Fix: Handle the unary bitwise negation operator (~) in the XML printer
[lttng-tools.git] / src / common / consumer.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20#define _GNU_SOURCE
21#include <assert.h>
22#include <poll.h>
23#include <pthread.h>
24#include <stdlib.h>
25#include <string.h>
26#include <sys/mman.h>
27#include <sys/socket.h>
28#include <sys/types.h>
29#include <unistd.h>
30#include <inttypes.h>
31
32#include <common/common.h>
33#include <common/utils.h>
34#include <common/compat/poll.h>
35#include <common/kernel-ctl/kernel-ctl.h>
36#include <common/sessiond-comm/relayd.h>
37#include <common/sessiond-comm/sessiond-comm.h>
38#include <common/kernel-consumer/kernel-consumer.h>
39#include <common/relayd/relayd.h>
40#include <common/ust-consumer/ust-consumer.h>
41
42#include "consumer.h"
43
44struct lttng_consumer_global_data consumer_data = {
45 .stream_count = 0,
46 .need_update = 1,
47 .type = LTTNG_CONSUMER_UNKNOWN,
48};
49
50/* timeout parameter, to control the polling thread grace period. */
51int consumer_poll_timeout = -1;
52
53/*
54 * Flag to inform the polling thread to quit when all fd hung up. Updated by
55 * the consumer_thread_receive_fds when it notices that all fds has hung up.
56 * Also updated by the signal handler (consumer_should_exit()). Read by the
57 * polling threads.
58 */
59volatile int consumer_quit;
60
61/*
62 * The following two hash tables are visible by all threads which are separated
63 * in different source files.
64 *
65 * Global hash table containing respectively metadata and data streams. The
66 * stream element in this ht should only be updated by the metadata poll thread
67 * for the metadata and the data poll thread for the data.
68 */
69struct lttng_ht *metadata_ht;
70struct lttng_ht *data_ht;
71
72/*
73 * Find a stream. The consumer_data.lock must be locked during this
74 * call.
75 */
76static struct lttng_consumer_stream *consumer_find_stream(int key,
77 struct lttng_ht *ht)
78{
79 struct lttng_ht_iter iter;
80 struct lttng_ht_node_ulong *node;
81 struct lttng_consumer_stream *stream = NULL;
82
83 assert(ht);
84
85 /* Negative keys are lookup failures */
86 if (key < 0) {
87 return NULL;
88 }
89
90 rcu_read_lock();
91
92 lttng_ht_lookup(ht, (void *)((unsigned long) key), &iter);
93 node = lttng_ht_iter_get_node_ulong(&iter);
94 if (node != NULL) {
95 stream = caa_container_of(node, struct lttng_consumer_stream, node);
96 }
97
98 rcu_read_unlock();
99
100 return stream;
101}
102
103void consumer_steal_stream_key(int key, struct lttng_ht *ht)
104{
105 struct lttng_consumer_stream *stream;
106
107 rcu_read_lock();
108 stream = consumer_find_stream(key, ht);
109 if (stream) {
110 stream->key = -1;
111 /*
112 * We don't want the lookup to match, but we still need
113 * to iterate on this stream when iterating over the hash table. Just
114 * change the node key.
115 */
116 stream->node.key = -1;
117 }
118 rcu_read_unlock();
119}
120
121static struct lttng_consumer_channel *consumer_find_channel(int key)
122{
123 struct lttng_ht_iter iter;
124 struct lttng_ht_node_ulong *node;
125 struct lttng_consumer_channel *channel = NULL;
126
127 /* Negative keys are lookup failures */
128 if (key < 0) {
129 return NULL;
130 }
131
132 rcu_read_lock();
133
134 lttng_ht_lookup(consumer_data.channel_ht, (void *)((unsigned long) key),
135 &iter);
136 node = lttng_ht_iter_get_node_ulong(&iter);
137 if (node != NULL) {
138 channel = caa_container_of(node, struct lttng_consumer_channel, node);
139 }
140
141 rcu_read_unlock();
142
143 return channel;
144}
145
146static void consumer_steal_channel_key(int key)
147{
148 struct lttng_consumer_channel *channel;
149
150 rcu_read_lock();
151 channel = consumer_find_channel(key);
152 if (channel) {
153 channel->key = -1;
154 /*
155 * We don't want the lookup to match, but we still need
156 * to iterate on this channel when iterating over the hash table. Just
157 * change the node key.
158 */
159 channel->node.key = -1;
160 }
161 rcu_read_unlock();
162}
163
164static
165void consumer_free_stream(struct rcu_head *head)
166{
167 struct lttng_ht_node_ulong *node =
168 caa_container_of(head, struct lttng_ht_node_ulong, head);
169 struct lttng_consumer_stream *stream =
170 caa_container_of(node, struct lttng_consumer_stream, node);
171
172 free(stream);
173}
174
175/*
176 * RCU protected relayd socket pair free.
177 */
178static void consumer_rcu_free_relayd(struct rcu_head *head)
179{
180 struct lttng_ht_node_ulong *node =
181 caa_container_of(head, struct lttng_ht_node_ulong, head);
182 struct consumer_relayd_sock_pair *relayd =
183 caa_container_of(node, struct consumer_relayd_sock_pair, node);
184
185 free(relayd);
186}
187
188/*
189 * Destroy and free relayd socket pair object.
190 *
191 * This function MUST be called with the consumer_data lock acquired.
192 */
193static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
194{
195 int ret;
196 struct lttng_ht_iter iter;
197
198 if (relayd == NULL) {
199 return;
200 }
201
202 DBG("Consumer destroy and close relayd socket pair");
203
204 iter.iter.node = &relayd->node.node;
205 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
206 if (ret != 0) {
207 /* We assume the relayd was already destroyed */
208 return;
209 }
210
211 /* Close all sockets */
212 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
213 (void) relayd_close(&relayd->control_sock);
214 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
215 (void) relayd_close(&relayd->data_sock);
216
217 /* RCU free() call */
218 call_rcu(&relayd->node.head, consumer_rcu_free_relayd);
219}
220
221/*
222 * Flag a relayd socket pair for destruction. Destroy it if the refcount
223 * reaches zero.
224 *
225 * RCU read side lock MUST be aquired before calling this function.
226 */
227void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
228{
229 assert(relayd);
230
231 /* Set destroy flag for this object */
232 uatomic_set(&relayd->destroy_flag, 1);
233
234 /* Destroy the relayd if refcount is 0 */
235 if (uatomic_read(&relayd->refcount) == 0) {
236 destroy_relayd(relayd);
237 }
238}
239
240/*
241 * Remove a stream from the global list protected by a mutex. This
242 * function is also responsible for freeing its data structures.
243 */
244void consumer_del_stream(struct lttng_consumer_stream *stream,
245 struct lttng_ht *ht)
246{
247 int ret;
248 struct lttng_ht_iter iter;
249 struct lttng_consumer_channel *free_chan = NULL;
250 struct consumer_relayd_sock_pair *relayd;
251
252 assert(stream);
253
254 if (ht == NULL) {
255 /* Means the stream was allocated but not successfully added */
256 goto free_stream;
257 }
258
259 pthread_mutex_lock(&consumer_data.lock);
260
261 switch (consumer_data.type) {
262 case LTTNG_CONSUMER_KERNEL:
263 if (stream->mmap_base != NULL) {
264 ret = munmap(stream->mmap_base, stream->mmap_len);
265 if (ret != 0) {
266 PERROR("munmap");
267 }
268 }
269 break;
270 case LTTNG_CONSUMER32_UST:
271 case LTTNG_CONSUMER64_UST:
272 lttng_ustconsumer_del_stream(stream);
273 break;
274 default:
275 ERR("Unknown consumer_data type");
276 assert(0);
277 goto end;
278 }
279
280 rcu_read_lock();
281 iter.iter.node = &stream->node.node;
282 ret = lttng_ht_del(ht, &iter);
283 assert(!ret);
284
285 /* Remove node session id from the consumer_data stream ht */
286 iter.iter.node = &stream->node_session_id.node;
287 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
288 assert(!ret);
289 rcu_read_unlock();
290
291 assert(consumer_data.stream_count > 0);
292 consumer_data.stream_count--;
293
294 if (stream->out_fd >= 0) {
295 ret = close(stream->out_fd);
296 if (ret) {
297 PERROR("close");
298 }
299 }
300 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
301 ret = close(stream->wait_fd);
302 if (ret) {
303 PERROR("close");
304 }
305 }
306 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
307 ret = close(stream->shm_fd);
308 if (ret) {
309 PERROR("close");
310 }
311 }
312
313 /* Check and cleanup relayd */
314 rcu_read_lock();
315 relayd = consumer_find_relayd(stream->net_seq_idx);
316 if (relayd != NULL) {
317 uatomic_dec(&relayd->refcount);
318 assert(uatomic_read(&relayd->refcount) >= 0);
319
320 /* Closing streams requires to lock the control socket. */
321 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
322 ret = relayd_send_close_stream(&relayd->control_sock,
323 stream->relayd_stream_id,
324 stream->next_net_seq_num - 1);
325 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
326 if (ret < 0) {
327 DBG("Unable to close stream on the relayd. Continuing");
328 /*
329 * Continue here. There is nothing we can do for the relayd.
330 * Chances are that the relayd has closed the socket so we just
331 * continue cleaning up.
