ust: continue work
[ust.git] / libmarkers / rcupdate.h
index 921340a7b71cf4c88638e2f905aa0fdc1385f958..87d2128ea03f2410c08f62ae39fc1827eb2ac996 100644 (file)
 #ifndef __LINUX_RCUPDATE_H
 #define __LINUX_RCUPDATE_H
 
-#include <linux/cache.h>
-#include <linux/spinlock.h>
-#include <linux/threads.h>
-#include <linux/percpu.h>
-#include <linux/cpumask.h>
-#include <linux/seqlock.h>
-#include <linux/lockdep.h>
-#include <linux/completion.h>
+//ust// #include <linux/cache.h>
+//ust// #include <linux/spinlock.h>
+//ust// #include <linux/threads.h>
+//ust// #include <linux/percpu.h>
+//ust// #include <linux/cpumask.h>
+//ust// #include <linux/seqlock.h>
+//ust// #include <linux/lockdep.h>
+//ust// #include <linux/completion.h>
 
 /**
  * struct rcu_head - callback structure for use with RCU
@@ -52,219 +52,219 @@ struct rcu_head {
        void (*func)(struct rcu_head *head);
 };
 
-#if defined(CONFIG_CLASSIC_RCU)
-#include <linux/rcuclassic.h>
-#elif defined(CONFIG_TREE_RCU)
-#include <linux/rcutree.h>
-#elif defined(CONFIG_PREEMPT_RCU)
-#include <linux/rcupreempt.h>
-#else
-#error "Unknown RCU implementation specified to kernel configuration"
-#endif /* #else #if defined(CONFIG_CLASSIC_RCU) */
-
-#define RCU_HEAD_INIT  { .next = NULL, .func = NULL }
-#define RCU_HEAD(head) struct rcu_head head = RCU_HEAD_INIT
-#define INIT_RCU_HEAD(ptr) do { \
-       (ptr)->next = NULL; (ptr)->func = NULL; \
-} while (0)
-
-/**
- * rcu_read_lock - mark the beginning of an RCU read-side critical section.
- *
- * When synchronize_rcu() is invoked on one CPU while other CPUs
- * are within RCU read-side critical sections, then the
- * synchronize_rcu() is guaranteed to block until after all the other
- * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
- * on one CPU while other CPUs are within RCU read-side critical
- * sections, invocation of the corresponding RCU callback is deferred
- * until after the all the other CPUs exit their critical sections.
- *
- * Note, however, that RCU callbacks are permitted to run concurrently
- * with RCU read-side critical sections.  One way that this can happen
- * is via the following sequence of events: (1) CPU 0 enters an RCU
- * read-side critical section, (2) CPU 1 invokes call_rcu() to register
- * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
- * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
- * callback is invoked.  This is legal, because the RCU read-side critical
- * section that was running concurrently with the call_rcu() (and which
- * therefore might be referencing something that the corresponding RCU
- * callback would free up) has completed before the corresponding
- * RCU callback is invoked.
- *
- * RCU read-side critical sections may be nested.  Any deferred actions
- * will be deferred until the outermost RCU read-side critical section
- * completes.
- *
- * It is illegal to block while in an RCU read-side critical section.
- */
-#define rcu_read_lock() __rcu_read_lock()
-
-/**
- * rcu_read_unlock - marks the end of an RCU read-side critical section.
- *
- * See rcu_read_lock() for more information.
- */
-
-/*
- * So where is rcu_write_lock()?  It does not exist, as there is no
- * way for writers to lock out RCU readers.  This is a feature, not
- * a bug -- this property is what provides RCU's performance benefits.
- * Of course, writers must coordinate with each other.  The normal
- * spinlock primitives work well for this, but any other technique may be
- * used as well.  RCU does not care how the writers keep out of each
- * others' way, as long as they do so.
