d4908d16c9c43bd01023698d91e76efab34ebb88
[lttng-tools.git] / liblttkconsumerd / lttkconsumerd.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; only version 2
8 * of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <fcntl.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <urcu/list.h>
31 #include <assert.h>
32
33 #include "kernelctl.h"
34 #include "lttkconsumerd.h"
35 #include "lttngerr.h"
36
37 static
38 struct kconsumerd_global_data {
39 /*
40 * kconsumerd_data.lock protects kconsumerd_data.fd_list,
41 * kconsumerd_data.fds_count, and kconsumerd_data.need_update. It
42 * ensures the count matches the number of items in the fd_list.
43 * It ensures the list updates *always* trigger an fd_array
44 * update (therefore need to make list update vs
45 * kconsumerd_data.need_update flag update atomic, and also flag
46 * read, fd array and flag clear atomic).
47 */
48 pthread_mutex_t lock;
49 /*
50 * Number of element for the list below. Protected by
51 * kconsumerd_data.lock.
52 */
53 unsigned int fds_count;
54 /*
55 * List of FDs. Protected by kconsumerd_data.lock.
56 */
57 struct kconsumerd_fd_list fd_list;
58 /*
59 * Flag specifying if the local array of FDs needs update in the
60 * poll function. Protected by kconsumerd_data.lock.
61 */
62 unsigned int need_update;
63 } kconsumerd_data = {
64 .fd_list.head = CDS_LIST_HEAD_INIT(kconsumerd_data.fd_list.head),
65 .fds_count = 0,
66 .need_update = 1,
67 };
68
69 /* timeout parameter, to control the polling thread grace period */
70 static int kconsumerd_poll_timeout = -1;
71
72 /*
73 * flag to inform the polling thread to quit when all fd hung up.
74 * Updated by the kconsumerd_thread_receive_fds when it notices that all
75 * fds has hung up. Also updated by the signal handler
76 * (kconsumerd_should_exit()). Read by the polling threads.
77 */
78 static volatile int kconsumerd_quit = 0;
79
80 /*
81 * kconsumerd_set_error_socket
82 *
83 * Set the error socket
84 */
85 void kconsumerd_set_error_socket(struct kconsumerd_local_data *ctx, int sock)
86 {
87 ctx->kconsumerd_error_socket = sock;
88 }
89
90 /*
91 * kconsumerd_set_command_socket_path
92 *
93 * Set the command socket path
94 */
95 void kconsumerd_set_command_socket_path(struct kconsumerd_local_data *ctx,
96 char *sock)
97 {
98 ctx->kconsumerd_command_sock_path = sock;
99 }
100
101 /*
102 * kconsumerd_find_session_fd
103 *
104 * Find a session fd in the global list.
105 * The kconsumerd_data.lock must be locked during this call
106 *
107 * Return 1 if found else 0
108 */
109 static int kconsumerd_find_session_fd(int fd)
110 {
111 struct kconsumerd_fd *iter;
112
113 cds_list_for_each_entry(iter, &kconsumerd_data.fd_list.head, list) {
114 if (iter->sessiond_fd == fd) {
115 DBG("Duplicate session fd %d", fd);
116 return 1;
117 }
118 }
119
120 return 0;
121 }
122
123 /*
124 * kconsumerd_del_fd
125 *
126 * Remove a fd from the global list protected by a mutex
127 */
128 static void kconsumerd_del_fd(struct kconsumerd_fd *lcf)
129 {
130 pthread_mutex_lock(&kconsumerd_data.lock);
131 cds_list_del(&lcf->list);
132 if (kconsumerd_data.fds_count > 0) {
133 kconsumerd_data.fds_count--;
134 if (lcf != NULL) {
135 if (lcf->out_fd != 0) {
136 close(lcf->out_fd);
137 }
138 close(lcf->consumerd_fd);
139 free(lcf);
140 lcf = NULL;
141 }
142 }
