Move UST registry into sessiond and implement notifiers
[lttng-tools.git] / src / common / consumer.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20#define _GNU_SOURCE
21#include <assert.h>
22#include <poll.h>
23#include <pthread.h>
24#include <stdlib.h>
25#include <string.h>
26#include <sys/mman.h>
27#include <sys/socket.h>
28#include <sys/types.h>
29#include <unistd.h>
30#include <inttypes.h>
31
32#include <common/common.h>
33#include <common/utils.h>
34#include <common/compat/poll.h>
35#include <common/kernel-ctl/kernel-ctl.h>
36#include <common/sessiond-comm/relayd.h>
37#include <common/sessiond-comm/sessiond-comm.h>
38#include <common/kernel-consumer/kernel-consumer.h>
39#include <common/relayd/relayd.h>
40#include <common/ust-consumer/ust-consumer.h>
41
42#include "consumer.h"
43
44struct lttng_consumer_global_data consumer_data = {
45 .stream_count = 0,
46 .need_update = 1,
47 .type = LTTNG_CONSUMER_UNKNOWN,
48};
49
50/*
51 * Flag to inform the polling thread to quit when all fd hung up. Updated by
52 * the consumer_thread_receive_fds when it notices that all fds has hung up.
53 * Also updated by the signal handler (consumer_should_exit()). Read by the
54 * polling threads.
55 */
56volatile int consumer_quit;
57
58/*
59 * Global hash table containing respectively metadata and data streams. The
60 * stream element in this ht should only be updated by the metadata poll thread
61 * for the metadata and the data poll thread for the data.
62 */
63static struct lttng_ht *metadata_ht;
64static struct lttng_ht *data_ht;
65
66/*
67 * Notify a thread pipe to poll back again. This usually means that some global
68 * state has changed so we just send back the thread in a poll wait call.
69 */
70static void notify_thread_pipe(int wpipe)
71{
72 int ret;
73
74 do {
75 struct lttng_consumer_stream *null_stream = NULL;
76
77 ret = write(wpipe, &null_stream, sizeof(null_stream));
78 } while (ret < 0 && errno == EINTR);
79}
80
81/*
82 * Find a stream. The consumer_data.lock must be locked during this
83 * call.
84 */
85static struct lttng_consumer_stream *find_stream(int key,
86 struct lttng_ht *ht)
87{
88 struct lttng_ht_iter iter;
89 struct lttng_ht_node_ulong *node;
90 struct lttng_consumer_stream *stream = NULL;
91
92 assert(ht);
93
94 /* Negative keys are lookup failures */
95 if (key < 0) {
96 return NULL;
97 }
98
99 rcu_read_lock();
100
101 lttng_ht_lookup(ht, (void *)((unsigned long) key), &iter);
102 node = lttng_ht_iter_get_node_ulong(&iter);
103 if (node != NULL) {
104 stream = caa_container_of(node, struct lttng_consumer_stream, node);
105 }
106
107 rcu_read_unlock();
108
109 return stream;
110}
111
112static void steal_stream_key(int key, struct lttng_ht *ht)
113{
114 struct lttng_consumer_stream *stream;
115
116 rcu_read_lock();
117 stream = find_stream(key, ht);
118 if (stream) {
119 stream->key = -1;
120 /*
121 * We don't want the lookup to match, but we still need
122 * to iterate on this stream when iterating over the hash table. Just
123 * change the node key.
124 */
125 stream->node.key = -1;
126 }
127 rcu_read_unlock();
128}
129
130/*
131 * Return a channel object for the given key.
132 *
133 * RCU read side lock MUST be acquired before calling this function and
134 * protects the channel ptr.
135 */
136struct lttng_consumer_channel *consumer_find_channel(unsigned long key)
137{
138 struct lttng_ht_iter iter;
139 struct lttng_ht_node_ulong *node;
140 struct lttng_consumer_channel *channel = NULL;
141
142 /* Negative keys are lookup failures */
143 if (key < 0) {
144 return NULL;
145 }
146
147 lttng_ht_lookup(consumer_data.channel_ht, (void *) key, &iter);
148 node = lttng_ht_iter_get_node_ulong(&iter);
149 if (node != NULL) {
150 channel = caa_container_of(node, struct lttng_consumer_channel, node);
151 }
152
153 return channel;
154}
155
156static void free_stream_rcu(struct rcu_head *head)
157{
158 struct lttng_ht_node_ulong *node =
159 caa_container_of(head, struct lttng_ht_node_ulong, head);
160 struct lttng_consumer_stream *stream =
161 caa_container_of(node, struct lttng_consumer_stream, node);
162
163 free(stream);
164}
165
166static void free_channel_rcu(struct rcu_head *head)
167{
168 struct lttng_ht_node_ulong *node =
169 caa_container_of(head, struct lttng_ht_node_ulong, head);
170 struct lttng_consumer_channel *channel =
171 caa_container_of(node, struct lttng_consumer_channel, node);
172
173 free(channel);
174}
175
176/*
177 * RCU protected relayd socket pair free.
178 */
179static void free_relayd_rcu(struct rcu_head *head)
180{
181 struct lttng_ht_node_ulong *node =
182 caa_container_of(head, struct lttng_ht_node_ulong, head);
183 struct consumer_relayd_sock_pair *relayd =
184 caa_container_of(node, struct consumer_relayd_sock_pair, node);
185
186 /*
187 * Close all sockets. This is done in the call RCU since we don't want the
188 * socket fds to be reassigned thus potentially creating bad state of the
189 * relayd object.
190 *
191 * We do not have to lock the control socket mutex here since at this stage
192 * there is no one referencing to this relayd object.
193 */
194 (void) relayd_close(&relayd->control_sock);
195 (void) relayd_close(&relayd->data_sock);
196
197 free(relayd);
198}
199
200/*
201 * Destroy and free relayd socket pair object.
202 *
203 * This function MUST be called with the consumer_data lock acquired.
204 */
205static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
206{
207 int ret;
208 struct lttng_ht_iter iter;
209
210 if (relayd == NULL) {
211 return;
212 }
213
214 DBG("Consumer destroy and close relayd socket pair");
215
216 iter.iter.node = &relayd->node.node;
217 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
218 if (ret != 0) {
219 /* We assume the relayd is being or is destroyed */
220 return;
221 }
222
223 /* RCU free() call */
224 call_rcu(&relayd->node.head, free_relayd_rcu);
225}
226
227/*
228 * Remove a channel from the global list protected by a mutex. This function is
229 * also responsible for freeing its data structures.
230 */
231void consumer_del_channel(struct lttng_consumer_channel *channel)
232{
233 int ret;
234 struct lttng_ht_iter iter;
235
236 DBG("Consumer delete channel key %d", channel->key);
237
238 pthread_mutex_lock(&consumer_data.lock);
239
240 switch (consumer_data.type) {
241 case LTTNG_CONSUMER_KERNEL:
242 break;
243 case LTTNG_CONSUMER32_UST:
244 case LTTNG_CONSUMER64_UST:
245 lttng_ustconsumer_del_channel(channel);
246 break;
247 default:
248 ERR("Unknown consumer_data type");
249 assert(0);
250 goto end;
251 }
252
253 rcu_read_lock();
254 iter.iter.node = &channel->node.node;
255 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
256 assert(!ret);
257 rcu_read_unlock();
258
259 call_rcu(&channel->node.head, free_channel_rcu);
260end:
261 pthread_mutex_unlock(&consumer_data.lock);
262}
263
264/*
265 * Iterate over the relayd hash table and destroy each element. Finally,
266 * destroy the whole hash table.
267 */
268static void cleanup_relayd_ht(void)
269{
270 struct lttng_ht_iter iter;
271 struct consumer_relayd_sock_pair *relayd;
272
273 rcu_read_lock();
274
275 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
276 node.node) {
277 destroy_relayd(relayd);
278 }
279
280 lttng_ht_destroy(consumer_data.relayd_ht);
281
282 rcu_read_unlock();
283}
284
285/*
286 * Update the end point status of all streams having the given network sequence
287 * index (relayd index).
288 *
289 * It's atomically set without having the stream mutex locked which is fine
290 * because we handle the write/read race with a pipe wakeup for each thread.
291 */
292static void update_endpoint_status_by_netidx(int net_seq_idx,
293 enum consumer_endpoint_status status)
294{
295 struct lttng_ht_iter iter;
296 struct lttng_consumer_stream *stream;
297
298 DBG("Consumer set delete flag on stream by idx %d", net_seq_idx);
299
300 rcu_read_lock();
301
302 /* Let's begin with metadata */
303 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
304 if (stream->net_seq_idx == net_seq_idx) {
305 uatomic_set(&stream->endpoint_status, status);
306 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
307 }
308 }
309
310 /* Follow up by the data streams */
311 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
312 if (stream->net_seq_idx == net_seq_idx) {
313 uatomic_set(&stream->endpoint_status, status);
314 DBG("Delete flag set to data stream %d", stream->wait_fd);
315 }
316 }
317 rcu_read_unlock();
318}
319
320/*
321 * Cleanup a relayd object by flagging every associated streams for deletion,
322 * destroying the object meaning removing it from the relayd hash table,
323 * closing the sockets and freeing the memory in a RCU call.
324 *
325 * If a local data context is available, notify the threads that the streams'
326 * state have changed.
327 */
328static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
329 struct lttng_consumer_local_data *ctx)
330{
331 int netidx;
332
333 assert(relayd);
334
335 DBG("Cleaning up relayd sockets");
336
337 /* Save the net sequence index before destroying the object */
338 netidx = relayd->net_seq_idx;
339
340 /*
341 * Delete the relayd from the relayd hash table, close the sockets and free
342 * the object in a RCU call.
343 */
344 destroy_relayd(relayd);
345
346 /* Set inactive endpoint to all streams */
347 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
348
349 /*
350 * With a local data context, notify the threads that the streams' state
351 * have changed. The write() action on the pipe acts as an "implicit"
352 * memory barrier ordering the updates of the end point status from the
353 * read of this status which happens AFTER receiving this notify.
354 */
355 if (ctx) {
356 notify_thread_pipe(ctx->consumer_data_pipe[1]);
357 notify_thread_pipe(ctx->consumer_metadata_pipe[1]);
358 }
359}
360
361/*
362 * Flag a relayd socket pair for destruction. Destroy it if the refcount
363 * reaches zero.
364 *
365 * RCU read side lock MUST be aquired before calling this function.
366 */
367void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
368{
369 assert(relayd);
370
371 /* Set destroy flag for this object */
372 uatomic_set(&relayd->destroy_flag, 1);
373
374 /* Destroy the relayd if refcount is 0 */
375 if (uatomic_read(&relayd->refcount) == 0) {
376 destroy_relayd(relayd);
377 }
378}
379
380/*
381 * Remove a stream from the global list protected by a mutex. This
382 * function is also responsible for freeing its data structures.
