Fix: add missing URCU_TLS to logging time variable
[lttng-tools.git] / src / common / hashtable / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
52 * - An index of bucket nodes is kept. These bucket nodes are the hash
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
64 * - Split-counters are used to keep track of the number of
65 * nodes within the hash table for automatic resize triggering.
66 * - Resize operation initiated by long chain detection is executed by a
67 * call_rcu thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
89 * linked-list (the start node is never removed) and that it does not
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
114 *
115 * Ordering Guarantees:
116 *
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
131 *
132 * We define "write" operations as any of cds_lfht_add,
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
206 *
207 * Bucket node tables:
208 *
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
220 * When growing/shrinking, we only focus on the last bucket node table
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
226 *
227 * A bit of ascii art explanation:
228 *
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
251 * | | | 3 011 110 | <- |
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
256 */
257
258 #define _LGPL_SOURCE
259 #define _GNU_SOURCE
260 #include <stdlib.h>
261 #include <errno.h>
262 #include <assert.h>
263 #include <stdio.h>
264 #include <stdint.h>
265 #include <string.h>
266 #include <sched.h>
267
268 #include "config.h"
269 #include <urcu.h>
270 #include <urcu-call-rcu.h>
271 #include <urcu/arch.h>
272 #include <urcu/uatomic.h>
273 #include <urcu/compiler.h>
274 #include <stdio.h>
275 #include <pthread.h>
276
277 #include "rculfhash.h"
278 #include "rculfhash-internal.h"
279 #include "urcu-flavor.h"
280
281 /*
282 * We need to lock pthread exit, which deadlocks __nptl_setxid in the runas
283 * clone. This work-around will be allowed to be removed when runas.c gets
284 * changed to do an exec() before issuing seteuid/setegid. See
285 * http://sourceware.org/bugzilla/show_bug.cgi?id=10184 for details.
286 */
287 pthread_mutex_t lttng_libc_state_lock = PTHREAD_MUTEX_INITIALIZER;
288
289 /*
290 * Split-counters lazily update the global counter each 1024
291 * addition/removal. It automatically keeps track of resize required.
292 * We use the bucket length as indicator for need to expand for small
293 * tables and machines lacking per-cpu data suppport.
294 */
295 #define COUNT_COMMIT_ORDER 10
296 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
297 #define CHAIN_LEN_TARGET 1
298 #define CHAIN_LEN_RESIZE_THRESHOLD 3
299
300 /*
301 * Define the minimum table size.
302 */
303 #define MIN_TABLE_ORDER 0
304 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
305
306 /*
307 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
308 */
309 #define MIN_PARTITION_PER_THREAD_ORDER 12
310 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
311
312 /*
313 * The removed flag needs to be updated atomically with the pointer.
314 * It indicates that no node must attach to the node scheduled for
315 * removal, and that node garbage collection must be performed.
316 * The bucket flag does not require to be updated atomically with the
317 * pointer, but it is added as a pointer low bit flag to save space.
318 * The "removal owner" flag is used to detect which of the "del"
319 * operation that has set the "removed flag" gets to return the removed
320 * node to its caller. Note that the replace operation does not need to
321 * iteract with the "removal owner" flag, because it validates that
322 * the "removed" flag is not set before performing its cmpxchg.
323 */
324 #define REMOVED_FLAG (1UL << 0)
325 #define BUCKET_FLAG (1UL << 1)
326 #define REMOVAL_OWNER_FLAG (1UL << 2)
327 #define FLAGS_MASK ((1UL << 3) - 1)
328
329 /* Value of the end pointer. Should not interact with flags. */
330 #define END_VALUE NULL
331
332 /*
333 * ht_items_count: Split-counters counting the number of node addition
334 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
335 * is set at hash table creation.
336 *
337 * These are free-running counters, never reset to zero. They count the
338 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
339 * operations to update the global counter. We choose a power-of-2 value
340 * for the trigger to deal with 32 or 64-bit overflow of the counter.
341 */
342 struct ht_items_count {
343 unsigned long add, del;
344 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
345
346 /*
347 * rcu_resize_work: Contains arguments passed to RCU worker thread
348 * responsible for performing lazy resize.
349 */
350 struct rcu_resize_work {
351 struct rcu_head head;
352 struct cds_lfht *ht;
353 };
354
355 /*
356 * partition_resize_work: Contains arguments passed to worker threads
357 * executing the hash table resize on partitions of the hash table
358 * assigned to each processor's worker thread.
359 */
360 struct partition_resize_work {
361 pthread_t thread_id;
362 struct cds_lfht *ht;
363 unsigned long i, start, len;
364 void (*fct)(struct cds_lfht *ht, unsigned long i,
365 unsigned long start, unsigned long len);
366 };
367
368 /*
369 * Algorithm to reverse bits in a word by lookup table, extended to
370 * 64-bit words.
371 * Source:
372 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
373 * Originally from Public Domain.
374 */
375
376 static const uint8_t BitReverseTable256[256] =
377 {
378 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
379 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
380 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
381 R6(0), R6(2), R6(1), R6(3)
382 };
383 #undef R2
384 #undef R4
385 #undef R6
386
387 static
388 uint8_t bit_reverse_u8(uint8_t v)
389 {
390 return BitReverseTable256[v];
391 }
392
393 static __attribute__((unused))
394 uint32_t bit_reverse_u32(uint32_t v)
395 {
396 return ((uint32_t) bit_reverse_u8(v) << 24) |
397 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
398 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
399 ((uint32_t) bit_reverse_u8(v >> 24));
400 }
401
402 static __attribute__((unused))
403 uint64_t bit_reverse_u64(uint64_t v)
404 {
405 return ((uint64_t) bit_reverse_u8(v) << 56) |
406 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
407 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
408 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
409 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
410 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
411 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
412 ((uint64_t) bit_reverse_u8(v >> 56));
413 }
414
415 static
416 unsigned long bit_reverse_ulong(unsigned long v)
417 {
418 #if (CAA_BITS_PER_LONG == 32)
419 return bit_reverse_u32(v);
420 #else
421 return bit_reverse_u64(v);
422 #endif
423 }
424
425 /*
426 * fls: returns the position of the most significant bit.
