Fix: handle large number of pages or subbuffers per buffer
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /*
2 * ring_buffer_frontend.c
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; only
9 * version 2.1 of the License.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *
21 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
22 * recorder (overwrite) modes. See thesis:
23 *
24 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
25 * dissertation, Ecole Polytechnique de Montreal.
26 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
27 *
28 * - Algorithm presentation in Chapter 5:
29 * "Lockless Multi-Core High-Throughput Buffering".
30 * - Algorithm formal verification in Section 8.6:
31 * "Formal verification of LTTng"
32 *
33 * Author:
34 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
35 *
36 * Inspired from LTT and RelayFS:
37 * Karim Yaghmour <karim@opersys.com>
38 * Tom Zanussi <zanussi@us.ibm.com>
39 * Bob Wisniewski <bob@watson.ibm.com>
40 * And from K42 :
41 * Bob Wisniewski <bob@watson.ibm.com>
42 *
43 * Buffer reader semantic :
44 *
45 * - get_subbuf_size
46 * while buffer is not finalized and empty
47 * - get_subbuf
48 * - if return value != 0, continue
49 * - splice one subbuffer worth of data to a pipe
50 * - splice the data from pipe to disk/network
51 * - put_subbuf
52 */
53
54 #include <linux/delay.h>
55 #include <linux/module.h>
56 #include <linux/percpu.h>
57
58 #include <wrapper/ringbuffer/config.h>
59 #include <wrapper/ringbuffer/backend.h>
60 #include <wrapper/ringbuffer/frontend.h>
61 #include <wrapper/ringbuffer/iterator.h>
62 #include <wrapper/ringbuffer/nohz.h>
63 #include <wrapper/atomic.h>
64 #include <wrapper/kref.h>
65 #include <wrapper/percpu-defs.h>
66 #include <wrapper/timer.h>
67
68 /*
69 * Internal structure representing offsets to use at a sub-buffer switch.
70 */
71 struct switch_offsets {
72 unsigned long begin, end, old;
73 size_t pre_header_padding, size;
74 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
75 switch_old_end:1;
76 };
77
78 #ifdef CONFIG_NO_HZ
79 enum tick_nohz_val {
80 TICK_NOHZ_STOP,
81 TICK_NOHZ_FLUSH,
82 TICK_NOHZ_RESTART,
83 };
84
85 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
86 #endif /* CONFIG_NO_HZ */
87
88 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
89
90 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
91 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
92
93 static
94 void lib_ring_buffer_print_errors(struct channel *chan,
95 struct lib_ring_buffer *buf, int cpu);
96 static
97 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
98 enum switch_mode mode);
99
100 /*
101 * Must be called under cpu hotplug protection.
102 */
103 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
104 {
105 struct channel *chan = buf->backend.chan;
106
107 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
108 kfree(buf->commit_hot);
109 kfree(buf->commit_cold);
110
111 lib_ring_buffer_backend_free(&buf->backend);
112 }
113
114 /**
115 * lib_ring_buffer_reset - Reset ring buffer to initial values.
116 * @buf: Ring buffer.
117 *
118 * Effectively empty the ring buffer. Should be called when the buffer is not
119 * used for writing. The ring buffer can be opened for reading, but the reader
120 * should not be using the iterator concurrently with reset. The previous
121 * current iterator record is reset.
122 */
123 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
124 {
125 struct channel *chan = buf->backend.chan;
126 const struct lib_ring_buffer_config *config = &chan->backend.config;
127 unsigned int i;
128
129 /*
130 * Reset iterator first. It will put the subbuffer if it currently holds
131 * it.
132 */
133 lib_ring_buffer_iterator_reset(buf);
134 v_set(config, &buf->offset, 0);
135 for (i = 0; i < chan->backend.num_subbuf; i++) {
136 v_set(config, &buf->commit_hot[i].cc, 0);
137 v_set(config, &buf->commit_hot[i].seq, 0);
138 v_set(config, &buf->commit_cold[i].cc_sb, 0);
139 }
140 atomic_long_set(&buf->consumed, 0);
141 atomic_set(&buf->record_disabled, 0);
142 v_set(config, &buf->last_tsc, 0);
143 lib_ring_buffer_backend_reset(&buf->backend);
144 /* Don't reset number of active readers */
145 v_set(config, &buf->records_lost_full, 0);
146 v_set(config, &buf->records_lost_wrap, 0);
147 v_set(config, &buf->records_lost_big, 0);
148 v_set(config, &buf->records_count, 0);
149 v_set(config, &buf->records_overrun, 0);
150 buf->finalized = 0;
151 }
152 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
153
154 /**
155 * channel_reset - Reset channel to initial values.
156 * @chan: Channel.
157 *
158 * Effectively empty the channel. Should be called when the channel is not used
159 * for writing. The channel can be opened for reading, but the reader should not
160 * be using the iterator concurrently with reset. The previous current iterator
161 * record is reset.
162 */
163 void channel_reset(struct channel *chan)
164 {
165 /*
166 * Reset iterators first. Will put the subbuffer if held for reading.
167 */
168 channel_iterator_reset(chan);
169 atomic_set(&chan->record_disabled, 0);
170 /* Don't reset commit_count_mask, still valid */
171 channel_backend_reset(&chan->backend);
172 /* Don't reset switch/read timer interval */
173 /* Don't reset notifiers and notifier enable bits */
174 /* Don't reset reader reference count */
175 }
176 EXPORT_SYMBOL_GPL(channel_reset);
177
178 /*
179 * Must be called under cpu hotplug protection.
180 */
181 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
182 struct channel_backend *chanb, int cpu)
183 {
184 const struct lib_ring_buffer_config *config = &chanb->config;
185 struct channel *chan = container_of(chanb, struct channel, backend);
186 void *priv = chanb->priv;
187 size_t subbuf_header_size;
188 u64 tsc;
189 int ret;
190
191 /* Test for cpu hotplug */
192 if (buf->backend.allocated)
193 return 0;
194
195 /*
196 * Paranoia: per cpu dynamic allocation is not officially documented as
197 * zeroing the memory, so let's do it here too, just in case.
198 */
199 memset(buf, 0, sizeof(*buf));
200
201 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
202 if (ret)
203 return ret;
204
205 buf->commit_hot =
206 kzalloc_node(ALIGN(sizeof(*buf->commit_hot)
207 * chan->backend.num_subbuf,
208 1 << INTERNODE_CACHE_SHIFT),
209 GFP_KERNEL | __GFP_NOWARN,
210 cpu_to_node(max(cpu, 0)));
211 if (!buf->commit_hot) {
212 ret = -ENOMEM;
213 goto free_chanbuf;
214 }
215
216 buf->commit_cold =
217 kzalloc_node(ALIGN(sizeof(*buf->commit_cold)
218 * chan->backend.num_subbuf,
219 1 << INTERNODE_CACHE_SHIFT),
220 GFP_KERNEL | __GFP_NOWARN,
221 cpu_to_node(max(cpu, 0)));
222 if (!buf->commit_cold) {
223 ret = -ENOMEM;
224 goto free_commit;
225 }
226
227 init_waitqueue_head(&buf->read_wait);
228 init_waitqueue_head(&buf->write_wait);
229 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
230
231 /*
232 * Write the subbuffer header for first subbuffer so we know the total
233 * duration of data gathering.
