = NULL;
433
434 assert(fd);
435
436 socket = zmalloc(sizeof(struct consumer_socket));
437 if (socket == NULL) {
438 PERROR("zmalloc consumer socket");
439 goto error;
440 }
441
442 socket->fd_ptr = fd;
443 lttng_ht_node_init_ulong(&socket->node, *fd);
444
445 error:
446 return socket;
447 }
448
449 /*
450 * Add consumer socket to consumer output object. Read side lock must be
451 * acquired before calling this function.
452 */
453 void consumer_add_socket(struct consumer_socket *sock,
454 struct consumer_output *consumer)
455 {
456 assert(sock);
457 assert(consumer);
458
459 lttng_ht_add_unique_ulong(consumer->socks, &sock->node);
460 }
461
462 /*
463 * Delete consumer socket to consumer output object. Read side lock must be
464 * acquired before calling this function.
465 */
466 void consumer_del_socket(struct consumer_socket *sock,
467 struct consumer_output *consumer)
468 {
469 int ret;
470 struct lttng_ht_iter iter;
471
472 assert(sock);
473 assert(consumer);
474
475 iter.iter.node = &sock->node.node;
476 ret = lttng_ht_del(consumer->socks, &iter);
477 assert(!ret);
478 }
479
480 /*
481 * RCU destroy call function.
482 */
483 static void destroy_socket_rcu(struct rcu_head *head)
484 {
485 struct lttng_ht_node_ulong *node =
486 caa_container_of(head, struct lttng_ht_node_ulong, head);
487 struct consumer_socket *socket =
488 caa_container_of(node, struct consumer_socket, node);
489
490 free(socket);
491 }
492
493 /*
494 * Destroy and free socket pointer in a call RCU. Read side lock must be
495 * acquired before calling this function.
496 */
497 void consumer_destroy_socket(struct consumer_socket *sock)
498 {
499 assert(sock);
500
501 /*
502 * We DO NOT close the file descriptor here since it is global to the
503 * session daemon and is closed only if the consumer dies or a custom
504 * consumer was registered,
505 */
506 if (sock->registered) {
507 DBG3("Consumer socket was registered. Closing fd %d", *sock->fd_ptr);
508 lttcomm_close_unix_sock(*sock->fd_ptr);
509 }
510
511 call_rcu(&sock->node.head, destroy_socket_rcu);
512 }
513
514 /*
515 * Allocate and assign data to a consumer_output object.
516 *
517 * Return pointer to structure.
518 */
519 struct consumer_output *consumer_create_output(enum consumer_dst_type type)
520 {
521 struct consumer_output *output = NULL;
522
523 output = zmalloc(sizeof(struct consumer_output));
524 if (output == NULL) {
525 PERROR("zmalloc consumer_output");
526 goto error;
527 }
528
529 /* By default, consumer output is enabled */
530 output->enabled = 1;
531 output->type = type;
532 output->net_seq_index = (uint64_t) -1ULL;
533 urcu_ref_init(&output->ref);
534
535 output->socks = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
536
537 error:
538 return output;
539 }
540
541 /*
542 * Iterate over the consumer output socket hash table and destroy them. The
543 * socket file descriptor are only closed if the consumer output was
544 * registered meaning it's an external consumer.
545 */
546 void consumer_destroy_output_sockets(struct consumer_output *obj)
547 {
548 struct lttng_ht_iter iter;
549 struct consumer_socket *socket;
550
551 if (!obj->socks) {
552 return;
553 }
554
555 rcu_read_lock();
556 cds_lfht_for_each_entry(obj->socks->ht, &iter.iter, socket, node.node) {
557 consumer_del_socket(socket, obj);
558 consumer_destroy_socket(socket);
559 }
560 rcu_read_unlock();
561 }
562
563 /*
564 * Delete the consumer_output object from the list and free the ptr.
565 *
566 * Should *NOT* be called with RCU read-side lock held.
567 */
568 static void consumer_release_output(struct urcu_ref *ref)
569 {
570 struct consumer_output *obj =
571 caa_container_of(ref, struct consumer_output, ref);
572
573 consumer_destroy_output_sockets(obj);
574
575 if (obj->socks) {
576 /* Finally destroy HT */
577 ht_cleanup_push(obj->socks);
578 }
579
580 free(obj);
581 }
582
583 /*
584 * Get the consumer_output object.
585 */
586 void consumer_output_get(struct consumer_output *obj)
587 {
588 urcu_ref_get(&obj->ref);
589 }
590
591 /*
592 * Put the consumer_output object.
593 *
594 * Should *NOT* be called with RCU read-side lock held.
595 */
596 void consumer_output_put(struct consumer_output *obj)
597 {
598 if (!obj) {
599 return;
600 }
601 urcu_ref_put(&obj->ref, consumer_release_output);
602 }
603
604 /*
605 * Copy consumer output and returned the newly allocated copy.
606 *
607 * Should *NOT* be called with RCU read-side lock held.
608 */
609 struct consumer_output *consumer_copy_output(struct consumer_output *src)
610 {
611 int ret;
612 struct consumer_output *output;
613
614 assert(src);
615
616 output = consumer_create_output(src->type);
617 if (output == NULL) {
618 goto end;
619 }
620 output->enabled = src->enabled;
621 output->net_seq_index = src->net_seq_index;
622 memcpy(output->domain_subdir, src->domain_subdir,
623 sizeof(output->domain_subdir));
624 output->snapshot = src->snapshot;
625 output->relay_major_version = src->relay_major_version;
626 output->relay_minor_version = src->relay_minor_version;
627 memcpy(&output->dst, &src->dst, sizeof(output->dst));
628 ret = consumer_copy_sockets(output, src);
629 if (ret < 0) {
630 goto error_put;
631 }
632 end:
633 return output;
634
635 error_put:
636 consumer_output_put(output);
637 return NULL;
638 }
639
640 /*
641 * Copy consumer sockets from src to dst.
642 *
643 * Return 0 on success or else a negative value.
644 */
645 int consumer_copy_sockets(struct consumer_output *dst,
646 struct consumer_output *src)
647 {
648 int ret = 0;
649 struct lttng_ht_iter iter;
650 struct consumer_socket *socket, *copy_sock;
651
652 assert(dst);
653 assert(src);
654
655 rcu_read_lock();
656 cds_lfht_for_each_entry(src->socks->ht, &iter.iter, socket, node.node) {
657 /* Ignore socket that are already there. */
658 copy_sock = consumer_find_socket(*socket->fd_ptr, dst);
659 if (copy_sock) {
660 continue;
661 }
662
663 /* Create new socket object. */
664 copy_sock = consumer_allocate_socket(socket->fd_ptr);
665 if (copy_sock == NULL) {
666 rcu_read_unlock();
667 ret = -ENOMEM;
668 goto error;
669 }
670
671 copy_sock->registered = socket->registered;
672 /*
673 * This is valid because this lock is shared accross all consumer
674 * object being the global lock of the consumer data structure of the
675 * session daemon.
676 */
677 copy_sock->lock = socket->lock;
678 consumer_add_socket(copy_sock, dst);
679 }
680 rcu_read_unlock();
681
682 error:
683 return ret;
684 }
685
686 /*
687 * Set network URI to the consumer output.
688 *
689 * Return 0 on success. Return 1 if the URI were equal. Else, negative value on
690 * error.