427 * Returns 0 if no bit is set, else returns the position of the most
428 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
429 */
430 #if defined(__i386) || defined(__x86_64)
431 static inline
432 unsigned int fls_u32(uint32_t x)
433 {
434 int r;
435
436 asm("bsrl %1,%0\n\t"
437 "jnz 1f\n\t"
438 "movl $-1,%0\n\t"
439 "1:\n\t"
440 : "=r" (r) : "rm" (x));
441 return r + 1;
442 }
443 #define HAS_FLS_U32
444 #endif
445
446 #if defined(__x86_64)
447 static inline
448 unsigned int fls_u64(uint64_t x)
449 {
450 long r;
451
452 asm("bsrq %1,%0\n\t"
453 "jnz 1f\n\t"
454 "movq $-1,%0\n\t"
455 "1:\n\t"
456 : "=r" (r) : "rm" (x));
457 return r + 1;
458 }
459 #define HAS_FLS_U64
460 #endif
461
462 #ifndef HAS_FLS_U64
463 static __attribute__((unused))
464 unsigned int fls_u64(uint64_t x)
465 {
466 unsigned int r = 64;
467
468 if (!x)
469 return 0;
470
471 if (!(x & 0xFFFFFFFF00000000ULL)) {
472 x <<= 32;
473 r -= 32;
474 }
475 if (!(x & 0xFFFF000000000000ULL)) {
476 x <<= 16;
477 r -= 16;
478 }
479 if (!(x & 0xFF00000000000000ULL)) {
480 x <<= 8;
481 r -= 8;
482 }
483 if (!(x & 0xF000000000000000ULL)) {
484 x <<= 4;
485 r -= 4;
486 }
487 if (!(x & 0xC000000000000000ULL)) {
488 x <<= 2;
489 r -= 2;
490 }
491 if (!(x & 0x8000000000000000ULL)) {
492 x <<= 1;
493 r -= 1;
494 }
495 return r;
496 }
497 #endif
498
499 #ifndef HAS_FLS_U32
500 static __attribute__((unused))
501 unsigned int fls_u32(uint32_t x)
502 {
503 unsigned int r = 32;
504
505 if (!x)
506 return 0;
507 if (!(x & 0xFFFF0000U)) {
508 x <<= 16;
509 r -= 16;
510 }
511 if (!(x & 0xFF000000U)) {
512 x <<= 8;
513 r -= 8;
514 }
515 if (!(x & 0xF0000000U)) {
516 x <<= 4;
517 r -= 4;
518 }
519 if (!(x & 0xC0000000U)) {
520 x <<= 2;
521 r -= 2;
522 }
523 if (!(x & 0x80000000U)) {
524 x <<= 1;
525 r -= 1;
526 }
527 return r;
528 }
529 #endif
530
531 unsigned int cds_lfht_fls_ulong(unsigned long x)
532 {
533 #if (CAA_BITS_PER_LONG == 32)
534 return fls_u32(x);
535 #else
536 return fls_u64(x);
537 #endif
538 }
539
540 /*
541 * Return the minimum order for which x <= (1UL << order).
542 * Return -1 if x is 0.
543 */
544 int cds_lfht_get_count_order_u32(uint32_t x)
545 {
546 if (!x)
547 return -1;
548
549 return fls_u32(x - 1);
550 }
551
552 /*
553 * Return the minimum order for which x <= (1UL << order).
554 * Return -1 if x is 0.
555 */
556 int cds_lfht_get_count_order_ulong(unsigned long x)
557 {
558 if (!x)
559 return -1;
560
561 return cds_lfht_fls_ulong(x - 1);
562 }
563
564 static
565 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
566
567 static
568 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
569 unsigned long count);
570
571 static long nr_cpus_mask = -1;
572 static long split_count_mask = -1;
573 static int split_count_order = -1;
574
575 #if defined(HAVE_SYSCONF)
576 static void ht_init_nr_cpus_mask(void)
577 {
578 long maxcpus;
579
580 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
581 if (maxcpus <= 0) {
582 nr_cpus_mask = -2;
583 return;
584 }
585 /*
586 * round up number of CPUs to next power of two, so we
587 * can use & for modulo.
588 */
589 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
590 nr_cpus_mask = maxcpus - 1;
591 }
592 #else /* #if defined(HAVE_SYSCONF) */
593 static void ht_init_nr_cpus_mask(void)
594 {
595 nr_cpus_mask = -2;
596 }
597 #endif /* #else #if defined(HAVE_SYSCONF) */
598
599 static
600 void alloc_split_items_count(struct cds_lfht *ht)
601 {
602 struct ht_items_count *count;
603
604 if (nr_cpus_mask == -1) {
605 ht_init_nr_cpus_mask();
606 if (nr_cpus_mask < 0)
607 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
608 else
609 split_count_mask = nr_cpus_mask;
610 split_count_order =
611 cds_lfht_get_count_order_ulong(split_count_mask + 1);
612 }
613
614 assert(split_count_mask >= 0);
615
616 if (ht->flags & CDS_LFHT_ACCOUNTING) {
617 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
618 assert(ht->split_count);
619 } else {
620 ht->split_count = NULL;
621 }
622 }
623
624 static
625 void free_split_items_count(struct cds_lfht *ht)
626 {
627 poison_free(ht->split_count);
628 }
629
630 #if defined(HAVE_SCHED_GETCPU) && !defined(VALGRIND)
631 static
632 int ht_get_split_count_index(unsigned long hash)
633 {
634 int cpu;
635
636 assert(split_count_mask >= 0);
637 cpu = sched_getcpu();
638 if (caa_unlikely(cpu < 0))
639 return hash & split_count_mask;
640 else
641 return cpu & split_count_mask;
642 }
643 #else /* #if defined(HAVE_SCHED_GETCPU) */
644 static
645 int ht_get_split_count_index(unsigned long hash)
646 {
647 return hash & split_count_mask;
648 }
649 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
650
651 static
652 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
653 {
654 unsigned long split_count;
655 int index;
656 long count;
657
658 if (caa_unlikely(!ht->split_count))
659 return;
660 index = ht_get_split_count_index(hash);
661 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
662 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
663 return;
664 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
665
666 dbg_printf("add split count %lu\n", split_count);
667 count = uatomic_add_return(&ht->count,
668 1UL << COUNT_COMMIT_ORDER);
669 if (caa_likely(count & (count - 1)))
670 return;
671 /* Only if global count is power of 2 */
672
673 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
674 return;
675 dbg_printf("add set global %ld\n", count);
676 cds_lfht_resize_lazy_count(ht, size,
677 count >> (CHAIN_LEN_TARGET - 1));
678 }
679
680 static
681 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
682 {
683 unsigned long split_count;
684 int index;
685 long count;
686
687 if (caa_unlikely(!ht->split_count))
688 return;
689 index = ht_get_split_count_index(hash);
690 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
691 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
692 return;
693 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
694
695 dbg_printf("del split count %lu\n", split_count);
696 count = uatomic_add_return(&ht->count,
697 -(1UL << COUNT_COMMIT_ORDER));
698 if (caa_likely(count & (count - 1)))
699 return;
700 /* Only if global count is power of 2 */
701
702 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
703 return;
704 dbg_printf("del set global %ld\n", count);
705 /*
706 * Don't shrink table if the number of nodes is below a
707 * certain threshold.