234 */
235 subbuf_header_size = config->cb.subbuffer_header_size();
236 v_set(config, &buf->offset, subbuf_header_size);
237 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
238 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
239 config->cb.buffer_begin(buf, tsc, 0);
240 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
241
242 if (config->cb.buffer_create) {
243 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
244 if (ret)
245 goto free_init;
246 }
247
248 /*
249 * Ensure the buffer is ready before setting it to allocated and setting
250 * the cpumask.
251 * Used for cpu hotplug vs cpumask iteration.
252 */
253 smp_wmb();
254 buf->backend.allocated = 1;
255
256 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
257 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
258 chan->backend.cpumask));
259 cpumask_set_cpu(cpu, chan->backend.cpumask);
260 }
261
262 return 0;
263
264 /* Error handling */
265 free_init:
266 kfree(buf->commit_cold);
267 free_commit:
268 kfree(buf->commit_hot);
269 free_chanbuf:
270 lib_ring_buffer_backend_free(&buf->backend);
271 return ret;
272 }
273
274 static void switch_buffer_timer(unsigned long data)
275 {
276 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
277 struct channel *chan = buf->backend.chan;
278 const struct lib_ring_buffer_config *config = &chan->backend.config;
279
280 /*
281 * Only flush buffers periodically if readers are active.
282 */
283 if (atomic_long_read(&buf->active_readers))
284 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
285
286 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
287 lttng_mod_timer_pinned(&buf->switch_timer,
288 jiffies + chan->switch_timer_interval);
289 else
290 mod_timer(&buf->switch_timer,
291 jiffies + chan->switch_timer_interval);
292 }
293
294 /*
295 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
296 */
297 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
298 {
299 struct channel *chan = buf->backend.chan;
300 const struct lib_ring_buffer_config *config = &chan->backend.config;
301
302 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
303 return;
304
305 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
306 lttng_init_timer_pinned(&buf->switch_timer);
307 else
308 init_timer(&buf->switch_timer);
309
310 buf->switch_timer.function = switch_buffer_timer;
311 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
312 buf->switch_timer.data = (unsigned long)buf;
313 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
314 add_timer_on(&buf->switch_timer, buf->backend.cpu);
315 else
316 add_timer(&buf->switch_timer);
317 buf->switch_timer_enabled = 1;
318 }
319
320 /*
321 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
322 */
323 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
324 {
325 struct channel *chan = buf->backend.chan;
326
327 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
328 return;
329
330 del_timer_sync(&buf->switch_timer);
331 buf->switch_timer_enabled = 0;
332 }
333
334 /*
335 * Polling timer to check the channels for data.
336 */
337 static void read_buffer_timer(unsigned long data)
338 {
339 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
340 struct channel *chan = buf->backend.chan;
341 const struct lib_ring_buffer_config *config = &chan->backend.config;
342
343 CHAN_WARN_ON(chan, !buf->backend.allocated);
344
345 if (atomic_long_read(&buf->active_readers)
346 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
347 wake_up_interruptible(&buf->read_wait);
348 wake_up_interruptible(&chan->read_wait);
349 }
350
351 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
352 lttng_mod_timer_pinned(&buf->read_timer,
353 jiffies + chan->read_timer_interval);
354 else
355 mod_timer(&buf->read_timer,
356 jiffies + chan->read_timer_interval);
357 }
358
359 /*
360 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
361 */
362 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
363 {
364 struct channel *chan = buf->backend.chan;
365 const struct lib_ring_buffer_config *config = &chan->backend.config;
366
367 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
368 || !chan->read_timer_interval
369 || buf->read_timer_enabled)
370 return;
371
372 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
373 lttng_init_timer_pinned(&buf->read_timer);
374 else
375 init_timer(&buf->read_timer);
376
377 buf->read_timer.function = read_buffer_timer;
378 buf->read_timer.expires = jiffies + chan->read_timer_interval;
379 buf->read_timer.data = (unsigned long)buf;
380
381 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
382 add_timer_on(&buf->read_timer, buf->backend.cpu);
383 else
384 add_timer(&buf->read_timer);
385 buf->read_timer_enabled = 1;
386 }
387
388 /*
389 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
390 */
391 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
392 {
393 struct channel *chan = buf->backend.chan;
394 const struct lib_ring_buffer_config *config = &chan->backend.config;
395
396 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
397 || !chan->read_timer_interval
398 || !buf->read_timer_enabled)
399 return;
400
401 del_timer_sync(&buf->read_timer);
402 /*
403 * do one more check to catch data that has been written in the last
404 * timer period.
405 */
406 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
407 wake_up_interruptible(&buf->read_wait);
408 wake_up_interruptible(&chan->read_wait);
409 }
410 buf->read_timer_enabled = 0;
411 }
412
413 #ifdef CONFIG_HOTPLUG_CPU
414 /**
415 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
416 * @nb: notifier block
417 * @action: hotplug action to take
418 * @hcpu: CPU number
419 *
420 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
421 */
422 static
423 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
424 unsigned long action,
425 void *hcpu)
426 {
427 unsigned int cpu = (unsigned long)hcpu;
428 struct channel *chan = container_of(nb, struct channel,
429 cpu_hp_notifier);
430 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
431 const struct lib_ring_buffer_config *config = &chan->backend.config;
432
433 if (!chan->cpu_hp_enable)
434 return NOTIFY_DONE;
435
436 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
437
438 switch (action) {
439 case CPU_DOWN_FAILED:
440 case CPU_DOWN_FAILED_FROZEN:
441 case CPU_ONLINE:
442 case CPU_ONLINE_FROZEN:
443 wake_up_interruptible(&chan->hp_wait);
444 lib_ring_buffer_start_switch_timer(buf);
445 lib_ring_buffer_start_read_timer(buf);
446 return NOTIFY_OK;
447
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 lib_ring_buffer_stop_switch_timer(buf);
451 lib_ring_buffer_stop_read_timer(buf);
452 return NOTIFY_OK;
453
454 case CPU_DEAD:
455 case CPU_DEAD_FROZEN:
456 /*
457 * Performing a buffer switch on a remote CPU. Performed by
458 * the CPU responsible for doing the hotunplug after the target
459 * CPU stopped running completely. Ensures that all data
460 * from that remote CPU is flushed.
461 */
462 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
463 return NOTIFY_OK;
464
465 default:
466 return NOTIFY_DONE;
467 }
468 }
469 #endif
470
471 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
472 /*
473 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
474 * that wake-up-tracing generated events are flushed before going idle (in
475 * tick_nohz). We test if the spinlock is locked to deal with the race where
476 * readers try to sample the ring buffer before we perform the switch. We let
477 * the readers retry in that case. If there is data in the buffer, the wake up
478 * is going to forbid the CPU running the reader thread from going idle.
479 */
480 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
481 unsigned long val,
482 void *data)
483 {
484 struct channel *chan = container_of(nb, struct channel,
485 tick_nohz_notifier);
486 const struct lib_ring_buffer_config *config = &chan->backend.config;
487 struct lib_ring_buffer *buf;
488 int cpu = smp_processor_id();
489
490 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
491 /*
492 * We don't support keeping the system idle with global buffers
493 * and streaming active. In order to do so, we would need to
494 * sample a non-nohz-cpumask racelessly with the nohz updates
495 * without adding synchronization overhead to nohz. Leave this
496 * use-case out for now.