383 */
384void consumer_del_stream(struct lttng_consumer_stream *stream,
385 struct lttng_ht *ht)
386{
387 int ret;
388 struct lttng_ht_iter iter;
389 struct lttng_consumer_channel *free_chan = NULL;
390 struct consumer_relayd_sock_pair *relayd;
391
392 assert(stream);
393
394 DBG("Consumer del stream %d", stream->wait_fd);
395
396 if (ht == NULL) {
397 /* Means the stream was allocated but not successfully added */
398 goto free_stream_rcu;
399 }
400
401 pthread_mutex_lock(&consumer_data.lock);
402 pthread_mutex_lock(&stream->lock);
403
404 switch (consumer_data.type) {
405 case LTTNG_CONSUMER_KERNEL:
406 if (stream->mmap_base != NULL) {
407 ret = munmap(stream->mmap_base, stream->mmap_len);
408 if (ret != 0) {
409 PERROR("munmap");
410 }
411 }
412 break;
413 case LTTNG_CONSUMER32_UST:
414 case LTTNG_CONSUMER64_UST:
415 lttng_ustconsumer_del_stream(stream);
416 break;
417 default:
418 ERR("Unknown consumer_data type");
419 assert(0);
420 goto end;
421 }
422
423 rcu_read_lock();
424 iter.iter.node = &stream->node.node;
425 ret = lttng_ht_del(ht, &iter);
426 assert(!ret);
427
428 /* Remove node session id from the consumer_data stream ht */
429 iter.iter.node = &stream->node_session_id.node;
430 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
431 assert(!ret);
432 rcu_read_unlock();
433
434 assert(consumer_data.stream_count > 0);
435 consumer_data.stream_count--;
436
437 if (stream->out_fd >= 0) {
438 ret = close(stream->out_fd);
439 if (ret) {
440 PERROR("close");
441 }
442 }
443
444 /* Check and cleanup relayd */
445 rcu_read_lock();
446 relayd = consumer_find_relayd(stream->net_seq_idx);
447 if (relayd != NULL) {
448 uatomic_dec(&relayd->refcount);
449 assert(uatomic_read(&relayd->refcount) >= 0);
450
451 /* Closing streams requires to lock the control socket. */
452 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
453 ret = relayd_send_close_stream(&relayd->control_sock,
454 stream->relayd_stream_id,
455 stream->next_net_seq_num - 1);
456 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
457 if (ret < 0) {
458 DBG("Unable to close stream on the relayd. Continuing");
459 /*
460 * Continue here. There is nothing we can do for the relayd.
461 * Chances are that the relayd has closed the socket so we just
462 * continue cleaning up.
463 */
464 }
465
466 /* Both conditions are met, we destroy the relayd. */
467 if (uatomic_read(&relayd->refcount) == 0 &&
468 uatomic_read(&relayd->destroy_flag)) {
469 destroy_relayd(relayd);
470 }
471 }
472 rcu_read_unlock();
473
474 uatomic_dec(&stream->chan->refcount);
475 if (!uatomic_read(&stream->chan->refcount)
476 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
477 free_chan = stream->chan;
478 }
479
480end:
481 consumer_data.need_update = 1;
482 pthread_mutex_unlock(&stream->lock);
483 pthread_mutex_unlock(&consumer_data.lock);
484
485 if (free_chan) {
486 consumer_del_channel(free_chan);
487 }
488
489free_stream_rcu:
490 call_rcu(&stream->node.head, free_stream_rcu);
491}
492
493struct lttng_consumer_stream *consumer_allocate_stream(int channel_key,
494 int stream_key,
495 enum lttng_consumer_stream_state state,
496 const char *channel_name,
497 uid_t uid,
498 gid_t gid,
499 int relayd_id,
500 uint64_t session_id,
501 int cpu,
502 int *alloc_ret,
503 enum consumer_channel_type type)
504{
505 int ret;
506 struct lttng_consumer_stream *stream;
507
508 stream = zmalloc(sizeof(*stream));
509 if (stream == NULL) {
510 PERROR("malloc struct lttng_consumer_stream");
511 ret = -ENOMEM;
512 goto end;
513 }
514
515 rcu_read_lock();
516
517 stream->key = stream_key;
518 stream->out_fd = -1;
519 stream->out_fd_offset = 0;
520 stream->state = state;
521 stream->uid = uid;
522 stream->gid = gid;
523 stream->net_seq_idx = relayd_id;
524 stream->session_id = session_id;
525 pthread_mutex_init(&stream->lock, NULL);
526
527 /* If channel is the metadata, flag this stream as metadata. */
528 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
529 stream->metadata_flag = 1;
530 /* Metadata is flat out. */
531 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
532 } else {
533 /* Format stream name to <channel_name>_<cpu_number> */
534 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
535 channel_name, cpu);
536 if (ret < 0) {
537 PERROR("snprintf stream name");
538 goto error;
539 }
540 }
541
542 /* Key is always the wait_fd for streams. */
543 lttng_ht_node_init_ulong(&stream->node, stream->key);
544
545 /* Init session id node with the stream session id */
546 lttng_ht_node_init_ulong(&stream->node_session_id, stream->session_id);
547
548 DBG3("Allocated stream %s (key %d, relayd_id %d, session_id %" PRIu64,
549 stream->name, stream->key, stream->net_seq_idx, stream->session_id);
550
551 rcu_read_unlock();
552 return stream;
553
554error:
555 rcu_read_unlock();
556 free(stream);
557end:
558 if (alloc_ret) {
559 *alloc_ret = ret;
560 }
561 return NULL;
562}
563
564/*
565 * Add a stream to the global list protected by a mutex.
566 */
567static int add_stream(struct lttng_consumer_stream *stream,
568 struct lttng_ht *ht)
569{
570 int ret = 0;
571 struct consumer_relayd_sock_pair *relayd;
572
573 assert(stream);
574 assert(ht);
575
576 DBG3("Adding consumer stream %d", stream->key);
577
578 pthread_mutex_lock(&consumer_data.lock);
579 pthread_mutex_lock(&stream->lock);
580 rcu_read_lock();
581
582 /* Steal stream identifier to avoid having streams with the same key */
583 steal_stream_key(stream->key, ht);
584
585 lttng_ht_add_unique_ulong(ht, &stream->node);
586
587 /*
588 * Add stream to the stream_list_ht of the consumer data. No need to steal
589 * the key since the HT does not use it and we allow to add redundant keys
590 * into this table.
591 */
592 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
593
594 /* Check and cleanup relayd */
595 relayd = consumer_find_relayd(stream->net_seq_idx);
596 if (relayd != NULL) {
597 uatomic_inc(&relayd->refcount);
598 }
599
600 /* Update channel refcount once added without error(s). */
601 uatomic_inc(&stream->chan->refcount);
602
603 /*
604 * When nb_init_stream_left reaches 0, we don't need to trigger any action
605 * in terms of destroying the associated channel, because the action that
606 * causes the count to become 0 also causes a stream to be added. The
607 * channel deletion will thus be triggered by the following removal of this
608 * stream.
609 */
610 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
611 uatomic_dec(&stream->chan->nb_init_stream_left);
612 }
613
614 /* Update consumer data once the node is inserted. */
615 consumer_data.stream_count++;
616 consumer_data.need_update = 1;
617
618 rcu_read_unlock();
619 pthread_mutex_unlock(&stream->lock);
620 pthread_mutex_unlock(&consumer_data.lock);
621
622 return ret;
623}
624
625/*
626 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
627 * be acquired before calling this.
628 */
629static int add_relayd(struct consumer_relayd_sock_pair *relayd)
630{
631 int ret = 0;
632 struct lttng_ht_node_ulong *node;
633 struct lttng_ht_iter iter;
634
635 assert(relayd);
636
637 lttng_ht_lookup(consumer_data.relayd_ht,
638 (void *)((unsigned long) relayd->net_seq_idx), &iter);
639 node = lttng_ht_iter_get_node_ulong(&iter);
640 if (node != NULL) {
641 goto end;
642 }
643 lttng_ht_add_unique_ulong(consumer_data.relayd_ht, &relayd->node);
644
645end:
646 return ret;
647}
648
649/*
650 * Allocate and return a consumer relayd socket.
651 */
652struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
653 int net_seq_idx)
654{
655 struct consumer_relayd_sock_pair *obj = NULL;
656
657 /* Negative net sequence index is a failure */
658 if (net_seq_idx < 0) {
659 goto error;
660 }
661
662 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
663 if (obj == NULL) {
664 PERROR("zmalloc relayd sock");
665 goto error;
666 }
667
668 obj->net_seq_idx = net_seq_idx;
669 obj->refcount = 0;
670 obj->destroy_flag = 0;
671 lttng_ht_node_init_ulong(&obj->node, obj->net_seq_idx);
672 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
673
674error:
675 return obj;
676}
677
678/*
679 * Find a relayd socket pair in the global consumer data.
680 *
681 * Return the object if found else NULL.
682 * RCU read-side lock must be held across this call and while using the
683 * returned object.
684 */
685struct consumer_relayd_sock_pair *consumer_find_relayd(int key)
686{
687 struct lttng_ht_iter iter;
688 struct lttng_ht_node_ulong *node;
689 struct consumer_relayd_sock_pair *relayd = NULL;
690
691 /* Negative keys are lookup failures */
692 if (key < 0) {
693 goto error;
694 }
695
696 lttng_ht_lookup(consumer_data.relayd_ht, (void *)((unsigned long) key),
697 &iter);
698 node = lttng_ht_iter_get_node_ulong(&iter);
699 if (node != NULL) {
700 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
701 }
702
703error:
704 return relayd;
705}
706
707/*
708 * Handle stream for relayd transmission if the stream applies for network
709 * streaming where the net sequence index is set.
710 *
711 * Return destination file descriptor or negative value on error.
712 */
713static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
714 size_t data_size, unsigned long padding,
715 struct consumer_relayd_sock_pair *relayd)
716{
717 int outfd = -1, ret;
718 struct lttcomm_relayd_data_hdr data_hdr;
719
720 /* Safety net */
721 assert(stream);
722 assert(relayd);
723
724 /* Reset data header */
725 memset(&data_hdr, 0, sizeof(data_hdr));
726
727 if (stream->metadata_flag) {
728 /* Caller MUST acquire the relayd control socket lock */
729 ret = relayd_send_metadata(&relayd->control_sock, data_size);
730 if (ret < 0) {
731 goto error;
732 }
733
734 /* Metadata are always sent on the control socket. */
735 outfd = relayd->control_sock.fd;
736 } else {
737 /* Set header with stream information */
738 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
739 data_hdr.data_size = htobe32(data_size);
740 data_hdr.padding_size = htobe32(padding);
741 /*
742 * Note that net_seq_num below is assigned with the *current* value of
743 * next_net_seq_num and only after that the next_net_seq_num will be
744 * increment. This is why when issuing a command on the relayd using
745 * this next value, 1 should always be substracted in order to compare
746 * the last seen sequence number on the relayd side to the last sent.
747 */
748 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
749 /* Other fields are zeroed previously */
750
751 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
752 sizeof(data_hdr));
753 if (ret < 0) {
754 goto error;
755 }
756
757 ++stream->next_net_seq_num;
758
759 /* Set to go on data socket */
760 outfd = relayd->data_sock.fd;
761 }
762
763error:
764 return outfd;
765}
766
767/*
768 * Allocate and return a new lttng_consumer_channel object using the given key
769 * to initialize the hash table node.
770 *
771 * On error, return NULL.