708 */
709 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
710 return;
711 cds_lfht_resize_lazy_count(ht, size,
712 count >> (CHAIN_LEN_TARGET - 1));
713 }
714
715 static
716 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
717 {
718 unsigned long count;
719
720 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
721 return;
722 count = uatomic_read(&ht->count);
723 /*
724 * Use bucket-local length for small table expand and for
725 * environments lacking per-cpu data support.
726 */
727 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
728 return;
729 if (chain_len > 100)
730 dbg_printf("WARNING: large chain length: %u.\n",
731 chain_len);
732 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
733 int growth;
734
735 /*
736 * Ideal growth calculated based on chain length.
737 */
738 growth = cds_lfht_get_count_order_u32(chain_len
739 - (CHAIN_LEN_TARGET - 1));
740 if ((ht->flags & CDS_LFHT_ACCOUNTING)
741 && (size << growth)
742 >= (1UL << (COUNT_COMMIT_ORDER
743 + split_count_order))) {
744 /*
745 * If ideal growth expands the hash table size
746 * beyond the "small hash table" sizes, use the
747 * maximum small hash table size to attempt
748 * expanding the hash table. This only applies
749 * when node accounting is available, otherwise
750 * the chain length is used to expand the hash
751 * table in every case.
752 */
753 growth = COUNT_COMMIT_ORDER + split_count_order
754 - cds_lfht_get_count_order_ulong(size);
755 if (growth <= 0)
756 return;
757 }
758 cds_lfht_resize_lazy_grow(ht, size, growth);
759 }
760 }
761
762 static
763 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
764 {
765 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
766 }
767
768 static
769 int is_removed(struct cds_lfht_node *node)
770 {
771 return ((unsigned long) node) & REMOVED_FLAG;
772 }
773
774 static
775 int is_bucket(struct cds_lfht_node *node)
776 {
777 return ((unsigned long) node) & BUCKET_FLAG;
778 }
779
780 static
781 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
782 {
783 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
784 }
785
786 static
787 int is_removal_owner(struct cds_lfht_node *node)
788 {
789 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
790 }
791
792 static
793 struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
794 {
795 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
796 }
797
798 static
799 struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
800 {
801 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
802 }
803
804 static
805 struct cds_lfht_node *get_end(void)
806 {
807 return (struct cds_lfht_node *) END_VALUE;
808 }
809
810 static
811 int is_end(struct cds_lfht_node *node)
812 {
813 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
814 }
815
816 static
817 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
818 unsigned long v)
819 {
820 unsigned long old1, old2;
821
822 old1 = uatomic_read(ptr);
823 do {
824 old2 = old1;
825 if (old2 >= v)
826 return old2;
827 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
828 return old2;
829 }
830
831 static
832 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
833 {
834 return ht->mm->alloc_bucket_table(ht, order);
835 }
836
837 /*
838 * cds_lfht_free_bucket_table() should be called with decreasing order.
839 * When cds_lfht_free_bucket_table(0) is called, it means the whole
840 * lfht is destroyed.
841 */
842 static
843 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
844 {
845 return ht->mm->free_bucket_table(ht, order);
846 }
847
848 static inline
849 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
850 {
851 return ht->bucket_at(ht, index);
852 }
853
854 static inline
855 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
856 unsigned long hash)
857 {
858 assert(size > 0);
859 return bucket_at(ht, hash & (size - 1));
860 }
861
862 /*
863 * Remove all logically deleted nodes from a bucket up to a certain node key.
864 */
865 static
866 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
867 {
868 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
869
870 assert(!is_bucket(bucket));
871 assert(!is_removed(bucket));
872 assert(!is_bucket(node));
873 assert(!is_removed(node));
874 for (;;) {
875 iter_prev = bucket;
876 /* We can always skip the bucket node initially */
877 iter = rcu_dereference(iter_prev->next);
878 assert(!is_removed(iter));
879 assert(iter_prev->reverse_hash <= node->reverse_hash);
880 /*
881 * We should never be called with bucket (start of chain)
882 * and logically removed node (end of path compression
883 * marker) being the actual same node. This would be a
884 * bug in the algorithm implementation.
885 */
886 assert(bucket != node);
887 for (;;) {
888 if (caa_unlikely(is_end(iter)))
889 return;
890 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
891 return;
892 next = rcu_dereference(clear_flag(iter)->next);
893 if (caa_likely(is_removed(next)))
894 break;
895 iter_prev = clear_flag(iter);
896 iter = next;
897 }
898 assert(!is_removed(iter));
899 if (is_bucket(iter))
900 new_next = flag_bucket(clear_flag(next));
901 else
902 new_next = clear_flag(next);
903 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
904 }
905 }
906
907 static
908 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
909 struct cds_lfht_node *old_node,
910 struct cds_lfht_node *old_next,
911 struct cds_lfht_node *new_node)
912 {
913 struct cds_lfht_node *bucket, *ret_next;
914
915 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
916 return -ENOENT;
917
918 assert(!is_removed(old_node));
919 assert(!is_bucket(old_node));
920 assert(!is_removed(new_node));
921 assert(!is_bucket(new_node));
922 assert(new_node != old_node);
923 for (;;) {
924 /* Insert after node to be replaced */
925 if (is_removed(old_next)) {
926 /*
927 * Too late, the old node has been removed under us
928 * between lookup and replace. Fail.
929 */
930 return -ENOENT;
931 }
932 assert(old_next == clear_flag(old_next));
933 assert(new_node != old_next);
934 /*
935 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
936 * flag. It is either set atomically at the same time
937 * (replace) or after (del).
938 */
939 assert(!is_removal_owner(old_next));
940 new_node->next = old_next;
941 /*
942 * Here is the whole trick for lock-free replace: we add
943 * the replacement node _after_ the node we want to
944 * replace by atomically setting its next pointer at the
945 * same time we set its removal flag. Given that
946 * the lookups/get next use an iterator aware of the
947 * next pointer, they will either skip the old node due
948 * to the removal flag and see the new node, or use
949 * the old node, but will not see the new one.
950 * This is a replacement of a node with another node
951 * that has the same value: we are therefore not
952 * removing a value from the hash table. We set both the
953 * REMOVED and REMOVAL_OWNER flags atomically so we own
954 * the node after successful cmpxchg.
955 */
956 ret_next = uatomic_cmpxchg(&old_node->next,
957 old_next, flag_removed_or_removal_owner(new_node));
958 if (ret_next == old_next)
959 break; /* We performed the replacement. */
960 old_next = ret_next;
961 }
962
963 /*
964 * Ensure that the old node is not visible to readers anymore:
965 * lookup for the node, and remove it (along with any other
966 * logically removed node) if found.