497 */
498 return 0;
499 }
500
501 buf = channel_get_ring_buffer(config, chan, cpu);
502 switch (val) {
503 case TICK_NOHZ_FLUSH:
504 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
505 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
506 && chan->read_timer_interval
507 && atomic_long_read(&buf->active_readers)
508 && (lib_ring_buffer_poll_deliver(config, buf, chan)
509 || lib_ring_buffer_pending_data(config, buf, chan))) {
510 wake_up_interruptible(&buf->read_wait);
511 wake_up_interruptible(&chan->read_wait);
512 }
513 if (chan->switch_timer_interval)
514 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
515 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
516 break;
517 case TICK_NOHZ_STOP:
518 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
519 lib_ring_buffer_stop_switch_timer(buf);
520 lib_ring_buffer_stop_read_timer(buf);
521 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
522 break;
523 case TICK_NOHZ_RESTART:
524 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
525 lib_ring_buffer_start_read_timer(buf);
526 lib_ring_buffer_start_switch_timer(buf);
527 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
528 break;
529 }
530
531 return 0;
532 }
533
534 void notrace lib_ring_buffer_tick_nohz_flush(void)
535 {
536 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
537 NULL);
538 }
539
540 void notrace lib_ring_buffer_tick_nohz_stop(void)
541 {
542 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
543 NULL);
544 }
545
546 void notrace lib_ring_buffer_tick_nohz_restart(void)
547 {
548 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
549 NULL);
550 }
551 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
552
553 /*
554 * Holds CPU hotplug.
555 */
556 static void channel_unregister_notifiers(struct channel *chan)
557 {
558 const struct lib_ring_buffer_config *config = &chan->backend.config;
559 int cpu;
560
561 channel_iterator_unregister_notifiers(chan);
562 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
563 #ifdef CONFIG_NO_HZ
564 /*
565 * Remove the nohz notifier first, so we are certain we stop
566 * the timers.
567 */
568 atomic_notifier_chain_unregister(&tick_nohz_notifier,
569 &chan->tick_nohz_notifier);
570 /*
571 * ring_buffer_nohz_lock will not be needed below, because
572 * we just removed the notifiers, which were the only source of
573 * concurrency.
574 */
575 #endif /* CONFIG_NO_HZ */
576 #ifdef CONFIG_HOTPLUG_CPU
577 get_online_cpus();
578 chan->cpu_hp_enable = 0;
579 for_each_online_cpu(cpu) {
580 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
581 cpu);
582 lib_ring_buffer_stop_switch_timer(buf);
583 lib_ring_buffer_stop_read_timer(buf);
584 }
585 put_online_cpus();
586 unregister_cpu_notifier(&chan->cpu_hp_notifier);
587 #else
588 for_each_possible_cpu(cpu) {
589 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
590 cpu);
591 lib_ring_buffer_stop_switch_timer(buf);
592 lib_ring_buffer_stop_read_timer(buf);
593 }
594 #endif
595 } else {
596 struct lib_ring_buffer *buf = chan->backend.buf;
597
598 lib_ring_buffer_stop_switch_timer(buf);
599 lib_ring_buffer_stop_read_timer(buf);
600 }
601 channel_backend_unregister_notifiers(&chan->backend);
602 }
603
604 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
605 {
606 if (!buf->quiescent) {
607 buf->quiescent = true;
608 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
609 }
610 }
611
612 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
613 {
614 buf->quiescent = false;
615 }
616
617 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
618 {
619 int cpu;
620 const struct lib_ring_buffer_config *config = &chan->backend.config;
621
622 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
623 get_online_cpus();
624 for_each_channel_cpu(cpu, chan) {
625 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
626 cpu);
627
628 lib_ring_buffer_set_quiescent(buf);
629 }
630 put_online_cpus();
631 } else {
632 struct lib_ring_buffer *buf = chan->backend.buf;
633
634 lib_ring_buffer_set_quiescent(buf);
635 }
636 }
637 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
638
639 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
640 {
641 int cpu;
642 const struct lib_ring_buffer_config *config = &chan->backend.config;
643
644 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
645 get_online_cpus();
646 for_each_channel_cpu(cpu, chan) {
647 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
648 cpu);
649
650 lib_ring_buffer_clear_quiescent(buf);
651 }
652 put_online_cpus();
653 } else {
654 struct lib_ring_buffer *buf = chan->backend.buf;
655
656 lib_ring_buffer_clear_quiescent(buf);
657 }
658 }
659 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
660
661 static void channel_free(struct channel *chan)
662 {
663 if (chan->backend.release_priv_ops) {
664 chan->backend.release_priv_ops(chan->backend.priv_ops);
665 }
666 channel_iterator_free(chan);
667 channel_backend_free(&chan->backend);
668 kfree(chan);
669 }
670
671 /**
672 * channel_create - Create channel.
673 * @config: ring buffer instance configuration
674 * @name: name of the channel
675 * @priv: ring buffer client private data
676 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
677 * address mapping. It is used only by RING_BUFFER_STATIC
678 * configuration. It can be set to NULL for other backends.
679 * @subbuf_size: subbuffer size
680 * @num_subbuf: number of subbuffers
681 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
682 * padding to let readers get those sub-buffers.
683 * Used for live streaming.
684 * @read_timer_interval: Time interval (in us) to wake up pending readers.
685 *
686 * Holds cpu hotplug.
687 * Returns NULL on failure.
688 */
689 struct channel *channel_create(const struct lib_ring_buffer_config *config,
690 const char *name, void *priv, void *buf_addr,
691 size_t subbuf_size,
692 size_t num_subbuf, unsigned int switch_timer_interval,
693 unsigned int read_timer_interval)
694 {
695 int ret, cpu;
696 struct channel *chan;
697
698 if (lib_ring_buffer_check_config(config, switch_timer_interval,
699 read_timer_interval))
700 return NULL;
701
702 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
703 if (!chan)
704 return NULL;
705
706 ret = channel_backend_init(&chan->backend, name, config, priv,
707 subbuf_size, num_subbuf);
708 if (ret)
709 goto error;
710
711 ret = channel_iterator_init(chan);
712 if (ret)
713 goto error_free_backend;
714
715 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
716 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
717 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
718 kref_init(&chan->ref);
719 init_waitqueue_head(&chan->read_wait);
720 init_waitqueue_head(&chan->hp_wait);
721
722 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
723 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
724 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
725 chan->tick_nohz_notifier.notifier_call =
726 ring_buffer_tick_nohz_callback;
727 chan->tick_nohz_notifier.priority = ~0U;
728 atomic_notifier_chain_register(&tick_nohz_notifier,
729 &chan->tick_nohz_notifier);
730 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
731
732 /*
733 * In case of non-hotplug cpu, if the ring-buffer is allocated
734 * in early initcall, it will not be notified of secondary cpus.
735 * In that off case, we need to allocate for all possible cpus.
736 */
737 #ifdef CONFIG_HOTPLUG_CPU
738 chan->cpu_hp_notifier.notifier_call =
739 lib_ring_buffer_cpu_hp_callback;
740 chan->cpu_hp_notifier.priority = 6;
741 register_cpu_notifier(&chan->cpu_hp_notifier);
742
743 get_online_cpus();
744 for_each_online_cpu(cpu) {
745 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
746 cpu);
747 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
748 lib_ring_buffer_start_switch_timer(buf);
749 lib_ring_buffer_start_read_timer(buf);
750 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
751 }
752 chan->cpu_hp_enable = 1;
753 put_online_cpus();
754 #else
755 for_each_possible_cpu(cpu) {
756 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
757 cpu);
758 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
759 lib_ring_buffer_start_switch_timer(buf);
760 lib_ring_buffer_start_read_timer(buf);
761 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
762 }
763 #endif
764 } else {
765 struct lib_ring_buffer *buf = chan->backend.buf;
766
767 lib_ring_buffer_start_switch_timer(buf);
768 lib_ring_buffer_start_read_timer(buf);
769 }
770
771 return chan;
772
773 error_free_backend:
774 channel_backend_free(&chan->backend);
775 error:
776 kfree(chan);
777 return NULL;
778 }
779 EXPORT_SYMBOL_GPL(channel_create);
780
781 static
782 void channel_release(struct kref *kref)
783 {
784 struct channel *chan = container_of(kref, struct channel, ref);
785 channel_free(chan);
786 }
787
788 /**
789 * channel_destroy - Finalize, wait for q.s. and destroy channel.