332 */
333 }
334
335 /* Both conditions are met, we destroy the relayd. */
336 if (uatomic_read(&relayd->refcount) == 0 &&
337 uatomic_read(&relayd->destroy_flag)) {
338 destroy_relayd(relayd);
339 }
340 }
341 rcu_read_unlock();
342
343 uatomic_dec(&stream->chan->refcount);
344 if (!uatomic_read(&stream->chan->refcount)
345 && !uatomic_read(&stream->chan->nb_init_streams)) {
346 free_chan = stream->chan;
347 }
348
349end:
350 consumer_data.need_update = 1;
351 pthread_mutex_unlock(&consumer_data.lock);
352
353 if (free_chan) {
354 consumer_del_channel(free_chan);
355 }
356
357free_stream:
358 call_rcu(&stream->node.head, consumer_free_stream);
359}
360
361struct lttng_consumer_stream *consumer_allocate_stream(
362 int channel_key, int stream_key,
363 int shm_fd, int wait_fd,
364 enum lttng_consumer_stream_state state,
365 uint64_t mmap_len,
366 enum lttng_event_output output,
367 const char *path_name,
368 uid_t uid,
369 gid_t gid,
370 int net_index,
371 int metadata_flag,
372 uint64_t session_id,
373 int *alloc_ret)
374{
375 struct lttng_consumer_stream *stream;
376
377 stream = zmalloc(sizeof(*stream));
378 if (stream == NULL) {
379 PERROR("malloc struct lttng_consumer_stream");
380 *alloc_ret = -ENOMEM;
381 goto end;
382 }
383
384 /*
385 * Get stream's channel reference. Needed when adding the stream to the
386 * global hash table.
387 */
388 stream->chan = consumer_find_channel(channel_key);
389 if (!stream->chan) {
390 *alloc_ret = -ENOENT;
391 ERR("Unable to find channel for stream %d", stream_key);
392 goto error;
393 }
394
395 stream->key = stream_key;
396 stream->shm_fd = shm_fd;
397 stream->wait_fd = wait_fd;
398 stream->out_fd = -1;
399 stream->out_fd_offset = 0;
400 stream->state = state;
401 stream->mmap_len = mmap_len;
402 stream->mmap_base = NULL;
403 stream->output = output;
404 stream->uid = uid;
405 stream->gid = gid;
406 stream->net_seq_idx = net_index;
407 stream->metadata_flag = metadata_flag;
408 stream->session_id = session_id;
409 strncpy(stream->path_name, path_name, sizeof(stream->path_name));
410 stream->path_name[sizeof(stream->path_name) - 1] = '\0';
411 pthread_mutex_init(&stream->lock, NULL);
412
413 /*
414 * Index differently the metadata node because the thread is using an
415 * internal hash table to match streams in the metadata_ht to the epoll set
416 * file descriptor.
417 */
418 if (metadata_flag) {
419 lttng_ht_node_init_ulong(&stream->node, stream->wait_fd);
420 } else {
421 lttng_ht_node_init_ulong(&stream->node, stream->key);
422 }
423
424 /* Init session id node with the stream session id */
425 lttng_ht_node_init_ulong(&stream->node_session_id, stream->session_id);
426
427 /*
428 * The cpu number is needed before using any ustctl_* actions. Ignored for
429 * the kernel so the value does not matter.
430 */
431 pthread_mutex_lock(&consumer_data.lock);
432 stream->cpu = stream->chan->cpucount++;
433 pthread_mutex_unlock(&consumer_data.lock);
434
435 DBG3("Allocated stream %s (key %d, shm_fd %d, wait_fd %d, mmap_len %llu,"
436 " out_fd %d, net_seq_idx %d, session_id %" PRIu64,
437 stream->path_name, stream->key, stream->shm_fd, stream->wait_fd,
438 (unsigned long long) stream->mmap_len, stream->out_fd,
439 stream->net_seq_idx, stream->session_id);
440 return stream;
441
442error:
443 free(stream);
444end:
445 return NULL;
446}
447
448/*
449 * Add a stream to the global list protected by a mutex.
450 */
451static int consumer_add_stream(struct lttng_consumer_stream *stream,
452 struct lttng_ht *ht)
453{
454 int ret = 0;
455 struct consumer_relayd_sock_pair *relayd;
456
457 assert(stream);
458 assert(ht);
459
460 DBG3("Adding consumer stream %d", stream->key);
461
462 pthread_mutex_lock(&consumer_data.lock);
463 rcu_read_lock();
464
465 /* Steal stream identifier to avoid having streams with the same key */
466 consumer_steal_stream_key(stream->key, ht);
467
468 lttng_ht_add_unique_ulong(ht, &stream->node);
469
470 /*
471 * Add stream to the stream_list_ht of the consumer data. No need to steal
472 * the key since the HT does not use it and we allow to add redundant keys
473 * into this table.
474 */
475 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
476
477 /* Check and cleanup relayd */
478 relayd = consumer_find_relayd(stream->net_seq_idx);
479 if (relayd != NULL) {
480 uatomic_inc(&relayd->refcount);
481 }
482
483 /* Update channel refcount once added without error(s). */
484 uatomic_inc(&stream->chan->refcount);
485
486 /*
487 * When nb_init_streams reaches 0, we don't need to trigger any action in
488 * terms of destroying the associated channel, because the action that
489 * causes the count to become 0 also causes a stream to be added. The
490 * channel deletion will thus be triggered by the following removal of this
491 * stream.
492 */
493 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
494 uatomic_dec(&stream->chan->nb_init_streams);
495 }
496
497 /* Update consumer data once the node is inserted. */
498 consumer_data.stream_count++;
499 consumer_data.need_update = 1;
500
501 rcu_read_unlock();
502 pthread_mutex_unlock(&consumer_data.lock);
503
504 return ret;
505}
506
507/*
508 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
509 * be acquired before calling this.
510 */
511static int add_relayd(struct consumer_relayd_sock_pair *relayd)
512{
513 int ret = 0;
514 struct lttng_ht_node_ulong *node;
515 struct lttng_ht_iter iter;
516
517 if (relayd == NULL) {
518 ret = -1;
519 goto end;
520 }
521
522 lttng_ht_lookup(consumer_data.relayd_ht,
523 (void *)((unsigned long) relayd->net_seq_idx), &iter);
524 node = lttng_ht_iter_get_node_ulong(&iter);
525 if (node != NULL) {
526 /* Relayd already exist. Ignore the insertion */
527 goto end;
528 }
529 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
530
531end:
532 return ret;
533}
534
535/*
536 * Allocate and return a consumer relayd socket.
537 */
538struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
539 int net_seq_idx)
540{
541 struct consumer_relayd_sock_pair *obj = NULL;
542
543 /* Negative net sequence index is a failure */
544 if (net_seq_idx < 0) {
545 goto error;
546 }
547
548 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
549 if (obj == NULL) {
550 PERROR("zmalloc relayd sock");
551 goto error;
552 }
553
554 obj->net_seq_idx = net_seq_idx;
555 obj->refcount = 0;
556 obj->destroy_flag = 0;
557 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
558 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
559
560error:
561 return obj;
562}
563
564/*
565 * Find a relayd socket pair in the global consumer data.
566 *
567 * Return the object if found else NULL.
568 * RCU read-side lock must be held across this call and while using the
569 * returned object.
570 */
571struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
572{
573 struct lttng_ht_iter iter;
574 struct lttng_ht_node_ulong *node;
575 struct consumer_relayd_sock_pair *relayd = NULL;
576
577 /* Negative keys are lookup failures */
578 if (key < 0) {
579 goto error;
580 }
581
582 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
583 &iter);
584 node = lttng_ht_iter_get_node_ulong(&iter);
585 if (node != NULL) {
586 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
587 }
588
589error:
590 return relayd;
591}
592
593/*
594 * Handle stream for relayd transmission if the stream applies for network
595 * streaming where the net sequence index is set.
596 *
597 * Return destination file descriptor or negative value on error.
598 */
599static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
600 size_t data_size, unsigned long padding,
601 struct consumer_relayd_sock_pair *relayd)
602{
603 int outfd = -1, ret;
604 struct lttcomm_relayd_data_hdr data_hdr;
605
606 /* Safety net */
607 assert(stream);
608 assert(relayd);
609
610 /* Reset data header */
611 memset(&data_hdr, 0, sizeof(data_hdr));
612
613 if (stream->metadata_flag) {
614 /* Caller MUST acquire the relayd control socket lock */
615 ret = relayd_send_metadata(&relayd->control_sock, data_size);
616 if (ret < 0) {
617 goto error;
618 }
619
620 /* Metadata are always sent on the control socket. */
621 outfd = relayd->control_sock.fd;
622 } else {
623 /* Set header with stream information */
624 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
625 data_hdr.data_size = htobe32(data_size);
626 data_hdr.padding_size = htobe32(padding);
627 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num++);
628 /* Other fields are zeroed previously */
629
630 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
631 sizeof(data_hdr));
632 if (ret < 0) {
633 goto error;
634 }
635
636 /* Set to go on data socket */
637 outfd = relayd->data_sock.fd;
638 }
639
640error:
641 return outfd;
642}
643
644static
645void consumer_free_channel(struct rcu_head *head)
646{
647 struct lttng_ht_node_ulong *node =
648 caa_container_of(head, struct lttng_ht_node_ulong, head);
649 struct lttng_consumer_channel *channel =
650 caa_container_of(node, struct lttng_consumer_channel, node);
651
652 free(channel);
653}
654
655/*
656 * Remove a channel from the global list protected by a mutex. This
657 * function is also responsible for freeing its data structures.