772 */
773struct lttng_consumer_channel *consumer_allocate_channel(unsigned long key,
774 uint64_t session_id,
775 const char *pathname,
776 const char *name,
777 uid_t uid,
778 gid_t gid,
779 int relayd_id,
780 enum lttng_event_output output)
781{
782 struct lttng_consumer_channel *channel;
783
784 channel = zmalloc(sizeof(*channel));
785 if (channel == NULL) {
786 PERROR("malloc struct lttng_consumer_channel");
787 goto end;
788 }
789
790 channel->key = key;
791 channel->refcount = 0;
792 channel->session_id = session_id;
793 channel->uid = uid;
794 channel->gid = gid;
795 channel->relayd_id = relayd_id;
796 channel->output = output;
797
798 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
799 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
800
801 strncpy(channel->name, name, sizeof(channel->name));
802 channel->name[sizeof(channel->name) - 1] = '\0';
803
804 lttng_ht_node_init_ulong(&channel->node, channel->key);
805 CDS_INIT_LIST_HEAD(&channel->streams.head);
806
807 DBG("Allocated channel (key %d)", channel->key)
808
809end:
810 return channel;
811}
812
813/*
814 * Add a channel to the global list protected by a mutex.
815 */
816int consumer_add_channel(struct lttng_consumer_channel *channel)
817{
818 int ret = 0;
819 struct lttng_ht_node_ulong *node;
820 struct lttng_ht_iter iter;
821
822 pthread_mutex_lock(&consumer_data.lock);
823 rcu_read_lock();
824
825 lttng_ht_lookup(consumer_data.channel_ht,
826 (void *)((unsigned long) channel->key), &iter);
827 node = lttng_ht_iter_get_node_ulong(&iter);
828 if (node != NULL) {
829 /* Channel already exist. Ignore the insertion */
830 ERR("Consumer add channel key %d already exists!", channel->key);
831 ret = -1;
832 goto end;
833 }
834
835 lttng_ht_add_unique_ulong(consumer_data.channel_ht, &channel->node);
836
837end:
838 rcu_read_unlock();
839 pthread_mutex_unlock(&consumer_data.lock);
840
841 return ret;
842}
843
844/*
845 * Allocate the pollfd structure and the local view of the out fds to avoid
846 * doing a lookup in the linked list and concurrency issues when writing is
847 * needed. Called with consumer_data.lock held.
848 *
849 * Returns the number of fds in the structures.
850 */
851static int update_poll_array(struct lttng_consumer_local_data *ctx,
852 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
853 struct lttng_ht *ht)
854{
855 int i = 0;
856 struct lttng_ht_iter iter;
857 struct lttng_consumer_stream *stream;
858
859 assert(ctx);
860 assert(ht);
861 assert(pollfd);
862 assert(local_stream);
863
864 DBG("Updating poll fd array");
865 rcu_read_lock();
866 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
867 /*
868 * Only active streams with an active end point can be added to the
869 * poll set and local stream storage of the thread.
870 *
871 * There is a potential race here for endpoint_status to be updated
872 * just after the check. However, this is OK since the stream(s) will
873 * be deleted once the thread is notified that the end point state has
874 * changed where this function will be called back again.
875 */
876 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
877 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
878 continue;
879 }
880 DBG("Active FD %d", stream->wait_fd);
881 (*pollfd)[i].fd = stream->wait_fd;
882 (*pollfd)[i].events = POLLIN | POLLPRI;
883 local_stream[i] = stream;
884 i++;
885 }
886 rcu_read_unlock();
887
888 /*
889 * Insert the consumer_data_pipe at the end of the array and don't
890 * increment i so nb_fd is the number of real FD.
891 */
892 (*pollfd)[i].fd = ctx->consumer_data_pipe[0];
893 (*pollfd)[i].events = POLLIN | POLLPRI;
894 return i;
895}
896
897/*
898 * Poll on the should_quit pipe and the command socket return -1 on error and
899 * should exit, 0 if data is available on the command socket
900 */
901int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
902{
903 int num_rdy;
904
905restart:
906 num_rdy = poll(consumer_sockpoll, 2, -1);
907 if (num_rdy == -1) {
908 /*
909 * Restart interrupted system call.
910 */
911 if (errno == EINTR) {
912 goto restart;
913 }
914 PERROR("Poll error");
915 goto exit;
916 }
917 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
918 DBG("consumer_should_quit wake up");
919 goto exit;
920 }
921 return 0;
922
923exit:
924 return -1;
925}
926
927/*
928 * Set the error socket.
929 */
930void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
931 int sock)
932{
933 ctx->consumer_error_socket = sock;
934}
935
936/*
937 * Set the command socket path.
938 */
939void lttng_consumer_set_command_sock_path(
940 struct lttng_consumer_local_data *ctx, char *sock)
941{
942 ctx->consumer_command_sock_path = sock;
943}
944
945/*
946 * Send return code to the session daemon.
947 * If the socket is not defined, we return 0, it is not a fatal error
948 */
949int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
950{
951 if (ctx->consumer_error_socket > 0) {
952 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
953 sizeof(enum lttcomm_sessiond_command));
954 }
955
956 return 0;
957}
958
959/*
960 * Close all the tracefiles and stream fds and MUST be called when all
961 * instances are destroyed i.e. when all threads were joined and are ended.
962 */
963void lttng_consumer_cleanup(void)
964{
965 struct lttng_ht_iter iter;
966 struct lttng_consumer_channel *channel;
967
968 rcu_read_lock();
969
970 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
971 node.node) {
972 consumer_del_channel(channel);
973 }
974
975 rcu_read_unlock();
976
977 lttng_ht_destroy(consumer_data.channel_ht);
978
979 cleanup_relayd_ht();
980
981 /*
982 * This HT contains streams that are freed by either the metadata thread or
983 * the data thread so we do *nothing* on the hash table and simply destroy
984 * it.
985 */
986 lttng_ht_destroy(consumer_data.stream_list_ht);
987}
988
989/*
990 * Called from signal handler.
991 */
992void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
993{
994 int ret;
995 consumer_quit = 1;
996 do {
997 ret = write(ctx->consumer_should_quit[1], "4", 1);
998 } while (ret < 0 && errno == EINTR);
999 if (ret < 0 || ret != 1) {
1000 PERROR("write consumer quit");
1001 }
1002
1003 DBG("Consumer flag that it should quit");
1004}
1005
1006void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1007 off_t orig_offset)
1008{
1009 int outfd = stream->out_fd;
1010
1011 /*
1012 * This does a blocking write-and-wait on any page that belongs to the
1013 * subbuffer prior to the one we just wrote.
1014 * Don't care about error values, as these are just hints and ways to
1015 * limit the amount of page cache used.
1016 */
1017 if (orig_offset < stream->max_sb_size) {
1018 return;
1019 }
1020 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1021 stream->max_sb_size,
1022 SYNC_FILE_RANGE_WAIT_BEFORE
1023 | SYNC_FILE_RANGE_WRITE
1024 | SYNC_FILE_RANGE_WAIT_AFTER);
1025 /*
1026 * Give hints to the kernel about how we access the file:
1027 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1028 * we write it.
1029 *
1030 * We need to call fadvise again after the file grows because the
1031 * kernel does not seem to apply fadvise to non-existing parts of the
1032 * file.
1033 *
1034 * Call fadvise _after_ having waited for the page writeback to
1035 * complete because the dirty page writeback semantic is not well
1036 * defined. So it can be expected to lead to lower throughput in
1037 * streaming.
1038 */
1039 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1040 stream->max_sb_size, POSIX_FADV_DONTNEED);
1041}
1042
1043/*
1044 * Initialise the necessary environnement :
1045 * - create a new context
1046 * - create the poll_pipe
1047 * - create the should_quit pipe (for signal handler)
1048 * - create the thread pipe (for splice)
1049 *
1050 * Takes a function pointer as argument, this function is called when data is
1051 * available on a buffer. This function is responsible to do the
1052 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1053 * buffer configuration and then kernctl_put_next_subbuf at the end.
1054 *
1055 * Returns a pointer to the new context or NULL on error.
1056 */
1057struct lttng_consumer_local_data *lttng_consumer_create(
1058 enum lttng_consumer_type type,
1059 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1060 struct lttng_consumer_local_data *ctx),
1061 int (*recv_channel)(struct lttng_consumer_channel *channel),
1062 int (*recv_stream)(struct lttng_consumer_stream *stream),
1063 int (*update_stream)(int stream_key, uint32_t state))
1064{
1065 int ret, i;
1066 struct lttng_consumer_local_data *ctx;
1067
1068 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1069 consumer_data.type == type);
1070 consumer_data.type = type;
1071
1072 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1073 if (ctx == NULL) {
1074 PERROR("allocating context");
1075 goto error;
1076 }
1077
1078 ctx->consumer_error_socket = -1;
1079 /* assign the callbacks */
1080 ctx->on_buffer_ready = buffer_ready;
1081 ctx->on_recv_channel = recv_channel;
1082 ctx->on_recv_stream = recv_stream;
1083 ctx->on_update_stream = update_stream;
1084
1085 ret = pipe(ctx->consumer_data_pipe);
1086 if (ret < 0) {
1087 PERROR("Error creating poll pipe");
1088 goto error_poll_pipe;
1089 }
1090
1091 /* set read end of the pipe to non-blocking */
1092 ret = fcntl(ctx->consumer_data_pipe[0], F_SETFL, O_NONBLOCK);
1093 if (ret < 0) {
1094 PERROR("fcntl O_NONBLOCK");
1095 goto error_poll_fcntl;
1096 }
1097
1098 /* set write end of the pipe to non-blocking */
1099 ret = fcntl(ctx->consumer_data_pipe[1], F_SETFL, O_NONBLOCK);
1100 if (ret < 0) {
1101 PERROR("fcntl O_NONBLOCK");
1102 goto error_poll_fcntl;
1103 }
1104
1105 ret = pipe(ctx->consumer_should_quit);
1106 if (ret < 0) {
1107 PERROR("Error creating recv pipe");
1108 goto error_quit_pipe;
1109 }
1110
1111 ret = pipe(ctx->consumer_thread_pipe);
1112 if (ret < 0) {
1113 PERROR("Error creating thread pipe");
1114 goto error_thread_pipe;
1115 }
1116
1117 ret = utils_create_pipe(ctx->consumer_metadata_pipe);
1118 if (ret < 0) {
1119 goto error_metadata_pipe;
1120 }
1121
1122 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1123 if (ret < 0) {
1124 goto error_splice_pipe;
1125 }
1126
1127 return ctx;
1128
1129error_splice_pipe:
1130 utils_close_pipe(ctx->consumer_metadata_pipe);
1131error_metadata_pipe:
1132 utils_close_pipe(ctx->consumer_thread_pipe);
1133error_thread_pipe:
1134 for (i = 0; i < 2; i++) {
1135 int err;
1136
1137 err = close(ctx->consumer_should_quit[i]);
1138 if (err) {
1139 PERROR("close");
1140 }
1141 }
1142error_poll_fcntl:
1143error_quit_pipe:
1144 for (i = 0; i < 2; i++) {
1145 int err;
1146
1147 err = close(ctx->consumer_data_pipe[i]);
1148 if (err) {
1149 PERROR("close");
1150 }
1151 }
1152error_poll_pipe:
1153 free(ctx);
1154error:
1155 return NULL;
1156}
1157
1158/*
1159 * Close all fds associated with the instance and free the context.