143 kconsumerd_data.need_update = 1;
144 pthread_mutex_unlock(&kconsumerd_data.lock);
145 }
146
147 /*
148 * kconsumerd_add_fd
149 *
150 * Add a fd to the global list protected by a mutex
151 */
152 static int kconsumerd_add_fd(struct lttcomm_kconsumerd_msg *buf, int consumerd_fd)
153 {
154 struct kconsumerd_fd *tmp_fd;
155 int ret = 0;
156
157 pthread_mutex_lock(&kconsumerd_data.lock);
158 /* Check if already exist */
159 ret = kconsumerd_find_session_fd(buf->fd);
160 if (ret == 1) {
161 goto end;
162 }
163
164 tmp_fd = malloc(sizeof(struct kconsumerd_fd));
165 tmp_fd->sessiond_fd = buf->fd;
166 tmp_fd->consumerd_fd = consumerd_fd;
167 tmp_fd->state = buf->state;
168 tmp_fd->max_sb_size = buf->max_sb_size;
169 tmp_fd->out_fd = 0;
170 tmp_fd->out_fd_offset = 0;
171 strncpy(tmp_fd->path_name, buf->path_name, PATH_MAX);
172 tmp_fd->path_name[PATH_MAX - 1] = '\0';
173
174 /* Opening the tracefile in write mode */
175 if (tmp_fd->path_name != NULL) {
176 ret = open(tmp_fd->path_name,
177 O_WRONLY|O_CREAT|O_TRUNC, S_IRWXU|S_IRWXG|S_IRWXO);
178 if (ret < 0) {
179 ERR("Opening %s", tmp_fd->path_name);
180 perror("open");
181 goto end;
182 }
183 tmp_fd->out_fd = ret;
184 DBG("Adding %s (%d, %d, %d)", tmp_fd->path_name,
185 tmp_fd->sessiond_fd, tmp_fd->consumerd_fd, tmp_fd->out_fd);
186 }
187
188 cds_list_add(&tmp_fd->list, &kconsumerd_data.fd_list.head);
189 kconsumerd_data.fds_count++;
190 kconsumerd_data.need_update = 1;
191 end:
192 pthread_mutex_unlock(&kconsumerd_data.lock);
193 return ret;
194 }
195
196 /*
197 * kconsumerd_change_fd_state
198 *
199 * Update a fd according to what we just received
200 */
201 static void kconsumerd_change_fd_state(int sessiond_fd,
202 enum kconsumerd_fd_state state)
203 {
204 struct kconsumerd_fd *iter;
205
206 pthread_mutex_lock(&kconsumerd_data.lock);
207 cds_list_for_each_entry(iter, &kconsumerd_data.fd_list.head, list) {
208 if (iter->sessiond_fd == sessiond_fd) {
209 iter->state = state;
210 break;
211 }
212 }
213 kconsumerd_data.need_update = 1;
214 pthread_mutex_unlock(&kconsumerd_data.lock);
215 }
216
217 /*
218 * kconsumerd_update_poll_array
219 *
220 * Allocate the pollfd structure and the local view of the out fds
221 * to avoid doing a lookup in the linked list and concurrency issues
222 * when writing is needed.
223 * Returns the number of fds in the structures
224 * Called with kconsumerd_data.lock held.
225 */
226 static int kconsumerd_update_poll_array(struct kconsumerd_local_data *ctx,
227 struct pollfd **pollfd, struct kconsumerd_fd **local_kconsumerd_fd)
228 {
229 struct kconsumerd_fd *iter;
230 int i = 0;
231
232 DBG("Updating poll fd array");
233 cds_list_for_each_entry(iter, &kconsumerd_data.fd_list.head, list) {
234 if (iter->state == ACTIVE_FD) {
235 DBG("Active FD %d", iter->consumerd_fd);
236 (*pollfd)[i].fd = iter->consumerd_fd;
237 (*pollfd)[i].events = POLLIN | POLLPRI;
238 local_kconsumerd_fd[i] = iter;
239 i++;
240 }
241 }
242
243 /*
244 * insert the kconsumerd_poll_pipe at the end of the array and don't
245 * increment i so nb_fd is the number of real FD
246 */
247 (*pollfd)[i].fd = ctx->kconsumerd_poll_pipe[0];
248 (*pollfd)[i].events = POLLIN;
249 return i;
250 }
251
252
253 /*
254 * kconsumerd_on_read_subbuffer_mmap
255 *
256 * mmap the ring buffer, read it and write the data to the tracefile.
