Cleanup: keep the number of pipes used by poll in a variable
[lttng-tools.git] / src / common / kernel-ctl / kernel-ctl.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2016 - Jérémie Galarneau <jeremie.galarneau@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _LGPL_SOURCE
21 #define __USE_LINUX_IOCTL_DEFS
22 #include <sys/ioctl.h>
23 #include <string.h>
24 #include <common/align.h>
25 #include <errno.h>
26 #include <stdarg.h>
27 #include <assert.h>
28
29 #include "kernel-ctl.h"
30 #include "kernel-ioctl.h"
31
32 #define LTTNG_IOCTL_CHECK(fildes, request, ...) ({ \
33 int ret = ioctl(fildes, request, ##__VA_ARGS__);\
34 assert(ret <= 0); \
35 !ret ? 0 : -errno; \
36 })
37
38 #define LTTNG_IOCTL_NO_CHECK(fildes, request, ...) ({ \
39 int ret = ioctl(fildes, request, ##__VA_ARGS__);\
40 ret >= 0 ? ret : -errno; \
41 })
42
43 /*
44 * This flag indicates which version of the kernel ABI to use. The old
45 * ABI (namespace _old) does not support a 32-bit user-space when the
46 * kernel is 64-bit. The old ABI is kept here for compatibility but is
47 * deprecated and will be removed eventually.
48 */
49 static int lttng_kernel_use_old_abi = -1;
50
51 /*
52 * Execute the new or old ioctl depending on the ABI version.
53 * If the ABI version is not determined yet (lttng_kernel_use_old_abi = -1),
54 * this function tests if the new ABI is available and otherwise fallbacks
55 * on the old one.
56 * This function takes the fd on which the ioctl must be executed and the old
57 * and new request codes.
58 * It returns the return value of the ioctl executed.
59 */
60 static inline int compat_ioctl_no_arg(int fd, unsigned long oldname,
61 unsigned long newname)
62 {
63 int ret;
64
65 if (lttng_kernel_use_old_abi == -1) {
66 ret = LTTNG_IOCTL_NO_CHECK(fd, newname);
67 if (!ret) {
68 lttng_kernel_use_old_abi = 0;
69 goto end;
70 }
71 lttng_kernel_use_old_abi = 1;
72 }
73 if (lttng_kernel_use_old_abi) {
74 ret = LTTNG_IOCTL_NO_CHECK(fd, oldname);
75 } else {
76 ret = LTTNG_IOCTL_NO_CHECK(fd, newname);
77 }
78
79 end:
80 return ret;
81 }
82
83 int kernctl_create_session(int fd)
84 {
85 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION,
86 LTTNG_KERNEL_SESSION);
87 }
88
89 /* open the metadata global channel */
90 int kernctl_open_metadata(int fd, struct lttng_channel_attr *chops)
91 {
92 struct lttng_kernel_channel channel;
93
94 if (lttng_kernel_use_old_abi) {
95 struct lttng_kernel_old_channel old_channel;
96
97 memset(&old_channel, 0, sizeof(old_channel));
98 old_channel.overwrite = chops->overwrite;
99 old_channel.subbuf_size = chops->subbuf_size;
100 old_channel.num_subbuf = chops->num_subbuf;
101 old_channel.switch_timer_interval = chops->switch_timer_interval;
102 old_channel.read_timer_interval = chops->read_timer_interval;
103 old_channel.output = chops->output;
104
105 memset(old_channel.padding, 0, sizeof(old_channel.padding));
106 /*
107 * The new channel padding is smaller than the old ABI so we use the
108 * new ABI padding size for the memcpy.