1160 */
1161void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1162{
1163 int ret;
1164
1165 DBG("Consumer destroying it. Closing everything.");
1166
1167 ret = close(ctx->consumer_error_socket);
1168 if (ret) {
1169 PERROR("close");
1170 }
1171 ret = close(ctx->consumer_thread_pipe[0]);
1172 if (ret) {
1173 PERROR("close");
1174 }
1175 ret = close(ctx->consumer_thread_pipe[1]);
1176 if (ret) {
1177 PERROR("close");
1178 }
1179 ret = close(ctx->consumer_data_pipe[0]);
1180 if (ret) {
1181 PERROR("close");
1182 }
1183 ret = close(ctx->consumer_data_pipe[1]);
1184 if (ret) {
1185 PERROR("close");
1186 }
1187 ret = close(ctx->consumer_should_quit[0]);
1188 if (ret) {
1189 PERROR("close");
1190 }
1191 ret = close(ctx->consumer_should_quit[1]);
1192 if (ret) {
1193 PERROR("close");
1194 }
1195 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1196
1197 unlink(ctx->consumer_command_sock_path);
1198 free(ctx);
1199}
1200
1201/*
1202 * Write the metadata stream id on the specified file descriptor.
1203 */
1204static int write_relayd_metadata_id(int fd,
1205 struct lttng_consumer_stream *stream,
1206 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1207{
1208 int ret;
1209 struct lttcomm_relayd_metadata_payload hdr;
1210
1211 hdr.stream_id = htobe64(stream->relayd_stream_id);
1212 hdr.padding_size = htobe32(padding);
1213 do {
1214 ret = write(fd, (void *) &hdr, sizeof(hdr));
1215 } while (ret < 0 && errno == EINTR);
1216 if (ret < 0 || ret != sizeof(hdr)) {
1217 /*
1218 * This error means that the fd's end is closed so ignore the perror
1219 * not to clubber the error output since this can happen in a normal
1220 * code path.
1221 */
1222 if (errno != EPIPE) {
1223 PERROR("write metadata stream id");
1224 }
1225 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1226 /*
1227 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1228 * handle writting the missing part so report that as an error and
1229 * don't lie to the caller.
1230 */
1231 ret = -1;
1232 goto end;
1233 }
1234 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1235 stream->relayd_stream_id, padding);
1236
1237end:
1238 return ret;
1239}
1240
1241/*
1242 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1243 * core function for writing trace buffers to either the local filesystem or
1244 * the network.
1245 *
1246 * It must be called with the stream lock held.
1247 *
1248 * Careful review MUST be put if any changes occur!
1249 *
1250 * Returns the number of bytes written
1251 */
1252ssize_t lttng_consumer_on_read_subbuffer_mmap(
1253 struct lttng_consumer_local_data *ctx,
1254 struct lttng_consumer_stream *stream, unsigned long len,
1255 unsigned long padding)
1256{
1257 unsigned long mmap_offset;
1258 void *mmap_base;
1259 ssize_t ret = 0, written = 0;
1260 off_t orig_offset = stream->out_fd_offset;
1261 /* Default is on the disk */
1262 int outfd = stream->out_fd;
1263 struct consumer_relayd_sock_pair *relayd = NULL;
1264 unsigned int relayd_hang_up = 0;
1265
1266 /* RCU lock for the relayd pointer */
1267 rcu_read_lock();
1268
1269 /* Flag that the current stream if set for network streaming. */
1270 if (stream->net_seq_idx != -1) {
1271 relayd = consumer_find_relayd(stream->net_seq_idx);
1272 if (relayd == NULL) {
1273 goto end;
1274 }
1275 }
1276
1277 /* get the offset inside the fd to mmap */
1278 switch (consumer_data.type) {
1279 case LTTNG_CONSUMER_KERNEL:
1280 mmap_base = stream->mmap_base;
1281 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1282 break;
1283 case LTTNG_CONSUMER32_UST:
1284 case LTTNG_CONSUMER64_UST:
1285 mmap_base = lttng_ustctl_get_mmap_base(stream);
1286 if (!mmap_base) {
1287 ERR("read mmap get mmap base for stream %s", stream->name);
1288 written = -1;
1289 goto end;
1290 }
1291 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1292 break;
1293 default:
1294 ERR("Unknown consumer_data type");
1295 assert(0);
1296 }
1297 if (ret != 0) {
1298 errno = -ret;
1299 PERROR("tracer ctl get_mmap_read_offset");
1300 written = ret;
1301 goto end;
1302 }
1303
1304 /* Handle stream on the relayd if the output is on the network */
1305 if (relayd) {
1306 unsigned long netlen = len;
1307
1308 /*
1309 * Lock the control socket for the complete duration of the function
1310 * since from this point on we will use the socket.
1311 */
1312 if (stream->metadata_flag) {
1313 /* Metadata requires the control socket. */
1314 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1315 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1316 }
1317
1318 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1319 if (ret >= 0) {
1320 /* Use the returned socket. */
1321 outfd = ret;
1322
1323 /* Write metadata stream id before payload */
1324 if (stream->metadata_flag) {
1325 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1326 if (ret < 0) {
1327 written = ret;
1328 /* Socket operation failed. We consider the relayd dead */
1329 if (ret == -EPIPE || ret == -EINVAL) {
1330 relayd_hang_up = 1;
1331 goto write_error;
1332 }
1333 goto end;
1334 }
1335 }
1336 } else {
1337 /* Socket operation failed. We consider the relayd dead */
1338 if (ret == -EPIPE || ret == -EINVAL) {
1339 relayd_hang_up = 1;
1340 goto write_error;
1341 }
1342 /* Else, use the default set before which is the filesystem. */
1343 }
1344 } else {
1345 /* No streaming, we have to set the len with the full padding */
1346 len += padding;
1347 }
1348
1349 while (len > 0) {
1350 do {
1351 ret = write(outfd, mmap_base + mmap_offset, len);
1352 } while (ret < 0 && errno == EINTR);
1353 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1354 if (ret < 0) {
1355 /*
1356 * This is possible if the fd is closed on the other side (outfd)
1357 * or any write problem. It can be verbose a bit for a normal
1358 * execution if for instance the relayd is stopped abruptly. This
1359 * can happen so set this to a DBG statement.
1360 */
1361 DBG("Error in file write mmap");
1362 if (written == 0) {
1363 written = ret;
1364 }
1365 /* Socket operation failed. We consider the relayd dead */
1366 if (errno == EPIPE || errno == EINVAL) {
1367 relayd_hang_up = 1;
1368 goto write_error;
1369 }
1370 goto end;
1371 } else if (ret > len) {
1372 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1373 written += ret;
1374 goto end;
1375 } else {
1376 len -= ret;
1377 mmap_offset += ret;
1378 }
1379
1380 /* This call is useless on a socket so better save a syscall. */
1381 if (!relayd) {
1382 /* This won't block, but will start writeout asynchronously */
1383 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1384 SYNC_FILE_RANGE_WRITE);
1385 stream->out_fd_offset += ret;
1386 }
1387 written += ret;
1388 }
1389 lttng_consumer_sync_trace_file(stream, orig_offset);
1390
1391write_error:
1392 /*
1393 * This is a special case that the relayd has closed its socket. Let's
1394 * cleanup the relayd object and all associated streams.
1395 */
1396 if (relayd && relayd_hang_up) {
1397 cleanup_relayd(relayd, ctx);
1398 }
1399
1400end:
1401 /* Unlock only if ctrl socket used */
1402 if (relayd && stream->metadata_flag) {
1403 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1404 }
1405
1406 rcu_read_unlock();
1407 return written;
1408}
1409
1410/*
1411 * Splice the data from the ring buffer to the tracefile.
1412 *
1413 * It must be called with the stream lock held.
1414 *
1415 * Returns the number of bytes spliced.
1416 */
1417ssize_t lttng_consumer_on_read_subbuffer_splice(
1418 struct lttng_consumer_local_data *ctx,
1419 struct lttng_consumer_stream *stream, unsigned long len,
1420 unsigned long padding)
1421{
1422 ssize_t ret = 0, written = 0, ret_splice = 0;
1423 loff_t offset = 0;
1424 off_t orig_offset = stream->out_fd_offset;
1425 int fd = stream->wait_fd;
1426 /* Default is on the disk */
1427 int outfd = stream->out_fd;
1428 struct consumer_relayd_sock_pair *relayd = NULL;
1429 int *splice_pipe;
1430 unsigned int relayd_hang_up = 0;
1431
1432 switch (consumer_data.type) {
1433 case LTTNG_CONSUMER_KERNEL:
1434 break;
1435 case LTTNG_CONSUMER32_UST:
1436 case LTTNG_CONSUMER64_UST:
1437 /* Not supported for user space tracing */
1438 return -ENOSYS;
1439 default:
1440 ERR("Unknown consumer_data type");
1441 assert(0);
1442 }
1443
1444 /* RCU lock for the relayd pointer */
1445 rcu_read_lock();
1446
1447 /* Flag that the current stream if set for network streaming. */
1448 if (stream->net_seq_idx != -1) {
1449 relayd = consumer_find_relayd(stream->net_seq_idx);
1450 if (relayd == NULL) {
1451 goto end;
1452 }
1453 }
1454
1455 /*
1456 * Choose right pipe for splice. Metadata and trace data are handled by
1457 * different threads hence the use of two pipes in order not to race or
1458 * corrupt the written data.
1459 */
1460 if (stream->metadata_flag) {
1461 splice_pipe = ctx->consumer_splice_metadata_pipe;
1462 } else {
1463 splice_pipe = ctx->consumer_thread_pipe;
1464 }
1465
1466 /* Write metadata stream id before payload */
1467 if (relayd) {
1468 int total_len = len;
1469
1470 if (stream->metadata_flag) {
1471 /*
1472 * Lock the control socket for the complete duration of the function
1473 * since from this point on we will use the socket.
1474 */
1475 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1476
1477 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1478 padding);
1479 if (ret < 0) {
1480 written = ret;
1481 /* Socket operation failed. We consider the relayd dead */
1482 if (ret == -EBADF) {
1483 WARN("Remote relayd disconnected. Stopping");
1484 relayd_hang_up = 1;
1485 goto write_error;
1486 }
1487 goto end;
1488 }
1489
1490 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1491 }
1492
1493 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1494 if (ret >= 0) {
1495 /* Use the returned socket. */
1496 outfd = ret;
1497 } else {
1498 /* Socket operation failed. We consider the relayd dead */
1499 if (ret == -EBADF) {
1500 WARN("Remote relayd disconnected. Stopping");
1501 relayd_hang_up = 1;
1502 goto write_error;
1503 }
1504 goto end;
1505 }
1506 } else {
1507 /* No streaming, we have to set the len with the full padding */
1508 len += padding;
1509 }
1510
1511 while (len > 0) {
1512 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1513 (unsigned long)offset, len, fd, splice_pipe[1]);
1514 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1515 SPLICE_F_MOVE | SPLICE_F_MORE);
1516 DBG("splice chan to pipe, ret %zd", ret_splice);
1517 if (ret_splice < 0) {
1518 PERROR("Error in relay splice");
1519 if (written == 0) {
1520 written = ret_splice;
1521 }
1522 ret = errno;
1523 goto splice_error;
1524 }
1525
1526 /* Handle stream on the relayd if the output is on the network */
1527 if (relayd) {
1528 if (stream->metadata_flag) {
1529 size_t metadata_payload_size =
1530 sizeof(struct lttcomm_relayd_metadata_payload);
1531
1532 /* Update counter to fit the spliced data */
1533 ret_splice += metadata_payload_size;
1534 len += metadata_payload_size;
1535 /*
1536 * We do this so the return value can match the len passed as
1537 * argument to this function.