257 * Returns the number of bytes written
258 */
259 int kconsumerd_on_read_subbuffer_mmap(struct kconsumerd_local_data *ctx,
260 struct kconsumerd_fd *kconsumerd_fd, unsigned long len)
261 {
262 unsigned long mmap_len, mmap_offset, padded_len, padding_len;
263 char *mmap_base;
264 char *padding = NULL;
265 long ret = 0;
266 off_t orig_offset = kconsumerd_fd->out_fd_offset;
267 int fd = kconsumerd_fd->consumerd_fd;
268 int outfd = kconsumerd_fd->out_fd;
269
270 /* get the padded subbuffer size to know the padding required */
271 ret = kernctl_get_padded_subbuf_size(fd, &padded_len);
272 if (ret != 0) {
273 ret = errno;
274 perror("kernctl_get_padded_subbuf_size");
275 goto end;
276 }
277 padding_len = padded_len - len;
278 padding = malloc(padding_len * sizeof(char));
279 memset(padding, '\0', padding_len);
280
281 /* get the len of the mmap region */
282 ret = kernctl_get_mmap_len(fd, &mmap_len);
283 if (ret != 0) {
284 ret = errno;
285 perror("kernctl_get_mmap_len");
286 goto end;
287 }
288
289 /* get the offset inside the fd to mmap */
290 ret = kernctl_get_mmap_read_offset(fd, &mmap_offset);
291 if (ret != 0) {
292 ret = errno;
293 perror("kernctl_get_mmap_read_offset");
294 goto end;
295 }
296
297 mmap_base = mmap(NULL, mmap_len, PROT_READ, MAP_PRIVATE, fd, mmap_offset);
298 if (mmap_base == MAP_FAILED) {
299 perror("Error mmaping");
300 ret = -1;
301 goto end;
302 }
303
304 while (len > 0) {
305 ret = write(outfd, mmap_base, len);
306 if (ret >= len) {
307 len = 0;
308 } else if (ret < 0) {
309 ret = errno;
310 perror("Error in file write");
311 goto end;
312 }
313 /* This won't block, but will start writeout asynchronously */
314 sync_file_range(outfd, kconsumerd_fd->out_fd_offset, ret,
315 SYNC_FILE_RANGE_WRITE);
316 kconsumerd_fd->out_fd_offset += ret;
317 }
318
319 /* once all the data is written, write the padding to disk */
320 ret = write(outfd, padding, padding_len);
321 if (ret < 0) {
322 ret = errno;
323 perror("Error writing padding to file");
324 goto end;
325 }
326
327 /*
328 * This does a blocking write-and-wait on any page that belongs to the
329 * subbuffer prior to the one we just wrote.
330 * Don't care about error values, as these are just hints and ways to
331 * limit the amount of page cache used.
332 */
333 if (orig_offset >= kconsumerd_fd->max_sb_size) {
334 sync_file_range(outfd, orig_offset - kconsumerd_fd->max_sb_size,
335 kconsumerd_fd->max_sb_size,
336 SYNC_FILE_RANGE_WAIT_BEFORE
337 | SYNC_FILE_RANGE_WRITE
338 | SYNC_FILE_RANGE_WAIT_AFTER);
339
340 /*
341 * Give hints to the kernel about how we access the file:
342 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
343 * we write it.
344 *
345 * We need to call fadvise again after the file grows because the
346 * kernel does not seem to apply fadvise to non-existing parts of the
347 * file.
348 *
349 * Call fadvise _after_ having waited for the page writeback to
350 * complete because the dirty page writeback semantic is not well
351 * defined. So it can be expected to lead to lower throughput in
352 * streaming.
353 */
354 posix_fadvise(outfd, orig_offset - kconsumerd_fd->max_sb_size,
355 kconsumerd_fd->max_sb_size, POSIX_FADV_DONTNEED);
356 }
357 goto end;
358
359 end:
360 if (padding != NULL) {
361 free(padding);
362 }
363 return ret;
364 }
365
366 /*
367 * kconsumerd_on_read_subbuffer
368 *
369 * Splice the data from the ring buffer to the tracefile.