790 * @chan: channel to destroy
791 *
792 * Holds cpu hotplug.
793 * Call "destroy" callback, finalize channels, and then decrement the
794 * channel reference count. Note that when readers have completed data
795 * consumption of finalized channels, get_subbuf() will return -ENODATA.
796 * They should release their handle at that point. Returns the private
797 * data pointer.
798 */
799 void *channel_destroy(struct channel *chan)
800 {
801 int cpu;
802 const struct lib_ring_buffer_config *config = &chan->backend.config;
803 void *priv;
804
805 channel_unregister_notifiers(chan);
806
807 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
808 /*
809 * No need to hold cpu hotplug, because all notifiers have been
810 * unregistered.
811 */
812 for_each_channel_cpu(cpu, chan) {
813 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
814 cpu);
815
816 if (config->cb.buffer_finalize)
817 config->cb.buffer_finalize(buf,
818 chan->backend.priv,
819 cpu);
820 if (buf->backend.allocated)
821 lib_ring_buffer_set_quiescent(buf);
822 /*
823 * Perform flush before writing to finalized.
824 */
825 smp_wmb();
826 ACCESS_ONCE(buf->finalized) = 1;
827 wake_up_interruptible(&buf->read_wait);
828 }
829 } else {
830 struct lib_ring_buffer *buf = chan->backend.buf;
831
832 if (config->cb.buffer_finalize)
833 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
834 if (buf->backend.allocated)
835 lib_ring_buffer_set_quiescent(buf);
836 /*
837 * Perform flush before writing to finalized.
838 */
839 smp_wmb();
840 ACCESS_ONCE(buf->finalized) = 1;
841 wake_up_interruptible(&buf->read_wait);
842 }
843 ACCESS_ONCE(chan->finalized) = 1;
844 wake_up_interruptible(&chan->hp_wait);
845 wake_up_interruptible(&chan->read_wait);
846 priv = chan->backend.priv;
847 kref_put(&chan->ref, channel_release);
848 return priv;
849 }
850 EXPORT_SYMBOL_GPL(channel_destroy);
851
852 struct lib_ring_buffer *channel_get_ring_buffer(
853 const struct lib_ring_buffer_config *config,
854 struct channel *chan, int cpu)
855 {
856 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
857 return chan->backend.buf;
858 else
859 return per_cpu_ptr(chan->backend.buf, cpu);
860 }
861 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
862
863 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
864 {
865 struct channel *chan = buf->backend.chan;
866
867 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
868 return -EBUSY;
869 if (!lttng_kref_get(&chan->ref)) {
870 atomic_long_dec(&buf->active_readers);
871 return -EOVERFLOW;
872 }
873 lttng_smp_mb__after_atomic();
874 return 0;
875 }
876 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
877
878 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
879 {
880 struct channel *chan = buf->backend.chan;
881
882 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
883 lttng_smp_mb__before_atomic();
884 atomic_long_dec(&buf->active_readers);
885 kref_put(&chan->ref, channel_release);
886 }
887 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
888
889 /*
890 * Promote compiler barrier to a smp_mb().
891 * For the specific ring buffer case, this IPI call should be removed if the
892 * architecture does not reorder writes. This should eventually be provided by
893 * a separate architecture-specific infrastructure.
894 */
895 static void remote_mb(void *info)
896 {
897 smp_mb();
898 }
899
900 /**
901 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
902 * @buf: ring buffer
903 * @consumed: consumed count indicating the position where to read
904 * @produced: produced count, indicates position when to stop reading
905 *
906 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
907 * data to read at consumed position, or 0 if the get operation succeeds.
908 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
909 */
910
911 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
912 unsigned long *consumed, unsigned long *produced)
913 {
914 struct channel *chan = buf->backend.chan;
915 const struct lib_ring_buffer_config *config = &chan->backend.config;
916 unsigned long consumed_cur, write_offset;
917 int finalized;
918
919 retry:
920 finalized = ACCESS_ONCE(buf->finalized);
921 /*
922 * Read finalized before counters.
923 */
924 smp_rmb();
925 consumed_cur = atomic_long_read(&buf->consumed);
926 /*
927 * No need to issue a memory barrier between consumed count read and
928 * write offset read, because consumed count can only change
929 * concurrently in overwrite mode, and we keep a sequence counter
930 * identifier derived from the write offset to check we are getting
931 * the same sub-buffer we are expecting (the sub-buffers are atomically
932 * "tagged" upon writes, tags are checked upon read).
933 */
934 write_offset = v_read(config, &buf->offset);
935
936 /*
937 * Check that we are not about to read the same subbuffer in
938 * which the writer head is.
939 */
940 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
941 == 0)
942 goto nodata;
943
944 *consumed = consumed_cur;
945 *produced = subbuf_trunc(write_offset, chan);
946
947 return 0;
948
949 nodata:
950 /*
951 * The memory barriers __wait_event()/wake_up_interruptible() take care
952 * of "raw_spin_is_locked" memory ordering.
953 */
954 if (finalized)
955 return -ENODATA;
956 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
957 goto retry;
958 else
959 return -EAGAIN;
960 }
961 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
962
963 /**
964 * lib_ring_buffer_put_snapshot - move consumed counter forward
965 *
966 * Should only be called from consumer context.
967 * @buf: ring buffer
968 * @consumed_new: new consumed count value
969 */
970 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
971 unsigned long consumed_new)
972 {
973 struct lib_ring_buffer_backend *bufb = &buf->backend;
974 struct channel *chan = bufb->chan;
975 unsigned long consumed;
976
977 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
978
979 /*
980 * Only push the consumed value forward.
981 * If the consumed cmpxchg fails, this is because we have been pushed by
982 * the writer in flight recorder mode.
983 */
984 consumed = atomic_long_read(&buf->consumed);
985 while ((long) consumed - (long) consumed_new < 0)
986 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
987 consumed_new);
988 /* Wake-up the metadata producer */
989 wake_up_interruptible(&buf->write_wait);
990 }
991 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
992
993 /**
994 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
995 * @buf: ring buffer
996 * @consumed: consumed count indicating the position where to read
997 *
998 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
999 * data to read at consumed position, or 0 if the get operation succeeds.
1000 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1001 */
1002 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1003 unsigned long consumed)
1004 {
1005 struct channel *chan = buf->backend.chan;
1006 const struct lib_ring_buffer_config *config = &chan->backend.config;
1007 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1008 int ret;
1009 int finalized;
1010
1011 if (buf->get_subbuf) {
1012 /*
1013 * Reader is trying to get a subbuffer twice.
1014 */
1015 CHAN_WARN_ON(chan, 1);
1016 return -EBUSY;
1017 }
1018 retry:
1019 finalized = ACCESS_ONCE(buf->finalized);
1020 /*
1021 * Read finalized before counters.