691 */
692 int consumer_set_network_uri(const struct ltt_session *session,
693 struct consumer_output *output,
694 struct lttng_uri *uri)
695 {
696 int ret;
697 struct lttng_uri *dst_uri = NULL;
698
699 /* Code flow error safety net. */
700 assert(output);
701 assert(uri);
702
703 switch (uri->stype) {
704 case LTTNG_STREAM_CONTROL:
705 dst_uri = &output->dst.net.control;
706 output->dst.net.control_isset = 1;
707 if (uri->port == 0) {
708 /* Assign default port. */
709 uri->port = DEFAULT_NETWORK_CONTROL_PORT;
710 } else {
711 if (output->dst.net.data_isset && uri->port ==
712 output->dst.net.data.port) {
713 ret = -LTTNG_ERR_INVALID;
714 goto error;
715 }
716 }
717 DBG3("Consumer control URI set with port %d", uri->port);
718 break;
719 case LTTNG_STREAM_DATA:
720 dst_uri = &output->dst.net.data;
721 output->dst.net.data_isset = 1;
722 if (uri->port == 0) {
723 /* Assign default port. */
724 uri->port = DEFAULT_NETWORK_DATA_PORT;
725 } else {
726 if (output->dst.net.control_isset && uri->port ==
727 output->dst.net.control.port) {
728 ret = -LTTNG_ERR_INVALID;
729 goto error;
730 }
731 }
732 DBG3("Consumer data URI set with port %d", uri->port);
733 break;
734 default:
735 ERR("Set network uri type unknown %d", uri->stype);
736 ret = -LTTNG_ERR_INVALID;
737 goto error;
738 }
739
740 ret = uri_compare(dst_uri, uri);
741 if (!ret) {
742 /* Same URI, don't touch it and return success. */
743 DBG3("URI network compare are the same");
744 goto equal;
745 }
746
747 /* URIs were not equal, replacing it. */
748 memcpy(dst_uri, uri, sizeof(struct lttng_uri));
749 output->type = CONSUMER_DST_NET;
750 if (dst_uri->stype != LTTNG_STREAM_CONTROL) {
751 /* Only the control uri needs to contain the path. */
752 goto end;
753 }
754
755 /*
756 * If the user has specified a subdir as part of the control
757 * URL, the session's base output directory is:
758 * /RELAYD_OUTPUT_PATH/HOSTNAME/USER_SPECIFIED_DIR
759 *
760 * Hence, the "base_dir" from which all stream files and
761 * session rotation chunks are created takes the form
762 * /HOSTNAME/USER_SPECIFIED_DIR
763 *
764 * If the user has not specified an output directory as part of
765 * the control URL, the base output directory has the form:
766 * /RELAYD_OUTPUT_PATH/HOSTNAME/SESSION_NAME-CREATION_TIME
767 *
768 * Hence, the "base_dir" from which all stream files and
769 * session rotation chunks are created takes the form
770 * /HOSTNAME/SESSION_NAME-CREATION_TIME
771 *
772 * Note that automatically generated session names already
773 * contain the session's creation time. In that case, the
774 * creation time is omitted to prevent it from being duplicated
775 * in the final directory hierarchy.
776 */
777 if (*uri->subdir) {
778 if (strstr(uri->subdir, "../")) {
779 ERR("Network URI subdirs are not allowed to walk up the path hierarchy");
780 ret = -LTTNG_ERR_INVALID;
781 goto error;
782 }
783 ret = snprintf(output->dst.net.base_dir,
784 sizeof(output->dst.net.base_dir),
785 "/%s/%s/", session->hostname, uri->subdir);
786 } else {
787 if (session->has_auto_generated_name) {
788 ret = snprintf(output->dst.net.base_dir,
789 sizeof(output->dst.net.base_dir),
790 "/%s/%s/", session->hostname,
791 session->name);
792 } else {
793 char session_creation_datetime[16];
794 size_t strftime_ret;
795 struct tm *timeinfo;
796
797 timeinfo = localtime(&session->creation_time);
798 if (!timeinfo) {
799 ret = -LTTNG_ERR_FATAL;
800 goto error;
801 }
802 strftime_ret = strftime(session_creation_datetime,
803 sizeof(session_creation_datetime),
804 "%Y%m%d-%H%M%S", timeinfo);
805 if (strftime_ret == 0) {
806 ERR("Failed to format session creation timestamp while setting network URI");
807 ret = -LTTNG_ERR_FATAL;
808 goto error;
809 }
810 ret = snprintf(output->dst.net.base_dir,
811 sizeof(output->dst.net.base_dir),
812 "/%s/%s-%s/", session->hostname,
813 session->name,
814 session_creation_datetime);
815 }
816 }
817 if (ret >= sizeof(output->dst.net.base_dir)) {
818 ret = -LTTNG_ERR_INVALID;
819 ERR("Truncation occurred while setting network output base directory");
820 goto error;
821 } else if (ret == -1) {
822 ret = -LTTNG_ERR_INVALID;
823 PERROR("Error occurred while setting network output base directory");
824 goto error;
825 }
826
827 DBG3("Consumer set network uri base_dir path %s",
828 output->dst.net.base_dir);
829
830 end:
831 return 0;
832 equal:
833 return 1;
834 error:
835 return ret;
836 }
837
838 /*
839 * Send file descriptor to consumer via sock.
840 *
841 * The consumer socket lock must be held by the caller.
842 */
843 int consumer_send_fds(struct consumer_socket *sock, const int *fds,
844 size_t nb_fd)
845 {
846 int ret;
847
848 assert(fds);
849 assert(sock);
850 assert(nb_fd > 0);
851 assert(pthread_mutex_trylock(sock->lock) == EBUSY);
852
853 ret = lttcomm_send_fds_unix_sock(*sock->fd_ptr, fds, nb_fd);
854 if (ret < 0) {
855 /* The above call will print a PERROR on error. */
856 DBG("Error when sending consumer fds on sock %d", *sock->fd_ptr);
857 goto error;
858 }
859
860 ret = consumer_recv_status_reply(sock);
861 error:
862 return ret;
863 }
864
865 /*
866 * Consumer send communication message structure to consumer.
867 *
868 * The consumer socket lock must be held by the caller.
869 */
870 int consumer_send_msg(struct consumer_socket *sock,
871 struct lttcomm_consumer_msg *msg)
872 {
873 int ret;
874
875 assert(msg);
876 assert(sock);
877 assert(pthread_mutex_trylock(sock->lock) == EBUSY);
878
879 ret = consumer_socket_send(sock, msg, sizeof(struct lttcomm_consumer_msg));
880 if (ret < 0) {
881 goto error;
882 }
883
884 ret = consumer_recv_status_reply(sock);
885
886 error:
887 return ret;
888 }
889
890 /*
891 * Consumer send channel communication message structure to consumer.
892 *
893 * The consumer socket lock must be held by the caller.
894 */
895 int consumer_send_channel(struct consumer_socket *sock,
896 struct lttcomm_consumer_msg *msg)
897 {
898 int ret;
899
900 assert(msg);
901 assert(sock);
902
903 ret = consumer_send_msg(sock, msg);
904 if (ret < 0) {
905 goto error;
906 }
907
908 error:
909 return ret;
910 }
911
912 /*
913 * Populate the given consumer msg structure with the ask_channel command
914 * information.