370 * Returns the number of bytes spliced
371 */
372 int kconsumerd_on_read_subbuffer_splice(struct kconsumerd_local_data *ctx,
373 struct kconsumerd_fd *kconsumerd_fd, unsigned long len)
374 {
375 long ret = 0;
376 loff_t offset = 0;
377 off_t orig_offset = kconsumerd_fd->out_fd_offset;
378 int fd = kconsumerd_fd->consumerd_fd;
379 int outfd = kconsumerd_fd->out_fd;
380
381 while (len > 0) {
382 DBG("splice chan to pipe offset %lu (fd : %d)",
383 (unsigned long)offset, fd);
384 ret = splice(fd, &offset, ctx->kconsumerd_thread_pipe[1], NULL, len,
385 SPLICE_F_MOVE | SPLICE_F_MORE);
386 DBG("splice chan to pipe ret %ld", ret);
387 if (ret < 0) {
388 ret = errno;
389 perror("Error in relay splice");
390 goto splice_error;
391 }
392
393 ret = splice(ctx->kconsumerd_thread_pipe[0], NULL, outfd, NULL, ret,
394 SPLICE_F_MOVE | SPLICE_F_MORE);
395 DBG("splice pipe to file %ld", ret);
396 if (ret < 0) {
397 ret = errno;
398 perror("Error in file splice");
399 goto splice_error;
400 }
401 if (ret >= len) {
402 len = 0;
403 }
404 /* This won't block, but will start writeout asynchronously */
405 sync_file_range(outfd, kconsumerd_fd->out_fd_offset, ret,
406 SYNC_FILE_RANGE_WRITE);
407 kconsumerd_fd->out_fd_offset += ret;
408 }
409
410 /*
411 * This does a blocking write-and-wait on any page that belongs to the
412 * subbuffer prior to the one we just wrote.
413 * Don't care about error values, as these are just hints and ways to
414 * limit the amount of page cache used.
415 */
416 if (orig_offset >= kconsumerd_fd->max_sb_size) {
417 sync_file_range(outfd, orig_offset - kconsumerd_fd->max_sb_size,
418 kconsumerd_fd->max_sb_size,
419 SYNC_FILE_RANGE_WAIT_BEFORE
420 | SYNC_FILE_RANGE_WRITE
421 | SYNC_FILE_RANGE_WAIT_AFTER);
422 /*
423 * Give hints to the kernel about how we access the file:
424 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
425 * we write it.
426 *
427 * We need to call fadvise again after the file grows because the
428 * kernel does not seem to apply fadvise to non-existing parts of the
429 * file.
430 *
431 * Call fadvise _after_ having waited for the page writeback to
432 * complete because the dirty page writeback semantic is not well
433 * defined. So it can be expected to lead to lower throughput in
434 * streaming.
435 */
436 posix_fadvise(outfd, orig_offset - kconsumerd_fd->max_sb_size,
437 kconsumerd_fd->max_sb_size, POSIX_FADV_DONTNEED);
438 }
439 goto end;
440
441 splice_error:
442 /* send the appropriate error description to sessiond */
443 switch(ret) {
444 case EBADF:
445 kconsumerd_send_error(ctx, KCONSUMERD_SPLICE_EBADF);
446 break;
447 case EINVAL:
448 kconsumerd_send_error(ctx, KCONSUMERD_SPLICE_EINVAL);
449 break;
450 case ENOMEM:
451 kconsumerd_send_error(ctx, KCONSUMERD_SPLICE_ENOMEM);
452 break;
453 case ESPIPE:
454 kconsumerd_send_error(ctx, KCONSUMERD_SPLICE_ESPIPE);
455 break;
456 }
457
458 end:
459 return ret;
460 }
461
462 /*
463 * kconsumerd_poll_socket
464 *
465 * Poll on the should_quit pipe and the command socket
466 * return -1 on error and should exit, 0 if data is
467 * available on the command socket
468 */
469 int kconsumerd_poll_socket(struct pollfd *kconsumerd_sockpoll)
470 {
471 int num_rdy;
472
473 num_rdy = poll(kconsumerd_sockpoll, 2, -1);
474 if (num_rdy == -1) {
475 perror("Poll error");
476 goto exit;
477 }
478 if (kconsumerd_sockpoll[0].revents == POLLIN) {
479 DBG("kconsumerd_should_quit wake up");
480 goto exit;
481 }
482 return 0;
483
484 exit:
485 return -1;
486 }
487
488 /*
489 * kconsumerd_consumerd_recv_fd
490 *
491 * Receives an array of file descriptors and the associated
492 * structures describing each fd (path name).