- */
-#define rcu_read_unlock() __rcu_read_unlock()
-
-/**
- * rcu_read_lock_bh - mark the beginning of a softirq-only RCU critical section
- *
- * This is equivalent of rcu_read_lock(), but to be used when updates
- * are being done using call_rcu_bh(). Since call_rcu_bh() callbacks
- * consider completion of a softirq handler to be a quiescent state,
- * a process in RCU read-side critical section must be protected by
- * disabling softirqs. Read-side critical sections in interrupt context
- * can use just rcu_read_lock().
- *
- */
-#define rcu_read_lock_bh() __rcu_read_lock_bh()
-
-/*
- * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
- *
- * See rcu_read_lock_bh() for more information.
- */
-#define rcu_read_unlock_bh() __rcu_read_unlock_bh()
-
-/**
- * rcu_read_lock_sched - mark the beginning of a RCU-classic critical section
- *
- * Should be used with either
- * - synchronize_sched()
- * or
- * - call_rcu_sched() and rcu_barrier_sched()
- * on the write-side to insure proper synchronization.
- */
-#define rcu_read_lock_sched() preempt_disable()
-#define rcu_read_lock_sched_notrace() preempt_disable_notrace()
-
-/*
- * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
- *
- * See rcu_read_lock_sched for more information.
- */
-#define rcu_read_unlock_sched() preempt_enable()
-#define rcu_read_unlock_sched_notrace() preempt_enable_notrace()
-
-
-
-/**
- * rcu_dereference - fetch an RCU-protected pointer in an
- * RCU read-side critical section.  This pointer may later
- * be safely dereferenced.
- *
- * Inserts memory barriers on architectures that require them
- * (currently only the Alpha), and, more importantly, documents
- * exactly which pointers are protected by RCU.
- */
-
-#define rcu_dereference(p)     ({ \
-                               typeof(p) _________p1 = ACCESS_ONCE(p); \
-                               smp_read_barrier_depends(); \
-                               (_________p1); \
-                               })
-
-/**
- * rcu_assign_pointer - assign (publicize) a pointer to a newly
- * initialized structure that will be dereferenced by RCU read-side
- * critical sections.  Returns the value assigned.
- *
- * Inserts memory barriers on architectures that require them
- * (pretty much all of them other than x86), and also prevents
- * the compiler from reordering the code that initializes the
- * structure after the pointer assignment.  More importantly, this
- * call documents which pointers will be dereferenced by RCU read-side
- * code.
- */
-
-#define rcu_assign_pointer(p, v) \
-       ({ \
-               if (!__builtin_constant_p(v) || \
-                   ((v) != NULL)) \
-                       smp_wmb(); \
-               (p) = (v); \
-       })
-
-/* Infrastructure to implement the synchronize_() primitives. */
-
-struct rcu_synchronize {
-       struct rcu_head head;
-       struct completion completion;
-};
-
-extern void wakeme_after_rcu(struct rcu_head  *head);
-
-/**
- * synchronize_sched - block until all CPUs have exited any non-preemptive
- * kernel code sequences.
- *
- * This means that all preempt_disable code sequences, including NMI and
- * hardware-interrupt handlers, in progress on entry will have completed
- * before this primitive returns.  However, this does not guarantee that
- * softirq handlers will have completed, since in some kernels, these
- * handlers can run in process context, and can block.
- *
- * This primitive provides the guarantees made by the (now removed)
- * synchronize_kernel() API.  In contrast, synchronize_rcu() only
- * guarantees that rcu_read_lock() sections will have completed.
- * In "classic RCU", these two guarantees happen to be one and
- * the same, but can differ in realtime RCU implementations.
- */
-#define synchronize_sched() __synchronize_sched()
-
-/**
- * call_rcu - Queue an RCU callback for invocation after a grace period.
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual update function to be invoked after the grace period
- *
- * The update function will be invoked some time after a full grace
- * period elapses, in other words after all currently executing RCU
- * read-side critical sections have completed.  RCU read-side critical
- * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
- * and may be nested.