915 */
916 void consumer_init_ask_channel_comm_msg(struct lttcomm_consumer_msg *msg,
917 uint64_t subbuf_size,
918 uint64_t num_subbuf,
919 int overwrite,
920 unsigned int switch_timer_interval,
921 unsigned int read_timer_interval,
922 unsigned int live_timer_interval,
923 unsigned int monitor_timer_interval,
924 int output,
925 int type,
926 uint64_t session_id,
927 const char *pathname,
928 const char *name,
929 uint64_t relayd_id,
930 uint64_t key,
931 unsigned char *uuid,
932 uint32_t chan_id,
933 uint64_t tracefile_size,
934 uint64_t tracefile_count,
935 uint64_t session_id_per_pid,
936 unsigned int monitor,
937 uint32_t ust_app_uid,
938 int64_t blocking_timeout,
939 const char *root_shm_path,
940 const char *shm_path,
941 struct lttng_trace_chunk *trace_chunk,
942 const struct lttng_credentials *buffer_credentials)
943 {
944 assert(msg);
945
946 /* Zeroed structure */
947 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
948 msg->u.ask_channel.buffer_credentials.uid = UINT32_MAX;
949 msg->u.ask_channel.buffer_credentials.gid = UINT32_MAX;
950
951 if (trace_chunk) {
952 uint64_t chunk_id;
953 enum lttng_trace_chunk_status chunk_status;
954
955 chunk_status = lttng_trace_chunk_get_id(trace_chunk, &chunk_id);
956 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
957 LTTNG_OPTIONAL_SET(&msg->u.ask_channel.chunk_id, chunk_id);
958 }
959 msg->u.ask_channel.buffer_credentials.uid = buffer_credentials->uid;
960 msg->u.ask_channel.buffer_credentials.gid = buffer_credentials->gid;
961
962 msg->cmd_type = LTTNG_CONSUMER_ASK_CHANNEL_CREATION;
963 msg->u.ask_channel.subbuf_size = subbuf_size;
964 msg->u.ask_channel.num_subbuf = num_subbuf ;
965 msg->u.ask_channel.overwrite = overwrite;
966 msg->u.ask_channel.switch_timer_interval = switch_timer_interval;
967 msg->u.ask_channel.read_timer_interval = read_timer_interval;
968 msg->u.ask_channel.live_timer_interval = live_timer_interval;
969 msg->u.ask_channel.monitor_timer_interval = monitor_timer_interval;
970 msg->u.ask_channel.output = output;
971 msg->u.ask_channel.type = type;
972 msg->u.ask_channel.session_id = session_id;
973 msg->u.ask_channel.session_id_per_pid = session_id_per_pid;
974 msg->u.ask_channel.relayd_id = relayd_id;
975 msg->u.ask_channel.key = key;
976 msg->u.ask_channel.chan_id = chan_id;
977 msg->u.ask_channel.tracefile_size = tracefile_size;
978 msg->u.ask_channel.tracefile_count = tracefile_count;
979 msg->u.ask_channel.monitor = monitor;
980 msg->u.ask_channel.ust_app_uid = ust_app_uid;
981 msg->u.ask_channel.blocking_timeout = blocking_timeout;
982
983 memcpy(msg->u.ask_channel.uuid, uuid, sizeof(msg->u.ask_channel.uuid));
984
985 if (pathname) {
986 strncpy(msg->u.ask_channel.pathname, pathname,
987 sizeof(msg->u.ask_channel.pathname));
988 msg->u.ask_channel.pathname[sizeof(msg->u.ask_channel.pathname)-1] = '\0';
989 }
990
991 strncpy(msg->u.ask_channel.name, name, sizeof(msg->u.ask_channel.name));
992 msg->u.ask_channel.name[sizeof(msg->u.ask_channel.name) - 1] = '\0';
993
994 if (root_shm_path) {
995 strncpy(msg->u.ask_channel.root_shm_path, root_shm_path,
996 sizeof(msg->u.ask_channel.root_shm_path));
997 msg->u.ask_channel.root_shm_path[sizeof(msg->u.ask_channel.root_shm_path) - 1] = '\0';
998 }
999 if (shm_path) {
1000 strncpy(msg->u.ask_channel.shm_path, shm_path,
1001 sizeof(msg->u.ask_channel.shm_path));
1002 msg->u.ask_channel.shm_path[sizeof(msg->u.ask_channel.shm_path) - 1] = '\0';
1003 }
1004 }
1005
1006 /*
1007 * Init channel communication message structure.
1008 */
1009 void consumer_init_add_channel_comm_msg(struct lttcomm_consumer_msg *msg,
1010 uint64_t channel_key,
1011 uint64_t session_id,
1012 const char *pathname,
1013 uid_t uid,
1014 gid_t gid,
1015 uint64_t relayd_id,
1016 const char *name,
1017 unsigned int nb_init_streams,
1018 enum lttng_event_output output,
1019 int type,
1020 uint64_t tracefile_size,
1021 uint64_t tracefile_count,
1022 unsigned int monitor,
1023 unsigned int live_timer_interval,
1024 unsigned int monitor_timer_interval,
1025 struct lttng_trace_chunk *trace_chunk)
1026 {
1027 assert(msg);
1028
1029 /* Zeroed structure */
1030 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1031
1032 if (trace_chunk) {
1033 uint64_t chunk_id;
1034 enum lttng_trace_chunk_status chunk_status;
1035
1036 chunk_status = lttng_trace_chunk_get_id(trace_chunk, &chunk_id);
1037 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
1038 LTTNG_OPTIONAL_SET(&msg->u.channel.chunk_id, chunk_id);
1039 }
1040
1041 /* Send channel */
1042 msg->cmd_type = LTTNG_CONSUMER_ADD_CHANNEL;
1043 msg->u.channel.channel_key = channel_key;
1044 msg->u.channel.session_id = session_id;
1045 msg->u.channel.relayd_id = relayd_id;
1046 msg->u.channel.nb_init_streams = nb_init_streams;
1047 msg->u.channel.output = output;
1048 msg->u.channel.type = type;
1049 msg->u.channel.tracefile_size = tracefile_size;
1050 msg->u.channel.tracefile_count = tracefile_count;
1051 msg->u.channel.monitor = monitor;
1052 msg->u.channel.live_timer_interval = live_timer_interval;
1053 msg->u.channel.monitor_timer_interval = monitor_timer_interval;
1054
1055 strncpy(msg->u.channel.pathname, pathname,
1056 sizeof(msg->u.channel.pathname));
1057 msg->u.channel.pathname[sizeof(msg->u.channel.pathname) - 1] = '\0';
1058
1059 strncpy(msg->u.channel.name, name, sizeof(msg->u.channel.name));
1060 msg->u.channel.name[sizeof(msg->u.channel.name) - 1] = '\0';
1061 }
1062
1063 /*
1064 * Init stream communication message structure.
1065 */
1066 void consumer_init_add_stream_comm_msg(struct lttcomm_consumer_msg *msg,
1067 uint64_t channel_key,
1068 uint64_t stream_key,
1069 int32_t cpu)
1070 {
1071 assert(msg);
1072
1073 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1074
1075 msg->cmd_type = LTTNG_CONSUMER_ADD_STREAM;
1076 msg->u.stream.channel_key = channel_key;
1077 msg->u.stream.stream_key = stream_key;
1078 msg->u.stream.cpu = cpu;
1079 }
1080
1081 void consumer_init_streams_sent_comm_msg(struct lttcomm_consumer_msg *msg,
1082 enum lttng_consumer_command cmd,
1083 uint64_t channel_key, uint64_t net_seq_idx)
1084 {
1085 assert(msg);
1086
1087 memset(msg, 0, sizeof(struct lttcomm_consumer_msg));
1088
1089 msg->cmd_type = cmd;
1090 msg->u.sent_streams.channel_key = channel_key;
1091 msg->u.sent_streams.net_seq_idx = net_seq_idx;
1092 }
1093
1094 /*
1095 * Send stream communication structure to the consumer.