658 */
659void consumer_del_channel(struct lttng_consumer_channel *channel)
660{
661 int ret;
662 struct lttng_ht_iter iter;
663
664 pthread_mutex_lock(&consumer_data.lock);
665
666 switch (consumer_data.type) {
667 case LTTNG_CONSUMER_KERNEL:
668 break;
669 case LTTNG_CONSUMER32_UST:
670 case LTTNG_CONSUMER64_UST:
671 lttng_ustconsumer_del_channel(channel);
672 break;
673 default:
674 ERR("Unknown consumer_data type");
675 assert(0);
676 goto end;
677 }
678
679 rcu_read_lock();
680 iter.iter.node = &channel->node.node;
681 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
682 assert(!ret);
683 rcu_read_unlock();
684
685 if (channel->mmap_base != NULL) {
686 ret = munmap(channel->mmap_base, channel->mmap_len);
687 if (ret != 0) {
688 PERROR("munmap");
689 }
690 }
691 if (channel->wait_fd >= 0 && !channel->wait_fd_is_copy) {
692 ret = close(channel->wait_fd);
693 if (ret) {
694 PERROR("close");
695 }
696 }
697 if (channel->shm_fd >= 0 && channel->wait_fd != channel->shm_fd) {
698 ret = close(channel->shm_fd);
699 if (ret) {
700 PERROR("close");
701 }
702 }
703
704 call_rcu(&channel->node.head, consumer_free_channel);
705end:
706 pthread_mutex_unlock(&consumer_data.lock);
707}
708
709struct lttng_consumer_channel *consumer_allocate_channel(
710 int channel_key,
711 int shm_fd, int wait_fd,
712 uint64_t mmap_len,
713 uint64_t max_sb_size,
714 unsigned int nb_init_streams)
715{
716 struct lttng_consumer_channel *channel;
717 int ret;
718
719 channel = zmalloc(sizeof(*channel));
720 if (channel == NULL) {
721 PERROR("malloc struct lttng_consumer_channel");
722 goto end;
723 }
724 channel->key = channel_key;
725 channel->shm_fd = shm_fd;
726 channel->wait_fd = wait_fd;
727 channel->mmap_len = mmap_len;
728 channel->max_sb_size = max_sb_size;
729 channel->refcount = 0;
730 channel->nb_init_streams = nb_init_streams;
731 lttng_ht_node_init_ulong(&channel->node, channel->key);
732
733 switch (consumer_data.type) {
734 case LTTNG_CONSUMER_KERNEL:
735 channel->mmap_base = NULL;
736 channel->mmap_len = 0;
737 break;
738 case LTTNG_CONSUMER32_UST:
739 case LTTNG_CONSUMER64_UST:
740 ret = lttng_ustconsumer_allocate_channel(channel);
741 if (ret) {
742 free(channel);
743 return NULL;
744 }
745 break;
746 default:
747 ERR("Unknown consumer_data type");
748 assert(0);
749 goto end;
750 }
751 DBG("Allocated channel (key %d, shm_fd %d, wait_fd %d, mmap_len %llu, max_sb_size %llu)",
752 channel->key, channel->shm_fd, channel->wait_fd,
753 (unsigned long long) channel->mmap_len,
754 (unsigned long long) channel->max_sb_size);
755end:
756 return channel;
757}
758
759/*
760 * Add a channel to the global list protected by a mutex.
761 */
762int consumer_add_channel(struct lttng_consumer_channel *channel)
763{
764 struct lttng_ht_node_ulong *node;
765 struct lttng_ht_iter iter;
766
767 pthread_mutex_lock(&consumer_data.lock);
768 /* Steal channel identifier, for UST */
769 consumer_steal_channel_key(channel->key);
770 rcu_read_lock();
771
772 lttng_ht_lookup(consumer_data.channel_ht,
773 (void *)((unsigned long) channel->key), &iter);
774 node = lttng_ht_iter_get_node_ulong(&iter);
775 if (node != NULL) {
776 /* Channel already exist. Ignore the insertion */
777 goto end;
778 }
779
780 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
781
782end:
783 rcu_read_unlock();
784 pthread_mutex_unlock(&consumer_data.lock);
785
786 return 0;
787}
788
789/*
790 * Allocate the pollfd structure and the local view of the out fds to avoid
791 * doing a lookup in the linked list and concurrency issues when writing is
792 * needed. Called with consumer_data.lock held.
793 *
794 * Returns the number of fds in the structures.
795 */
796static int consumer_update_poll_array(
797 struct lttng_consumer_local_data *ctx, struct pollfd **pollfd,
798 struct lttng_consumer_stream **local_stream, struct lttng_ht *ht)
799{
800 int i = 0;
801 struct lttng_ht_iter iter;
802 struct lttng_consumer_stream *stream;
803
804 DBG("Updating poll fd array");
805 rcu_read_lock();
806 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
807 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM) {
808 continue;
809 }
810 DBG("Active FD %d", stream->wait_fd);
811 (*pollfd)[i].fd = stream->wait_fd;
812 (*pollfd)[i].events = POLLIN | POLLPRI;
813 local_stream[i] = stream;
814 i++;
815 }
816 rcu_read_unlock();
817
818 /*
819 * Insert the consumer_data_pipe at the end of the array and don't
820 * increment i so nb_fd is the number of real FD.
821 */
822 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
823 (*pollfd)[i].events = POLLIN | POLLPRI;
824 return i;
825}
826
827/*
828 * Poll on the should_quit pipe and the command socket return -1 on error and
829 * should exit, 0 if data is available on the command socket
830 */
831int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
832{
833 int num_rdy;
834
835restart:
836 num_rdy = poll(consumer_sockpoll, 2, -1);
837 if (num_rdy == -1) {
838 /*
839 * Restart interrupted system call.
840 */
841 if (errno == EINTR) {
842 goto restart;
843 }
844 PERROR("Poll error");
845 goto exit;
846 }
847 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
848 DBG("consumer_should_quit wake up");
849 goto exit;
850 }
851 return 0;
852
853exit:
854 return -1;
855}
856
857/*
858 * Set the error socket.
859 */
860void lttng_consumer_set_error_sock(
861 struct lttng_consumer_local_data *ctx, int sock)
862{
863 ctx->consumer_error_socket = sock;
864}
865
866/*
867 * Set the command socket path.
868 */
869void lttng_consumer_set_command_sock_path(
870 struct lttng_consumer_local_data *ctx, char *sock)
871{
872 ctx->consumer_command_sock_path = sock;
873}
874
875/*
876 * Send return code to the session daemon.
877 * If the socket is not defined, we return 0, it is not a fatal error
878 */
879int lttng_consumer_send_error(
880 struct lttng_consumer_local_data *ctx, int cmd)
881{
882 if (ctx->consumer_error_socket > 0) {
883 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
884 sizeof(enum lttcomm_sessiond_command));
885 }
886
887 return 0;
888}
889
890/*
891 * Close all the tracefiles and stream fds, should be called when all instances
892 * are destroyed.
893 */
894void lttng_consumer_cleanup(void)
895{
896 struct lttng_ht_iter iter;
897 struct lttng_ht_node_ulong *node;
898
899 rcu_read_lock();
900
901 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, node,
902 node) {
903 struct lttng_consumer_channel *channel =
904 caa_container_of(node, struct lttng_consumer_channel, node);
905 consumer_del_channel(channel);
906 }
907
908 rcu_read_unlock();
909
910 lttng_ht_destroy(consumer_data.channel_ht);
911}
912
913/*
914 * Called from signal handler.
915 */
916void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
917{
918 int ret;
919 consumer_quit = 1;
920 do {
921 ret = write(ctx->consumer_should_quit[1], "4", 1);
922 } while (ret < 0 && errno == EINTR);
923 if (ret < 0) {
924 PERROR("write consumer quit");
925 }
926
927 DBG("Consumer flag that it should quit");
928}
929
930void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
931 off_t orig_offset)
932{
933 int outfd = stream->out_fd;
934
935 /*
936 * This does a blocking write-and-wait on any page that belongs to the
937 * subbuffer prior to the one we just wrote.
938 * Don't care about error values, as these are just hints and ways to
939 * limit the amount of page cache used.
940 */
941 if (orig_offset < stream->chan->max_sb_size) {
942 return;
943 }
944 lttng_sync_file_range(outfd, orig_offset - stream->chan->max_sb_size,
945 stream->chan->max_sb_size,
946 SYNC_FILE_RANGE_WAIT_BEFORE
947 | SYNC_FILE_RANGE_WRITE
948 | SYNC_FILE_RANGE_WAIT_AFTER);
949 /*
950 * Give hints to the kernel about how we access the file:
951 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
952 * we write it.
953 *
954 * We need to call fadvise again after the file grows because the
955 * kernel does not seem to apply fadvise to non-existing parts of the
956 * file.
957 *
958 * Call fadvise _after_ having waited for the page writeback to
959 * complete because the dirty page writeback semantic is not well
960 * defined. So it can be expected to lead to lower throughput in
961 * streaming.
962 */
963 posix_fadvise(outfd, orig_offset - stream->chan->max_sb_size,
964 stream->chan->max_sb_size, POSIX_FADV_DONTNEED);
965}
966
967/*
968 * Initialise the necessary environnement :
969 * - create a new context
970 * - create the poll_pipe
971 * - create the should_quit pipe (for signal handler)
972 * - create the thread pipe (for splice)
973 *
974 * Takes a function pointer as argument, this function is called when data is
975 * available on a buffer. This function is responsible to do the
976 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
977 * buffer configuration and then kernctl_put_next_subbuf at the end.
978 *
979 * Returns a pointer to the new context or NULL on error.