493 * Returns the size of received data
494 */
495 static int kconsumerd_consumerd_recv_fd(struct kconsumerd_local_data *ctx,
496 int sfd, struct pollfd *kconsumerd_sockpoll, int size,
497 enum kconsumerd_command cmd_type)
498 {
499 struct iovec iov[1];
500 int ret = 0, i, tmp2;
501 struct cmsghdr *cmsg;
502 int nb_fd;
503 char recv_fd[CMSG_SPACE(sizeof(int))];
504 struct lttcomm_kconsumerd_msg lkm;
505
506 /* the number of fds we are about to receive */
507 nb_fd = size / sizeof(struct lttcomm_kconsumerd_msg);
508
509 /*
510 * nb_fd is the number of fds we receive. One fd per recvmsg.
511 */
512 for (i = 0; i < nb_fd; i++) {
513 struct msghdr msg = { 0 };
514
515 /* Prepare to receive the structures */
516 iov[0].iov_base = &lkm;
517 iov[0].iov_len = sizeof(lkm);
518 msg.msg_iov = iov;
519 msg.msg_iovlen = 1;
520
521 msg.msg_control = recv_fd;
522 msg.msg_controllen = sizeof(recv_fd);
523
524 DBG("Waiting to receive fd");
525 if (kconsumerd_poll_socket(kconsumerd_sockpoll) < 0) {
526 goto end;
527 }
528
529 if ((ret = recvmsg(sfd, &msg, 0)) < 0) {
530 perror("recvmsg");
531 continue;
532 }
533
534 if (ret != (size / nb_fd)) {
535 ERR("Received only %d, expected %d", ret, size);
536 kconsumerd_send_error(ctx, KCONSUMERD_ERROR_RECV_FD);
537 goto end;
538 }
539
540 cmsg = CMSG_FIRSTHDR(&msg);
541 if (!cmsg) {
542 ERR("Invalid control message header");
543 ret = -1;
544 kconsumerd_send_error(ctx, KCONSUMERD_ERROR_RECV_FD);
545 goto end;
546 }
547
548 /* if we received fds */
549 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
550 switch (cmd_type) {
551 case ADD_STREAM:
552 DBG("kconsumerd_add_fd %s (%d)", lkm.path_name, ((int *) CMSG_DATA(cmsg))[0]);
553 ret = kconsumerd_add_fd(&lkm, ((int *) CMSG_DATA(cmsg))[0]);
554 if (ret < 0) {
555 kconsumerd_send_error(ctx, KCONSUMERD_OUTFD_ERROR);
556 goto end;
557 }
558 break;
559 case UPDATE_STREAM:
560 kconsumerd_change_fd_state(lkm.fd, lkm.state);
561 break;
562 default:
563 break;
564 }
565 /* signal the poll thread */
566 tmp2 = write(ctx->kconsumerd_poll_pipe[1], "4", 1);
567 if (tmp2 < 0) {
568 perror("write kconsumerd poll");
569 }
570 } else {
571 ERR("Didn't received any fd");
572 kconsumerd_send_error(ctx, KCONSUMERD_ERROR_RECV_FD);
573 ret = -1;
574 goto end;
575 }
576 }
577
578 end:
579 return ret;
580 }
581
582 /*
583 * kconsumerd_thread_poll_fds
584 *
585 * This thread polls the fds in the ltt_fd_list to consume the data
586 * and write it to tracefile if necessary.