1538 */
1539 written -= metadata_payload_size;
1540 }
1541 }
1542
1543 /* Splice data out */
1544 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1545 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1546 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1547 if (ret_splice < 0) {
1548 PERROR("Error in file splice");
1549 if (written == 0) {
1550 written = ret_splice;
1551 }
1552 /* Socket operation failed. We consider the relayd dead */
1553 if (errno == EBADF || errno == EPIPE) {
1554 WARN("Remote relayd disconnected. Stopping");
1555 relayd_hang_up = 1;
1556 goto write_error;
1557 }
1558 ret = errno;
1559 goto splice_error;
1560 } else if (ret_splice > len) {
1561 errno = EINVAL;
1562 PERROR("Wrote more data than requested %zd (len: %lu)",
1563 ret_splice, len);
1564 written += ret_splice;
1565 ret = errno;
1566 goto splice_error;
1567 }
1568 len -= ret_splice;
1569
1570 /* This call is useless on a socket so better save a syscall. */
1571 if (!relayd) {
1572 /* This won't block, but will start writeout asynchronously */
1573 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1574 SYNC_FILE_RANGE_WRITE);
1575 stream->out_fd_offset += ret_splice;
1576 }
1577 written += ret_splice;
1578 }
1579 lttng_consumer_sync_trace_file(stream, orig_offset);
1580
1581 ret = ret_splice;
1582
1583 goto end;
1584
1585write_error:
1586 /*
1587 * This is a special case that the relayd has closed its socket. Let's
1588 * cleanup the relayd object and all associated streams.
1589 */
1590 if (relayd && relayd_hang_up) {
1591 cleanup_relayd(relayd, ctx);
1592 /* Skip splice error so the consumer does not fail */
1593 goto end;
1594 }
1595
1596splice_error:
1597 /* send the appropriate error description to sessiond */
1598 switch (ret) {
1599 case EINVAL:
1600 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1601 break;
1602 case ENOMEM:
1603 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1604 break;
1605 case ESPIPE:
1606 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1607 break;
1608 }
1609
1610end:
1611 if (relayd && stream->metadata_flag) {
1612 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1613 }
1614
1615 rcu_read_unlock();
1616 return written;
1617}
1618
1619/*
1620 * Take a snapshot for a specific fd
1621 *
1622 * Returns 0 on success, < 0 on error
1623 */
1624int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1625{
1626 switch (consumer_data.type) {
1627 case LTTNG_CONSUMER_KERNEL:
1628 return lttng_kconsumer_take_snapshot(stream);
1629 case LTTNG_CONSUMER32_UST:
1630 case LTTNG_CONSUMER64_UST:
1631 return lttng_ustconsumer_take_snapshot(stream);
1632 default:
1633 ERR("Unknown consumer_data type");
1634 assert(0);
1635 return -ENOSYS;
1636 }
1637}
1638
1639/*
1640 * Get the produced position
1641 *
1642 * Returns 0 on success, < 0 on error
1643 */
1644int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1645 unsigned long *pos)
1646{
1647 switch (consumer_data.type) {
1648 case LTTNG_CONSUMER_KERNEL:
1649 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1650 case LTTNG_CONSUMER32_UST:
1651 case LTTNG_CONSUMER64_UST:
1652 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1653 default:
1654 ERR("Unknown consumer_data type");
1655 assert(0);
1656 return -ENOSYS;
1657 }
1658}
1659
1660int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1661 int sock, struct pollfd *consumer_sockpoll)
1662{
1663 switch (consumer_data.type) {
1664 case LTTNG_CONSUMER_KERNEL:
1665 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1666 case LTTNG_CONSUMER32_UST:
1667 case LTTNG_CONSUMER64_UST:
1668 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1669 default:
1670 ERR("Unknown consumer_data type");
1671 assert(0);
1672 return -ENOSYS;
1673 }
1674}
1675
1676/*
1677 * Iterate over all streams of the hashtable and free them properly.
1678 *
1679 * WARNING: *MUST* be used with data stream only.
1680 */
1681static void destroy_data_stream_ht(struct lttng_ht *ht)
1682{
1683 struct lttng_ht_iter iter;
1684 struct lttng_consumer_stream *stream;
1685
1686 if (ht == NULL) {
1687 return;
1688 }
1689
1690 rcu_read_lock();
1691 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1692 /*
1693 * Ignore return value since we are currently cleaning up so any error
1694 * can't be handled.
1695 */
1696 (void) consumer_del_stream(stream, ht);
1697 }
1698 rcu_read_unlock();
1699
1700 lttng_ht_destroy(ht);
1701}
1702
1703/*
1704 * Iterate over all streams of the hashtable and free them properly.
1705 *
1706 * XXX: Should not be only for metadata stream or else use an other name.
1707 */
1708static void destroy_stream_ht(struct lttng_ht *ht)
1709{
1710 struct lttng_ht_iter iter;
1711 struct lttng_consumer_stream *stream;
1712
1713 if (ht == NULL) {
1714 return;
1715 }
1716
1717 rcu_read_lock();
1718 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1719 /*
1720 * Ignore return value since we are currently cleaning up so any error
1721 * can't be handled.
1722 */
1723 (void) consumer_del_metadata_stream(stream, ht);
1724 }
1725 rcu_read_unlock();
1726
1727 lttng_ht_destroy(ht);
1728}
1729
1730/*
1731 * Clean up a metadata stream and free its memory.
1732 */
1733void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1734 struct lttng_ht *ht)
1735{
1736 int ret;
1737 struct lttng_ht_iter iter;
1738 struct lttng_consumer_channel *free_chan = NULL;
1739 struct consumer_relayd_sock_pair *relayd;
1740
1741 assert(stream);
1742 /*
1743 * This call should NEVER receive regular stream. It must always be
1744 * metadata stream and this is crucial for data structure synchronization.
1745 */
1746 assert(stream->metadata_flag);
1747
1748 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1749
1750 if (ht == NULL) {
1751 /* Means the stream was allocated but not successfully added */
1752 goto free_stream_rcu;
1753 }
1754
1755 pthread_mutex_lock(&consumer_data.lock);
1756 pthread_mutex_lock(&stream->lock);
1757
1758 switch (consumer_data.type) {
1759 case LTTNG_CONSUMER_KERNEL:
1760 if (stream->mmap_base != NULL) {
1761 ret = munmap(stream->mmap_base, stream->mmap_len);
1762 if (ret != 0) {
1763 PERROR("munmap metadata stream");
1764 }
1765 }
1766 break;
1767 case LTTNG_CONSUMER32_UST:
1768 case LTTNG_CONSUMER64_UST:
1769 lttng_ustconsumer_del_stream(stream);
1770 break;
1771 default:
1772 ERR("Unknown consumer_data type");
1773 assert(0);
1774 goto end;
1775 }
1776
1777 rcu_read_lock();
1778 iter.iter.node = &stream->node.node;
1779 ret = lttng_ht_del(ht, &iter);
1780 assert(!ret);
1781
1782 /* Remove node session id from the consumer_data stream ht */
1783 iter.iter.node = &stream->node_session_id.node;
1784 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1785 assert(!ret);
1786 rcu_read_unlock();
1787
1788 if (stream->out_fd >= 0) {
1789 ret = close(stream->out_fd);
1790 if (ret) {
1791 PERROR("close");
1792 }
1793 }
1794
1795 /* Check and cleanup relayd */
1796 rcu_read_lock();
1797 relayd = consumer_find_relayd(stream->net_seq_idx);
1798 if (relayd != NULL) {
1799 uatomic_dec(&relayd->refcount);
1800 assert(uatomic_read(&relayd->refcount) >= 0);
1801
1802 /* Closing streams requires to lock the control socket. */
1803 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1804 ret = relayd_send_close_stream(&relayd->control_sock,
1805 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1806 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1807 if (ret < 0) {
1808 DBG("Unable to close stream on the relayd. Continuing");
1809 /*
1810 * Continue here. There is nothing we can do for the relayd.
1811 * Chances are that the relayd has closed the socket so we just
1812 * continue cleaning up.
1813 */
1814 }
1815
1816 /* Both conditions are met, we destroy the relayd. */
1817 if (uatomic_read(&relayd->refcount) == 0 &&
1818 uatomic_read(&relayd->destroy_flag)) {
1819 destroy_relayd(relayd);
1820 }
1821 }
1822 rcu_read_unlock();
1823
1824 /* Atomically decrement channel refcount since other threads can use it. */
1825 uatomic_dec(&stream->chan->refcount);
1826 if (!uatomic_read(&stream->chan->refcount)
1827 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
1828 /* Go for channel deletion! */
1829 free_chan = stream->chan;
1830 }
1831
1832end:
1833 pthread_mutex_unlock(&stream->lock);
1834 pthread_mutex_unlock(&consumer_data.lock);
1835
1836 if (free_chan) {
1837 consumer_del_channel(free_chan);
1838 }
1839
1840free_stream_rcu:
1841 call_rcu(&stream->node.head, free_stream_rcu);
1842}
1843
1844/*
1845 * Action done with the metadata stream when adding it to the consumer internal
1846 * data structures to handle it.
1847 */
1848static int add_metadata_stream(struct lttng_consumer_stream *stream,
1849 struct lttng_ht *ht)
1850{
1851 int ret = 0;
1852 struct consumer_relayd_sock_pair *relayd;
1853 struct lttng_ht_iter iter;
1854 struct lttng_ht_node_ulong *node;
1855
1856 assert(stream);
1857 assert(ht);
1858
1859 DBG3("Adding metadata stream %d to hash table", stream->key);
1860
1861 pthread_mutex_lock(&consumer_data.lock);
1862 pthread_mutex_lock(&stream->lock);
1863
1864 /*
1865 * From here, refcounts are updated so be _careful_ when returning an error
1866 * after this point.
1867 */
1868
1869 rcu_read_lock();
1870
1871 /*
1872 * Lookup the stream just to make sure it does not exist in our internal
1873 * state. This should NEVER happen.
1874 */
1875 lttng_ht_lookup(ht, (void *)((unsigned long) stream->key), &iter);
1876 node = lttng_ht_iter_get_node_ulong(&iter);
1877 assert(!node);
1878
1879 /* Find relayd and, if one is found, increment refcount. */
1880 relayd = consumer_find_relayd(stream->net_seq_idx);
1881 if (relayd != NULL) {
1882 uatomic_inc(&relayd->refcount);
1883 }
1884
1885 /* Update channel refcount once added without error(s). */
1886 uatomic_inc(&stream->chan->refcount);
1887
1888 /*
1889 * When nb_init_stream_left reaches 0, we don't need to trigger any action
1890 * in terms of destroying the associated channel, because the action that
1891 * causes the count to become 0 also causes a stream to be added. The
1892 * channel deletion will thus be triggered by the following removal of this
1893 * stream.
1894 */
1895 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
1896 uatomic_dec(&stream->chan->nb_init_stream_left);
1897 }
1898
1899 lttng_ht_add_unique_ulong(ht, &stream->node);
1900
1901 /*
1902 * Add stream to the stream_list_ht of the consumer data. No need to steal
1903 * the key since the HT does not use it and we allow to add redundant keys
1904 * into this table.