980 */
981struct lttng_consumer_local_data *lttng_consumer_create(
982 enum lttng_consumer_type type,
983 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
984 struct lttng_consumer_local_data *ctx),
985 int (*recv_channel)(struct lttng_consumer_channel *channel),
986 int (*recv_stream)(struct lttng_consumer_stream *stream),
987 int (*update_stream)(int stream_key, uint32_t state))
988{
989 int ret, i;
990 struct lttng_consumer_local_data *ctx;
991
992 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
993 consumer_data.type == type);
994 consumer_data.type = type;
995
996 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
997 if (ctx == NULL) {
998 PERROR("allocating context");
999 goto error;
1000 }
1001
1002 ctx->consumer_error_socket = -1;
1003 /* assign the callbacks */
1004 ctx->on_buffer_ready = buffer_ready;
1005 ctx->on_recv_channel = recv_channel;
1006 ctx->on_recv_stream = recv_stream;
1007 ctx->on_update_stream = update_stream;
1008
1009 ret = pipe(ctx->consumer_data_pipe);
1010 if (ret < 0) {
1011 PERROR("Error creating poll pipe");
1012 goto error_poll_pipe;
1013 }
1014
1015 /* set read end of the pipe to non-blocking */
1016 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1017 if (ret < 0) {
1018 PERROR("fcntl O_NONBLOCK");
1019 goto error_poll_fcntl;
1020 }
1021
1022 /* set write end of the pipe to non-blocking */
1023 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1024 if (ret < 0) {
1025 PERROR("fcntl O_NONBLOCK");
1026 goto error_poll_fcntl;
1027 }
1028
1029 ret = pipe(ctx->consumer_should_quit);
1030 if (ret < 0) {
1031 PERROR("Error creating recv pipe");
1032 goto error_quit_pipe;
1033 }
1034
1035 ret = pipe(ctx->consumer_thread_pipe);
1036 if (ret < 0) {
1037 PERROR("Error creating thread pipe");
1038 goto error_thread_pipe;
1039 }
1040
1041 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1042 if (ret < 0) {
1043 goto error_metadata_pipe;
1044 }
1045
1046 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1047 if (ret < 0) {
1048 goto error_splice_pipe;
1049 }
1050
1051 return ctx;
1052
1053error_splice_pipe:
1054 utils_close_pipe(ctx->consumer_metadata_pipe);
1055error_metadata_pipe:
1056 utils_close_pipe(ctx->consumer_thread_pipe);
1057error_thread_pipe:
1058 for (i = 0; i < 2; i++) {
1059 int err;
1060
1061 err = close(ctx->consumer_should_quit[i]);
1062 if (err) {
1063 PERROR("close");
1064 }
1065 }
1066error_poll_fcntl:
1067error_quit_pipe:
1068 for (i = 0; i < 2; i++) {
1069 int err;
1070
1071 err = close(ctx->consumer_data_pipe[i]);
1072 if (err) {
1073 PERROR("close");
1074 }
1075 }
1076error_poll_pipe:
1077 free(ctx);
1078error:
1079 return NULL;
1080}
1081
1082/*
1083 * Close all fds associated with the instance and free the context.
1084 */
1085void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1086{
1087 int ret;
1088
1089 DBG("Consumer destroying it. Closing everything.");
1090
1091 ret = close(ctx->consumer_error_socket);
1092 if (ret) {
1093 PERROR("close");
1094 }
1095 ret = close(ctx->consumer_thread_pipe[0]);
1096 if (ret) {
1097 PERROR("close");
1098 }
1099 ret = close(ctx->consumer_thread_pipe[1]);
1100 if (ret) {
1101 PERROR("close");
1102 }
1103 ret = close(ctx->consumer_data_pipe[0]);
1104 if (ret) {
1105 PERROR("close");
1106 }
1107 ret = close(ctx->consumer_data_pipe[1]);
1108 if (ret) {
1109 PERROR("close");
1110 }
1111 ret = close(ctx->consumer_should_quit[0]);
1112 if (ret) {
1113 PERROR("close");
1114 }
1115 ret = close(ctx->consumer_should_quit[1]);
1116 if (ret) {
1117 PERROR("close");
1118 }
1119 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1120
1121 unlink(ctx->consumer_command_sock_path);
1122 free(ctx);
1123}
1124
1125/*
1126 * Write the metadata stream id on the specified file descriptor.
1127 */
1128static int write_relayd_metadata_id(int fd,
1129 struct lttng_consumer_stream *stream,
1130 struct consumer_relayd_sock_pair *relayd,
1131 unsigned long padding)
1132{
1133 int ret;
1134 struct lttcomm_relayd_metadata_payload hdr;
1135
1136 hdr.stream_id = htobe64(stream->relayd_stream_id);
1137 hdr.padding_size = htobe32(padding);
1138 do {
1139 ret = write(fd, (void *) &hdr, sizeof(hdr));
1140 } while (ret < 0 && errno == EINTR);
1141 if (ret < 0) {
1142 PERROR("write metadata stream id");
1143 goto end;
1144 }
1145 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1146 stream->relayd_stream_id, padding);
1147
1148end:
1149 return ret;
1150}
1151
1152/*
1153 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1154 * core function for writing trace buffers to either the local filesystem or
1155 * the network.
1156 *
1157 * Careful review MUST be put if any changes occur!
1158 *
1159 * Returns the number of bytes written
1160 */
1161ssize_t lttng_consumer_on_read_subbuffer_mmap(
1162 struct lttng_consumer_local_data *ctx,
1163 struct lttng_consumer_stream *stream, unsigned long len,
1164 unsigned long padding)
1165{
1166 unsigned long mmap_offset;
1167 ssize_t ret = 0, written = 0;
1168 off_t orig_offset = stream->out_fd_offset;
1169 /* Default is on the disk */
1170 int outfd = stream->out_fd;
1171 struct consumer_relayd_sock_pair *relayd = NULL;
1172
1173 /* RCU lock for the relayd pointer */
1174 rcu_read_lock();
1175
1176 pthread_mutex_lock(&stream->lock);
1177
1178 /* Flag that the current stream if set for network streaming. */
1179 if (stream->net_seq_idx != -1) {
1180 relayd = consumer_find_relayd(stream->net_seq_idx);
1181 if (relayd == NULL) {
1182 goto end;
1183 }
1184 }
1185
1186 /* get the offset inside the fd to mmap */
1187 switch (consumer_data.type) {
1188 case LTTNG_CONSUMER_KERNEL:
1189 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1190 break;
1191 case LTTNG_CONSUMER32_UST:
1192 case LTTNG_CONSUMER64_UST:
1193 ret = lttng_ustctl_get_mmap_read_offset(stream->chan->handle,
1194 stream->buf, &mmap_offset);
1195 break;
1196 default:
1197 ERR("Unknown consumer_data type");
1198 assert(0);
1199 }
1200 if (ret != 0) {
1201 errno = -ret;
1202 PERROR("tracer ctl get_mmap_read_offset");
1203 written = ret;
1204 goto end;
1205 }
1206
1207 /* Handle stream on the relayd if the output is on the network */
1208 if (relayd) {
1209 unsigned long netlen = len;
1210
1211 /*
1212 * Lock the control socket for the complete duration of the function
1213 * since from this point on we will use the socket.
1214 */
1215 if (stream->metadata_flag) {
1216 /* Metadata requires the control socket. */
1217 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1218 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1219 }
1220
1221 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1222 if (ret >= 0) {
1223 /* Use the returned socket. */
1224 outfd = ret;
1225
1226 /* Write metadata stream id before payload */
1227 if (stream->metadata_flag) {
1228 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1229 if (ret < 0) {
1230 written = ret;
1231 goto end;
1232 }
1233 }
1234 }
1235 /* Else, use the default set before which is the filesystem. */
1236 } else {
1237 /* No streaming, we have to set the len with the full padding */
1238 len += padding;
1239 }
1240
1241 while (len > 0) {
1242 do {
1243 ret = write(outfd, stream->mmap_base + mmap_offset, len);
1244 } while (ret < 0 && errno == EINTR);
1245 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1246 if (ret < 0) {
1247 PERROR("Error in file write");
1248 if (written == 0) {
1249 written = ret;
1250 }
1251 goto end;
1252 } else if (ret > len) {
1253 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1254 written += ret;
1255 goto end;
1256 } else {
1257 len -= ret;
1258 mmap_offset += ret;
1259 }
1260
1261 /* This call is useless on a socket so better save a syscall. */
1262 if (!relayd) {
1263 /* This won't block, but will start writeout asynchronously */
1264 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1265 SYNC_FILE_RANGE_WRITE);
1266 stream->out_fd_offset += ret;
1267 }
1268 written += ret;
1269 }
1270 lttng_consumer_sync_trace_file(stream, orig_offset);
1271
1272end:
1273 /* Unlock only if ctrl socket used */
1274 if (relayd && stream->metadata_flag) {
1275 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1276 }
1277 pthread_mutex_unlock(&stream->lock);
1278
1279 rcu_read_unlock();
1280 return written;
1281}
1282
1283/*
1284 * Splice the data from the ring buffer to the tracefile.
1285 *
1286 * Returns the number of bytes spliced.
1287 */
1288ssize_t lttng_consumer_on_read_subbuffer_splice(
1289 struct lttng_consumer_local_data *ctx,
1290 struct lttng_consumer_stream *stream, unsigned long len,
1291 unsigned long padding)
1292{
1293 ssize_t ret = 0, written = 0, ret_splice = 0;
1294 loff_t offset = 0;
1295 off_t orig_offset = stream->out_fd_offset;
1296 int fd = stream->wait_fd;
1297 /* Default is on the disk */
1298 int outfd = stream->out_fd;
1299 struct consumer_relayd_sock_pair *relayd = NULL;
1300 int *splice_pipe;
1301
1302 switch (consumer_data.type) {
1303 case LTTNG_CONSUMER_KERNEL:
1304 break;
1305 case LTTNG_CONSUMER32_UST:
1306 case LTTNG_CONSUMER64_UST:
1307 /* Not supported for user space tracing */
1308 return -ENOSYS;
1309 default:
1310 ERR("Unknown consumer_data type");
1311 assert(0);
1312 }
1313
1314 /* RCU lock for the relayd pointer */
1315 rcu_read_lock();
1316
1317 pthread_mutex_lock(&stream->lock);
1318
1319 /* Flag that the current stream if set for network streaming. */
1320 if (stream->net_seq_idx != -1) {
1321 relayd = consumer_find_relayd(stream->net_seq_idx);
1322 if (relayd == NULL) {
1323 goto end;
1324 }
1325 }
1326
1327 /*
1328 * Choose right pipe for splice. Metadata and trace data are handled by
1329 * different threads hence the use of two pipes in order not to race or
1330 * corrupt the written data.
