time add and sub performance tweaks
[lttv.git] / ltt / branches / poly / ltt / time.h
1 /* This file is part of the Linux Trace Toolkit trace reading library
2 * Copyright (C) 2003-2004 Michel Dagenais
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License Version 2.1 as published by the Free Software Foundation.
7 *
8 * This library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 02111-1307, USA.
17 */
18
19 #ifndef LTT_TIME_H
20 #define LTT_TIME_H
21
22 #include <glib.h>
23
24
25 typedef struct _LttTime {
26 unsigned long tv_sec;
27 unsigned long tv_nsec;
28 } LttTime;
29
30
31 #define NANOSECONDS_PER_SECOND 1000000000
32
33 static const LttTime ltt_time_zero = { 0, 0 };
34
35 static const LttTime ltt_time_one = { 0, 1 };
36
37 static const LttTime ltt_time_infinite = { G_MAXUINT, NANOSECONDS_PER_SECOND };
38
39 static inline LttTime ltt_time_sub(LttTime t1, LttTime t2)
40 {
41 LttTime res;
42 res.tv_sec = t1.tv_sec - t2.tv_sec;
43 res.tv_nsec = t1.tv_nsec - t2.tv_nsec;
44 if(t1.tv_nsec < t2.tv_nsec) {
45 res.tv_sec--;
46 res.tv_nsec += NANOSECONDS_PER_SECOND;
47 }
48 return res;
49 }
50
51
52 static inline LttTime ltt_time_add(LttTime t1, LttTime t2)
53 {
54 LttTime res;
55 res.tv_nsec = t1.tv_nsec + t2.tv_nsec;
56 res.tv_sec = t1.tv_sec + t2.tv_sec;
57 if(res.tv_nsec >= NANOSECONDS_PER_SECOND) {
58 res.tv_sec++;
59 res.tv_nsec -= NANOSECONDS_PER_SECOND;
60 }
61 return res;
62 }
63
64
65 static inline int ltt_time_compare(LttTime t1, LttTime t2)
66 {
67 if(t1.tv_sec > t2.tv_sec) return 1;
68 if(t1.tv_sec < t2.tv_sec) return -1;
69 if(t1.tv_nsec > t2.tv_nsec) return 1;
70 if(t1.tv_nsec < t2.tv_nsec) return -1;
71 return 0;
72 }
73
74 #define LTT_TIME_MIN(a,b) ((ltt_time_compare((a),(b)) < 0) ? (a) : (b))
75 #define LTT_TIME_MAX(a,b) ((ltt_time_compare((a),(b)) > 0) ? (a) : (b))
76
77 #define MAX_TV_SEC_TO_DOUBLE 0x7FFFFF
78 static inline double ltt_time_to_double(LttTime t1)
79 {
80 /* We lose precision if tv_sec is > than (2^23)-1
81 *
82 * Max values that fits in a double (53 bits precision on normalised
83 * mantissa):
84 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
85 *
86 * So we have 53-30 = 23 bits left for tv_sec.
87 * */
88 g_assert(t1.tv_sec <= MAX_TV_SEC_TO_DOUBLE);
89 if(t1.tv_sec > MAX_TV_SEC_TO_DOUBLE)
90 g_warning("Precision loss in conversion LttTime to double");
91 return (double)t1.tv_sec + (double)t1.tv_nsec / NANOSECONDS_PER_SECOND;
92 }
93
94
95 static inline LttTime ltt_time_from_double(double t1)
96 {
97 /* We lose precision if tv_sec is > than (2^23)-1
98 *
99 * Max values that fits in a double (53 bits precision on normalised
100 * mantissa):
101 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
102 *
103 * So we have 53-30 = 23 bits left for tv_sec.
104 * */
105 g_assert(t1 <= MAX_TV_SEC_TO_DOUBLE);
106 if(t1 > MAX_TV_SEC_TO_DOUBLE)
107 g_warning("Conversion from non precise double to LttTime");
108 LttTime res;
109 res.tv_sec = t1;
110 res.tv_nsec = (t1 - res.tv_sec) * NANOSECONDS_PER_SECOND;
111 return res;
112 }
113
114 /* Use ltt_time_to_double and ltt_time_from_double to check for lack
115 * of precision.
116 */
117 static inline LttTime ltt_time_mul(LttTime t1, double d)
118 {
119 LttTime res;
120
121 double time_double = ltt_time_to_double(t1);
122
123 time_double = time_double * d;
124
125 res = ltt_time_from_double(time_double);
126
127 return res;
128
129 #if 0
130 /* What is that ? (Mathieu) */
131 if(f == 0.0){
132 res.tv_sec = 0;
133 res.tv_nsec = 0;
134 }else{
135 double d;
136 d = 1.0/f;
137 sec = t1.tv_sec / (double)d;
138 res.tv_sec = sec;
139 res.tv_nsec = t1.tv_nsec / (double)d + (sec - res.tv_sec) *
140 NANOSECONDS_PER_SECOND;
141 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
142 res.tv_nsec %= NANOSECONDS_PER_SECOND;
143 }
144 return res;
145 #endif //0
146 }
147
148
149 /* Use ltt_time_to_double and ltt_time_from_double to check for lack
150 * of precision.
151 */
152 static inline LttTime ltt_time_div(LttTime t1, double d)
153 {
154 LttTime res;
155
156 double time_double = ltt_time_to_double(t1);
157
158 time_double = time_double / d;
159
160 res = ltt_time_from_double(time_double);
161
162 return res;
163
164
165 #if 0
166 double sec;
167 LttTime res;
168
169 sec = t1.tv_sec / (double)f;
170 res.tv_sec = sec;
171 res.tv_nsec = t1.tv_nsec / (double)f + (sec - res.tv_sec) *
172 NANOSECONDS_PER_SECOND;
173 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
174 res.tv_nsec %= NANOSECONDS_PER_SECOND;
175 return res;
176 #endif //0
177 }
178
179 static inline guint64 ltt_time_to_uint64(LttTime t1)
180 {
181 return (guint64)t1.tv_sec*NANOSECONDS_PER_SECOND
182 + (guint64)t1.tv_nsec;
183 }
184
185
186 #define MAX_TV_SEC_TO_UINT64 0x3FFFFFFFFFFFFFFFULL
187 static inline LttTime ltt_time_from_uint64(guint64 t1)
188 {
189 /* We lose precision if tv_sec is > than (2^62)-1
190 * */
191 g_assert(t1 <= MAX_TV_SEC_TO_UINT64);
192 if(t1 > MAX_TV_SEC_TO_UINT64)
193 g_warning("Conversion from non precise uint64 to LttTime");
194 LttTime res;
195 res.tv_sec = t1/NANOSECONDS_PER_SECOND;
196 res.tv_nsec = (t1 - res.tv_sec*NANOSECONDS_PER_SECOND);
197 return res;
198 }
199
200 #endif // LTT_TIME_H
This page took 0.032703 seconds and 4 git commands to generate.