1905 */
1906 lttng_ht_add_ulong(consumer_data.stream_list_ht, &stream->node_session_id);
1907
1908 rcu_read_unlock();
1909
1910 pthread_mutex_unlock(&stream->lock);
1911 pthread_mutex_unlock(&consumer_data.lock);
1912 return ret;
1913}
1914
1915/*
1916 * Delete data stream that are flagged for deletion (endpoint_status).
1917 */
1918static void validate_endpoint_status_data_stream(void)
1919{
1920 struct lttng_ht_iter iter;
1921 struct lttng_consumer_stream *stream;
1922
1923 DBG("Consumer delete flagged data stream");
1924
1925 rcu_read_lock();
1926 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
1927 /* Validate delete flag of the stream */
1928 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
1929 continue;
1930 }
1931 /* Delete it right now */
1932 consumer_del_stream(stream, data_ht);
1933 }
1934 rcu_read_unlock();
1935}
1936
1937/*
1938 * Delete metadata stream that are flagged for deletion (endpoint_status).
1939 */
1940static void validate_endpoint_status_metadata_stream(
1941 struct lttng_poll_event *pollset)
1942{
1943 struct lttng_ht_iter iter;
1944 struct lttng_consumer_stream *stream;
1945
1946 DBG("Consumer delete flagged metadata stream");
1947
1948 assert(pollset);
1949
1950 rcu_read_lock();
1951 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
1952 /* Validate delete flag of the stream */
1953 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
1954 continue;
1955 }
1956 /*
1957 * Remove from pollset so the metadata thread can continue without
1958 * blocking on a deleted stream.
1959 */
1960 lttng_poll_del(pollset, stream->wait_fd);
1961
1962 /* Delete it right now */
1963 consumer_del_metadata_stream(stream, metadata_ht);
1964 }
1965 rcu_read_unlock();
1966}
1967
1968/*
1969 * Thread polls on metadata file descriptor and write them on disk or on the
1970 * network.
1971 */
1972void *consumer_thread_metadata_poll(void *data)
1973{
1974 int ret, i, pollfd;
1975 uint32_t revents, nb_fd;
1976 struct lttng_consumer_stream *stream = NULL;
1977 struct lttng_ht_iter iter;
1978 struct lttng_ht_node_ulong *node;
1979 struct lttng_poll_event events;
1980 struct lttng_consumer_local_data *ctx = data;
1981 ssize_t len;
1982
1983 rcu_register_thread();
1984
1985 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
1986 if (!metadata_ht) {
1987 /* ENOMEM at this point. Better to bail out. */
1988 goto error;
1989 }
1990
1991 DBG("Thread metadata poll started");
1992
1993 /* Size is set to 1 for the consumer_metadata pipe */
1994 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
1995 if (ret < 0) {
1996 ERR("Poll set creation failed");
1997 goto end;
1998 }
1999
2000 ret = lttng_poll_add(&events, ctx->consumer_metadata_pipe[0], LPOLLIN);
2001 if (ret < 0) {
2002 goto end;
2003 }
2004
2005 /* Main loop */
2006 DBG("Metadata main loop started");
2007
2008 while (1) {
2009 /* Only the metadata pipe is set */
2010 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2011 goto end;
2012 }
2013
2014restart:
2015 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2016 ret = lttng_poll_wait(&events, -1);
2017 DBG("Metadata event catched in thread");
2018 if (ret < 0) {
2019 if (errno == EINTR) {
2020 ERR("Poll EINTR catched");
2021 goto restart;
2022 }
2023 goto error;
2024 }
2025
2026 nb_fd = ret;
2027
2028 /* From here, the event is a metadata wait fd */
2029 for (i = 0; i < nb_fd; i++) {
2030 revents = LTTNG_POLL_GETEV(&events, i);
2031 pollfd = LTTNG_POLL_GETFD(&events, i);
2032
2033 /* Just don't waste time if no returned events for the fd */
2034 if (!revents) {
2035 continue;
2036 }
2037
2038 if (pollfd == ctx->consumer_metadata_pipe[0]) {
2039 if (revents & (LPOLLERR | LPOLLHUP )) {
2040 DBG("Metadata thread pipe hung up");
2041 /*
2042 * Remove the pipe from the poll set and continue the loop
2043 * since their might be data to consume.
2044 */
2045 lttng_poll_del(&events, ctx->consumer_metadata_pipe[0]);
2046 ret = close(ctx->consumer_metadata_pipe[0]);
2047 if (ret < 0) {
2048 PERROR("close metadata pipe");
2049 }
2050 continue;
2051 } else if (revents & LPOLLIN) {
2052 do {
2053 /* Get the stream pointer received */
2054 ret = read(pollfd, &stream, sizeof(stream));
2055 } while (ret < 0 && errno == EINTR);
2056 if (ret < 0 ||
2057 ret < sizeof(struct lttng_consumer_stream *)) {
2058 PERROR("read metadata stream");
2059 /*
2060 * Let's continue here and hope we can still work
2061 * without stopping the consumer. XXX: Should we?
2062 */
2063 continue;
2064 }
2065
2066 /* A NULL stream means that the state has changed. */
2067 if (stream == NULL) {
2068 /* Check for deleted streams. */
2069 validate_endpoint_status_metadata_stream(&events);
2070 goto restart;
2071 }
2072
2073 DBG("Adding metadata stream %d to poll set",
2074 stream->wait_fd);
2075
2076 ret = add_metadata_stream(stream, metadata_ht);
2077 if (ret) {
2078 ERR("Unable to add metadata stream");
2079 /* Stream was not setup properly. Continuing. */
2080 consumer_del_metadata_stream(stream, NULL);
2081 continue;
2082 }
2083
2084 /* Add metadata stream to the global poll events list */
2085 lttng_poll_add(&events, stream->wait_fd,
2086 LPOLLIN | LPOLLPRI);
2087 }
2088
2089 /* Handle other stream */
2090 continue;
2091 }
2092
2093 rcu_read_lock();
2094 lttng_ht_lookup(metadata_ht, (void *)((unsigned long) pollfd),
2095 &iter);
2096 node = lttng_ht_iter_get_node_ulong(&iter);
2097 assert(node);
2098
2099 stream = caa_container_of(node, struct lttng_consumer_stream,
2100 node);
2101
2102 /* Check for error event */
2103 if (revents & (LPOLLERR | LPOLLHUP)) {
2104 DBG("Metadata fd %d is hup|err.", pollfd);
2105 if (!stream->hangup_flush_done
2106 && (consumer_data.type == LTTNG_CONSUMER32_UST
2107 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2108 DBG("Attempting to flush and consume the UST buffers");
2109 lttng_ustconsumer_on_stream_hangup(stream);
2110
2111 /* We just flushed the stream now read it. */
2112 do {
2113 len = ctx->on_buffer_ready(stream, ctx);
2114 /*
2115 * We don't check the return value here since if we get
2116 * a negative len, it means an error occured thus we
2117 * simply remove it from the poll set and free the
2118 * stream.
2119 */
2120 } while (len > 0);
2121 }
2122
2123 lttng_poll_del(&events, stream->wait_fd);
2124 /*
2125 * This call update the channel states, closes file descriptors
2126 * and securely free the stream.
2127 */
2128 consumer_del_metadata_stream(stream, metadata_ht);
2129 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2130 /* Get the data out of the metadata file descriptor */
2131 DBG("Metadata available on fd %d", pollfd);
2132 assert(stream->wait_fd == pollfd);
2133
2134 len = ctx->on_buffer_ready(stream, ctx);
2135 /* It's ok to have an unavailable sub-buffer */
2136 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2137 /* Clean up stream from consumer and free it. */
2138 lttng_poll_del(&events, stream->wait_fd);
2139 consumer_del_metadata_stream(stream, metadata_ht);
2140 } else if (len > 0) {
2141 stream->data_read = 1;
2142 }
2143 }
2144
2145 /* Release RCU lock for the stream looked up */
2146 rcu_read_unlock();
2147 }
2148 }
2149
2150error:
2151end:
2152 DBG("Metadata poll thread exiting");
2153 lttng_poll_clean(&events);
2154
2155 destroy_stream_ht(metadata_ht);
2156
2157 rcu_unregister_thread();
2158 return NULL;
2159}
2160
2161/*
2162 * This thread polls the fds in the set to consume the data and write
2163 * it to tracefile if necessary.
2164 */
2165void *consumer_thread_data_poll(void *data)
2166{
2167 int num_rdy, num_hup, high_prio, ret, i;
2168 struct pollfd *pollfd = NULL;
2169 /* local view of the streams */
2170 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2171 /* local view of consumer_data.fds_count */
2172 int nb_fd = 0;
2173 struct lttng_consumer_local_data *ctx = data;
2174 ssize_t len;
2175
2176 rcu_register_thread();
2177
2178 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2179 if (data_ht == NULL) {
2180 /* ENOMEM at this point. Better to bail out. */
2181 goto end;
2182 }
2183
2184 local_stream = zmalloc(sizeof(struct lttng_consumer_stream));
2185
2186 while (1) {
2187 high_prio = 0;
2188 num_hup = 0;
2189
2190 /*
2191 * the fds set has been updated, we need to update our
2192 * local array as well
2193 */
2194 pthread_mutex_lock(&consumer_data.lock);
2195 if (consumer_data.need_update) {
2196 free(pollfd);
2197 pollfd = NULL;
2198
2199 free(local_stream);
2200 local_stream = NULL;
2201
2202 /* allocate for all fds + 1 for the consumer_data_pipe */
2203 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2204 if (pollfd == NULL) {
2205 PERROR("pollfd malloc");
2206 pthread_mutex_unlock(&consumer_data.lock);
2207 goto end;
2208 }
2209
2210 /* allocate for all fds + 1 for the consumer_data_pipe */
2211 local_stream = zmalloc((consumer_data.stream_count + 1) *
2212 sizeof(struct lttng_consumer_stream));
2213 if (local_stream == NULL) {
2214 PERROR("local_stream malloc");
2215 pthread_mutex_unlock(&consumer_data.lock);
2216 goto end;
2217 }
2218 ret = update_poll_array(ctx, &pollfd, local_stream,
2219 data_ht);
2220 if (ret < 0) {
2221 ERR("Error in allocating pollfd or local_outfds");
2222 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2223 pthread_mutex_unlock(&consumer_data.lock);
2224 goto end;
2225 }
2226 nb_fd = ret;
2227 consumer_data.need_update = 0;
2228 }
2229 pthread_mutex_unlock(&consumer_data.lock);
2230
2231 /* No FDs and consumer_quit, consumer_cleanup the thread */
2232 if (nb_fd == 0 && consumer_quit == 1) {
2233 goto end;
2234 }
2235 /* poll on the array of fds */
2236 restart:
2237 DBG("polling on %d fd", nb_fd + 1);
2238 num_rdy = poll(pollfd, nb_fd + 1, -1);
2239 DBG("poll num_rdy : %d", num_rdy);
2240 if (num_rdy == -1) {
2241 /*
2242 * Restart interrupted system call.
2243 */
2244 if (errno == EINTR) {
2245 goto restart;
2246 }
2247 PERROR("Poll error");
2248 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2249 goto end;
2250 } else if (num_rdy == 0) {
2251 DBG("Polling thread timed out");
2252 goto end;
2253 }
2254
2255 /*
2256 * If the consumer_data_pipe triggered poll go directly to the
2257 * beginning of the loop to update the array. We want to prioritize
2258 * array update over low-priority reads.