1096 */
1097 int consumer_send_stream(struct consumer_socket *sock,
1098 struct consumer_output *dst, struct lttcomm_consumer_msg *msg,
1099 const int *fds, size_t nb_fd)
1100 {
1101 int ret;
1102
1103 assert(msg);
1104 assert(dst);
1105 assert(sock);
1106 assert(fds);
1107
1108 ret = consumer_send_msg(sock, msg);
1109 if (ret < 0) {
1110 goto error;
1111 }
1112
1113 ret = consumer_send_fds(sock, fds, nb_fd);
1114 if (ret < 0) {
1115 goto error;
1116 }
1117
1118 error:
1119 return ret;
1120 }
1121
1122 /*
1123 * Send relayd socket to consumer associated with a session name.
1124 *
1125 * The consumer socket lock must be held by the caller.
1126 *
1127 * On success return positive value. On error, negative value.
1128 */
1129 int consumer_send_relayd_socket(struct consumer_socket *consumer_sock,
1130 struct lttcomm_relayd_sock *rsock, struct consumer_output *consumer,
1131 enum lttng_stream_type type, uint64_t session_id,
1132 const char *session_name, const char *hostname,
1133 const char *base_path, int session_live_timer,
1134 const uint64_t *current_chunk_id, time_t session_creation_time,
1135 bool session_name_contains_creation_time)
1136 {
1137 int ret;
1138 struct lttcomm_consumer_msg msg;
1139
1140 /* Code flow error. Safety net. */
1141 assert(rsock);
1142 assert(consumer);
1143 assert(consumer_sock);
1144
1145 memset(&msg, 0, sizeof(msg));
1146 /* Bail out if consumer is disabled */
1147 if (!consumer->enabled) {
1148 ret = LTTNG_OK;
1149 goto error;
1150 }
1151
1152 if (type == LTTNG_STREAM_CONTROL) {
1153 char output_path[LTTNG_PATH_MAX] = {};
1154
1155 ret = relayd_create_session(rsock,
1156 &msg.u.relayd_sock.relayd_session_id,
1157 session_name, hostname, base_path,
1158 session_live_timer,
1159 consumer->snapshot, session_id,
1160 sessiond_uuid, current_chunk_id,
1161 session_creation_time,
1162 session_name_contains_creation_time,
1163 output_path);
1164 if (ret < 0) {
1165 /* Close the control socket. */
1166 (void) relayd_close(rsock);
1167 goto error;
1168 }
1169 DBG("Created session on relay, output path reply: %s",
1170 output_path);
1171 }
1172
1173 msg.cmd_type = LTTNG_CONSUMER_ADD_RELAYD_SOCKET;
1174 /*
1175 * Assign network consumer output index using the temporary consumer since
1176 * this call should only be made from within a set_consumer_uri() function
1177 * call in the session daemon.
1178 */
1179 msg.u.relayd_sock.net_index = consumer->net_seq_index;
1180 msg.u.relayd_sock.type = type;
1181 msg.u.relayd_sock.session_id = session_id;
1182 memcpy(&msg.u.relayd_sock.sock, rsock, sizeof(msg.u.relayd_sock.sock));
1183
1184 DBG3("Sending relayd sock info to consumer on %d", *consumer_sock->fd_ptr);
1185 ret = consumer_send_msg(consumer_sock, &msg);
1186 if (ret < 0) {
1187 goto error;
1188 }
1189
1190 DBG3("Sending relayd socket file descriptor to consumer");
1191 ret = consumer_send_fds(consumer_sock, &rsock->sock.fd, 1);
1192 if (ret < 0) {
1193 goto error;
1194 }
1195
1196 DBG2("Consumer relayd socket sent");
1197
1198 error:
1199 return ret;
1200 }
1201
1202 static
1203 int consumer_send_pipe(struct consumer_socket *consumer_sock,
1204 enum lttng_consumer_command cmd, int pipe)
1205 {
1206 int ret;
1207 struct lttcomm_consumer_msg msg;
1208 const char *pipe_name;
1209 const char *command_name;
1210
1211 switch (cmd) {
1212 case LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE:
1213 pipe_name = "channel monitor";
1214 command_name = "SET_CHANNEL_MONITOR_PIPE";
1215 break;
1216 default:
1217 ERR("Unexpected command received in %s (cmd = %d)", __func__,
1218 (int) cmd);
1219 abort();
1220 }
1221
1222 /* Code flow error. Safety net. */
1223
1224 memset(&msg, 0, sizeof(msg));
1225 msg.cmd_type = cmd;
1226
1227 pthread_mutex_lock(consumer_sock->lock);
1228 DBG3("Sending %s command to consumer", command_name);
1229 ret = consumer_send_msg(consumer_sock, &msg);
1230 if (ret < 0) {
1231 goto error;
1232 }
1233
1234 DBG3("Sending %s pipe %d to consumer on socket %d",
1235 pipe_name,
1236 pipe, *consumer_sock->fd_ptr);
1237 ret = consumer_send_fds(consumer_sock, &pipe, 1);
1238 if (ret < 0) {
1239 goto error;
1240 }
1241
1242 DBG2("%s pipe successfully sent", pipe_name);
1243 error:
1244 pthread_mutex_unlock(consumer_sock->lock);
1245 return ret;
1246 }
1247
1248 int consumer_send_channel_monitor_pipe(struct consumer_socket *consumer_sock,
1249 int pipe)
1250 {
1251 return consumer_send_pipe(consumer_sock,
1252 LTTNG_CONSUMER_SET_CHANNEL_MONITOR_PIPE, pipe);
1253 }
1254
1255 /*
1256 * Ask the consumer if the data is pending for the specific session id.
1257 * Returns 1 if data is pending, 0 otherwise, or < 0 on error.
1258 */
1259 int consumer_is_data_pending(uint64_t session_id,
1260 struct consumer_output *consumer)
1261 {
1262 int ret;
1263 int32_t ret_code = 0; /* Default is that the data is NOT pending */
1264 struct consumer_socket *socket;
1265 struct lttng_ht_iter iter;
1266 struct lttcomm_consumer_msg msg;
1267
1268 assert(consumer);
1269
1270 DBG3("Consumer data pending for id %" PRIu64, session_id);
1271
1272 memset(&msg, 0, sizeof(msg));
1273 msg.cmd_type = LTTNG_CONSUMER_DATA_PENDING;
1274 msg.u.data_pending.session_id = session_id;
1275
1276 /* Send command for each consumer */
1277 rcu_read_lock();
1278 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1279 node.node) {
1280 pthread_mutex_lock(socket->lock);
1281 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1282 if (ret < 0) {
1283 pthread_mutex_unlock(socket->lock);
1284 goto error_unlock;
1285 }
1286
1287 /*
1288 * No need for a recv reply status because the answer to the command is
1289 * the reply status message.