1022 */
1023 smp_rmb();
1024 consumed_cur = atomic_long_read(&buf->consumed);
1025 consumed_idx = subbuf_index(consumed, chan);
1026 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1027 /*
1028 * Make sure we read the commit count before reading the buffer
1029 * data and the write offset. Correct consumed offset ordering
1030 * wrt commit count is insured by the use of cmpxchg to update
1031 * the consumed offset.
1032 * smp_call_function_single can fail if the remote CPU is offline,
1033 * this is OK because then there is no wmb to execute there.
1034 * If our thread is executing on the same CPU as the on the buffers
1035 * belongs to, we don't have to synchronize it at all. If we are
1036 * migrated, the scheduler will take care of the memory barriers.
1037 * Normally, smp_call_function_single() should ensure program order when
1038 * executing the remote function, which implies that it surrounds the
1039 * function execution with :
1040 * smp_mb()
1041 * send IPI
1042 * csd_lock_wait
1043 * recv IPI
1044 * smp_mb()
1045 * exec. function
1046 * smp_mb()
1047 * csd unlock
1048 * smp_mb()
1049 *
1050 * However, smp_call_function_single() does not seem to clearly execute
1051 * such barriers. It depends on spinlock semantic to provide the barrier
1052 * before executing the IPI and, when busy-looping, csd_lock_wait only
1053 * executes smp_mb() when it has to wait for the other CPU.
1054 *
1055 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1056 * required ourself, even if duplicated. It has no performance impact
1057 * anyway.
1058 *
1059 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1060 * read and write vs write. They do not ensure core synchronization. We
1061 * really have to ensure total order between the 3 barriers running on
1062 * the 2 CPUs.
1063 */
1064 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1065 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1066 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1067 if (raw_smp_processor_id() != buf->backend.cpu) {
1068 /* Total order with IPI handler smp_mb() */
1069 smp_mb();
1070 smp_call_function_single(buf->backend.cpu,
1071 remote_mb, NULL, 1);
1072 /* Total order with IPI handler smp_mb() */
1073 smp_mb();
1074 }
1075 } else {
1076 /* Total order with IPI handler smp_mb() */
1077 smp_mb();
1078 smp_call_function(remote_mb, NULL, 1);
1079 /* Total order with IPI handler smp_mb() */
1080 smp_mb();
1081 }
1082 } else {
1083 /*
1084 * Local rmb to match the remote wmb to read the commit count
1085 * before the buffer data and the write offset.
1086 */
1087 smp_rmb();
1088 }
1089
1090 write_offset = v_read(config, &buf->offset);
1091
1092 /*
1093 * Check that the buffer we are getting is after or at consumed_cur
1094 * position.
1095 */
1096 if ((long) subbuf_trunc(consumed, chan)
1097 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1098 goto nodata;
1099
1100 /*
1101 * Check that the subbuffer we are trying to consume has been
1102 * already fully committed.
1103 */
1104 if (((commit_count - chan->backend.subbuf_size)
1105 & chan->commit_count_mask)
1106 - (buf_trunc(consumed, chan)
1107 >> chan->backend.num_subbuf_order)
1108 != 0)
1109 goto nodata;
1110
1111 /*
1112 * Check that we are not about to read the same subbuffer in
1113 * which the writer head is.
1114 */
1115 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1116 == 0)
1117 goto nodata;
1118
1119 /*
1120 * Failure to get the subbuffer causes a busy-loop retry without going
1121 * to a wait queue. These are caused by short-lived race windows where
1122 * the writer is getting access to a subbuffer we were trying to get
1123 * access to. Also checks that the "consumed" buffer count we are
1124 * looking for matches the one contained in the subbuffer id.
1125 */
1126 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1127 consumed_idx, buf_trunc_val(consumed, chan));
1128 if (ret)
1129 goto retry;
1130 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1131
1132 buf->get_subbuf_consumed = consumed;
1133 buf->get_subbuf = 1;
1134
1135 return 0;
1136
1137 nodata:
1138 /*
1139 * The memory barriers __wait_event()/wake_up_interruptible() take care
1140 * of "raw_spin_is_locked" memory ordering.
1141 */
1142 if (finalized)
1143 return -ENODATA;
1144 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1145 goto retry;
1146 else
1147 return -EAGAIN;
1148 }
1149 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1150
1151 /**
1152 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1153 * @buf: ring buffer
1154 */
1155 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1156 {
1157 struct lib_ring_buffer_backend *bufb = &buf->backend;
1158 struct channel *chan = bufb->chan;
1159 const struct lib_ring_buffer_config *config = &chan->backend.config;
1160 unsigned long read_sb_bindex, consumed_idx, consumed;
1161
1162 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1163
1164 if (!buf->get_subbuf) {
1165 /*
1166 * Reader puts a subbuffer it did not get.
1167 */
1168 CHAN_WARN_ON(chan, 1);
1169 return;
1170 }
1171 consumed = buf->get_subbuf_consumed;
1172 buf->get_subbuf = 0;
1173
1174 /*
1175 * Clear the records_unread counter. (overruns counter)
1176 * Can still be non-zero if a file reader simply grabbed the data
1177 * without using iterators.
1178 * Can be below zero if an iterator is used on a snapshot more than
1179 * once.
1180 */
1181 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1182 v_add(config, v_read(config,
1183 &bufb->array[read_sb_bindex]->records_unread),
1184 &bufb->records_read);
1185 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1186 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1187 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1188 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1189
1190 /*
1191 * Exchange the reader subbuffer with the one we put in its place in the
1192 * writer subbuffer table. Expect the original consumed count. If
1193 * update_read_sb_index fails, this is because the writer updated the
1194 * subbuffer concurrently. We should therefore keep the subbuffer we
1195 * currently have: it has become invalid to try reading this sub-buffer
1196 * consumed count value anyway.
1197 */
1198 consumed_idx = subbuf_index(consumed, chan);
1199 update_read_sb_index(config, &buf->backend, &chan->backend,
1200 consumed_idx, buf_trunc_val(consumed, chan));
1201 /*
1202 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1203 * if the writer concurrently updated it.
1204 */
1205 }
1206 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1207
1208 /*
1209 * cons_offset is an iterator on all subbuffer offsets between the reader
1210 * position and the writer position. (inclusive)
1211 */
1212 static
1213 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1214 struct channel *chan,
1215 unsigned long cons_offset,
1216 int cpu)
1217 {
1218 const struct lib_ring_buffer_config *config = &chan->backend.config;
1219 unsigned long cons_idx, commit_count, commit_count_sb;
1220
1221 cons_idx = subbuf_index(cons_offset, chan);
1222 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1223 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1224
1225 if (subbuf_offset(commit_count, chan) != 0)
1226 printk(KERN_WARNING
1227 "ring buffer %s, cpu %d: "
1228 "commit count in subbuffer %lu,\n"
1229 "expecting multiples of %lu bytes\n"
1230 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1231 chan->backend.name, cpu, cons_idx,
1232 chan->backend.subbuf_size,
1233 commit_count, commit_count_sb);
1234
1235 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1236 chan->backend.name, cpu, commit_count);
1237 }
1238
1239 static
1240 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1241 struct channel *chan,
1242 void *priv, int cpu)
1243 {
1244 const struct lib_ring_buffer_config *config = &chan->backend.config;
1245 unsigned long write_offset, cons_offset;
1246
1247 /*
1248 * No need to order commit_count, write_offset and cons_offset reads
1249 * because we execute at teardown when no more writer nor reader
1250 * references are left.