967 */
968 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
969 _cds_lfht_gc_bucket(bucket, new_node);
970
971 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
972 return 0;
973 }
974
975 /*
976 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
977 * mode. A NULL unique_ret allows creation of duplicate keys.
978 */
979 static
980 void _cds_lfht_add(struct cds_lfht *ht,
981 unsigned long hash,
982 cds_lfht_match_fct match,
983 const void *key,
984 unsigned long size,
985 struct cds_lfht_node *node,
986 struct cds_lfht_iter *unique_ret,
987 int bucket_flag)
988 {
989 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
990 *return_node;
991 struct cds_lfht_node *bucket;
992
993 assert(!is_bucket(node));
994 assert(!is_removed(node));
995 bucket = lookup_bucket(ht, size, hash);
996 for (;;) {
997 uint32_t chain_len = 0;
998
999 /*
1000 * iter_prev points to the non-removed node prior to the
1001 * insert location.
1002 */
1003 iter_prev = bucket;
1004 /* We can always skip the bucket node initially */
1005 iter = rcu_dereference(iter_prev->next);
1006 assert(iter_prev->reverse_hash <= node->reverse_hash);
1007 for (;;) {
1008 if (caa_unlikely(is_end(iter)))
1009 goto insert;
1010 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
1011 goto insert;
1012
1013 /* bucket node is the first node of the identical-hash-value chain */
1014 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
1015 goto insert;
1016
1017 next = rcu_dereference(clear_flag(iter)->next);
1018 if (caa_unlikely(is_removed(next)))
1019 goto gc_node;
1020
1021 /* uniquely add */
1022 if (unique_ret
1023 && !is_bucket(next)
1024 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
1025 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
1026
1027 /*
1028 * uniquely adding inserts the node as the first
1029 * node of the identical-hash-value node chain.
1030 *
1031 * This semantic ensures no duplicated keys
1032 * should ever be observable in the table
1033 * (including traversing the table node by
1034 * node by forward iterations)
1035 */
1036 cds_lfht_next_duplicate(ht, match, key, &d_iter);
1037 if (!d_iter.node)
1038 goto insert;
1039
1040 *unique_ret = d_iter;
1041 return;
1042 }
1043
1044 /* Only account for identical reverse hash once */
1045 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1046 && !is_bucket(next))
1047 check_resize(ht, size, ++chain_len);
1048 iter_prev = clear_flag(iter);
1049 iter = next;
1050 }
1051
1052 insert:
1053 assert(node != clear_flag(iter));
1054 assert(!is_removed(iter_prev));
1055 assert(!is_removed(iter));
1056 assert(iter_prev != node);
1057 if (!bucket_flag)
1058 node->next = clear_flag(iter);
1059 else
1060 node->next = flag_bucket(clear_flag(iter));
1061 if (is_bucket(iter))
1062 new_node = flag_bucket(node);
1063 else
1064 new_node = node;
1065 if (uatomic_cmpxchg(&iter_prev->next, iter,
1066 new_node) != iter) {
1067 continue; /* retry */
1068 } else {
1069 return_node = node;
1070 goto end;
1071 }
1072
1073 gc_node:
1074 assert(!is_removed(iter));
1075 if (is_bucket(iter))
1076 new_next = flag_bucket(clear_flag(next));
1077 else
1078 new_next = clear_flag(next);
1079 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1080 /* retry */
1081 }
1082 end:
1083 if (unique_ret) {
1084 unique_ret->node = return_node;
1085 /* unique_ret->next left unset, never used. */
1086 }
1087 }
1088
1089 static
1090 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1091 struct cds_lfht_node *node)
1092 {
1093 struct cds_lfht_node *bucket, *next;
1094
1095 if (!node) /* Return -ENOENT if asked to delete NULL node */
1096 return -ENOENT;
1097
1098 /* logically delete the node */
1099 assert(!is_bucket(node));
1100 assert(!is_removed(node));
1101 assert(!is_removal_owner(node));
1102
1103 /*
1104 * We are first checking if the node had previously been
1105 * logically removed (this check is not atomic with setting the
1106 * logical removal flag). Return -ENOENT if the node had
1107 * previously been removed.
1108 */
1109 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
1110 if (caa_unlikely(is_removed(next)))
1111 return -ENOENT;
1112 assert(!is_bucket(next));
1113 /*
1114 * The del operation semantic guarantees a full memory barrier
1115 * before the uatomic_or atomic commit of the deletion flag.
1116 */
1117 cmm_smp_mb__before_uatomic_or();
1118 /*
1119 * We set the REMOVED_FLAG unconditionally. Note that there may
1120 * be more than one concurrent thread setting this flag.
1121 * Knowing which wins the race will be known after the garbage
1122 * collection phase, stay tuned!
1123 */
1124 uatomic_or(&node->next, REMOVED_FLAG);
1125 /* We performed the (logical) deletion. */
1126
1127 /*
1128 * Ensure that the node is not visible to readers anymore: lookup for
1129 * the node, and remove it (along with any other logically removed node)
1130 * if found.
1131 */
1132 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1133 _cds_lfht_gc_bucket(bucket, node);
1134
1135 assert(is_removed(CMM_LOAD_SHARED(node->next)));
1136 /*
1137 * Last phase: atomically exchange node->next with a version
1138 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1139 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1140 * the node and win the removal race.
1141 * It is interesting to note that all "add" paths are forbidden
1142 * to change the next pointer starting from the point where the
1143 * REMOVED_FLAG is set, so here using a read, followed by a
1144 * xchg() suffice to guarantee that the xchg() will ever only
1145 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1146 * was already set).
1147 */
1148 if (!is_removal_owner(uatomic_xchg(&node->next,
1149 flag_removal_owner(node->next))))
1150 return 0;
1151 else
1152 return -ENOENT;
1153 }
1154
1155 static
1156 void *partition_resize_thread(void *arg)
1157 {
1158 struct partition_resize_work *work = arg;
1159
1160 work->ht->flavor->register_thread();
1161 work->fct(work->ht, work->i, work->start, work->len);
1162 work->ht->flavor->unregister_thread();
1163 return NULL;
1164 }
1165
1166 static
1167 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1168 unsigned long len,
1169 void (*fct)(struct cds_lfht *ht, unsigned long i,
1170 unsigned long start, unsigned long len))
1171 {
1172 unsigned long partition_len;
1173 struct partition_resize_work *work;
1174 int thread, ret;
1175 unsigned long nr_threads;
1176
1177 /*
1178 * Note: nr_cpus_mask + 1 is always power of 2.
1179 * We spawn just the number of threads we need to satisfy the minimum
1180 * partition size, up to the number of CPUs in the system.