1290 */
1291
1292 ret = consumer_socket_recv(socket, &ret_code, sizeof(ret_code));
1293 if (ret < 0) {
1294 pthread_mutex_unlock(socket->lock);
1295 goto error_unlock;
1296 }
1297 pthread_mutex_unlock(socket->lock);
1298
1299 if (ret_code == 1) {
1300 break;
1301 }
1302 }
1303 rcu_read_unlock();
1304
1305 DBG("Consumer data is %s pending for session id %" PRIu64,
1306 ret_code == 1 ? "" : "NOT", session_id);
1307 return ret_code;
1308
1309 error_unlock:
1310 rcu_read_unlock();
1311 return -1;
1312 }
1313
1314 /*
1315 * Send a flush command to consumer using the given channel key.
1316 *
1317 * Return 0 on success else a negative value.
1318 */
1319 int consumer_flush_channel(struct consumer_socket *socket, uint64_t key)
1320 {
1321 int ret;
1322 struct lttcomm_consumer_msg msg;
1323
1324 assert(socket);
1325
1326 DBG2("Consumer flush channel key %" PRIu64, key);
1327
1328 memset(&msg, 0, sizeof(msg));
1329 msg.cmd_type = LTTNG_CONSUMER_FLUSH_CHANNEL;
1330 msg.u.flush_channel.key = key;
1331
1332 pthread_mutex_lock(socket->lock);
1333 health_code_update();
1334
1335 ret = consumer_send_msg(socket, &msg);
1336 if (ret < 0) {
1337 goto end;
1338 }
1339
1340 end:
1341 health_code_update();
1342 pthread_mutex_unlock(socket->lock);
1343 return ret;
1344 }
1345
1346 /*
1347 * Send a clear quiescent command to consumer using the given channel key.
1348 *
1349 * Return 0 on success else a negative value.
1350 */
1351 int consumer_clear_quiescent_channel(struct consumer_socket *socket, uint64_t key)
1352 {
1353 int ret;
1354 struct lttcomm_consumer_msg msg;
1355
1356 assert(socket);
1357
1358 DBG2("Consumer clear quiescent channel key %" PRIu64, key);
1359
1360 memset(&msg, 0, sizeof(msg));
1361 msg.cmd_type = LTTNG_CONSUMER_CLEAR_QUIESCENT_CHANNEL;
1362 msg.u.clear_quiescent_channel.key = key;
1363
1364 pthread_mutex_lock(socket->lock);
1365 health_code_update();
1366
1367 ret = consumer_send_msg(socket, &msg);
1368 if (ret < 0) {
1369 goto end;
1370 }
1371
1372 end:
1373 health_code_update();
1374 pthread_mutex_unlock(socket->lock);
1375 return ret;
1376 }
1377
1378 /*
1379 * Send a close metadata command to consumer using the given channel key.
1380 * Called with registry lock held.
1381 *
1382 * Return 0 on success else a negative value.
1383 */
1384 int consumer_close_metadata(struct consumer_socket *socket,
1385 uint64_t metadata_key)
1386 {
1387 int ret;
1388 struct lttcomm_consumer_msg msg;
1389
1390 assert(socket);
1391
1392 DBG2("Consumer close metadata channel key %" PRIu64, metadata_key);
1393
1394 memset(&msg, 0, sizeof(msg));
1395 msg.cmd_type = LTTNG_CONSUMER_CLOSE_METADATA;
1396 msg.u.close_metadata.key = metadata_key;
1397
1398 pthread_mutex_lock(socket->lock);
1399 health_code_update();
1400
1401 ret = consumer_send_msg(socket, &msg);
1402 if (ret < 0) {
1403 goto end;
1404 }
1405
1406 end:
1407 health_code_update();
1408 pthread_mutex_unlock(socket->lock);
1409 return ret;
1410 }
1411
1412 /*
1413 * Send a setup metdata command to consumer using the given channel key.
1414 *
1415 * Return 0 on success else a negative value.
1416 */
1417 int consumer_setup_metadata(struct consumer_socket *socket,
1418 uint64_t metadata_key)
1419 {
1420 int ret;
1421 struct lttcomm_consumer_msg msg;
1422
1423 assert(socket);
1424
1425 DBG2("Consumer setup metadata channel key %" PRIu64, metadata_key);
1426
1427 memset(&msg, 0, sizeof(msg));
1428 msg.cmd_type = LTTNG_CONSUMER_SETUP_METADATA;
1429 msg.u.setup_metadata.key = metadata_key;
1430
1431 pthread_mutex_lock(socket->lock);
1432 health_code_update();
1433
1434 ret = consumer_send_msg(socket, &msg);
1435 if (ret < 0) {
1436 goto end;
1437 }
1438
1439 end:
1440 health_code_update();
1441 pthread_mutex_unlock(socket->lock);
1442 return ret;
1443 }
1444
1445 /*
1446 * Send metadata string to consumer.
1447 * RCU read-side lock must be held to guarantee existence of socket.
1448 *
1449 * Return 0 on success else a negative value.
1450 */
1451 int consumer_push_metadata(struct consumer_socket *socket,
1452 uint64_t metadata_key, char *metadata_str, size_t len,
1453 size_t target_offset, uint64_t version)
1454 {
1455 int ret;
1456 struct lttcomm_consumer_msg msg;
1457
1458 assert(socket);
1459
1460 DBG2("Consumer push metadata to consumer socket %d", *socket->fd_ptr);
1461
1462 pthread_mutex_lock(socket->lock);
1463
1464 memset(&msg, 0, sizeof(msg));
1465 msg.cmd_type = LTTNG_CONSUMER_PUSH_METADATA;
1466 msg.u.push_metadata.key = metadata_key;
1467 msg.u.push_metadata.target_offset = target_offset;
1468 msg.u.push_metadata.len = len;
1469 msg.u.push_metadata.version = version;
1470
1471 health_code_update();
1472 ret = consumer_send_msg(socket, &msg);
1473 if (ret < 0 || len == 0) {
1474 goto end;
1475 }
1476
1477 DBG3("Consumer pushing metadata on sock %d of len %zu", *socket->fd_ptr,
1478 len);
1479
1480 ret = consumer_socket_send(socket, metadata_str, len);
1481 if (ret < 0) {
1482 goto end;
1483 }
1484
1485 health_code_update();
1486 ret = consumer_recv_status_reply(socket);
1487 if (ret < 0) {
1488 goto end;
1489 }
1490
1491 end:
1492 pthread_mutex_unlock(socket->lock);
1493 health_code_update();
1494 return ret;
1495 }
1496
1497 /*
1498 * Ask the consumer to snapshot a specific channel using the key.
1499 *
1500 * Returns LTTNG_OK on success or else an LTTng error code.