1251 */
1252 write_offset = v_read(config, &buf->offset);
1253 cons_offset = atomic_long_read(&buf->consumed);
1254 if (write_offset != cons_offset)
1255 printk(KERN_DEBUG
1256 "ring buffer %s, cpu %d: "
1257 "non-consumed data\n"
1258 " [ %lu bytes written, %lu bytes read ]\n",
1259 chan->backend.name, cpu, write_offset, cons_offset);
1260
1261 for (cons_offset = atomic_long_read(&buf->consumed);
1262 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1263 chan)
1264 - cons_offset) > 0;
1265 cons_offset = subbuf_align(cons_offset, chan))
1266 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1267 cpu);
1268 }
1269
1270 static
1271 void lib_ring_buffer_print_errors(struct channel *chan,
1272 struct lib_ring_buffer *buf, int cpu)
1273 {
1274 const struct lib_ring_buffer_config *config = &chan->backend.config;
1275 void *priv = chan->backend.priv;
1276
1277 if (!strcmp(chan->backend.name, "relay-metadata")) {
1278 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1279 "%lu records overrun\n",
1280 chan->backend.name,
1281 v_read(config, &buf->records_count),
1282 v_read(config, &buf->records_overrun));
1283 } else {
1284 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1285 "%lu records overrun\n",
1286 chan->backend.name, cpu,
1287 v_read(config, &buf->records_count),
1288 v_read(config, &buf->records_overrun));
1289
1290 if (v_read(config, &buf->records_lost_full)
1291 || v_read(config, &buf->records_lost_wrap)
1292 || v_read(config, &buf->records_lost_big))
1293 printk(KERN_WARNING
1294 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1295 " [ %lu buffer full, %lu nest buffer wrap-around, "
1296 "%lu event too big ]\n",
1297 chan->backend.name, cpu,
1298 v_read(config, &buf->records_lost_full),
1299 v_read(config, &buf->records_lost_wrap),
1300 v_read(config, &buf->records_lost_big));
1301 }
1302 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1303 }
1304
1305 /*
1306 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1307 *
1308 * Only executed by SWITCH_FLUSH, which can be issued while tracing is active
1309 * or at buffer finalization (destroy).
1310 */
1311 static
1312 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1313 struct channel *chan,
1314 struct switch_offsets *offsets,
1315 u64 tsc)
1316 {
1317 const struct lib_ring_buffer_config *config = &chan->backend.config;
1318 unsigned long oldidx = subbuf_index(offsets->old, chan);
1319 unsigned long commit_count;
1320
1321 config->cb.buffer_begin(buf, tsc, oldidx);
1322
1323 /*
1324 * Order all writes to buffer before the commit count update that will
1325 * determine that the subbuffer is full.
1326 */
1327 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1328 /*
1329 * Must write slot data before incrementing commit count. This
1330 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1331 * by get_subbuf().
1332 */
1333 barrier();
1334 } else
1335 smp_wmb();
1336 v_add(config, config->cb.subbuffer_header_size(),
1337 &buf->commit_hot[oldidx].cc);
1338 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1339 /* Check if the written buffer has to be delivered */
1340 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1341 commit_count, oldidx, tsc);
1342 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1343 offsets->old + config->cb.subbuffer_header_size(),
1344 commit_count);
1345 }
1346
1347 /*
1348 * lib_ring_buffer_switch_old_end: switch old subbuffer
1349 *
1350 * Note : offset_old should never be 0 here. It is ok, because we never perform
1351 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1352 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1353 * subbuffer.
1354 */
1355 static
1356 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1357 struct channel *chan,
1358 struct switch_offsets *offsets,
1359 u64 tsc)
1360 {
1361 const struct lib_ring_buffer_config *config = &chan->backend.config;
1362 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1363 unsigned long commit_count, padding_size, data_size;
1364
1365 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1366 padding_size = chan->backend.subbuf_size - data_size;
1367 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1368
1369 /*
1370 * Order all writes to buffer before the commit count update that will
1371 * determine that the subbuffer is full.
1372 */
1373 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1374 /*
1375 * Must write slot data before incrementing commit count. This
1376 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1377 * by get_subbuf().
1378 */
1379 barrier();
1380 } else
1381 smp_wmb();
1382 v_add(config, padding_size, &buf->commit_hot[oldidx].cc);
1383 commit_count = v_read(config, &buf->commit_hot[oldidx].cc);
1384 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1385 commit_count, oldidx, tsc);
1386 lib_ring_buffer_write_commit_counter(config, buf, chan, oldidx,
1387 offsets->old + padding_size, commit_count);
1388 }
1389
1390 /*
1391 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1392 *
1393 * This code can be executed unordered : writers may already have written to the
1394 * sub-buffer before this code gets executed, caution. The commit makes sure
1395 * that this code is executed before the deliver of this sub-buffer.
1396 */
1397 static
1398 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1399 struct channel *chan,
1400 struct switch_offsets *offsets,
1401 u64 tsc)
1402 {
1403 const struct lib_ring_buffer_config *config = &chan->backend.config;
1404 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1405 unsigned long commit_count;
1406
1407 config->cb.buffer_begin(buf, tsc, beginidx);
1408
1409 /*
1410 * Order all writes to buffer before the commit count update that will
1411 * determine that the subbuffer is full.
1412 */
1413 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1414 /*
1415 * Must write slot data before incrementing commit count. This
1416 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1417 * by get_subbuf().
1418 */
1419 barrier();
1420 } else
1421 smp_wmb();
1422 v_add(config, config->cb.subbuffer_header_size(),
1423 &buf->commit_hot[beginidx].cc);
1424 commit_count = v_read(config, &buf->commit_hot[beginidx].cc);
1425 /* Check if the written buffer has to be delivered */
1426 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1427 commit_count, beginidx, tsc);
1428 lib_ring_buffer_write_commit_counter(config, buf, chan, beginidx,
1429 offsets->begin + config->cb.subbuffer_header_size(),
1430 commit_count);
1431 }
1432
1433 /*
1434 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1435 *
1436 * Calls subbuffer_set_data_size() to set the data size of the current
1437 * sub-buffer. We do not need to perform check_deliver nor commit here,
1438 * since this task will be done by the "commit" of the event for which
1439 * we are currently doing the space reservation.
1440 */
1441 static
1442 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1443 struct channel *chan,
1444 struct switch_offsets *offsets,
1445 u64 tsc)
1446 {
1447 const struct lib_ring_buffer_config *config = &chan->backend.config;
1448 unsigned long endidx, data_size;
1449
1450 endidx = subbuf_index(offsets->end - 1, chan);
1451 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1452 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1453 }
1454
1455 /*
1456 * Returns :
1457 * 0 if ok
1458 * !0 if execution must be aborted.
1459 */
1460 static
1461 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1462 struct lib_ring_buffer *buf,
1463 struct channel *chan,
1464 struct switch_offsets *offsets,
1465 u64 *tsc)
1466 {
1467 const struct lib_ring_buffer_config *config = &chan->backend.config;
1468 unsigned long off, reserve_commit_diff;
1469
1470 offsets->begin = v_read(config, &buf->offset);
1471 offsets->old = offsets->begin;
1472 offsets->switch_old_start = 0;
1473 off = subbuf_offset(offsets->begin, chan);
1474
1475 *tsc = config->cb.ring_buffer_clock_read(chan);
1476
1477 /*
1478 * Ensure we flush the header of an empty subbuffer when doing the
1479 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1480 * total data gathering duration even if there were no records saved
1481 * after the last buffer switch.