1181 */
1182 if (nr_cpus_mask > 0) {
1183 nr_threads = min(nr_cpus_mask + 1,
1184 len >> MIN_PARTITION_PER_THREAD_ORDER);
1185 } else {
1186 nr_threads = 1;
1187 }
1188 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1189 work = calloc(nr_threads, sizeof(*work));
1190 assert(work);
1191 for (thread = 0; thread < nr_threads; thread++) {
1192 work[thread].ht = ht;
1193 work[thread].i = i;
1194 work[thread].len = partition_len;
1195 work[thread].start = thread * partition_len;
1196 work[thread].fct = fct;
1197 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1198 partition_resize_thread, &work[thread]);
1199 assert(!ret);
1200 }
1201 for (thread = 0; thread < nr_threads; thread++) {
1202 ret = pthread_join(work[thread].thread_id, NULL);
1203 assert(!ret);
1204 }
1205 free(work);
1206 }
1207
1208 /*
1209 * Holding RCU read lock to protect _cds_lfht_add against memory
1210 * reclaim that could be performed by other call_rcu worker threads (ABA
1211 * problem).
1212 *
1213 * When we reach a certain length, we can split this population phase over
1214 * many worker threads, based on the number of CPUs available in the system.
1215 * This should therefore take care of not having the expand lagging behind too
1216 * many concurrent insertion threads by using the scheduler's ability to
1217 * schedule bucket node population fairly with insertions.
1218 */
1219 static
1220 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1221 unsigned long start, unsigned long len)
1222 {
1223 unsigned long j, size = 1UL << (i - 1);
1224
1225 assert(i > MIN_TABLE_ORDER);
1226 ht->flavor->read_lock();
1227 for (j = size + start; j < size + start + len; j++) {
1228 struct cds_lfht_node *new_node = bucket_at(ht, j);
1229
1230 assert(j >= size && j < (size << 1));
1231 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1232 i, j, j);
1233 new_node->reverse_hash = bit_reverse_ulong(j);
1234 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
1235 }
1236 ht->flavor->read_unlock();
1237 }
1238
1239 static
1240 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1241 unsigned long len)
1242 {
1243 assert(nr_cpus_mask != -1);
1244 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1245 ht->flavor->thread_online();
1246 init_table_populate_partition(ht, i, 0, len);
1247 ht->flavor->thread_offline();
1248 return;
1249 }
1250 partition_resize_helper(ht, i, len, init_table_populate_partition);
1251 }
1252
1253 static
1254 void init_table(struct cds_lfht *ht,
1255 unsigned long first_order, unsigned long last_order)
1256 {
1257 unsigned long i;
1258
1259 dbg_printf("init table: first_order %lu last_order %lu\n",
1260 first_order, last_order);
1261 assert(first_order > MIN_TABLE_ORDER);
1262 for (i = first_order; i <= last_order; i++) {
1263 unsigned long len;
1264
1265 len = 1UL << (i - 1);
1266 dbg_printf("init order %lu len: %lu\n", i, len);
1267
1268 /* Stop expand if the resize target changes under us */
1269 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1270 break;
1271
1272 cds_lfht_alloc_bucket_table(ht, i);
1273
1274 /*
1275 * Set all bucket nodes reverse hash values for a level and
1276 * link all bucket nodes into the table.
1277 */
1278 init_table_populate(ht, i, len);
1279
1280 /*
1281 * Update table size.
1282 */
1283 cmm_smp_wmb(); /* populate data before RCU size */
1284 CMM_STORE_SHARED(ht->size, 1UL << i);
1285
1286 dbg_printf("init new size: %lu\n", 1UL << i);
1287 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1288 break;
1289 }
1290 }
1291
1292 /*
1293 * Holding RCU read lock to protect _cds_lfht_remove against memory
1294 * reclaim that could be performed by other call_rcu worker threads (ABA
1295 * problem).
1296 * For a single level, we logically remove and garbage collect each node.
1297 *
1298 * As a design choice, we perform logical removal and garbage collection on a
1299 * node-per-node basis to simplify this algorithm. We also assume keeping good
1300 * cache locality of the operation would overweight possible performance gain
1301 * that could be achieved by batching garbage collection for multiple levels.
1302 * However, this would have to be justified by benchmarks.
1303 *
1304 * Concurrent removal and add operations are helping us perform garbage
1305 * collection of logically removed nodes. We guarantee that all logically
1306 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1307 * invoked to free a hole level of bucket nodes (after a grace period).
1308 *
1309 * Logical removal and garbage collection can therefore be done in batch
1310 * or on a node-per-node basis, as long as the guarantee above holds.
1311 *
1312 * When we reach a certain length, we can split this removal over many worker
1313 * threads, based on the number of CPUs available in the system. This should
1314 * take care of not letting resize process lag behind too many concurrent
1315 * updater threads actively inserting into the hash table.
1316 */
1317 static
1318 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1319 unsigned long start, unsigned long len)
1320 {
1321 unsigned long j, size = 1UL << (i - 1);
1322
1323 assert(i > MIN_TABLE_ORDER);
1324 ht->flavor->read_lock();
1325 for (j = size + start; j < size + start + len; j++) {
1326 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1327 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1328
1329 assert(j >= size && j < (size << 1));
1330 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1331 i, j, j);
1332 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1333 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1334 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1335 }
1336 ht->flavor->read_unlock();
1337 }
1338
1339 static
1340 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1341 {
1342
1343 assert(nr_cpus_mask != -1);
1344 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1345 ht->flavor->thread_online();
1346 remove_table_partition(ht, i, 0, len);
1347 ht->flavor->thread_offline();
1348 return;
1349 }
1350 partition_resize_helper(ht, i, len, remove_table_partition);
1351 }
1352
1353 /*
1354 * fini_table() is never called for first_order == 0, which is why
1355 * free_by_rcu_order == 0 can be used as criterion to know if free must
1356 * be called.
1357 */
1358 static
1359 void fini_table(struct cds_lfht *ht,
1360 unsigned long first_order, unsigned long last_order)
1361 {
1362 long i;
1363 unsigned long free_by_rcu_order = 0;
1364
1365 dbg_printf("fini table: first_order %lu last_order %lu\n",
1366 first_order, last_order);
1367 assert(first_order > MIN_TABLE_ORDER);
1368 for (i = last_order; i >= first_order; i--) {
1369 unsigned long len;
1370
1371 len = 1UL << (i - 1);
1372 dbg_printf("fini order %lu len: %lu\n", i, len);
1373
1374 /* Stop shrink if the resize target changes under us */
1375 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1376 break;
1377
1378 cmm_smp_wmb(); /* populate data before RCU size */
1379 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1380
1381 /*
1382 * We need to wait for all add operations to reach Q.S. (and
1383 * thus use the new table for lookups) before we can start
1384 * releasing the old bucket nodes. Otherwise their lookup will
1385 * return a logically removed node as insert position.