- */
-extern void call_rcu(struct rcu_head *head,
-                             void (*func)(struct rcu_head *head));
-
-/**
- * call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
- * @head: structure to be used for queueing the RCU updates.
- * @func: actual update function to be invoked after the grace period
- *
- * The update function will be invoked some time after a full grace
- * period elapses, in other words after all currently executing RCU
- * read-side critical sections have completed. call_rcu_bh() assumes
- * that the read-side critical sections end on completion of a softirq
- * handler. This means that read-side critical sections in process
- * context must not be interrupted by softirqs. This interface is to be
- * used when most of the read-side critical sections are in softirq context.
- * RCU read-side critical sections are delimited by :
- *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
- *  OR
- *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
- *  These may be nested.
- */
-extern void call_rcu_bh(struct rcu_head *head,
-                       void (*func)(struct rcu_head *head));
-
-/* Exported common interfaces */
-extern void synchronize_rcu(void);
-extern void rcu_barrier(void);
-extern void rcu_barrier_bh(void);
-extern void rcu_barrier_sched(void);
-
-/* Internal to kernel */
-extern void rcu_init(void);
-extern int rcu_needs_cpu(int cpu);
-
+//ust// #if defined(CONFIG_CLASSIC_RCU)
+//ust// #include <linux/rcuclassic.h>
+//ust// #elif defined(CONFIG_TREE_RCU)
+//ust// #include <linux/rcutree.h>
+//ust// #elif defined(CONFIG_PREEMPT_RCU)
+//ust// #include <linux/rcupreempt.h>
+//ust// #else
+//ust// #error "Unknown RCU implementation specified to kernel configuration"
+//ust// #endif /* #else #if defined(CONFIG_CLASSIC_RCU) */
+//ust// 
+//ust// #define RCU_HEAD_INIT  { .next = NULL, .func = NULL }
+//ust// #define RCU_HEAD(head) struct rcu_head head = RCU_HEAD_INIT
+//ust// #define INIT_RCU_HEAD(ptr) do { \
+//ust//        (ptr)->next = NULL; (ptr)->func = NULL; \
+//ust// } while (0)
+//ust// 
+//ust// /**
+//ust//  * rcu_read_lock - mark the beginning of an RCU read-side critical section.
+//ust//  *
+//ust//  * When synchronize_rcu() is invoked on one CPU while other CPUs
+//ust//  * are within RCU read-side critical sections, then the
+//ust//  * synchronize_rcu() is guaranteed to block until after all the other
+//ust//  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
+//ust//  * on one CPU while other CPUs are within RCU read-side critical
+//ust//  * sections, invocation of the corresponding RCU callback is deferred
+//ust//  * until after the all the other CPUs exit their critical sections.
+//ust//  *
+//ust//  * Note, however, that RCU callbacks are permitted to run concurrently
+//ust//  * with RCU read-side critical sections.  One way that this can happen
+//ust//  * is via the following sequence of events: (1) CPU 0 enters an RCU
+//ust//  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
+//ust//  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
+//ust//  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
+//ust//  * callback is invoked.  This is legal, because the RCU read-side critical
+//ust//  * section that was running concurrently with the call_rcu() (and which
+//ust//  * therefore might be referencing something that the corresponding RCU
+//ust//  * callback would free up) has completed before the corresponding
+//ust//  * RCU callback is invoked.
+//ust//  *
+//ust//  * RCU read-side critical sections may be nested.  Any deferred actions
+//ust//  * will be deferred until the outermost RCU read-side critical section
+//ust//  * completes.
+//ust//  *
+//ust//  * It is illegal to block while in an RCU read-side critical section.
+//ust//  */
+//ust// #define rcu_read_lock() __rcu_read_lock()
+//ust// 
+//ust// /**
+//ust//  * rcu_read_unlock - marks the end of an RCU read-side critical section.