2259 */
2260 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2261 ssize_t pipe_readlen;
2262
2263 DBG("consumer_data_pipe wake up");
2264 /* Consume 1 byte of pipe data */
2265 do {
2266 pipe_readlen = read(ctx->consumer_data_pipe[0], &new_stream,
2267 sizeof(new_stream));
2268 } while (pipe_readlen == -1 && errno == EINTR);
2269 if (pipe_readlen < 0) {
2270 PERROR("read consumer data pipe");
2271 /* Continue so we can at least handle the current stream(s). */
2272 continue;
2273 }
2274
2275 /*
2276 * If the stream is NULL, just ignore it. It's also possible that
2277 * the sessiond poll thread changed the consumer_quit state and is
2278 * waking us up to test it.
2279 */
2280 if (new_stream == NULL) {
2281 validate_endpoint_status_data_stream();
2282 continue;
2283 }
2284
2285 ret = add_stream(new_stream, data_ht);
2286 if (ret) {
2287 ERR("Consumer add stream %d failed. Continuing",
2288 new_stream->key);
2289 /*
2290 * At this point, if the add_stream fails, it is not in the
2291 * hash table thus passing the NULL value here.
2292 */
2293 consumer_del_stream(new_stream, NULL);
2294 }
2295
2296 /* Continue to update the local streams and handle prio ones */
2297 continue;
2298 }
2299
2300 /* Take care of high priority channels first. */
2301 for (i = 0; i < nb_fd; i++) {
2302 if (local_stream[i] == NULL) {
2303 continue;
2304 }
2305 if (pollfd[i].revents & POLLPRI) {
2306 DBG("Urgent read on fd %d", pollfd[i].fd);
2307 high_prio = 1;
2308 len = ctx->on_buffer_ready(local_stream[i], ctx);
2309 /* it's ok to have an unavailable sub-buffer */
2310 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2311 /* Clean the stream and free it. */
2312 consumer_del_stream(local_stream[i], data_ht);
2313 local_stream[i] = NULL;
2314 } else if (len > 0) {
2315 local_stream[i]->data_read = 1;
2316 }
2317 }
2318 }
2319
2320 /*
2321 * If we read high prio channel in this loop, try again
2322 * for more high prio data.
2323 */
2324 if (high_prio) {
2325 continue;
2326 }
2327
2328 /* Take care of low priority channels. */
2329 for (i = 0; i < nb_fd; i++) {
2330 if (local_stream[i] == NULL) {
2331 continue;
2332 }
2333 if ((pollfd[i].revents & POLLIN) ||
2334 local_stream[i]->hangup_flush_done) {
2335 DBG("Normal read on fd %d", pollfd[i].fd);
2336 len = ctx->on_buffer_ready(local_stream[i], ctx);
2337 /* it's ok to have an unavailable sub-buffer */
2338 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2339 /* Clean the stream and free it. */
2340 consumer_del_stream(local_stream[i], data_ht);
2341 local_stream[i] = NULL;
2342 } else if (len > 0) {
2343 local_stream[i]->data_read = 1;
2344 }
2345 }
2346 }
2347
2348 /* Handle hangup and errors */
2349 for (i = 0; i < nb_fd; i++) {
2350 if (local_stream[i] == NULL) {
2351 continue;
2352 }
2353 if (!local_stream[i]->hangup_flush_done
2354 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2355 && (consumer_data.type == LTTNG_CONSUMER32_UST
2356 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2357 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2358 pollfd[i].fd);
2359 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2360 /* Attempt read again, for the data we just flushed. */
2361 local_stream[i]->data_read = 1;
2362 }
2363 /*
2364 * If the poll flag is HUP/ERR/NVAL and we have
2365 * read no data in this pass, we can remove the
2366 * stream from its hash table.
2367 */
2368 if ((pollfd[i].revents & POLLHUP)) {
2369 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2370 if (!local_stream[i]->data_read) {
2371 consumer_del_stream(local_stream[i], data_ht);
2372 local_stream[i] = NULL;
2373 num_hup++;
2374 }
2375 } else if (pollfd[i].revents & POLLERR) {
2376 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2377 if (!local_stream[i]->data_read) {
2378 consumer_del_stream(local_stream[i], data_ht);
2379 local_stream[i] = NULL;
2380 num_hup++;
2381 }
2382 } else if (pollfd[i].revents & POLLNVAL) {
2383 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2384 if (!local_stream[i]->data_read) {
2385 consumer_del_stream(local_stream[i], data_ht);
2386 local_stream[i] = NULL;
2387 num_hup++;
2388 }
2389 }
2390 if (local_stream[i] != NULL) {
2391 local_stream[i]->data_read = 0;
2392 }
2393 }
2394 }
2395end:
2396 DBG("polling thread exiting");
2397 free(pollfd);
2398 free(local_stream);
2399
2400 /*
2401 * Close the write side of the pipe so epoll_wait() in
2402 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2403 * read side of the pipe. If we close them both, epoll_wait strangely does
2404 * not return and could create a endless wait period if the pipe is the
2405 * only tracked fd in the poll set. The thread will take care of closing
2406 * the read side.
2407 */
2408 ret = close(ctx->consumer_metadata_pipe[1]);
2409 if (ret < 0) {
2410 PERROR("close data pipe");
2411 }
2412
2413 destroy_data_stream_ht(data_ht);
2414
2415 rcu_unregister_thread();
2416 return NULL;
2417}
2418
2419/*
2420 * This thread listens on the consumerd socket and receives the file
2421 * descriptors from the session daemon.
2422 */
2423void *consumer_thread_sessiond_poll(void *data)
2424{
2425 int sock = -1, client_socket, ret;
2426 /*
2427 * structure to poll for incoming data on communication socket avoids
2428 * making blocking sockets.
2429 */
2430 struct pollfd consumer_sockpoll[2];
2431 struct lttng_consumer_local_data *ctx = data;
2432
2433 rcu_register_thread();
2434
2435 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2436 unlink(ctx->consumer_command_sock_path);
2437 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2438 if (client_socket < 0) {
2439 ERR("Cannot create command socket");
2440 goto end;
2441 }
2442
2443 ret = lttcomm_listen_unix_sock(client_socket);
2444 if (ret < 0) {
2445 goto end;
2446 }
2447
2448 DBG("Sending ready command to lttng-sessiond");
2449 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2450 /* return < 0 on error, but == 0 is not fatal */
2451 if (ret < 0) {
2452 ERR("Error sending ready command to lttng-sessiond");
2453 goto end;
2454 }
2455
2456 ret = fcntl(client_socket, F_SETFL, O_NONBLOCK);
2457 if (ret < 0) {
2458 PERROR("fcntl O_NONBLOCK");
2459 goto end;
2460 }
2461
2462 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2463 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2464 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2465 consumer_sockpoll[1].fd = client_socket;
2466 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2467
2468 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2469 goto end;
2470 }
2471 DBG("Connection on client_socket");
2472
2473 /* Blocking call, waiting for transmission */
2474 sock = lttcomm_accept_unix_sock(client_socket);
2475 if (sock < 0) {
2476 WARN("On accept");
2477 goto end;
2478 }
2479 ret = fcntl(sock, F_SETFL, O_NONBLOCK);
2480 if (ret < 0) {
2481 PERROR("fcntl O_NONBLOCK");
2482 goto end;
2483 }
2484
2485 /* This socket is not useful anymore. */
2486 ret = close(client_socket);
2487 if (ret < 0) {
2488 PERROR("close client_socket");
2489 }
2490 client_socket = -1;
2491
2492 /* update the polling structure to poll on the established socket */
2493 consumer_sockpoll[1].fd = sock;
2494 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2495
2496 while (1) {
2497 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2498 goto end;
2499 }
2500 DBG("Incoming command on sock");
2501 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2502 if (ret == -ENOENT) {
2503 DBG("Received STOP command");
2504 goto end;
2505 }
2506 if (ret <= 0) {
2507 /*
2508 * This could simply be a session daemon quitting. Don't output
2509 * ERR() here.
2510 */
2511 DBG("Communication interrupted on command socket");
2512 goto end;
2513 }
2514 if (consumer_quit) {
2515 DBG("consumer_thread_receive_fds received quit from signal");
2516 goto end;
2517 }
2518 DBG("received command on sock");
2519 }
2520end:
2521 DBG("Consumer thread sessiond poll exiting");
2522
2523 /*
2524 * when all fds have hung up, the polling thread
2525 * can exit cleanly
2526 */
2527 consumer_quit = 1;
2528
2529 /*
2530 * Notify the data poll thread to poll back again and test the
2531 * consumer_quit state that we just set so to quit gracefully.
2532 */
2533 notify_thread_pipe(ctx->consumer_data_pipe[1]);
2534
2535 /* Cleaning up possibly open sockets. */
2536 if (sock >= 0) {
2537 ret = close(sock);
2538 if (ret < 0) {
2539 PERROR("close sock sessiond poll");
2540 }
2541 }
2542 if (client_socket >= 0) {
2543 ret = close(sock);
2544 if (ret < 0) {
2545 PERROR("close client_socket sessiond poll");
2546 }
2547 }
2548
2549 rcu_unregister_thread();
2550 return NULL;
2551}
2552
2553ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
2554 struct lttng_consumer_local_data *ctx)
2555{
2556 ssize_t ret;
2557
2558 pthread_mutex_lock(&stream->lock);
2559
2560 switch (consumer_data.type) {
2561 case LTTNG_CONSUMER_KERNEL:
2562 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
2563 break;
2564 case LTTNG_CONSUMER32_UST:
2565 case LTTNG_CONSUMER64_UST:
2566 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
2567 break;
2568 default:
2569 ERR("Unknown consumer_data type");
2570 assert(0);
2571 ret = -ENOSYS;
2572 break;
2573 }
2574
2575 pthread_mutex_unlock(&stream->lock);
2576 return ret;
2577}
2578
2579int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
2580{
2581 switch (consumer_data.type) {
2582 case LTTNG_CONSUMER_KERNEL:
2583 return lttng_kconsumer_on_recv_stream(stream);
2584 case LTTNG_CONSUMER32_UST:
2585 case LTTNG_CONSUMER64_UST:
2586 return lttng_ustconsumer_on_recv_stream(stream);
2587 default:
2588 ERR("Unknown consumer_data type");
2589 assert(0);
2590 return -ENOSYS;
2591 }
2592}
2593
2594/*
2595 * Allocate and set consumer data hash tables.
2596 */
2597void lttng_consumer_init(void)
2598{
2599 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2600 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2601 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_ULONG);
2602}
2603
2604/*
2605 * Process the ADD_RELAYD command receive by a consumer.
2606 *
2607 * This will create a relayd socket pair and add it to the relayd hash table.
2608 * The caller MUST acquire a RCU read side lock before calling it.