1386 */
1387 ht->flavor->update_synchronize_rcu();
1388 if (free_by_rcu_order)
1389 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1390
1391 /*
1392 * Set "removed" flag in bucket nodes about to be removed.
1393 * Unlink all now-logically-removed bucket node pointers.
1394 * Concurrent add/remove operation are helping us doing
1395 * the gc.
1396 */
1397 remove_table(ht, i, len);
1398
1399 free_by_rcu_order = i;
1400
1401 dbg_printf("fini new size: %lu\n", 1UL << i);
1402 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1403 break;
1404 }
1405
1406 if (free_by_rcu_order) {
1407 ht->flavor->update_synchronize_rcu();
1408 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1409 }
1410 }
1411
1412 static
1413 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1414 {
1415 struct cds_lfht_node *prev, *node;
1416 unsigned long order, len, i;
1417
1418 cds_lfht_alloc_bucket_table(ht, 0);
1419
1420 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1421 node = bucket_at(ht, 0);
1422 node->next = flag_bucket(get_end());
1423 node->reverse_hash = 0;
1424
1425 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
1426 len = 1UL << (order - 1);
1427 cds_lfht_alloc_bucket_table(ht, order);
1428
1429 for (i = 0; i < len; i++) {
1430 /*
1431 * Now, we are trying to init the node with the
1432 * hash=(len+i) (which is also a bucket with the
1433 * index=(len+i)) and insert it into the hash table,
1434 * so this node has to be inserted after the bucket
1435 * with the index=(len+i)&(len-1)=i. And because there
1436 * is no other non-bucket node nor bucket node with
1437 * larger index/hash inserted, so the bucket node
1438 * being inserted should be inserted directly linked
1439 * after the bucket node with index=i.
1440 */
1441 prev = bucket_at(ht, i);
1442 node = bucket_at(ht, len + i);
1443
1444 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1445 order, len + i, len + i);
1446 node->reverse_hash = bit_reverse_ulong(len + i);
1447
1448 /* insert after prev */
1449 assert(is_bucket(prev->next));
1450 node->next = prev->next;
1451 prev->next = flag_bucket(node);
1452 }
1453 }
1454 }
1455
1456 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1457 unsigned long min_nr_alloc_buckets,
1458 unsigned long max_nr_buckets,
1459 int flags,
1460 const struct cds_lfht_mm_type *mm,
1461 const struct rcu_flavor_struct *flavor,
1462 pthread_attr_t *attr)
1463 {
1464 struct cds_lfht *ht;
1465 unsigned long order;
1466
1467 /* min_nr_alloc_buckets must be power of two */
1468 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1469 return NULL;
1470
1471 /* init_size must be power of two */
1472 if (!init_size || (init_size & (init_size - 1)))
1473 return NULL;
1474
1475 /*
1476 * Memory management plugin default.
1477 */
1478 if (!mm) {
1479 if (CAA_BITS_PER_LONG > 32
1480 && max_nr_buckets
1481 && max_nr_buckets <= (1ULL << 32)) {
1482 /*
1483 * For 64-bit architectures, with max number of
1484 * buckets small enough not to use the entire
1485 * 64-bit memory mapping space (and allowing a
1486 * fair number of hash table instances), use the
1487 * mmap allocator, which is faster than the
1488 * order allocator.
1489 */
1490 mm = &cds_lfht_mm_mmap;
1491 } else {
1492 /*
1493 * The fallback is to use the order allocator.
1494 */
1495 mm = &cds_lfht_mm_order;
1496 }
1497 }
1498
1499 /* max_nr_buckets == 0 for order based mm means infinite */
1500 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1501 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1502
1503 /* max_nr_buckets must be power of two */
1504 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1505 return NULL;
1506
1507 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1508 init_size = max(init_size, MIN_TABLE_SIZE);
1509 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1510 init_size = min(init_size, max_nr_buckets);
1511
1512 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1513 assert(ht);
1514 assert(ht->mm == mm);
1515 assert(ht->bucket_at == mm->bucket_at);
1516
1517 ht->flags = flags;
1518 ht->flavor = flavor;
1519 ht->resize_attr = attr;
1520 alloc_split_items_count(ht);
1521 /* this mutex should not nest in read-side C.S. */
1522 pthread_mutex_init(&ht->resize_mutex, NULL);
1523 order = cds_lfht_get_count_order_ulong(init_size);
1524 ht->resize_target = 1UL << order;
1525 cds_lfht_create_bucket(ht, 1UL << order);
1526 ht->size = 1UL << order;
1527 return ht;
1528 }
1529
1530 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1531 cds_lfht_match_fct match, const void *key,
1532 struct cds_lfht_iter *iter)
1533 {
1534 struct cds_lfht_node *node, *next, *bucket;
1535 unsigned long reverse_hash, size;
1536
1537 reverse_hash = bit_reverse_ulong(hash);
1538
1539 size = rcu_dereference(ht->size);
1540 bucket = lookup_bucket(ht, size, hash);
1541 /* We can always skip the bucket node initially */
1542 node = rcu_dereference(bucket->next);
1543 node = clear_flag(node);
1544 for (;;) {
1545 if (caa_unlikely(is_end(node))) {
1546 node = next = NULL;
1547 break;
1548 }
1549 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1550 node = next = NULL;
1551 break;
1552 }
1553 next = rcu_dereference(node->next);
1554 assert(node == clear_flag(node));
1555 if (caa_likely(!is_removed(next))
1556 && !is_bucket(next)
1557 && node->reverse_hash == reverse_hash
1558 && caa_likely(match(node, key))) {
1559 break;
1560 }
1561 node = clear_flag(next);
1562 }
1563 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1564 iter->node = node;
1565 iter->next = next;
1566 }
1567
1568 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1569 const void *key, struct cds_lfht_iter *iter)
1570 {
1571 struct cds_lfht_node *node, *next;
1572 unsigned long reverse_hash;
1573
1574 node = iter->node;
1575 reverse_hash = node->reverse_hash;
1576 next = iter->next;
1577 node = clear_flag(next);
1578
1579 for (;;) {
1580 if (caa_unlikely(is_end(node))) {
1581 node = next = NULL;
1582 break;
1583 }
1584 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1585 node = next = NULL;
1586 break;
1587 }
1588 next = rcu_dereference(node->next);
1589 if (caa_likely(!is_removed(next))
1590 && !is_bucket(next)
1591 && caa_likely(match(node, key))) {
1592 break;
1593 }
1594 node = clear_flag(next);
1595 }
1596 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1597 iter->node = node;
1598 iter->next = next;
1599 }
1600
1601 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1602 {
1603 struct cds_lfht_node *node, *next;
1604
1605 node = clear_flag(iter->next);
1606 for (;;) {
1607 if (caa_unlikely(is_end(node))) {
1608 node = next = NULL;
1609 break;
1610 }
1611 next = rcu_dereference(node->next);
1612 if (caa_likely(!is_removed(next))
1613 && !is_bucket(next)) {
1614 break;
1615 }
1616 node = clear_flag(next);
1617 }
1618 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1619 iter->node = node;
1620 iter->next = next;
1621 }
1622
1623 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1624 {
1625 /*
1626 * Get next after first bucket node. The first bucket node is the
1627 * first node of the linked list.