+//ust//  *
+//ust//  * See rcu_read_lock() for more information.
+//ust//  */
+//ust// 
+//ust// /*
+//ust//  * So where is rcu_write_lock()?  It does not exist, as there is no
+//ust//  * way for writers to lock out RCU readers.  This is a feature, not
+//ust//  * a bug -- this property is what provides RCU's performance benefits.
+//ust//  * Of course, writers must coordinate with each other.  The normal
+//ust//  * spinlock primitives work well for this, but any other technique may be
+//ust//  * used as well.  RCU does not care how the writers keep out of each
+//ust//  * others' way, as long as they do so.
+//ust//  */
+//ust// #define rcu_read_unlock() __rcu_read_unlock()
+//ust// 
+//ust// /**
+//ust//  * rcu_read_lock_bh - mark the beginning of a softirq-only RCU critical section
+//ust//  *
+//ust//  * This is equivalent of rcu_read_lock(), but to be used when updates
+//ust//  * are being done using call_rcu_bh(). Since call_rcu_bh() callbacks
+//ust//  * consider completion of a softirq handler to be a quiescent state,
+//ust//  * a process in RCU read-side critical section must be protected by
+//ust//  * disabling softirqs. Read-side critical sections in interrupt context
+//ust//  * can use just rcu_read_lock().
+//ust//  *
+//ust//  */
+//ust// #define rcu_read_lock_bh() __rcu_read_lock_bh()
+//ust// 
+//ust// /*
+//ust//  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
+//ust//  *
+//ust//  * See rcu_read_lock_bh() for more information.
+//ust//  */
+//ust// #define rcu_read_unlock_bh() __rcu_read_unlock_bh()
+//ust// 
+//ust// /**
+//ust//  * rcu_read_lock_sched - mark the beginning of a RCU-classic critical section
+//ust//  *
+//ust//  * Should be used with either
+//ust//  * - synchronize_sched()
+//ust//  * or
+//ust//  * - call_rcu_sched() and rcu_barrier_sched()
+//ust//  * on the write-side to insure proper synchronization.
+//ust//  */
+//ust// #define rcu_read_lock_sched() preempt_disable()
+//ust// #define rcu_read_lock_sched_notrace() preempt_disable_notrace()
+//ust// 
+//ust// /*
+//ust//  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
+//ust//  *
+//ust//  * See rcu_read_lock_sched for more information.
+//ust//  */
+//ust// #define rcu_read_unlock_sched() preempt_enable()
+//ust// #define rcu_read_unlock_sched_notrace() preempt_enable_notrace()
+//ust// 
+//ust// 
+//ust// 
+//ust// /**
+//ust//  * rcu_dereference - fetch an RCU-protected pointer in an
+//ust//  * RCU read-side critical section.  This pointer may later
+//ust//  * be safely dereferenced.
+//ust//  *
+//ust//  * Inserts memory barriers on architectures that require them
+//ust//  * (currently only the Alpha), and, more importantly, documents
+//ust//  * exactly which pointers are protected by RCU.
+//ust//  */
+//ust// 
+//ust// #define rcu_dereference(p)     ({ \
+//ust//                                typeof(p) _________p1 = ACCESS_ONCE(p); \
+//ust//                                smp_read_barrier_depends(); \
+//ust//                                (_________p1); \
+//ust//                                })
+//ust// 
+//ust// /**
+//ust//  * rcu_assign_pointer - assign (publicize) a pointer to a newly
+//ust//  * initialized structure that will be dereferenced by RCU read-side
+//ust//  * critical sections.  Returns the value assigned.
+//ust//  *
+//ust//  * Inserts memory barriers on architectures that require them
+//ust//  * (pretty much all of them other than x86), and also prevents
+//ust//  * the compiler from reordering the code that initializes the
+//ust//  * structure after the pointer assignment.  More importantly, this
+//ust//  * call documents which pointers will be dereferenced by RCU read-side
+//ust//  * code.