587 */
588 void *kconsumerd_thread_poll_fds(void *data)
589 {
590 int num_rdy, num_hup, high_prio, ret, i;
591 struct pollfd *pollfd = NULL;
592 /* local view of the fds */
593 struct kconsumerd_fd **local_kconsumerd_fd = NULL;
594 /* local view of kconsumerd_data.fds_count */
595 int nb_fd = 0;
596 char tmp;
597 int tmp2;
598 struct kconsumerd_local_data *ctx = data;
599
600
601 local_kconsumerd_fd = malloc(sizeof(struct kconsumerd_fd));
602
603 while (1) {
604 high_prio = 0;
605 num_hup = 0;
606
607 /*
608 * the ltt_fd_list has been updated, we need to update our
609 * local array as well
610 */
611 pthread_mutex_lock(&kconsumerd_data.lock);
612 if (kconsumerd_data.need_update) {
613 if (pollfd != NULL) {
614 free(pollfd);
615 pollfd = NULL;
616 }
617 if (local_kconsumerd_fd != NULL) {
618 free(local_kconsumerd_fd);
619 local_kconsumerd_fd = NULL;
620 }
621
622 /* allocate for all fds + 1 for the kconsumerd_poll_pipe */
623 pollfd = malloc((kconsumerd_data.fds_count + 1) * sizeof(struct pollfd));
624 if (pollfd == NULL) {
625 perror("pollfd malloc");
626 pthread_mutex_unlock(&kconsumerd_data.lock);
627 goto end;
628 }
629
630 /* allocate for all fds + 1 for the kconsumerd_poll_pipe */
631 local_kconsumerd_fd = malloc((kconsumerd_data.fds_count + 1) *
632 sizeof(struct kconsumerd_fd));
633 if (local_kconsumerd_fd == NULL) {
634 perror("local_kconsumerd_fd malloc");
635 pthread_mutex_unlock(&kconsumerd_data.lock);
636 goto end;
637 }
638 ret = kconsumerd_update_poll_array(ctx, &pollfd, local_kconsumerd_fd);
639 if (ret < 0) {
640 ERR("Error in allocating pollfd or local_outfds");
641 kconsumerd_send_error(ctx, KCONSUMERD_POLL_ERROR);
642 pthread_mutex_unlock(&kconsumerd_data.lock);
643 goto end;
644 }
645 nb_fd = ret;
646 kconsumerd_data.need_update = 0;
647 }
648 pthread_mutex_unlock(&kconsumerd_data.lock);
649
650 /* poll on the array of fds */
651 DBG("polling on %d fd", nb_fd + 1);
652 num_rdy = poll(pollfd, nb_fd + 1, kconsumerd_poll_timeout);
653 DBG("poll num_rdy : %d", num_rdy);
654 if (num_rdy == -1) {
655 perror("Poll error");
656 kconsumerd_send_error(ctx, KCONSUMERD_POLL_ERROR);
657 goto end;
658 } else if (num_rdy == 0) {
659 DBG("Polling thread timed out");
660 goto end;
661 }
662
663 /* No FDs and kconsumerd_quit, kconsumerd_cleanup the thread */
664 if (nb_fd == 0 && kconsumerd_quit == 1) {
665 goto end;
666 }
667
668 /*
669 * If the kconsumerd_poll_pipe triggered poll go
670 * directly to the beginning of the loop to update the
671 * array. We want to prioritize array update over
672 * low-priority reads.
673 */
674 if (pollfd[nb_fd].revents == POLLIN) {
675 DBG("kconsumerd_poll_pipe wake up");
676 tmp2 = read(ctx->kconsumerd_poll_pipe[0], &tmp, 1);
677 if (tmp2 < 0) {
678 perror("read kconsumerd poll");
679 }
680 continue;
681 }
682
683 /* Take care of high priority channels first. */
684 for (i = 0; i < nb_fd; i++) {
685 switch(pollfd[i].revents) {
686 case POLLERR:
687 ERR("Error returned in polling fd %d.", pollfd[i].fd);
688 kconsumerd_del_fd(local_kconsumerd_fd[i]);
689 num_hup++;
690 break;
691 case POLLHUP:
692 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
693 kconsumerd_del_fd(local_kconsumerd_fd[i]);
694 num_hup++;
695 break;
696 case POLLNVAL:
697 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
698 kconsumerd_del_fd(local_kconsumerd_fd[i]);
699 num_hup++;
700 break;
701 case POLLPRI:
702 DBG("Urgent read on fd %d", pollfd[i].fd);
703 high_prio = 1;
704 ret = ctx->on_buffer_ready(local_kconsumerd_fd[i]);
705 /* it's ok to have an unavailable sub-buffer */
706 if (ret == EAGAIN) {
707 ret = 0;
708 }
709 break;
710 }
711 }
712
713 /* If every buffer FD has hung up, we end the read loop here */
714 if (nb_fd > 0 && num_hup == nb_fd) {
715 DBG("every buffer FD has hung up\n");
716 if (kconsumerd_quit == 1) {
717 goto end;
718 }
719 continue;
720 }
721
722 /* Take care of low priority channels. */
723 if (high_prio == 0) {
724 for (i = 0; i < nb_fd; i++) {
725 if (pollfd[i].revents == POLLIN) {
726 DBG("Normal read on fd %d", pollfd[i].fd);
727 ret = ctx->on_buffer_ready(local_kconsumerd_fd[i]);
728 /* it's ok to have an unavailable subbuffer */
729 if (ret == EAGAIN) {
730 ret = 0;
731 }
732 }
733 }
734 }
735 }
736 end:
737 DBG("polling thread exiting");
738 if (pollfd != NULL) {
739 free(pollfd);
740 pollfd = NULL;
741 }
742 if (local_kconsumerd_fd != NULL) {
743 free(local_kconsumerd_fd);
744 local_kconsumerd_fd = NULL;
745 }
746 return NULL;
747 }
748
749 /*
750 * kconsumerd_create
751 *
752 * initialise the necessary environnement :
753 * - create a new context
754 * - create the poll_pipe
755 * - create the should_quit pipe (for signal handler)
756 * - create the thread pipe (for splice)
757 * Takes a function pointer as argument, this function is called when data is
758 * available on a buffer. This function is responsible to do the
759 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
760 * buffer configuration and then kernctl_put_next_subbuf at the end.