1628 */
1629 iter->next = bucket_at(ht, 0)->next;
1630 cds_lfht_next(ht, iter);
1631 }
1632
1633 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1634 struct cds_lfht_node *node)
1635 {
1636 unsigned long size;
1637
1638 node->reverse_hash = bit_reverse_ulong(hash);
1639 size = rcu_dereference(ht->size);
1640 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1641 ht_count_add(ht, size, hash);
1642 }
1643
1644 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1645 unsigned long hash,
1646 cds_lfht_match_fct match,
1647 const void *key,
1648 struct cds_lfht_node *node)
1649 {
1650 unsigned long size;
1651 struct cds_lfht_iter iter;
1652
1653 node->reverse_hash = bit_reverse_ulong(hash);
1654 size = rcu_dereference(ht->size);
1655 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1656 if (iter.node == node)
1657 ht_count_add(ht, size, hash);
1658 return iter.node;
1659 }
1660
1661 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1662 unsigned long hash,
1663 cds_lfht_match_fct match,
1664 const void *key,
1665 struct cds_lfht_node *node)
1666 {
1667 unsigned long size;
1668 struct cds_lfht_iter iter;
1669
1670 node->reverse_hash = bit_reverse_ulong(hash);
1671 size = rcu_dereference(ht->size);
1672 for (;;) {
1673 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1674 if (iter.node == node) {
1675 ht_count_add(ht, size, hash);
1676 return NULL;
1677 }
1678
1679 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1680 return iter.node;
1681 }
1682 }
1683
1684 int cds_lfht_replace(struct cds_lfht *ht,
1685 struct cds_lfht_iter *old_iter,
1686 unsigned long hash,
1687 cds_lfht_match_fct match,
1688 const void *key,
1689 struct cds_lfht_node *new_node)
1690 {
1691 unsigned long size;
1692
1693 new_node->reverse_hash = bit_reverse_ulong(hash);
1694 if (!old_iter->node)
1695 return -ENOENT;
1696 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1697 return -EINVAL;
1698 if (caa_unlikely(!match(old_iter->node, key)))
1699 return -EINVAL;
1700 size = rcu_dereference(ht->size);
1701 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1702 new_node);
1703 }
1704
1705 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1706 {
1707 unsigned long size, hash;
1708 int ret;
1709
1710 size = rcu_dereference(ht->size);
1711 ret = _cds_lfht_del(ht, size, node);
1712 if (!ret) {
1713 hash = bit_reverse_ulong(node->reverse_hash);
1714 ht_count_del(ht, size, hash);
1715 }
1716 return ret;
1717 }
1718
1719 int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
1720 {
1721 return is_removed(CMM_LOAD_SHARED(node->next));
1722 }
1723
1724 static
1725 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1726 {
1727 struct cds_lfht_node *node;
1728 unsigned long order, i, size;
1729
1730 /* Check that the table is empty */
1731 node = bucket_at(ht, 0);
1732 do {
1733 node = clear_flag(node)->next;
1734 if (!is_bucket(node))
1735 return -EPERM;
1736 assert(!is_removed(node));
1737 } while (!is_end(node));
1738 /*
1739 * size accessed without rcu_dereference because hash table is
1740 * being destroyed.
1741 */
1742 size = ht->size;
1743 /* Internal sanity check: all nodes left should be buckets */
1744 for (i = 0; i < size; i++) {
1745 node = bucket_at(ht, i);
1746 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1747 i, i, bit_reverse_ulong(node->reverse_hash));
1748 assert(is_bucket(node->next));
1749 }
1750
1751 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1752 cds_lfht_free_bucket_table(ht, order);
1753
1754 return 0;
1755 }
1756
1757 /*
1758 * Should only be called when no more concurrent readers nor writers can
1759 * possibly access the table.
1760 */
1761 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1762 {
1763 int ret;
1764 #ifdef rcu_read_ongoing_mb
1765 int was_online;
1766 #endif
1767
1768 /* Wait for in-flight resize operations to complete */
1769 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1770 cmm_smp_mb(); /* Store destroy before load resize */
1771 #ifdef rcu_read_ongoing_mb
1772 was_online = ht->flavor->read_ongoing();
1773 if (was_online)
1774 ht->flavor->thread_offline();
1775 /* Calling with RCU read-side held is an error. */
1776 if (ht->flavor->read_ongoing()) {
1777 ret = -EINVAL;
1778 if (was_online)
1779 ht->flavor->thread_online();
1780 goto end;
1781 }
1782 #endif
1783 while (uatomic_read(&ht->in_progress_resize))
1784 poll(NULL, 0, 100); /* wait for 100ms */
1785 ret = cds_lfht_delete_bucket(ht);
1786 if (ret)
1787 return ret;
1788 free_split_items_count(ht);
1789 if (attr)
1790 *attr = ht->resize_attr;
1791 poison_free(ht);
1792 #ifdef rcu_read_ongoing_mb
1793 end:
1794 #endif
1795 return ret;
1796 }
1797
1798 void cds_lfht_count_nodes(struct cds_lfht *ht,
1799 long *approx_before,
1800 unsigned long *count,
1801 long *approx_after)
1802 {
1803 struct cds_lfht_node *node, *next;
1804 unsigned long nr_bucket = 0, nr_removed = 0;
1805
1806 *approx_before = 0;
1807 if (ht->split_count) {
1808 int i;
1809
1810 for (i = 0; i < split_count_mask + 1; i++) {
1811 *approx_before += uatomic_read(&ht->split_count[i].add);
1812 *approx_before -= uatomic_read(&ht->split_count[i].del);
1813 }
1814 }
1815
1816 *count = 0;
1817
1818 /* Count non-bucket nodes in the table */
1819 node = bucket_at(ht, 0);
1820 do {
1821 next = rcu_dereference(node->next);
1822 if (is_removed(next)) {
1823 if (!is_bucket(next))
1824 (nr_removed)++;
1825 else
1826 (nr_bucket)++;
1827 } else if (!is_bucket(next))
1828 (*count)++;
1829 else
1830 (nr_bucket)++;
1831 node = clear_flag(next);
1832 } while (!is_end(node));
1833 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1834 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1835 *approx_after = 0;
1836 if (ht->split_count) {
1837 int i;
1838
1839 for (i = 0; i < split_count_mask + 1; i++) {
1840 *approx_after += uatomic_read(&ht->split_count[i].add);
1841 *approx_after -= uatomic_read(&ht->split_count[i].del);
1842 }
1843 }
1844 }
1845
1846 /* called with resize mutex held */
1847 static
1848 void _do_cds_lfht_grow(struct cds_lfht *ht,
1849 unsigned long old_size, unsigned long new_size)
1850 {
1851 unsigned long old_order, new_order;
1852
1853 old_order = cds_lfht_get_count_order_ulong(old_size);
1854 new_order = cds_lfht_get_count_order_ulong(new_size);
1855 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1856 old_size, old_order, new_size, new_order);
1857 assert(new_size > old_size);
1858 init_table(ht, old_order + 1, new_order);
1859 }
1860
1861 /* called with resize mutex held */
1862 static
1863 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1864 unsigned long old_size, unsigned long new_size)
1865 {
1866 unsigned long old_order, new_order;
1867
1868 new_size = max(new_size, MIN_TABLE_SIZE);
1869 old_order = cds_lfht_get_count_order_ulong(old_size);
1870 new_order = cds_lfht_get_count_order_ulong(new_size);
1871 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1872 old_size, old_order, new_size, new_order);
1873 assert(new_size < old_size);
1874
1875 /* Remove and unlink all bucket nodes to remove. */
1876 fini_table(ht, new_order + 1, old_order);
1877 }
1878
1879
1880 /* called with resize mutex held */
1881 static
1882 void _do_cds_lfht_resize(struct cds_lfht *ht)
1883 {
1884 unsigned long new_size, old_size;
1885
1886 /*
1887 * Resize table, re-do if the target size has changed under us.