1501 */
1502 enum lttng_error_code consumer_snapshot_channel(struct consumer_socket *socket,
1503 uint64_t key, const struct consumer_output *output, int metadata,
1504 uid_t uid, gid_t gid, const char *channel_path, int wait,
1505 uint64_t nb_packets_per_stream)
1506 {
1507 int ret;
1508 enum lttng_error_code status = LTTNG_OK;
1509 struct lttcomm_consumer_msg msg;
1510
1511 assert(socket);
1512 assert(output);
1513
1514 DBG("Consumer snapshot channel key %" PRIu64, key);
1515
1516 memset(&msg, 0, sizeof(msg));
1517 msg.cmd_type = LTTNG_CONSUMER_SNAPSHOT_CHANNEL;
1518 msg.u.snapshot_channel.key = key;
1519 msg.u.snapshot_channel.nb_packets_per_stream = nb_packets_per_stream;
1520 msg.u.snapshot_channel.metadata = metadata;
1521
1522 if (output->type == CONSUMER_DST_NET) {
1523 msg.u.snapshot_channel.relayd_id =
1524 output->net_seq_index;
1525 msg.u.snapshot_channel.use_relayd = 1;
1526 } else {
1527 msg.u.snapshot_channel.relayd_id = (uint64_t) -1ULL;
1528 }
1529 ret = lttng_strncpy(msg.u.snapshot_channel.pathname,
1530 channel_path,
1531 sizeof(msg.u.snapshot_channel.pathname));
1532 if (ret < 0) {
1533 ERR("Snapshot path exceeds the maximal allowed length of %zu bytes (%zu bytes required) with path \"%s\"",
1534 sizeof(msg.u.snapshot_channel.pathname),
1535 strlen(channel_path),
1536 channel_path);
1537 status = LTTNG_ERR_SNAPSHOT_FAIL;
1538 goto error;
1539 }
1540
1541 health_code_update();
1542 pthread_mutex_lock(socket->lock);
1543 ret = consumer_send_msg(socket, &msg);
1544 pthread_mutex_unlock(socket->lock);
1545 if (ret < 0) {
1546 switch (-ret) {
1547 case LTTCOMM_CONSUMERD_CHAN_NOT_FOUND:
1548 status = LTTNG_ERR_CHAN_NOT_FOUND;
1549 break;
1550 default:
1551 status = LTTNG_ERR_SNAPSHOT_FAIL;
1552 break;
1553 }
1554 goto error;
1555 }
1556
1557 error:
1558 health_code_update();
1559 return status;
1560 }
1561
1562 /*
1563 * Ask the consumer the number of discarded events for a channel.
1564 */
1565 int consumer_get_discarded_events(uint64_t session_id, uint64_t channel_key,
1566 struct consumer_output *consumer, uint64_t *discarded)
1567 {
1568 int ret;
1569 struct consumer_socket *socket;
1570 struct lttng_ht_iter iter;
1571 struct lttcomm_consumer_msg msg;
1572
1573 assert(consumer);
1574
1575 DBG3("Consumer discarded events id %" PRIu64, session_id);
1576
1577 memset(&msg, 0, sizeof(msg));
1578 msg.cmd_type = LTTNG_CONSUMER_DISCARDED_EVENTS;
1579 msg.u.discarded_events.session_id = session_id;
1580 msg.u.discarded_events.channel_key = channel_key;
1581
1582 *discarded = 0;
1583
1584 /* Send command for each consumer */
1585 rcu_read_lock();
1586 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1587 node.node) {
1588 uint64_t consumer_discarded = 0;
1589 pthread_mutex_lock(socket->lock);
1590 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1591 if (ret < 0) {
1592 pthread_mutex_unlock(socket->lock);
1593 goto end;
1594 }
1595
1596 /*
1597 * No need for a recv reply status because the answer to the
1598 * command is the reply status message.
1599 */
1600 ret = consumer_socket_recv(socket, &consumer_discarded,
1601 sizeof(consumer_discarded));
1602 if (ret < 0) {
1603 ERR("get discarded events");
1604 pthread_mutex_unlock(socket->lock);
1605 goto end;
1606 }
1607 pthread_mutex_unlock(socket->lock);
1608 *discarded += consumer_discarded;
1609 }
1610 ret = 0;
1611 DBG("Consumer discarded %" PRIu64 " events in session id %" PRIu64,
1612 *discarded, session_id);
1613
1614 end:
1615 rcu_read_unlock();
1616 return ret;
1617 }
1618
1619 /*
1620 * Ask the consumer the number of lost packets for a channel.
1621 */
1622 int consumer_get_lost_packets(uint64_t session_id, uint64_t channel_key,
1623 struct consumer_output *consumer, uint64_t *lost)
1624 {
1625 int ret;
1626 struct consumer_socket *socket;
1627 struct lttng_ht_iter iter;
1628 struct lttcomm_consumer_msg msg;
1629
1630 assert(consumer);
1631
1632 DBG3("Consumer lost packets id %" PRIu64, session_id);
1633
1634 memset(&msg, 0, sizeof(msg));
1635 msg.cmd_type = LTTNG_CONSUMER_LOST_PACKETS;
1636 msg.u.lost_packets.session_id = session_id;
1637 msg.u.lost_packets.channel_key = channel_key;
1638
1639 *lost = 0;
1640
1641 /* Send command for each consumer */
1642 rcu_read_lock();
1643 cds_lfht_for_each_entry(consumer->socks->ht, &iter.iter, socket,
1644 node.node) {
1645 uint64_t consumer_lost = 0;
1646 pthread_mutex_lock(socket->lock);
1647 ret = consumer_socket_send(socket, &msg, sizeof(msg));
1648 if (ret < 0) {
1649 pthread_mutex_unlock(socket->lock);
1650 goto end;
1651 }
1652
1653 /*
1654 * No need for a recv reply status because the answer to the
1655 * command is the reply status message.
1656 */
1657 ret = consumer_socket_recv(socket, &consumer_lost,
1658 sizeof(consumer_lost));
1659 if (ret < 0) {
1660 ERR("get lost packets");
1661 pthread_mutex_unlock(socket->lock);
1662 goto end;
1663 }
1664 pthread_mutex_unlock(socket->lock);
1665 *lost += consumer_lost;
1666 }
1667 ret = 0;
1668 DBG("Consumer lost %" PRIu64 " packets in session id %" PRIu64,
1669 *lost, session_id);
1670
1671 end:
1672 rcu_read_unlock();
1673 return ret;
1674 }
1675
1676 /*
1677 * Ask the consumer to rotate a channel.
1678 *
1679 * The new_chunk_id is the session->rotate_count that has been incremented
1680 * when the rotation started. On the relay, this allows to keep track in which
1681 * chunk each stream is currently writing to (for the rotate_pending operation).
1682 */
1683 int consumer_rotate_channel(struct consumer_socket *socket, uint64_t key,
1684 uid_t uid, gid_t gid, struct consumer_output *output,
1685 bool is_metadata_channel)
1686 {
1687 int ret;
1688 struct lttcomm_consumer_msg msg;
1689
1690 assert(socket);
1691
1692 DBG("Consumer rotate channel key %" PRIu64, key);
1693
1694 pthread_mutex_lock(socket->lock);
1695 memset(&msg, 0, sizeof(msg));
1696 msg.cmd_type = LTTNG_CONSUMER_ROTATE_CHANNEL;
1697 msg.u.rotate_channel.key = key;
1698 msg.u.rotate_channel.metadata = !!is_metadata_channel;
1699
1700 if (output->type == CONSUMER_DST_NET) {
1701 msg.u.rotate_channel.relayd_id = output->net_seq_index;
1702 } else {
1703 msg.u.rotate_channel.relayd_id = (uint64_t) -1ULL;
1704 }
1705
1706 health_code_update();
1707 ret = consumer_send_msg(socket, &msg);
1708 if (ret < 0) {
1709 switch (-ret) {
1710 case LTTCOMM_CONSUMERD_CHAN_NOT_FOUND:
1711 ret = -LTTNG_ERR_CHAN_NOT_FOUND;
1712 break;
1713 default:
1714 ret = -LTTNG_ERR_ROTATION_FAIL_CONSUMER;
1715 break;
1716 }
1717 goto error;
1718 }
1719 error:
1720 pthread_mutex_unlock(socket->lock);
1721 health_code_update();
1722 return ret;
1723 }
1724
1725 int consumer_init(struct consumer_socket *socket,
1726 const lttng_uuid sessiond_uuid)
1727 {
1728 int ret;
1729 struct lttcomm_consumer_msg msg = {
1730 .cmd_type = LTTNG_CONSUMER_INIT,
1731 };
1732
1733 assert(socket);
1734
1735 DBG("Sending consumer initialization command");
1736 lttng_uuid_copy(msg.u.init.sessiond_uuid, sessiond_uuid);
1737
1738 health_code_update();
1739 ret = consumer_send_msg(socket, &msg);
1740 if (ret < 0) {
1741 goto error;
1742 }
1743
1744 error:
1745 health_code_update();
1746 return ret;
1747 }
1748
1749 /*
1750 * Ask the consumer to create a new chunk for a given session.