2609 */
2610int consumer_add_relayd_socket(int net_seq_idx, int sock_type,
2611 struct lttng_consumer_local_data *ctx, int sock,
2612 struct pollfd *consumer_sockpoll, struct lttcomm_sock *relayd_sock,
2613 unsigned int sessiond_id)
2614{
2615 int fd = -1, ret = -1, relayd_created = 0;
2616 enum lttng_error_code ret_code = LTTNG_OK;
2617 struct consumer_relayd_sock_pair *relayd;
2618
2619 DBG("Consumer adding relayd socket (idx: %d)", net_seq_idx);
2620
2621 /* First send a status message before receiving the fds. */
2622 ret = consumer_send_status_msg(sock, ret_code);
2623 if (ret < 0) {
2624 /* Somehow, the session daemon is not responding anymore. */
2625 goto error;
2626 }
2627
2628 /* Get relayd reference if exists. */
2629 relayd = consumer_find_relayd(net_seq_idx);
2630 if (relayd == NULL) {
2631 /* Not found. Allocate one. */
2632 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
2633 if (relayd == NULL) {
2634 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_OUTFD_ERROR);
2635 ret = -1;
2636 goto error;
2637 }
2638 relayd->sessiond_session_id = (uint64_t) sessiond_id;
2639 relayd_created = 1;
2640 }
2641
2642 /* Poll on consumer socket. */
2643 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2644 ret = -EINTR;
2645 goto error;
2646 }
2647
2648 /* Get relayd socket from session daemon */
2649 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
2650 if (ret != sizeof(fd)) {
2651 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
2652 ret = -1;
2653 fd = -1; /* Just in case it gets set with an invalid value. */
2654 goto error_close;
2655 }
2656
2657 /* We have the fds without error. Send status back. */
2658 ret = consumer_send_status_msg(sock, ret_code);
2659 if (ret < 0) {
2660 /* Somehow, the session daemon is not responding anymore. */
2661 goto error;
2662 }
2663
2664 /* Copy socket information and received FD */
2665 switch (sock_type) {
2666 case LTTNG_STREAM_CONTROL:
2667 /* Copy received lttcomm socket */
2668 lttcomm_copy_sock(&relayd->control_sock, relayd_sock);
2669 ret = lttcomm_create_sock(&relayd->control_sock);
2670 /* Immediately try to close the created socket if valid. */
2671 if (relayd->control_sock.fd >= 0) {
2672 if (close(relayd->control_sock.fd)) {
2673 PERROR("close relayd control socket");
2674 }
2675 }
2676 /* Handle create_sock error. */
2677 if (ret < 0) {
2678 goto error;
2679 }
2680
2681 /* Assign new file descriptor */
2682 relayd->control_sock.fd = fd;
2683
2684 /*
2685 * Create a session on the relayd and store the returned id. Lock the
2686 * control socket mutex if the relayd was NOT created before.
2687 */
2688 if (!relayd_created) {
2689 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2690 }
2691 ret = relayd_create_session(&relayd->control_sock,
2692 &relayd->relayd_session_id);
2693 if (!relayd_created) {
2694 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2695 }
2696 if (ret < 0) {
2697 /*
2698 * Close all sockets of a relayd object. It will be freed if it was
2699 * created at the error code path or else it will be garbage
2700 * collect.
2701 */
2702 (void) relayd_close(&relayd->control_sock);
2703 (void) relayd_close(&relayd->data_sock);
2704 goto error;
2705 }
2706
2707 break;
2708 case LTTNG_STREAM_DATA:
2709 /* Copy received lttcomm socket */
2710 lttcomm_copy_sock(&relayd->data_sock, relayd_sock);
2711 ret = lttcomm_create_sock(&relayd->data_sock);
2712 /* Immediately try to close the created socket if valid. */
2713 if (relayd->data_sock.fd >= 0) {
2714 if (close(relayd->data_sock.fd)) {
2715 PERROR("close relayd data socket");
2716 }
2717 }
2718 /* Handle create_sock error. */
2719 if (ret < 0) {
2720 goto error;
2721 }
2722
2723 /* Assign new file descriptor */
2724 relayd->data_sock.fd = fd;
2725 break;
2726 default:
2727 ERR("Unknown relayd socket type (%d)", sock_type);
2728 ret = -1;
2729 goto error;
2730 }
2731
2732 DBG("Consumer %s socket created successfully with net idx %d (fd: %d)",
2733 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
2734 relayd->net_seq_idx, fd);
2735
2736 /*
2737 * Add relayd socket pair to consumer data hashtable. If object already
2738 * exists or on error, the function gracefully returns.
2739 */
2740 add_relayd(relayd);
2741
2742 /* All good! */
2743 return 0;
2744
2745error:
2746 /* Close received socket if valid. */
2747 if (fd >= 0) {
2748 if (close(fd)) {
2749 PERROR("close received socket");
2750 }
2751 }
2752
2753error_close:
2754 if (relayd_created) {
2755 free(relayd);
2756 }
2757
2758 return ret;
2759}
2760
2761/*
2762 * Try to lock the stream mutex.
2763 *
2764 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
2765 */
2766static int stream_try_lock(struct lttng_consumer_stream *stream)
2767{
2768 int ret;
2769
2770 assert(stream);
2771
2772 /*
2773 * Try to lock the stream mutex. On failure, we know that the stream is
2774 * being used else where hence there is data still being extracted.
2775 */
2776 ret = pthread_mutex_trylock(&stream->lock);
2777 if (ret) {
2778 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
2779 ret = 0;
2780 goto end;
2781 }
2782
2783 ret = 1;
2784
2785end:
2786 return ret;
2787}
2788
2789/*
2790 * Search for a relayd associated to the session id and return the reference.
2791 *
2792 * A rcu read side lock MUST be acquire before calling this function and locked
2793 * until the relayd object is no longer necessary.
2794 */
2795static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
2796{
2797 struct lttng_ht_iter iter;
2798 struct consumer_relayd_sock_pair *relayd = NULL;
2799
2800 /* Iterate over all relayd since they are indexed by net_seq_idx. */
2801 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
2802 node.node) {
2803 /*
2804 * Check by sessiond id which is unique here where the relayd session
2805 * id might not be when having multiple relayd.
2806 */
2807 if (relayd->sessiond_session_id == id) {
2808 /* Found the relayd. There can be only one per id. */
2809 goto found;
2810 }
2811 }
2812
2813 return NULL;
2814
2815found:
2816 return relayd;
2817}
2818
2819/*
2820 * Check if for a given session id there is still data needed to be extract
2821 * from the buffers.
2822 *
2823 * Return 1 if data is pending or else 0 meaning ready to be read.
2824 */
2825int consumer_data_pending(uint64_t id)
2826{
2827 int ret;
2828 struct lttng_ht_iter iter;
2829 struct lttng_ht *ht;
2830 struct lttng_consumer_stream *stream;
2831 struct consumer_relayd_sock_pair *relayd = NULL;
2832 int (*data_pending)(struct lttng_consumer_stream *);
2833
2834 DBG("Consumer data pending command on session id %" PRIu64, id);
2835
2836 rcu_read_lock();
2837 pthread_mutex_lock(&consumer_data.lock);
2838
2839 switch (consumer_data.type) {
2840 case LTTNG_CONSUMER_KERNEL:
2841 data_pending = lttng_kconsumer_data_pending;
2842 break;
2843 case LTTNG_CONSUMER32_UST:
2844 case LTTNG_CONSUMER64_UST:
2845 data_pending = lttng_ustconsumer_data_pending;
2846 break;
2847 default:
2848 ERR("Unknown consumer data type");
2849 assert(0);
2850 }
2851
2852 /* Ease our life a bit */
2853 ht = consumer_data.stream_list_ht;
2854
2855 relayd = find_relayd_by_session_id(id);
2856 if (relayd) {
2857 /* Send init command for data pending. */
2858 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2859 ret = relayd_begin_data_pending(&relayd->control_sock,
2860 relayd->relayd_session_id);
2861 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2862 if (ret < 0) {
2863 /* Communication error thus the relayd so no data pending. */
2864 goto data_not_pending;
2865 }
2866 }
2867
2868 cds_lfht_for_each_entry_duplicate(ht->ht,
2869 ht->hash_fct((void *)((unsigned long) id), lttng_ht_seed),
2870 ht->match_fct, (void *)((unsigned long) id),
2871 &iter.iter, stream, node_session_id.node) {
2872 /* If this call fails, the stream is being used hence data pending. */
2873 ret = stream_try_lock(stream);
2874 if (!ret) {
2875 goto data_pending;
2876 }
2877
2878 /*
2879 * A removed node from the hash table indicates that the stream has
2880 * been deleted thus having a guarantee that the buffers are closed
2881 * on the consumer side. However, data can still be transmitted
2882 * over the network so don't skip the relayd check.
2883 */
2884 ret = cds_lfht_is_node_deleted(&stream->node.node);
2885 if (!ret) {
2886 /* Check the stream if there is data in the buffers. */
2887 ret = data_pending(stream);
2888 if (ret == 1) {
2889 pthread_mutex_unlock(&stream->lock);
2890 goto data_pending;
2891 }
2892 }
2893
2894 /* Relayd check */
2895 if (relayd) {
2896 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2897 if (stream->metadata_flag) {
2898 ret = relayd_quiescent_control(&relayd->control_sock,
2899 stream->relayd_stream_id);
2900 } else {
2901 ret = relayd_data_pending(&relayd->control_sock,
2902 stream->relayd_stream_id,
2903 stream->next_net_seq_num - 1);
2904 }
2905 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2906 if (ret == 1) {
2907 pthread_mutex_unlock(&stream->lock);
2908 goto data_pending;
2909 }
2910 }
2911 pthread_mutex_unlock(&stream->lock);
2912 }
2913
2914 if (relayd) {
2915 unsigned int is_data_inflight = 0;
2916
2917 /* Send init command for data pending. */
2918 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
2919 ret = relayd_end_data_pending(&relayd->control_sock,
2920 relayd->relayd_session_id, &is_data_inflight);
2921 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
2922 if (ret < 0) {
2923 goto data_not_pending;
2924 }
2925 if (is_data_inflight) {
2926 goto data_pending;
2927 }
2928 }
2929
2930 /*
2931 * Finding _no_ node in the hash table and no inflight data means that the
2932 * stream(s) have been removed thus data is guaranteed to be available for
2933 * analysis from the trace files.
2934 */
2935
2936data_not_pending:
2937 /* Data is available to be read by a viewer. */
2938 pthread_mutex_unlock(&consumer_data.lock);
2939 rcu_read_unlock();
2940 return 0;
2941
2942data_pending:
2943 /* Data is still being extracted from buffers. */
2944 pthread_mutex_unlock(&consumer_data.lock);
2945 rcu_read_unlock();
2946 return 1;
2947}
2948
2949/*
2950 * Send a ret code status message to the sessiond daemon.
2951 *
2952 * Return the sendmsg() return value.
2953 */
2954int consumer_send_status_msg(int sock, int ret_code)
2955{
2956 struct lttcomm_consumer_status_msg msg;
2957
2958 msg.ret_code = ret_code;
2959
2960 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
2961}
2962
2963/*
2964 * Send a channel status message to the sessiond daemon.
2965 *
2966 * Return the sendmsg() return value.
2967 */
2968int consumer_send_status_channel(int sock,
2969 struct lttng_consumer_channel *channel)
2970{
2971 struct lttcomm_consumer_status_channel msg;
2972
2973 assert(sock >= 0);
2974
2975 if (!channel) {
2976 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
2977 } else {
2978 msg.ret_code = LTTNG_OK;
2979 msg.key = channel->key;
2980 msg.stream_count = channel->streams.count;
2981 }
2982
2983 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
2984}
This page took 0.076955 seconds and 4 git commands to generate.