1482 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1483 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1484 * subbuffer header as appropriate.
1485 * The next record that reserves space will be responsible for
1486 * populating the following subbuffer header. We choose not to populate
1487 * the next subbuffer header here because we want to be able to use
1488 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1489 * buffer flush, which must guarantee that all the buffer content
1490 * (records and header timestamps) are visible to the reader. This is
1491 * required for quiescence guarantees for the fusion merge.
1492 */
1493 if (mode != SWITCH_FLUSH && !off)
1494 return -1; /* we do not have to switch : buffer is empty */
1495
1496 if (unlikely(off == 0)) {
1497 unsigned long sb_index, commit_count;
1498
1499 /*
1500 * We are performing a SWITCH_FLUSH. There may be concurrent
1501 * writes into the buffer if e.g. invoked while performing a
1502 * snapshot on an active trace.
1503 *
1504 * If the client does not save any header information (sub-buffer
1505 * header size == 0), don't switch empty subbuffer on finalize,
1506 * because it is invalid to deliver a completely empty
1507 * subbuffer.
1508 */
1509 if (!config->cb.subbuffer_header_size())
1510 return -1;
1511
1512 /* Test new buffer integrity */
1513 sb_index = subbuf_index(offsets->begin, chan);
1514 commit_count = v_read(config,
1515 &buf->commit_cold[sb_index].cc_sb);
1516 reserve_commit_diff =
1517 (buf_trunc(offsets->begin, chan)
1518 >> chan->backend.num_subbuf_order)
1519 - (commit_count & chan->commit_count_mask);
1520 if (likely(reserve_commit_diff == 0)) {
1521 /* Next subbuffer not being written to. */
1522 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1523 subbuf_trunc(offsets->begin, chan)
1524 - subbuf_trunc((unsigned long)
1525 atomic_long_read(&buf->consumed), chan)
1526 >= chan->backend.buf_size)) {
1527 /*
1528 * We do not overwrite non consumed buffers
1529 * and we are full : don't switch.
1530 */
1531 return -1;
1532 } else {
1533 /*
1534 * Next subbuffer not being written to, and we
1535 * are either in overwrite mode or the buffer is
1536 * not full. It's safe to write in this new
1537 * subbuffer.
1538 */
1539 }
1540 } else {
1541 /*
1542 * Next subbuffer reserve offset does not match the
1543 * commit offset. Don't perform switch in
1544 * producer-consumer and overwrite mode. Caused by
1545 * either a writer OOPS or too many nested writes over a
1546 * reserve/commit pair.
1547 */
1548 return -1;
1549 }
1550
1551 /*
1552 * Need to write the subbuffer start header on finalize.
1553 */
1554 offsets->switch_old_start = 1;
1555 }
1556 offsets->begin = subbuf_align(offsets->begin, chan);
1557 /* Note: old points to the next subbuf at offset 0 */
1558 offsets->end = offsets->begin;
1559 return 0;
1560 }
1561
1562 /*
1563 * Force a sub-buffer switch. This operation is completely reentrant : can be
1564 * called while tracing is active with absolutely no lock held.
1565 *
1566 * Note, however, that as a v_cmpxchg is used for some atomic
1567 * operations, this function must be called from the CPU which owns the buffer
1568 * for a ACTIVE flush.
1569 */
1570 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1571 {
1572 struct channel *chan = buf->backend.chan;
1573 const struct lib_ring_buffer_config *config = &chan->backend.config;
1574 struct switch_offsets offsets;
1575 unsigned long oldidx;
1576 u64 tsc;
1577
1578 offsets.size = 0;
1579
1580 /*
1581 * Perform retryable operations.
1582 */
1583 do {
1584 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1585 &tsc))
1586 return; /* Switch not needed */
1587 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1588 != offsets.old);
1589
1590 /*
1591 * Atomically update last_tsc. This update races against concurrent
1592 * atomic updates, but the race will always cause supplementary full TSC
1593 * records, never the opposite (missing a full TSC record when it would
1594 * be needed).
1595 */
1596 save_last_tsc(config, buf, tsc);
1597
1598 /*
1599 * Push the reader if necessary
1600 */
1601 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1602
1603 oldidx = subbuf_index(offsets.old, chan);
1604 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1605
1606 /*
1607 * May need to populate header start on SWITCH_FLUSH.
1608 */
1609 if (offsets.switch_old_start) {
1610 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1611 offsets.old += config->cb.subbuffer_header_size();
1612 }
1613
1614 /*
1615 * Switch old subbuffer.
1616 */
1617 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1618 }
1619 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1620
1621 struct switch_param {
1622 struct lib_ring_buffer *buf;
1623 enum switch_mode mode;
1624 };
1625
1626 static void remote_switch(void *info)
1627 {
1628 struct switch_param *param = info;
1629 struct lib_ring_buffer *buf = param->buf;
1630
1631 lib_ring_buffer_switch_slow(buf, param->mode);
1632 }
1633
1634 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1635 enum switch_mode mode)
1636 {
1637 struct channel *chan = buf->backend.chan;
1638 const struct lib_ring_buffer_config *config = &chan->backend.config;
1639 int ret;
1640 struct switch_param param;
1641
1642 /*
1643 * With global synchronization we don't need to use the IPI scheme.
1644 */
1645 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1646 lib_ring_buffer_switch_slow(buf, mode);
1647 return;
1648 }
1649
1650 /*
1651 * Taking lock on CPU hotplug to ensure two things: first, that the
1652 * target cpu is not taken concurrently offline while we are within
1653 * smp_call_function_single() (I don't trust that get_cpu() on the
1654 * _local_ CPU actually inhibit CPU hotplug for the _remote_ CPU (to be
1655 * confirmed)). Secondly, if it happens that the CPU is not online, our
1656 * own call to lib_ring_buffer_switch_slow() needs to be protected from
1657 * CPU hotplug handlers, which can also perform a remote subbuffer
1658 * switch.
1659 */
1660 get_online_cpus();
1661 param.buf = buf;
1662 param.mode = mode;
1663 ret = smp_call_function_single(buf->backend.cpu,
1664 remote_switch, &param, 1);
1665 if (ret) {
1666 /* Remote CPU is offline, do it ourself. */
1667 lib_ring_buffer_switch_slow(buf, mode);
1668 }
1669 put_online_cpus();
1670 }
1671
1672 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1673 {
1674 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1675 }
1676 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1677
1678 /* Switch sub-buffer even if current sub-buffer is empty. */
1679 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1680 {
1681 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1682 }
1683 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1684
1685 /*
1686 * Returns :
1687 * 0 if ok
1688 * -ENOSPC if event size is too large for packet.
1689 * -ENOBUFS if there is currently not enough space in buffer for the event.
1690 * -EIO if data cannot be written into the buffer for any other reason.