1751 *
1752 * Called with the consumer socket lock held.
1753 */
1754 int consumer_create_trace_chunk(struct consumer_socket *socket,
1755 uint64_t relayd_id, uint64_t session_id,
1756 struct lttng_trace_chunk *chunk)
1757 {
1758 int ret;
1759 enum lttng_trace_chunk_status chunk_status;
1760 struct lttng_credentials chunk_credentials;
1761 const struct lttng_directory_handle *chunk_directory_handle;
1762 int chunk_dirfd;
1763 const char *chunk_name;
1764 bool chunk_name_overridden;
1765 uint64_t chunk_id;
1766 time_t creation_timestamp;
1767 char creation_timestamp_buffer[ISO8601_STR_LEN];
1768 const char *creation_timestamp_str = "(none)";
1769 const bool chunk_has_local_output = relayd_id == -1ULL;
1770 struct lttcomm_consumer_msg msg = {
1771 .cmd_type = LTTNG_CONSUMER_CREATE_TRACE_CHUNK,
1772 .u.create_trace_chunk.session_id = session_id,
1773 };
1774
1775 assert(socket);
1776 assert(chunk);
1777
1778 if (relayd_id != -1ULL) {
1779 LTTNG_OPTIONAL_SET(&msg.u.create_trace_chunk.relayd_id,
1780 relayd_id);
1781 }
1782
1783 chunk_status = lttng_trace_chunk_get_name(chunk, &chunk_name,
1784 &chunk_name_overridden);
1785 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK &&
1786 chunk_status != LTTNG_TRACE_CHUNK_STATUS_NONE) {
1787 ERR("Failed to get name of trace chunk");
1788 ret = -LTTNG_ERR_FATAL;
1789 goto error;
1790 }
1791 if (chunk_name_overridden) {
1792 ret = lttng_strncpy(msg.u.create_trace_chunk.override_name,
1793 chunk_name,
1794 sizeof(msg.u.create_trace_chunk.override_name));
1795 if (ret) {
1796 ERR("Trace chunk name \"%s\" exceeds the maximal length allowed by the consumer protocol",
1797 chunk_name);
1798 ret = -LTTNG_ERR_FATAL;
1799 goto error;
1800 }
1801 }
1802
1803 chunk_status = lttng_trace_chunk_get_creation_timestamp(chunk,
1804 &creation_timestamp);
1805 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1806 ret = -LTTNG_ERR_FATAL;
1807 goto error;
1808 }
1809 msg.u.create_trace_chunk.creation_timestamp =
1810 (uint64_t) creation_timestamp;
1811 /* Only used for logging purposes. */
1812 ret = time_to_iso8601_str(creation_timestamp,
1813 creation_timestamp_buffer,
1814 sizeof(creation_timestamp_buffer));
1815 creation_timestamp_str = !ret ? creation_timestamp_buffer :
1816 "(formatting error)";
1817
1818 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
1819 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1820 /*
1821 * Anonymous trace chunks should never be transmitted
1822 * to remote peers (consumerd and relayd). They are used
1823 * internally for backward-compatibility purposes.
1824 */
1825 ret = -LTTNG_ERR_FATAL;
1826 goto error;
1827 }
1828 msg.u.create_trace_chunk.chunk_id = chunk_id;
1829
1830 if (chunk_has_local_output) {
1831 chunk_status = lttng_trace_chunk_get_chunk_directory_handle(
1832 chunk, &chunk_directory_handle);
1833 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1834 ret = -LTTNG_ERR_FATAL;
1835 goto error;
1836 }
1837
1838 /*
1839 * This will only compile on platforms that support
1840 * dirfd (POSIX.2008). This is fine as the session daemon
1841 * is only built for such platforms.
1842 *
1843 * The ownership of the chunk directory handle's is maintained
1844 * by the trace chunk.
1845 */
1846 chunk_dirfd = lttng_directory_handle_get_dirfd(
1847 chunk_directory_handle);
1848 assert(chunk_dirfd >= 0);
1849
1850 chunk_status = lttng_trace_chunk_get_credentials(
1851 chunk, &chunk_credentials);
1852 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
1853 /*
1854 * Not associating credentials to a sessiond chunk is a
1855 * fatal internal error.
1856 */
1857 ret = -LTTNG_ERR_FATAL;
1858 goto error;
1859 }
1860 msg.u.create_trace_chunk.credentials.value.uid =
1861 chunk_credentials.uid;
1862 msg.u.create_trace_chunk.credentials.value.gid =
1863 chunk_credentials.gid;
1864 msg.u.create_trace_chunk.credentials.is_set = 1;
1865 }
1866
1867 DBG("Sending consumer create trace chunk command: relayd_id = %" PRId64
1868 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
1869 ", creation_timestamp = %s",
1870 relayd_id, session_id, chunk_id,
1871 creation_timestamp_str);
1872 health_code_update();
1873 ret = consumer_send_msg(socket, &msg);
1874 health_code_update();
1875 if (ret < 0) {
1876 ERR("Trace chunk creation error on consumer");
1877 ret = -LTTNG_ERR_CREATE_TRACE_CHUNK_FAIL_CONSUMER;
1878 goto error;
1879 }
1880
1881 if (chunk_has_local_output) {
1882 DBG("Sending trace chunk directory fd to consumer");
1883 health_code_update();
1884 ret = consumer_send_fds(socket, &chunk_dirfd, 1);
1885 health_code_update();
1886 if (ret < 0) {
1887 ERR("Trace chunk creation error on consumer");
1888 ret = -LTTNG_ERR_CREATE_TRACE_CHUNK_FAIL_CONSUMER;
1889 goto error;
1890 }
1891 }
1892 error:
1893 return ret;
1894 }
1895
1896 /*
1897 * Ask the consumer to close a trace chunk for a given session.
1898 *
1899 * Called with the consumer socket lock held.