761 * Returns a pointer to the new context or NULL on error.
762 */
763 struct kconsumerd_local_data *kconsumerd_create(
764 int (*buffer_ready)(struct kconsumerd_fd *kconsumerd_fd))
765 {
766 int ret;
767 struct kconsumerd_local_data *ctx;
768
769 ctx = malloc(sizeof(struct kconsumerd_local_data));
770 if (ctx == NULL) {
771 perror("allocating context");
772 goto end;
773 }
774
775 ctx->on_buffer_ready = buffer_ready;
776
777 ret = pipe(ctx->kconsumerd_poll_pipe);
778 if (ret < 0) {
779 perror("Error creating poll pipe");
780 ctx = NULL;
781 goto end;
782 }
783
784 ret = pipe(ctx->kconsumerd_should_quit);
785 if (ret < 0) {
786 perror("Error creating recv pipe");
787 ctx = NULL;
788 goto end;
789 }
790
791 ret = pipe(ctx->kconsumerd_thread_pipe);
792 if (ret < 0) {
793 perror("Error creating thread pipe");
794 ctx = NULL;
795 goto end;
796 }
797
798 end:
799 return ctx;
800 }
801
802 /*
803 * kconsumerd_destroy
804 *
805 * Close all fds associated with the instance and free the context
806 */
807 void kconsumerd_destroy(struct kconsumerd_local_data *ctx)
808 {
809 close(ctx->kconsumerd_error_socket);
810 close(ctx->kconsumerd_thread_pipe[0]);
811 close(ctx->kconsumerd_thread_pipe[1]);
812 close(ctx->kconsumerd_poll_pipe[0]);
813 close(ctx->kconsumerd_poll_pipe[1]);
814 close(ctx->kconsumerd_should_quit[0]);
815 close(ctx->kconsumerd_should_quit[1]);
816 unlink(ctx->kconsumerd_command_sock_path);
817 free(ctx);
818 ctx = NULL;
819 }
820
821 /*
822 * kconsumerd_thread_receive_fds
823 *
824 * This thread listens on the consumerd socket and
825 * receives the file descriptors from ltt-sessiond
826 */
827 void *kconsumerd_thread_receive_fds(void *data)
828 {
829 int sock, client_socket, ret;
830 struct lttcomm_kconsumerd_header tmp;
831 /*
832 * structure to poll for incoming data on communication socket
833 * avoids making blocking sockets
834 */
835 struct pollfd kconsumerd_sockpoll[2];
836 struct kconsumerd_local_data *ctx = data;
837
838
839 DBG("Creating command socket %s", ctx->kconsumerd_command_sock_path);
840 unlink(ctx->kconsumerd_command_sock_path);
841 client_socket = lttcomm_create_unix_sock(ctx->kconsumerd_command_sock_path);
842 if (client_socket < 0) {
843 ERR("Cannot create command socket");
844 goto end;
845 }
846
847 ret = lttcomm_listen_unix_sock(client_socket);
848 if (ret < 0) {
849 goto end;
850 }
851
852 DBG("Sending ready command to ltt-sessiond");
853 ret = kconsumerd_send_error(ctx, KCONSUMERD_COMMAND_SOCK_READY);
854 if (ret < 0) {
855 ERR("Error sending ready command to ltt-sessiond");
856 goto end;
857 }
858
859 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
860 if (ret < 0) {
861 perror("fcntl O_NONBLOCK");
862 goto end;
863 }
864
865 /* prepare the FDs to poll : to client socket and the should_quit pipe */
866 kconsumerd_sockpoll[0].fd = ctx->kconsumerd_should_quit[0];
867 kconsumerd_sockpoll[0].events = POLLIN | POLLPRI;
868 kconsumerd_sockpoll[1].fd = client_socket;
869 kconsumerd_sockpoll[1].events = POLLIN | POLLPRI;
870
871 if (kconsumerd_poll_socket(kconsumerd_sockpoll) < 0) {
872 goto end;
873 }
874 DBG("Connection on client_socket");
875
876 /* Blocking call, waiting for transmission */