+//ust//  */
+//ust// 
+//ust// #define rcu_assign_pointer(p, v) \
+//ust//        ({ \
+//ust//                if (!__builtin_constant_p(v) || \
+//ust//                    ((v) != NULL)) \
+//ust//                        smp_wmb(); \
+//ust//                (p) = (v); \
+//ust//        })
+//ust// 
+//ust// /* Infrastructure to implement the synchronize_() primitives. */
+//ust// 
+//ust// struct rcu_synchronize {
+//ust//        struct rcu_head head;
+//ust//        struct completion completion;
+//ust// };
+//ust// 
+//ust// extern void wakeme_after_rcu(struct rcu_head  *head);
+//ust// 
+//ust// /**
+//ust//  * synchronize_sched - block until all CPUs have exited any non-preemptive
+//ust//  * kernel code sequences.
+//ust//  *
+//ust//  * This means that all preempt_disable code sequences, including NMI and
+//ust//  * hardware-interrupt handlers, in progress on entry will have completed
+//ust//  * before this primitive returns.  However, this does not guarantee that
+//ust//  * softirq handlers will have completed, since in some kernels, these
+//ust//  * handlers can run in process context, and can block.
+//ust//  *
+//ust//  * This primitive provides the guarantees made by the (now removed)
+//ust//  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
+//ust//  * guarantees that rcu_read_lock() sections will have completed.
+//ust//  * In "classic RCU", these two guarantees happen to be one and
+//ust//  * the same, but can differ in realtime RCU implementations.
+//ust//  */
+//ust// #define synchronize_sched() __synchronize_sched()
+//ust// 
+//ust// /**
+//ust//  * call_rcu - Queue an RCU callback for invocation after a grace period.
+//ust//  * @head: structure to be used for queueing the RCU updates.
+//ust//  * @func: actual update function to be invoked after the grace period
+//ust//  *
+//ust//  * The update function will be invoked some time after a full grace
+//ust//  * period elapses, in other words after all currently executing RCU
+//ust//  * read-side critical sections have completed.  RCU read-side critical
+//ust//  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
+//ust//  * and may be nested.
+//ust//  */
+//ust// extern void call_rcu(struct rcu_head *head,
+//ust//                              void (*func)(struct rcu_head *head));
+//ust// 
+//ust// /**
+//ust//  * call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
+//ust//  * @head: structure to be used for queueing the RCU updates.
+//ust//  * @func: actual update function to be invoked after the grace period
+//ust//  *
+//ust//  * The update function will be invoked some time after a full grace
+//ust//  * period elapses, in other words after all currently executing RCU
+//ust//  * read-side critical sections have completed. call_rcu_bh() assumes
+//ust//  * that the read-side critical sections end on completion of a softirq
+//ust//  * handler. This means that read-side critical sections in process
+//ust//  * context must not be interrupted by softirqs. This interface is to be
+//ust//  * used when most of the read-side critical sections are in softirq context.
+//ust//  * RCU read-side critical sections are delimited by :
+//ust//  *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
+//ust//  *  OR
+//ust//  *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
+//ust//  *  These may be nested.
+//ust//  */
+//ust// extern void call_rcu_bh(struct rcu_head *head,
+//ust//                        void (*func)(struct rcu_head *head));
+//ust// 
+//ust// /* Exported common interfaces */
+//ust// extern void synchronize_rcu(void);
+//ust// extern void rcu_barrier(void);
+//ust// extern void rcu_barrier_bh(void);
+//ust// extern void rcu_barrier_sched(void);
+//ust// 
+//ust// /* Internal to kernel */
+//ust// extern void rcu_init(void);
+//ust// extern int rcu_needs_cpu(int cpu);
+//ust// 
 #endif /* __LINUX_RCUPDATE_H */
This page took 0.031621 seconds and 4 git commands to generate.