1900 */
1901 int consumer_close_trace_chunk(struct consumer_socket *socket,
1902 uint64_t relayd_id, uint64_t session_id,
1903 struct lttng_trace_chunk *chunk,
1904 char *closed_trace_chunk_path)
1905 {
1906 int ret;
1907 enum lttng_trace_chunk_status chunk_status;
1908 struct lttcomm_consumer_msg msg = {
1909 .cmd_type = LTTNG_CONSUMER_CLOSE_TRACE_CHUNK,
1910 .u.close_trace_chunk.session_id = session_id,
1911 };
1912 struct lttcomm_consumer_close_trace_chunk_reply reply;
1913 uint64_t chunk_id;
1914 time_t close_timestamp;
1915 enum lttng_trace_chunk_command_type close_command;
1916 const char *close_command_name = "none";
1917 struct lttng_dynamic_buffer path_reception_buffer;
1918
1919 assert(socket);
1920 lttng_dynamic_buffer_init(&path_reception_buffer);
1921
1922 if (relayd_id != -1ULL) {
1923 LTTNG_OPTIONAL_SET(
1924 &msg.u.close_trace_chunk.relayd_id, relayd_id);
1925 }
1926
1927 chunk_status = lttng_trace_chunk_get_close_command(
1928 chunk, &close_command);
1929 switch (chunk_status) {
1930 case LTTNG_TRACE_CHUNK_STATUS_OK:
1931 LTTNG_OPTIONAL_SET(&msg.u.close_trace_chunk.close_command,
1932 (uint32_t) close_command);
1933 break;
1934 case LTTNG_TRACE_CHUNK_STATUS_NONE:
1935 break;
1936 default:
1937 ERR("Failed to get trace chunk close command");
1938 ret = -1;
1939 goto error;
1940 }
1941
1942 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
1943 /*
1944 * Anonymous trace chunks should never be transmitted to remote peers
1945 * (consumerd and relayd). They are used internally for
1946 * backward-compatibility purposes.
1947 */
1948 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
1949 msg.u.close_trace_chunk.chunk_id = chunk_id;
1950
1951 chunk_status = lttng_trace_chunk_get_close_timestamp(chunk,
1952 &close_timestamp);
1953 /*
1954 * A trace chunk should be closed locally before being closed remotely.
1955 * Otherwise, the close timestamp would never be transmitted to the
1956 * peers.
1957 */
1958 assert(chunk_status == LTTNG_TRACE_CHUNK_STATUS_OK);
1959 msg.u.close_trace_chunk.close_timestamp = (uint64_t) close_timestamp;
1960
1961 if (msg.u.close_trace_chunk.close_command.is_set) {
1962 close_command_name = lttng_trace_chunk_command_type_get_name(
1963 close_command);
1964 }
1965 DBG("Sending consumer close trace chunk command: relayd_id = %" PRId64
1966 ", session_id = %" PRIu64 ", chunk_id = %" PRIu64
1967 ", close command = \"%s\"",
1968 relayd_id, session_id, chunk_id, close_command_name);
1969
1970 health_code_update();
1971 ret = consumer_socket_send(socket, &msg, sizeof(struct lttcomm_consumer_msg));
1972 if (ret < 0) {
1973 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
1974 goto error;
1975 }
1976 ret = consumer_socket_recv(socket, &reply, sizeof(reply));
1977 if (ret < 0) {
1978 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
1979 goto error;
1980 }
1981 if (reply.path_length >= LTTNG_PATH_MAX) {
1982 ERR("Invalid path returned by relay daemon: %" PRIu32 "bytes exceeds maximal allowed length of %d bytes",
1983 reply.path_length, LTTNG_PATH_MAX);
1984 ret = -LTTNG_ERR_INVALID_PROTOCOL;
1985 goto error;
1986 }
1987 ret = lttng_dynamic_buffer_set_size(&path_reception_buffer,
1988 reply.path_length);
1989 if (ret) {
1990 ERR("Failed to allocate reception buffer of path returned by the \"close trace chunk\" command");
1991 ret = -LTTNG_ERR_NOMEM;
1992 goto error;
1993 }
1994 ret = consumer_socket_recv(socket, path_reception_buffer.data,
1995 path_reception_buffer.size);
1996 if (ret < 0) {
1997 ERR("Communication error while receiving path of closed trace chunk");
1998 ret = -LTTNG_ERR_CLOSE_TRACE_CHUNK_FAIL_CONSUMER;
1999 goto error;
2000 }
2001 if (path_reception_buffer.data[path_reception_buffer.size - 1] != '\0') {
2002 ERR("Invalid path returned by relay daemon: not null-terminated");
2003 ret = -LTTNG_ERR_INVALID_PROTOCOL;
2004 goto error;
2005 }
2006 if (closed_trace_chunk_path) {
2007 /*
2008 * closed_trace_chunk_path is assumed to have a length >=
2009 * LTTNG_PATH_MAX
2010 */
2011 memcpy(closed_trace_chunk_path, path_reception_buffer.data,
2012 path_reception_buffer.size);
2013 }
2014 error:
2015 lttng_dynamic_buffer_reset(&path_reception_buffer);
2016 health_code_update();
2017 return ret;
2018 }
2019
2020 /*
2021 * Ask the consumer if a trace chunk exists.
2022 *
2023 * Called with the consumer socket lock held.
2024 * Returns 0 on success, or a negative value on error.
2025 */
2026 int consumer_trace_chunk_exists(struct consumer_socket *socket,
2027 uint64_t relayd_id, uint64_t session_id,
2028 struct lttng_trace_chunk *chunk,
2029 enum consumer_trace_chunk_exists_status *result)
2030 {
2031 int ret;
2032 enum lttng_trace_chunk_status chunk_status;
2033 struct lttcomm_consumer_msg msg = {
2034 .cmd_type = LTTNG_CONSUMER_TRACE_CHUNK_EXISTS,
2035 .u.trace_chunk_exists.session_id = session_id,
2036 };
2037 uint64_t chunk_id;
2038 const char *consumer_reply_str;
2039
2040 assert(socket);
2041
2042 if (relayd_id != -1ULL) {
2043 LTTNG_OPTIONAL_SET(&msg.u.trace_chunk_exists.relayd_id,
2044 relayd_id);
2045 }
2046
2047 chunk_status = lttng_trace_chunk_get_id(chunk, &chunk_id);
2048 if (chunk_status != LTTNG_TRACE_CHUNK_STATUS_OK) {
2049 /*
2050 * Anonymous trace chunks should never be transmitted
2051 * to remote peers (consumerd and relayd). They are used
2052 * internally for backward-compatibility purposes.
2053 */
2054 ret = -LTTNG_ERR_FATAL;
2055 goto error;
2056 }
2057 msg.u.trace_chunk_exists.chunk_id = chunk_id;
2058
2059 DBG("Sending consumer trace chunk exists command: relayd_id = %" PRId64
2060 ", session_id = %" PRIu64
2061 ", chunk_id = %" PRIu64, relayd_id, session_id, chunk_id);
2062
2063 health_code_update();
2064 ret = consumer_send_msg(socket, &msg);
2065 switch (-ret) {
2066 case LTTCOMM_CONSUMERD_UNKNOWN_TRACE_CHUNK:
2067 consumer_reply_str = "unknown trace chunk";
2068 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_UNKNOWN_CHUNK;
2069 break;
2070 case LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_LOCAL:
2071 consumer_reply_str = "trace chunk exists locally";
2072 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_EXISTS_LOCAL;
2073 break;
2074 case LTTCOMM_CONSUMERD_TRACE_CHUNK_EXISTS_REMOTE:
2075 consumer_reply_str = "trace chunk exists on remote peer";
2076 *result = CONSUMER_TRACE_CHUNK_EXISTS_STATUS_EXISTS_REMOTE;
2077 break;
2078 default:
2079 ERR("Consumer returned an error from TRACE_CHUNK_EXISTS command");
2080 ret = -1;
2081 goto error;
2082 }
2083 DBG("Consumer reply to TRACE_CHUNK_EXISTS command: %s",
2084 consumer_reply_str);
2085 ret = 0;
2086 error:
2087 health_code_update();
2088 return ret;
2089 }
This page took 0.113235 seconds and 4 git commands to generate.