1331 */
1332 if (stream->metadata_flag) {
1333 splice_pipe = ctx->consumer_splice_metadata_pipe;
1334 } else {
1335 splice_pipe = ctx->consumer_thread_pipe;
1336 }
1337
1338 /* Write metadata stream id before payload */
1339 if (relayd) {
1340 int total_len = len;
1341
1342 if (stream->metadata_flag) {
1343 /*
1344 * Lock the control socket for the complete duration of the function
1345 * since from this point on we will use the socket.
1346 */
1347 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1348
1349 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1350 padding);
1351 if (ret < 0) {
1352 written = ret;
1353 goto end;
1354 }
1355
1356 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1357 }
1358
1359 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1360 if (ret >= 0) {
1361 /* Use the returned socket. */
1362 outfd = ret;
1363 } else {
1364 ERR("Remote relayd disconnected. Stopping");
1365 goto end;
1366 }
1367 } else {
1368 /* No streaming, we have to set the len with the full padding */
1369 len += padding;
1370 }
1371
1372 while (len > 0) {
1373 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1374 (unsigned long)offset, len, fd, splice_pipe[1]);
1375 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1376 SPLICE_F_MOVE | SPLICE_F_MORE);
1377 DBG("splice chan to pipe, ret %zd", ret_splice);
1378 if (ret_splice < 0) {
1379 PERROR("Error in relay splice");
1380 if (written == 0) {
1381 written = ret_splice;
1382 }
1383 ret = errno;
1384 goto splice_error;
1385 }
1386
1387 /* Handle stream on the relayd if the output is on the network */
1388 if (relayd) {
1389 if (stream->metadata_flag) {
1390 size_t metadata_payload_size =
1391 sizeof(struct lttcomm_relayd_metadata_payload);
1392
1393 /* Update counter to fit the spliced data */
1394 ret_splice += metadata_payload_size;
1395 len += metadata_payload_size;
1396 /*
1397 * We do this so the return value can match the len passed as
1398 * argument to this function.
1399 */
1400 written -= metadata_payload_size;
1401 }
1402 }
1403
1404 /* Splice data out */
1405 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1406 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1407 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1408 if (ret_splice < 0) {
1409 PERROR("Error in file splice");
1410 if (written == 0) {
1411 written = ret_splice;
1412 }
1413 ret = errno;
1414 goto splice_error;
1415 } else if (ret_splice > len) {
1416 errno = EINVAL;
1417 PERROR("Wrote more data than requested %zd (len: %lu)",
1418 ret_splice, len);
1419 written += ret_splice;
1420 ret = errno;
1421 goto splice_error;
1422 }
1423 len -= ret_splice;
1424
1425 /* This call is useless on a socket so better save a syscall. */
1426 if (!relayd) {
1427 /* This won't block, but will start writeout asynchronously */
1428 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1429 SYNC_FILE_RANGE_WRITE);
1430 stream->out_fd_offset += ret_splice;
1431 }
1432 written += ret_splice;
1433 }
1434 lttng_consumer_sync_trace_file(stream, orig_offset);
1435
1436 ret = ret_splice;
1437
1438 goto end;
1439
1440splice_error:
1441 /* send the appropriate error description to sessiond */
1442 switch (ret) {
1443 case EBADF:
1444 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EBADF);
1445 break;
1446 case EINVAL:
1447 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1448 break;
1449 case ENOMEM:
1450 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1451 break;
1452 case ESPIPE:
1453 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1454 break;
1455 }
1456
1457end:
1458 if (relayd && stream->metadata_flag) {
1459 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1460 }
1461 pthread_mutex_unlock(&stream->lock);
1462
1463 rcu_read_unlock();
1464 return written;
1465}
1466
1467/*
1468 * Take a snapshot for a specific fd
1469 *
1470 * Returns 0 on success, < 0 on error
1471 */
1472int lttng_consumer_take_snapshot(struct lttng_consumer_local_data *ctx,
1473 struct lttng_consumer_stream *stream)
1474{
1475 switch (consumer_data.type) {
1476 case LTTNG_CONSUMER_KERNEL:
1477 return lttng_kconsumer_take_snapshot(ctx, stream);
1478 case LTTNG_CONSUMER32_UST:
1479 case LTTNG_CONSUMER64_UST:
1480 return lttng_ustconsumer_take_snapshot(ctx, stream);
1481 default:
1482 ERR("Unknown consumer_data type");
1483 assert(0);
1484 return -ENOSYS;
1485 }
1486
1487}
1488
1489/*
1490 * Get the produced position
1491 *
1492 * Returns 0 on success, < 0 on error
1493 */
1494int lttng_consumer_get_produced_snapshot(
1495 struct lttng_consumer_local_data *ctx,
1496 struct lttng_consumer_stream *stream,
1497 unsigned long *pos)
1498{
1499 switch (consumer_data.type) {
1500 case LTTNG_CONSUMER_KERNEL:
1501 return lttng_kconsumer_get_produced_snapshot(ctx, stream, pos);
1502 case LTTNG_CONSUMER32_UST:
1503 case LTTNG_CONSUMER64_UST:
1504 return lttng_ustconsumer_get_produced_snapshot(ctx, stream, pos);
1505 default:
1506 ERR("Unknown consumer_data type");
1507 assert(0);
1508 return -ENOSYS;
1509 }
1510}
1511
1512int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1513 int sock, struct pollfd *consumer_sockpoll)
1514{
1515 switch (consumer_data.type) {
1516 case LTTNG_CONSUMER_KERNEL:
1517 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1518 case LTTNG_CONSUMER32_UST:
1519 case LTTNG_CONSUMER64_UST:
1520 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1521 default:
1522 ERR("Unknown consumer_data type");
1523 assert(0);
1524 return -ENOSYS;
1525 }
1526}
1527
1528/*
1529 * Iterate over all streams of the hashtable and free them properly.
1530 *
1531 * WARNING: *MUST* be used with data stream only.
1532 */
1533static void destroy_data_stream_ht(struct lttng_ht *ht)
1534{
1535 int ret;
1536 struct lttng_ht_iter iter;
1537 struct lttng_consumer_stream *stream;
1538
1539 if (ht == NULL) {
1540 return;
1541 }
1542
1543 rcu_read_lock();
1544 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1545 ret = lttng_ht_del(ht, &iter);
1546 assert(!ret);
1547
1548 call_rcu(&stream->node.head, consumer_free_stream);
1549 }
1550 rcu_read_unlock();
1551
1552 lttng_ht_destroy(ht);
1553}
1554
1555/*
1556 * Iterate over all streams of the hashtable and free them properly.
1557 *
1558 * XXX: Should not be only for metadata stream or else use an other name.
1559 */
1560static void destroy_stream_ht(struct lttng_ht *ht)
1561{
1562 int ret;
1563 struct lttng_ht_iter iter;
1564 struct lttng_consumer_stream *stream;
1565
1566 if (ht == NULL) {
1567 return;
1568 }
1569
1570 rcu_read_lock();
1571 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1572 ret = lttng_ht_del(ht, &iter);
1573 assert(!ret);
1574
1575 call_rcu(&stream->node.head, consumer_free_stream);
1576 }
1577 rcu_read_unlock();
1578
1579 lttng_ht_destroy(ht);
1580}
1581
1582/*
1583 * Clean up a metadata stream and free its memory.
1584 */
1585void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1586 struct lttng_ht *ht)
1587{
1588 int ret;
1589 struct lttng_ht_iter iter;
1590 struct lttng_consumer_channel *free_chan = NULL;
1591 struct consumer_relayd_sock_pair *relayd;
1592
1593 assert(stream);
1594 /*
1595 * This call should NEVER receive regular stream. It must always be
1596 * metadata stream and this is crucial for data structure synchronization.
1597 */
1598 assert(stream->metadata_flag);
1599
1600 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1601
1602 if (ht == NULL) {
1603 /* Means the stream was allocated but not successfully added */
1604 goto free_stream;
1605 }
1606
1607 pthread_mutex_lock(&consumer_data.lock);
1608 switch (consumer_data.type) {
1609 case LTTNG_CONSUMER_KERNEL:
1610 if (stream->mmap_base != NULL) {
1611 ret = munmap(stream->mmap_base, stream->mmap_len);
1612 if (ret != 0) {
1613 PERROR("munmap metadata stream");
1614 }
1615 }
1616 break;
1617 case LTTNG_CONSUMER32_UST:
1618 case LTTNG_CONSUMER64_UST:
1619 lttng_ustconsumer_del_stream(stream);
1620 break;
1621 default:
1622 ERR("Unknown consumer_data type");
1623 assert(0);
1624 goto end;
1625 }
1626
1627 rcu_read_lock();
1628 iter.iter.node = &stream->node.node;
1629 ret = lttng_ht_del(ht, &iter);
1630 assert(!ret);
1631
1632 /* Remove node session id from the consumer_data stream ht */
1633 iter.iter.node = &stream->node_session_id.node;
1634 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1635 assert(!ret);
1636 rcu_read_unlock();
1637
1638 if (stream->out_fd >= 0) {
1639 ret = close(stream->out_fd);
1640 if (ret) {
1641 PERROR("close");
1642 }
1643 }
1644
1645 if (stream->wait_fd >= 0 && !stream->wait_fd_is_copy) {
1646 ret = close(stream->wait_fd);
1647 if (ret) {
1648 PERROR("close");
1649 }
1650 }
1651
1652 if (stream->shm_fd >= 0 && stream->wait_fd != stream->shm_fd) {
1653 ret = close(stream->shm_fd);
1654 if (ret) {
1655 PERROR("close");
1656 }
1657 }
1658
1659 /* Check and cleanup relayd */
1660 rcu_read_lock();
1661 relayd = consumer_find_relayd(stream->net_seq_idx);
1662 if (relayd != NULL) {
1663 uatomic_dec(&relayd->refcount);
1664 assert(uatomic_read(&relayd->refcount) >= 0);
1665
1666 /* Closing streams requires to lock the control socket. */
1667 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1668 ret = relayd_send_close_stream(&relayd->control_sock,
1669 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1670 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1671 if (ret < 0) {
1672 DBG("Unable to close stream on the relayd. Continuing");
1673 /*
1674 * Continue here. There is nothing we can do for the relayd.