1691 */
1692 static
1693 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1694 struct channel *chan,
1695 struct switch_offsets *offsets,
1696 struct lib_ring_buffer_ctx *ctx)
1697 {
1698 const struct lib_ring_buffer_config *config = &chan->backend.config;
1699 unsigned long reserve_commit_diff, offset_cmp;
1700
1701 retry:
1702 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1703 offsets->old = offsets->begin;
1704 offsets->switch_new_start = 0;
1705 offsets->switch_new_end = 0;
1706 offsets->switch_old_end = 0;
1707 offsets->pre_header_padding = 0;
1708
1709 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1710 if ((int64_t) ctx->tsc == -EIO)
1711 return -EIO;
1712
1713 if (last_tsc_overflow(config, buf, ctx->tsc))
1714 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1715
1716 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1717 offsets->switch_new_start = 1; /* For offsets->begin */
1718 } else {
1719 offsets->size = config->cb.record_header_size(config, chan,
1720 offsets->begin,
1721 &offsets->pre_header_padding,
1722 ctx);
1723 offsets->size +=
1724 lib_ring_buffer_align(offsets->begin + offsets->size,
1725 ctx->largest_align)
1726 + ctx->data_size;
1727 if (unlikely(subbuf_offset(offsets->begin, chan) +
1728 offsets->size > chan->backend.subbuf_size)) {
1729 offsets->switch_old_end = 1; /* For offsets->old */
1730 offsets->switch_new_start = 1; /* For offsets->begin */
1731 }
1732 }
1733 if (unlikely(offsets->switch_new_start)) {
1734 unsigned long sb_index, commit_count;
1735
1736 /*
1737 * We are typically not filling the previous buffer completely.
1738 */
1739 if (likely(offsets->switch_old_end))
1740 offsets->begin = subbuf_align(offsets->begin, chan);
1741 offsets->begin = offsets->begin
1742 + config->cb.subbuffer_header_size();
1743 /* Test new buffer integrity */
1744 sb_index = subbuf_index(offsets->begin, chan);
1745 /*
1746 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
1747 * lib_ring_buffer_check_deliver() has the matching
1748 * memory barriers required around commit_cold cc_sb
1749 * updates to ensure reserve and commit counter updates
1750 * are not seen reordered when updated by another CPU.
1751 */
1752 smp_rmb();
1753 commit_count = v_read(config,
1754 &buf->commit_cold[sb_index].cc_sb);
1755 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
1756 smp_rmb();
1757 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
1758 /*
1759 * The reserve counter have been concurrently updated
1760 * while we read the commit counter. This means the
1761 * commit counter we read might not match buf->offset
1762 * due to concurrent update. We therefore need to retry.
1763 */
1764 goto retry;
1765 }
1766 reserve_commit_diff =
1767 (buf_trunc(offsets->begin, chan)
1768 >> chan->backend.num_subbuf_order)
1769 - (commit_count & chan->commit_count_mask);
1770 if (likely(reserve_commit_diff == 0)) {
1771 /* Next subbuffer not being written to. */
1772 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1773 subbuf_trunc(offsets->begin, chan)
1774 - subbuf_trunc((unsigned long)
1775 atomic_long_read(&buf->consumed), chan)
1776 >= chan->backend.buf_size)) {
1777 /*
1778 * We do not overwrite non consumed buffers
1779 * and we are full : record is lost.
1780 */
1781 v_inc(config, &buf->records_lost_full);
1782 return -ENOBUFS;
1783 } else {
1784 /*
1785 * Next subbuffer not being written to, and we
1786 * are either in overwrite mode or the buffer is
1787 * not full. It's safe to write in this new
1788 * subbuffer.
1789 */
1790 }
1791 } else {
1792 /*
1793 * Next subbuffer reserve offset does not match the
1794 * commit offset, and this did not involve update to the
1795 * reserve counter. Drop record in producer-consumer and
1796 * overwrite mode. Caused by either a writer OOPS or
1797 * too many nested writes over a reserve/commit pair.
1798 */
1799 v_inc(config, &buf->records_lost_wrap);
1800 return -EIO;
1801 }
1802 offsets->size =
1803 config->cb.record_header_size(config, chan,
1804 offsets->begin,
1805 &offsets->pre_header_padding,
1806 ctx);
1807 offsets->size +=
1808 lib_ring_buffer_align(offsets->begin + offsets->size,
1809 ctx->largest_align)
1810 + ctx->data_size;
1811 if (unlikely(subbuf_offset(offsets->begin, chan)
1812 + offsets->size > chan->backend.subbuf_size)) {
1813 /*
1814 * Record too big for subbuffers, report error, don't
1815 * complete the sub-buffer switch.
1816 */
1817 v_inc(config, &buf->records_lost_big);
1818 return -ENOSPC;
1819 } else {
1820 /*
1821 * We just made a successful buffer switch and the
1822 * record fits in the new subbuffer. Let's write.
1823 */
1824 }
1825 } else {
1826 /*
1827 * Record fits in the current buffer and we are not on a switch
1828 * boundary. It's safe to write.
1829 */
1830 }
1831 offsets->end = offsets->begin + offsets->size;
1832
1833 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
1834 /*
1835 * The offset_end will fall at the very beginning of the next
1836 * subbuffer.
1837 */
1838 offsets->switch_new_end = 1; /* For offsets->begin */
1839 }
1840 return 0;
1841 }
1842
1843 /**
1844 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
1845 * @ctx: ring buffer context.
1846 *
1847 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
1848 * -EIO for other errors, else returns 0.
1849 * It will take care of sub-buffer switching.
1850 */
1851 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx)
1852 {
1853 struct channel *chan = ctx->chan;
1854 const struct lib_ring_buffer_config *config = &chan->backend.config;
1855 struct lib_ring_buffer *buf;
1856 struct switch_offsets offsets;
1857 int ret;
1858
1859 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
1860 buf = per_cpu_ptr(chan->backend.buf, ctx->cpu);
1861 else
1862 buf = chan->backend.buf;
1863 ctx->buf = buf;
1864
1865 offsets.size = 0;
1866
1867 do {
1868 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
1869 ctx);
1870 if (unlikely(ret))
1871 return ret;
1872 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
1873 offsets.end)
1874 != offsets.old));
1875
1876 /*
1877 * Atomically update last_tsc. This update races against concurrent
1878 * atomic updates, but the race will always cause supplementary full TSC
1879 * records, never the opposite (missing a full TSC record when it would
1880 * be needed).
1881 */
1882 save_last_tsc(config, buf, ctx->tsc);
1883
1884 /*
1885 * Push the reader if necessary
1886 */
1887 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
1888
1889 /*
1890 * Clear noref flag for this subbuffer.
1891 */
1892 lib_ring_buffer_clear_noref(config, &buf->backend,
1893 subbuf_index(offsets.end - 1, chan));
1894
1895 /*
1896 * Switch old subbuffer if needed.
1897 */
1898 if (unlikely(offsets.switch_old_end)) {
1899 lib_ring_buffer_clear_noref(config, &buf->backend,
1900 subbuf_index(offsets.old - 1, chan));
1901 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
1902 }
1903
1904 /*
1905 * Populate new subbuffer.
1906 */
1907 if (unlikely(offsets.switch_new_start))
1908 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
1909
1910 if (unlikely(offsets.switch_new_end))
1911 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
1912
1913 ctx->slot_size = offsets.size;
1914 ctx->pre_offset = offsets.begin;
1915 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
1916 return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
1919
1920 int __init init_lib_ring_buffer_frontend(void)
1921 {
1922 int cpu;
1923
1924 for_each_possible_cpu(cpu)
1925 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
1926 return 0;
1927 }
1928
1929 module_init(init_lib_ring_buffer_frontend);
1930
1931 void __exit exit_lib_ring_buffer_frontend(void)
1932 {
1933 }
1934
1935 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.068412 seconds and 5 git commands to generate.