1888 */
1889 do {
1890 assert(uatomic_read(&ht->in_progress_resize));
1891 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1892 break;
1893 ht->resize_initiated = 1;
1894 old_size = ht->size;
1895 new_size = CMM_LOAD_SHARED(ht->resize_target);
1896 if (old_size < new_size)
1897 _do_cds_lfht_grow(ht, old_size, new_size);
1898 else if (old_size > new_size)
1899 _do_cds_lfht_shrink(ht, old_size, new_size);
1900 ht->resize_initiated = 0;
1901 /* write resize_initiated before read resize_target */
1902 cmm_smp_mb();
1903 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1904 }
1905
1906 static
1907 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1908 {
1909 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
1910 }
1911
1912 static
1913 void resize_target_update_count(struct cds_lfht *ht,
1914 unsigned long count)
1915 {
1916 count = max(count, MIN_TABLE_SIZE);
1917 count = min(count, ht->max_nr_buckets);
1918 uatomic_set(&ht->resize_target, count);
1919 }
1920
1921 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1922 {
1923 #ifdef rcu_read_ongoing_mb
1924 int was_online;
1925
1926 was_online = ht->flavor->read_ongoing();
1927 if (was_online)
1928 ht->flavor->thread_offline();
1929 /* Calling with RCU read-side held is an error. */
1930 if (ht->flavor->read_ongoing()) {
1931 static int print_once;
1932
1933 if (!CMM_LOAD_SHARED(print_once))
1934 fprintf(stderr, "[error] rculfhash: cds_lfht_resize "
1935 "called with RCU read-side lock held.\n");
1936 CMM_STORE_SHARED(print_once, 1);
1937 assert(0);
1938 goto end;
1939 }
1940 #endif
1941 resize_target_update_count(ht, new_size);
1942 CMM_STORE_SHARED(ht->resize_initiated, 1);
1943 pthread_mutex_lock(&ht->resize_mutex);
1944 _do_cds_lfht_resize(ht);
1945 pthread_mutex_unlock(&ht->resize_mutex);
1946 #ifdef rcu_read_ongoing_mb
1947 end:
1948 if (was_online)
1949 ht->flavor->thread_online();
1950 #endif
1951 }
1952
1953 static
1954 void do_resize_cb(struct rcu_head *head)
1955 {
1956 struct rcu_resize_work *work =
1957 caa_container_of(head, struct rcu_resize_work, head);
1958 struct cds_lfht *ht = work->ht;
1959
1960 ht->flavor->thread_offline();
1961 pthread_mutex_lock(&ht->resize_mutex);
1962 _do_cds_lfht_resize(ht);
1963 pthread_mutex_unlock(&ht->resize_mutex);
1964 ht->flavor->thread_online();
1965 poison_free(work);
1966 cmm_smp_mb(); /* finish resize before decrement */
1967 uatomic_dec(&ht->in_progress_resize);
1968 }
1969
1970 static
1971 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1972 {
1973 struct rcu_resize_work *work;
1974
1975 /* Store resize_target before read resize_initiated */
1976 cmm_smp_mb();
1977 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
1978 uatomic_inc(&ht->in_progress_resize);
1979 cmm_smp_mb(); /* increment resize count before load destroy */
1980 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1981 uatomic_dec(&ht->in_progress_resize);
1982 return;
1983 }
1984 work = malloc(sizeof(*work));
1985 if (work == NULL) {
1986 dbg_printf("error allocating resize work, bailing out\n");
1987 uatomic_dec(&ht->in_progress_resize);
1988 return;
1989 }
1990 work->ht = ht;
1991 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1992 CMM_STORE_SHARED(ht->resize_initiated, 1);
1993 }
1994 }
1995
1996 static
1997 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1998 {
1999 unsigned long target_size = size << growth;
2000
2001 target_size = min(target_size, ht->max_nr_buckets);
2002 if (resize_target_grow(ht, target_size) >= target_size)
2003 return;
2004
2005 __cds_lfht_resize_lazy_launch(ht);
2006 }
2007
2008 /*
2009 * We favor grow operations over shrink. A shrink operation never occurs
2010 * if a grow operation is queued for lazy execution. A grow operation
2011 * cancels any pending shrink lazy execution.
2012 */
2013 static
2014 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
2015 unsigned long count)
2016 {
2017 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2018 return;
2019 count = max(count, MIN_TABLE_SIZE);
2020 count = min(count, ht->max_nr_buckets);
2021 if (count == size)
2022 return; /* Already the right size, no resize needed */
2023 if (count > size) { /* lazy grow */
2024 if (resize_target_grow(ht, count) >= count)
2025 return;
2026 } else { /* lazy shrink */
2027 for (;;) {
2028 unsigned long s;
2029
2030 s = uatomic_cmpxchg(&ht->resize_target, size, count);
2031 if (s == size)
2032 break; /* no resize needed */
2033 if (s > size)
2034 return; /* growing is/(was just) in progress */
2035 if (s <= count)
2036 return; /* some other thread do shrink */
2037 size = s;
2038 }
2039 }
2040 __cds_lfht_resize_lazy_launch(ht);
2041 }
This page took 0.110547 seconds and 4 git commands to generate.