1675 * Chances are that the relayd has closed the socket so we just
1676 * continue cleaning up.
1677 */
1678 }
1679
1680 /* Both conditions are met, we destroy the relayd. */
1681 if (uatomic_read(&relayd->refcount) == 0 &&
1682 uatomic_read(&relayd->destroy_flag)) {
1683 destroy_relayd(relayd);
1684 }
1685 }
1686 rcu_read_unlock();
1687
1688 /* Atomically decrement channel refcount since other threads can use it. */
1689 uatomic_dec(&stream->chan->refcount);
1690 if (!uatomic_read(&stream->chan->refcount)
1691 && !uatomic_read(&stream->chan->nb_init_streams)) {
1692 /* Go for channel deletion! */
1693 free_chan = stream->chan;
1694 }
1695
1696end:
1697 pthread_mutex_unlock(&consumer_data.lock);
1698
1699 if (free_chan) {
1700 consumer_del_channel(free_chan);
1701 }
1702
1703free_stream:
1704 call_rcu(&stream->node.head, consumer_free_stream);
1705}
1706
1707/*
1708 * Action done with the metadata stream when adding it to the consumer internal
1709 * data structures to handle it.
1710 */
1711static int consumer_add_metadata_stream(struct lttng_consumer_stream *stream,
1712 struct lttng_ht *ht)
1713{
1714 int ret = 0;
1715 struct consumer_relayd_sock_pair *relayd;
1716
1717 assert(stream);
1718 assert(ht);
1719
1720 DBG3("Adding metadata stream %d to hash table", stream->wait_fd);
1721
1722 pthread_mutex_lock(&consumer_data.lock);
1723
1724 /*
1725 * From here, refcounts are updated so be _careful_ when returning an error
1726 * after this point.
1727 */
1728
1729 rcu_read_lock();
1730 /* Find relayd and, if one is found, increment refcount. */
1731 relayd = consumer_find_relayd(stream->net_seq_idx);
1732 if (relayd != NULL) {
1733 uatomic_inc(&relayd->refcount);
1734 }
1735
1736 /* Update channel refcount once added without error(s). */
1737 uatomic_inc(&stream->chan->refcount);
1738
1739 /*
1740 * When nb_init_streams reaches 0, we don't need to trigger any action in
1741 * terms of destroying the associated channel, because the action that
1742 * causes the count to become 0 also causes a stream to be added. The
1743 * channel deletion will thus be triggered by the following removal of this
1744 * stream.
1745 */
1746 if (uatomic_read(&stream->chan->nb_init_streams) > 0) {
1747 uatomic_dec(&stream->chan->nb_init_streams);
1748 }
1749
1750 /* Steal stream identifier to avoid having streams with the same key */
1751 consumer_steal_stream_key(stream->key, ht);
1752
1753 lttng_ht_add_unique_ulong(ht, &stream->node);
1754
1755 /*
1756 * Add stream to the stream_list_ht of the consumer data. No need to steal
1757 * the key since the HT does not use it and we allow to add redundant keys
1758 * into this table.
1759 */
1760 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
1761
1762 rcu_read_unlock();
1763
1764 pthread_mutex_unlock(&consumer_data.lock);
1765 return ret;
1766}
1767
1768/*
1769 * Thread polls on metadata file descriptor and write them on disk or on the
1770 * network.
1771 */
1772void *consumer_thread_metadata_poll(void *data)
1773{
1774 int ret, i, pollfd;
1775 uint32_t revents, nb_fd;
1776 struct lttng_consumer_stream *stream = NULL;
1777 struct lttng_ht_iter iter;
1778 struct lttng_ht_node_ulong *node;
1779 struct lttng_poll_event events;
1780 struct lttng_consumer_local_data *ctx = data;
1781 ssize_t len;
1782
1783 rcu_register_thread();
1784
1785 DBG("Thread metadata poll started");
1786
1787 /* Size is set to 1 for the consumer_metadata pipe */
1788 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
1789 if (ret < 0) {
1790 ERR("Poll set creation failed");
1791 goto end;
1792 }
1793
1794 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
1795 if (ret < 0) {
1796 goto end;
1797 }
1798
1799 /* Main loop */
1800 DBG("Metadata main loop started");
1801
1802 while (1) {
1803 lttng_poll_reset(&events);
1804
1805 nb_fd = LTTNG_POLL_GETNB(&events);
1806
1807 /* Only the metadata pipe is set */
1808 if (nb_fd == 0 && consumer_quit == 1) {
1809 goto end;
1810 }
1811
1812restart:
1813 DBG("Metadata poll wait with %d fd(s)", nb_fd);
1814 ret = lttng_poll_wait(&events, -1);
1815 DBG("Metadata event catched in thread");
1816 if (ret < 0) {
1817 if (errno == EINTR) {
1818 ERR("Poll EINTR catched");
1819 goto restart;
1820 }
1821 goto error;
1822 }
1823
1824 /* From here, the event is a metadata wait fd */
1825 for (i = 0; i < nb_fd; i++) {
1826 revents = LTTNG_POLL_GETEV(&events, i);
1827 pollfd = LTTNG_POLL_GETFD(&events, i);
1828
1829 /* Just don't waste time if no returned events for the fd */
1830 if (!revents) {
1831 continue;
1832 }
1833
1834 if (pollfd == ctx->consumer_metadata_pipe[0]) {
1835 if (revents & (LPOLLERR | LPOLLHUP )) {
1836 DBG("Metadata thread pipe hung up");
1837 /*
1838 * Remove the pipe from the poll set and continue the loop
1839 * since their might be data to consume.
1840 */
1841 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
1842 close(ctx->consumer_metadata_pipe[0]);
1843 continue;
1844 } else if (revents & LPOLLIN) {
1845 do {
1846 /* Get the stream pointer received */
1847 ret = read(pollfd, &stream, sizeof(stream));
1848 } while (ret < 0 && errno == EINTR);
1849 if (ret < 0 ||
1850 ret < sizeof(struct lttng_consumer_stream *)) {
1851 PERROR("read metadata stream");
1852 /*
1853 * Let's continue here and hope we can still work
1854 * without stopping the consumer. XXX: Should we?
1855 */
1856 continue;
1857 }
1858
1859 DBG("Adding metadata stream %d to poll set",
1860 stream->wait_fd);
1861
1862 ret = consumer_add_metadata_stream(stream, metadata_ht);
1863 if (ret) {
1864 ERR("Unable to add metadata stream");
1865 /* Stream was not setup properly. Continuing. */
1866 consumer_del_metadata_stream(stream, NULL);
1867 continue;
1868 }
1869
1870 /* Add metadata stream to the global poll events list */
1871 lttng_poll_add(&events, stream->wait_fd,
1872 LPOLLIN | LPOLLPRI);
1873 }
1874
1875 /* Handle other stream */
1876 continue;
1877 }
1878
1879 rcu_read_lock();
1880 lttng_ht_lookup(metadata_ht, (void *)((unsigned long) pollfd),
1881 &iter);
1882 node = lttng_ht_iter_get_node_ulong(&iter);
1883 assert(node);
1884
1885 stream = caa_container_of(node, struct lttng_consumer_stream,
1886 node);
1887
1888 /* Check for error event */
1889 if (revents & (LPOLLERR | LPOLLHUP)) {
1890 DBG("Metadata fd %d is hup|err.", pollfd);
1891 if (!stream->hangup_flush_done
1892 && (consumer_data.type == LTTNG_CONSUMER32_UST
1893 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
1894 DBG("Attempting to flush and consume the UST buffers");
1895 lttng_ustconsumer_on_stream_hangup(stream);
1896
1897 /* We just flushed the stream now read it. */
1898 do {
1899 len = ctx->on_buffer_ready(stream, ctx);
1900 /*
1901 * We don't check the return value here since if we get
1902 * a negative len, it means an error occured thus we
1903 * simply remove it from the poll set and free the
1904 * stream.
1905 */
1906 } while (len > 0);
1907 }
1908
1909 lttng_poll_del(&events, stream->wait_fd);
1910 /*
1911 * This call update the channel states, closes file descriptors
1912 * and securely free the stream.