877 sock = lttcomm_accept_unix_sock(client_socket);
878 if (sock <= 0) {
879 WARN("On accept");
880 goto end;
881 }
882 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
883 if (ret < 0) {
884 perror("fcntl O_NONBLOCK");
885 goto end;
886 }
887
888 /* update the polling structure to poll on the established socket */
889 kconsumerd_sockpoll[1].fd = sock;
890 kconsumerd_sockpoll[1].events = POLLIN | POLLPRI;
891
892 while (1) {
893 if (kconsumerd_poll_socket(kconsumerd_sockpoll) < 0) {
894 goto end;
895 }
896 DBG("Incoming fds on sock");
897
898 /* We first get the number of fd we are about to receive */
899 ret = lttcomm_recv_unix_sock(sock, &tmp,
900 sizeof(struct lttcomm_kconsumerd_header));
901 if (ret <= 0) {
902 ERR("Communication interrupted on command socket");
903 goto end;
904 }
905 if (tmp.cmd_type == STOP) {
906 DBG("Received STOP command");
907 goto end;
908 }
909 if (kconsumerd_quit) {
910 DBG("kconsumerd_thread_receive_fds received quit from signal");
911 goto end;
912 }
913
914 /* we received a command to add or update fds */
915 ret = kconsumerd_consumerd_recv_fd(ctx, sock, kconsumerd_sockpoll,
916 tmp.payload_size, tmp.cmd_type);
917 if (ret <= 0) {
918 ERR("Receiving the FD, exiting");
919 goto end;
920 }
921 DBG("received fds on sock");
922 }
923
924 end:
925 DBG("kconsumerd_thread_receive_fds exiting");
926
927 /*
928 * when all fds have hung up, the polling thread
929 * can exit cleanly
930 */
931 kconsumerd_quit = 1;
932
933 /*
934 * 2s of grace period, if no polling events occur during
935 * this period, the polling thread will exit even if there
936 * are still open FDs (should not happen, but safety mechanism).
937 */
938 kconsumerd_poll_timeout = KCONSUMERD_POLL_GRACE_PERIOD;
939
940 /* wake up the polling thread */
941 ret = write(ctx->kconsumerd_poll_pipe[1], "4", 1);
942 if (ret < 0) {
943 perror("poll pipe write");
944 }
945 return NULL;
946 }
947
948 /*
949 * kconsumerd_cleanup
950 *
951 * Close all the tracefiles and stream fds, should be called when all
952 * instances are destroyed.
953 */
954 void kconsumerd_cleanup(void)
955 {
956 struct kconsumerd_fd *iter, *tmp;
957
958 /*
959 * close all outfd. Called when there are no more threads
960 * running (after joining on the threads), no need to protect
961 * list iteration with mutex.
962 */
963 cds_list_for_each_entry_safe(iter, tmp, &kconsumerd_data.fd_list.head, list) {
964 kconsumerd_del_fd(iter);
965 }
966 }
967
968 /*
969 * kconsumerd_should_exit
970 *
971 * Called from signal handler.
972 */
973 void kconsumerd_should_exit(struct kconsumerd_local_data *ctx)
974 {
975 int ret;
976 kconsumerd_quit = 1;
977 ret = write(ctx->kconsumerd_should_quit[1], "4", 1);
978 if (ret < 0) {
979 perror("write kconsumerd quit");
980 }
981 }
982
983 /*
984 * kconsumerd_send_error
985 *
986 * send return code to ltt-sessiond
987 */
988 int kconsumerd_send_error(struct kconsumerd_local_data *ctx, enum lttcomm_return_code cmd)
989 {
990 if (ctx->kconsumerd_error_socket > 0) {
991 return lttcomm_send_unix_sock(ctx->kconsumerd_error_socket, &cmd,
992 sizeof(enum lttcomm_sessiond_command));
993 }
994
995 return 0;
996 }
This page took 0.048353 seconds and 3 git commands to generate.