1913 */
1914 consumer_del_metadata_stream(stream, metadata_ht);
1915 } else if (revents & (LPOLLIN | LPOLLPRI)) {
1916 /* Get the data out of the metadata file descriptor */
1917 DBG("Metadata available on fd %d", pollfd);
1918 assert(stream->wait_fd == pollfd);
1919
1920 len = ctx->on_buffer_ready(stream, ctx);
1921 /* It's ok to have an unavailable sub-buffer */
1922 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
1923 /* Clean up stream from consumer and free it. */
1924 lttng_poll_del(&events, stream->wait_fd);
1925 consumer_del_metadata_stream(stream, metadata_ht);
1926 } else if (len > 0) {
1927 stream->data_read = 1;
1928 }
1929 }
1930
1931 /* Release RCU lock for the stream looked up */
1932 rcu_read_unlock();
1933 }
1934 }
1935
1936error:
1937end:
1938 DBG("Metadata poll thread exiting");
1939 lttng_poll_clean(&events);
1940
1941 if (metadata_ht) {
1942 destroy_stream_ht(metadata_ht);
1943 }
1944
1945 rcu_unregister_thread();
1946 return NULL;
1947}
1948
1949/*
1950 * This thread polls the fds in the set to consume the data and write
1951 * it to tracefile if necessary.
1952 */
1953void *consumer_thread_data_poll(void *data)
1954{
1955 int num_rdy, num_hup, high_prio, ret, i;
1956 struct pollfd *pollfd = NULL;
1957 /* local view of the streams */
1958 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
1959 /* local view of consumer_data.fds_count */
1960 int nb_fd = 0;
1961 struct lttng_consumer_local_data *ctx = data;
1962 ssize_t len;
1963
1964 rcu_register_thread();
1965
1966 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
1967 if (data_ht == NULL) {
1968 goto end;
1969 }
1970
1971 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
1972
1973 while (1) {
1974 high_prio = 0;
1975 num_hup = 0;
1976
1977 /*
1978 * the fds set has been updated, we need to update our
1979 * local array as well
1980 */
1981 pthread_mutex_lock(&consumer_data.lock);
1982 if (consumer_data.need_update) {
1983 if (pollfd != NULL) {
1984 free(pollfd);
1985 pollfd = NULL;
1986 }
1987 if (local_stream != NULL) {
1988 free(local_stream);
1989 local_stream = NULL;
1990 }
1991
1992 /* allocate for all fds + 1 for the consumer_data_pipe */
1993 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
1994 if (pollfd == NULL) {
1995 PERROR("pollfd malloc");
1996 pthread_mutex_unlock(&consumer_data.lock);
1997 goto end;
1998 }
1999
2000 /* allocate for all fds + 1 for the consumer_data_pipe */
2001 local_stream = zmalloc((consumer_data.stream_count + 1) *
2002 sizeof(struct lttng_consumer_stream));
2003 if (local_stream == NULL) {
2004 PERROR("local_stream malloc");
2005 pthread_mutex_unlock(&consumer_data.lock);
2006 goto end;
2007 }
2008 ret = consumer_update_poll_array(ctx, &pollfd, local_stream,
2009 data_ht);
2010 if (ret < 0) {
2011 ERR("Error in allocating pollfd or local_outfds");
2012 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2013 pthread_mutex_unlock(&consumer_data.lock);
2014 goto end;
2015 }
2016 nb_fd = ret;
2017 consumer_data.need_update = 0;
2018 }
2019 pthread_mutex_unlock(&consumer_data.lock);
2020
2021 /* No FDs and consumer_quit, consumer_cleanup the thread */
2022 if (nb_fd == 0 && consumer_quit == 1) {
2023 goto end;
2024 }
2025 /* poll on the array of fds */
2026 restart:
2027 DBG("polling on %d fd", nb_fd + 1);
2028 num_rdy = poll(pollfd, nb_fd + 1, consumer_poll_timeout);
2029 DBG("poll num_rdy : %d", num_rdy);
2030 if (num_rdy == -1) {
2031 /*
2032 * Restart interrupted system call.
2033 */
2034 if (errno == EINTR) {
2035 goto restart;
2036 }
2037 PERROR("Poll error");
2038 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2039 goto end;
2040 } else if (num_rdy == 0) {
2041 DBG("Polling thread timed out");
2042 goto end;
2043 }
2044
2045 /*
2046 * If the consumer_data_pipe triggered poll go directly to the
2047 * beginning of the loop to update the array. We want to prioritize
2048 * array update over low-priority reads.
2049 */
2050 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2051 size_t pipe_readlen;
2052
2053 DBG("consumer_data_pipe wake up");
2054 /* Consume 1 byte of pipe data */
2055 do {
2056 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2057 sizeof(new_stream));
2058 } while (pipe_readlen == -1 && errno == EINTR);
2059
2060 /*
2061 * If the stream is NULL, just ignore it. It's also possible that
2062 * the sessiond poll thread changed the consumer_quit state and is
2063 * waking us up to test it.
2064 */
2065 if (new_stream == NULL) {
2066 continue;
2067 }
2068
2069 ret = consumer_add_stream(new_stream, data_ht);
2070 if (ret) {
2071 ERR("Consumer add stream %d failed. Continuing",
2072 new_stream->key);
2073 /*
2074 * At this point, if the add_stream fails, it is not in the
2075 * hash table thus passing the NULL value here.
2076 */
2077 consumer_del_stream(new_stream, NULL);
2078 }
2079
2080 /* Continue to update the local streams and handle prio ones */
2081 continue;
2082 }
2083
2084 /* Take care of high priority channels first. */
2085 for (i = 0; i < nb_fd; i++) {
2086 if (pollfd[i].revents & POLLPRI) {
2087 DBG("Urgent read on fd %d", pollfd[i].fd);
2088 high_prio = 1;
2089 len = ctx->on_buffer_ready(local_stream[i], ctx);
2090 /* it's ok to have an unavailable sub-buffer */
2091 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2092 /* Clean the stream and free it. */
2093 consumer_del_stream(local_stream[i], data_ht);
2094 } else if (len > 0) {
2095 local_stream[i]->data_read = 1;
2096 }
2097 }
2098 }
2099
2100 /*
2101 * If we read high prio channel in this loop, try again
2102 * for more high prio data.
2103 */
2104 if (high_prio) {
2105 continue;
2106 }
2107
2108 /* Take care of low priority channels. */
2109 for (i = 0; i < nb_fd; i++) {
2110 if ((pollfd[i].revents & POLLIN) ||
2111 local_stream[i]->hangup_flush_done) {
2112 DBG("Normal read on fd %d", pollfd[i].fd);
2113 len = ctx->on_buffer_ready(local_stream[i], ctx);
2114 /* it's ok to have an unavailable sub-buffer */
2115 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2116 /* Clean the stream and free it. */
2117 consumer_del_stream(local_stream[i], data_ht);
2118 } else if (len > 0) {
2119 local_stream[i]->data_read = 1;
2120 }
2121 }
2122 }
2123
2124 /* Handle hangup and errors */
2125 for (i = 0; i < nb_fd; i++) {
2126 if (!local_stream[i]->hangup_flush_done
2127 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2128 && (consumer_data.type == LTTNG_CONSUMER32_UST
2129 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2130 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2131 pollfd[i].fd);
2132 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2133 /* Attempt read again, for the data we just flushed. */
2134 local_stream[i]->data_read = 1;
2135 }
2136 /*
2137 * If the poll flag is HUP/ERR/NVAL and we have
2138 * read no data in this pass, we can remove the
2139 * stream from its hash table.
2140 */
2141 if ((pollfd[i].revents & POLLHUP)) {
2142 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2143 if (!local_stream[i]->data_read) {
2144 consumer_del_stream(local_stream[i], data_ht);
2145 num_hup++;
2146 }
2147 } else if (pollfd[i].revents & POLLERR) {
2148 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2149 if (!local_stream[i]->data_read) {
2150 consumer_del_stream(local_stream[i], data_ht);
2151 num_hup++;
2152 }
2153 } else if (pollfd[i].revents & POLLNVAL) {
2154 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2155 if (!local_stream[i]->data_read) {
2156 consumer_del_stream(local_stream[i], data_ht);
2157 num_hup++;
2158 }
2159 }
2160 local_stream[i]->data_read = 0;
2161 }
2162 }
2163end:
2164 DBG("polling thread exiting");
2165 if (pollfd != NULL) {
2166 free(pollfd);
2167 pollfd = NULL;
2168 }
2169 if (local_stream != NULL) {
2170 free(local_stream);
2171 local_stream = NULL;
2172 }
2173
2174 /*
2175 * Close the write side of the pipe so epoll_wait() in
2176 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2177 * read side of the pipe. If we close them both, epoll_wait strangely does
2178 * not return and could create a endless wait period if the pipe is the
2179 * only tracked fd in the poll set. The thread will take care of closing
2180 * the read side.
2181 */
2182 close(ctx->consumer_metadata_pipe[1]);
2183
2184 if (data_ht) {
2185 destroy_data_stream_ht(data_ht);
2186 }
2187
2188 rcu_unregister_thread();
2189 return NULL;
2190}
2191
2192/*
2193 * This thread listens on the consumerd socket and receives the file
2194 * descriptors from the session daemon.
2195 */
2196void *consumer_thread_sessiond_poll(void *data)
2197{
2198 int sock, client_socket, ret;
2199 /*
2200 * structure to poll for incoming data on communication socket avoids
2201 * making blocking sockets.
2202 */
2203 struct pollfd consumer_sockpoll[2];
2204 struct lttng_consumer_local_data *ctx = data;
2205
2206 rcu_register_thread();
2207
2208 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2209 unlink(ctx->consumer_command_sock_path);
2210 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2211 if (client_socket < 0) {
2212 ERR("Cannot create command socket");
2213 goto end;
2214 }
2215
2216 ret = lttcomm_listen_unix_sock(client_socket);
2217 if (ret < 0) {
2218 goto end;
2219 }
2220
2221 DBG("Sending ready command to lttng-sessiond");
2222 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2223 /* return < 0 on error, but == 0 is not fatal */
2224 if (ret < 0) {
2225 ERR("Error sending ready command to lttng-sessiond");
2226 goto end;
2227 }
2228
2229 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2230 if (ret < 0) {
2231 PERROR("fcntl O_NONBLOCK");
2232 goto end;
2233 }
2234
2235 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2236 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2237 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2238 consumer_sockpoll[1].fd = client_socket;
2239 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2240
2241 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2242 goto end;
2243 }
2244 DBG("Connection on client_socket");
2245
2246 /* Blocking call, waiting for transmission */
2247 sock = lttcomm_accept_unix_sock(client_socket);
2248 if (sock <= 0) {
2249 WARN("On accept");
2250 goto end;
2251 }
2252 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2253 if (ret < 0) {
2254 PERROR("fcntl O_NONBLOCK");
2255 goto end;
2256 }
2257
2258 /* update the polling structure to poll on the established socket */
2259 consumer_sockpoll[1].fd = sock;
2260 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2261
2262 while (1) {
2263 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2264 goto end;
2265 }
2266 DBG("Incoming command on sock");
2267 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2268 if (ret == -ENOENT) {
2269 DBG("Received STOP command");
2270 goto end;
2271 }
2272 if (ret <= 0) {
2273 /*
2274 * This could simply be a session daemon quitting. Don't output
2275 * ERR() here.
2276 */
2277 DBG("Communication interrupted on command socket");
2278 goto end;
2279 }
2280 if (consumer_quit) {
2281 DBG("consumer_thread_receive_fds received quit from signal");
2282 goto end;
2283 }
2284 DBG("received fds on sock");
2285 }
2286end:
2287 DBG("consumer_thread_receive_fds exiting");
2288
2289 /*
2290 * when all fds have hung up, the polling thread
2291 * can exit cleanly
2292 */
2293 consumer_quit = 1;
2294
2295 /*
2296 * 2s of grace period, if no polling events occur during
2297 * this period, the polling thread will exit even if there
2298 * are still open FDs (should not happen, but safety mechanism).
2299 */
2300 consumer_poll_timeout = LTTNG_CONSUMER_POLL_TIMEOUT;
2301
2302 /*
2303 * Notify the data poll thread to poll back again and test the
2304 * consumer_quit state to quit gracefully.
2305 */
2306 do {
2307 struct lttng_consumer_stream *null_stream = NULL;
2308
2309 ret = write(ctx->consumer_data_pipe[1], &null_stream,
2310 sizeof(null_stream));
2311 } while (ret < 0 && errno == EINTR);
2312
2313 rcu_unregister_thread();
2314 return NULL;
2315}
2316
2317ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2318 struct lttng_consumer_local_data *ctx)
2319{
2320 switch (consumer_data.type) {
2321 case LTTNG_CONSUMER_KERNEL:
2322 return lttng_kconsumer_read_subbuffer(stream, ctx);
2323 case LTTNG_CONSUMER32_UST:
2324 case LTTNG_CONSUMER64_UST:
2325 return lttng_ustconsumer_read_subbuffer(stream, ctx);
2326 default:
2327 ERR("Unknown consumer_data type");
2328 assert(0);
2329 return -ENOSYS;
2330 }
2331}
2332
2333int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2334{
2335 switch (consumer_data.type) {
2336 case LTTNG_CONSUMER_KERNEL:
2337 return lttng_kconsumer_on_recv_stream(stream);
2338 case LTTNG_CONSUMER32_UST:
2339 case LTTNG_CONSUMER64_UST:
2340 return lttng_ustconsumer_on_recv_stream(stream);
2341 default:
2342 ERR("Unknown consumer_data type");
2343 assert(0);
2344 return -ENOSYS;
2345 }
2346}
2347
2348/*
2349 * Allocate and set consumer data hash tables.
2350 */
2351void lttng_consumer_init(void)
2352{
2353 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2354 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2355 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2356
2357 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2358 assert(metadata_ht);
2359 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2360 assert(data_ht);
2361}
2362
2363/*
2364 * Process the ADD_RELAYD command receive by a consumer.
2365 *
2366 * This will create a relayd socket pair and add it to the relayd hash table.
2367 * The caller MUST acquire a RCU read side lock before calling it.
2368 */
2369int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
2370 struct lttng_consumer_local_data *ctx, int sock,
2371 struct pollfd *consumer_sockpoll, struct lttcomm_sock *relayd_sock)
2372{
2373 int fd, ret = -1;
2374 struct consumer_relayd_sock_pair *relayd;
2375
2376 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
2377
2378 /* Get relayd reference if exists. */
2379 relayd = consumer_find_relayd(net_seq_idx);
2380 if (relayd == NULL) {
2381 /* Not found. Allocate one. */
2382 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
2383 if (relayd == NULL) {
2384 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
2385 goto error;
2386 }
2387 }
2388
2389 /* Poll on consumer socket. */
2390 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2391 ret = -EINTR;
2392 goto error;
2393 }
2394
2395 /* Get relayd socket from session daemon */
2396 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
2397 if (ret != sizeof(fd)) {
2398 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
2399 ret = -1;
2400 goto error;
2401 }
2402
2403 /* Copy socket information and received FD */
2404 switch (sock_type) {
2405 case LTTNG_STREAM_CONTROL:
2406 /* Copy received lttcomm socket */
2407 lttcomm_copy_sock(&relayd->control_sock, relayd_sock);
2408 ret = lttcomm_create_sock(&relayd->control_sock);
2409 if (ret < 0) {
2410 goto error;
2411 }
2412
2413 /* Close the created socket fd which is useless */
2414 close(relayd->control_sock.fd);
2415
2416 /* Assign new file descriptor */
2417 relayd->control_sock.fd = fd;
2418 break;
2419 case LTTNG_STREAM_DATA:
2420 /* Copy received lttcomm socket */
2421 lttcomm_copy_sock(&relayd->data_sock, relayd_sock);
2422 ret = lttcomm_create_sock(&relayd->data_sock);
2423 if (ret < 0) {
2424 goto error;
2425 }
2426
2427 /* Close the created socket fd which is useless */
2428 close(relayd->data_sock.fd);
2429
2430 /* Assign new file descriptor */
2431 relayd->data_sock.fd = fd;
2432 break;
2433 default:
2434 ERR("Unknown relayd socket type (%d)", sock_type);
2435 goto error;
2436 }
2437
2438 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2439 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
2440 relayd->net_seq_idx, fd);
2441
2442 /*
2443 * Add relayd socket pair to consumer data hashtable. If object already
2444 * exists or on error, the function gracefully returns.
2445 */
2446 add_relayd(relayd);
2447
2448 /* All good! */
2449 ret = 0;
2450
2451error:
2452 return ret;
2453}
2454
2455/*
2456 * Check if for a given session id there is still data needed to be extract
2457 * from the buffers.
2458 *
2459 * Return 1 if data is in fact available to be read or else 0.
2460 */
2461int consumer_data_available(uint64_t id)
2462{
2463 int ret;
2464 struct lttng_ht_iter iter;
2465 struct lttng_ht *ht;
2466 struct lttng_consumer_stream *stream;
2467 struct consumer_relayd_sock_pair *relayd;
2468 int (*data_available)(struct lttng_consumer_stream *);
2469
2470 DBG("Consumer data available command on session id %" PRIu64, id);
2471
2472 rcu_read_lock();
2473 pthread_mutex_lock(&consumer_data.lock);
2474
2475 switch (consumer_data.type) {
2476 case LTTNG_CONSUMER_KERNEL:
2477 data_available = lttng_kconsumer_data_available;
2478 break;
2479 case LTTNG_CONSUMER32_UST:
2480 case LTTNG_CONSUMER64_UST:
2481 data_available = lttng_ustconsumer_data_available;
2482 break;
2483 default:
2484 ERR("Unknown consumer data type");
2485 assert(0);
2486 }
2487
2488 /* Ease our life a bit */
2489 ht = consumer_data.stream_list_ht;
2490
2491 cds_lfht_for_each_entry_duplicate(ht->ht,
2492 ht->hash_fct((void *)((unsigned long) id), 0x42UL),
2493 ht->match_fct, (void *)((unsigned long) id),
2494 &iter.iter, stream, node_session_id.node) {
2495 /* Check the stream for data. */
2496 ret = data_available(stream);
2497 if (ret == 0) {
2498 goto data_not_available;
2499 }
2500
2501 if (stream->net_seq_idx != -1) {
2502 relayd = consumer_find_relayd(stream->net_seq_idx);
2503 assert(relayd);
2504
2505 pthread_mutex_lock(&stream->lock);
2506 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2507 if (stream->metadata_flag) {
2508 ret = relayd_quiescent_control(&relayd->control_sock);
2509 } else {
2510 ret = relayd_data_available(&relayd->control_sock,
2511 stream->relayd_stream_id, stream->next_net_seq_num);
2512 }
2513 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2514 pthread_mutex_unlock(&stream->lock);
2515 if (ret == 0) {
2516 goto data_not_available;
2517 }
2518 }
2519 }
2520
2521 /*
2522 * Finding _no_ node in the hash table means that the stream(s) have been
2523 * removed thus data is guaranteed to be available for analysis from the
2524 * trace files. This is *only* true for local consumer and not network
2525 * streaming.
2526 */
2527
2528 /* Data is available to be read by a viewer. */
2529 pthread_mutex_unlock(&consumer_data.lock);
2530 rcu_read_unlock();
2531 return 1;
2532
2533data_not_available:
2534 /* Data is still being extracted from buffers. */
2535 pthread_mutex_unlock(&consumer_data.lock);
2536 rcu_read_unlock();
2537 return 0;
2538}
This page took 0.050592 seconds and 4 git commands to generate.