109 */
110 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
111
112 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_OLD_METADATA,
113 &old_channel);
114 }
115
116 memset(&channel, 0, sizeof(channel));
117 channel.overwrite = chops->overwrite;
118 channel.subbuf_size = chops->subbuf_size;
119 channel.num_subbuf = chops->num_subbuf;
120 channel.switch_timer_interval = chops->switch_timer_interval;
121 channel.read_timer_interval = chops->read_timer_interval;
122 channel.output = chops->output;
123 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
124
125 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_METADATA, &channel);
126 }
127
128 int kernctl_create_channel(int fd, struct lttng_channel_attr *chops)
129 {
130 struct lttng_kernel_channel channel;
131
132 memset(&channel, 0, sizeof(channel));
133 if (lttng_kernel_use_old_abi) {
134 struct lttng_kernel_old_channel old_channel;
135
136 old_channel.overwrite = chops->overwrite;
137 old_channel.subbuf_size = chops->subbuf_size;
138 old_channel.num_subbuf = chops->num_subbuf;
139 old_channel.switch_timer_interval = chops->switch_timer_interval;
140 old_channel.read_timer_interval = chops->read_timer_interval;
141 old_channel.output = chops->output;
142
143 memset(old_channel.padding, 0, sizeof(old_channel.padding));
144 /*
145 * The new channel padding is smaller than the old ABI so we use the
146 * new ABI padding size for the memcpy.
147 */
148 memcpy(old_channel.padding, chops->padding, sizeof(chops->padding));
149
150 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_OLD_CHANNEL,
151 &old_channel);
152 }
153
154 channel.overwrite = chops->overwrite;
155 channel.subbuf_size = chops->subbuf_size;
156 channel.num_subbuf = chops->num_subbuf;
157 channel.switch_timer_interval = chops->switch_timer_interval;
158 channel.read_timer_interval = chops->read_timer_interval;
159 channel.output = chops->output;
160 memcpy(channel.padding, chops->padding, sizeof(chops->padding));
161
162 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_CHANNEL, &channel);
163 }
164
165 int kernctl_syscall_mask(int fd, char **syscall_mask, uint32_t *nr_bits)
166 {
167 struct lttng_kernel_syscall_mask kmask_len, *kmask = NULL;
168 size_t array_alloc_len;
169 char *new_mask;
170 int ret = 0;
171
172 if (!syscall_mask) {
173 ret = -1;
174 goto end;
175 }
176
177 if (!nr_bits) {
178 ret = -1;
179 goto end;
180 }
181
182 kmask_len.len = 0;
183 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SYSCALL_MASK, &kmask_len);
184 if (ret) {
185 goto end;
186 }
187
188 array_alloc_len = ALIGN(kmask_len.len, 8) >> 3;
189
190 kmask = zmalloc(sizeof(*kmask) + array_alloc_len);
191 if (!kmask) {
192 ret = -1;
193 goto end;
194 }
195
196 kmask->len = kmask_len.len;
197 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SYSCALL_MASK, kmask);
198 if (ret) {
199 goto end;
200 }
201
202 new_mask = realloc(*syscall_mask, array_alloc_len);
203 if (!new_mask) {
204 ret = -1;
205 goto end;
206 }
207 memcpy(new_mask, kmask->mask, array_alloc_len);
208 *syscall_mask = new_mask;
209 *nr_bits = kmask->len;
210
211 end:
212 free(kmask);
213 return ret;
214 }
215
216 int kernctl_track_pid(int fd, int pid)
217 {
218 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SESSION_TRACK_PID, pid);
219 }
220
221 int kernctl_untrack_pid(int fd, int pid)
222 {
223 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SESSION_UNTRACK_PID, pid);
224 }
225
226 int kernctl_list_tracker_pids(int fd)
227 {
228 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_SESSION_LIST_TRACKER_PIDS);
229 }
230
231 int kernctl_session_regenerate_metadata(int fd)
232 {
233 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SESSION_METADATA_REGEN);
234 }
235
236 int kernctl_session_regenerate_statedump(int fd)
237 {
238 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_SESSION_STATEDUMP);
239 }
240
241 int kernctl_create_stream(int fd)
242 {
243 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_STREAM,
244 LTTNG_KERNEL_STREAM);
245 }
246
247 int kernctl_create_event(int fd, struct lttng_kernel_event *ev)
248 {
249 if (lttng_kernel_use_old_abi) {
250 struct lttng_kernel_old_event old_event;
251
252 memset(&old_event, 0, sizeof(old_event));
253 memcpy(old_event.name, ev->name, sizeof(old_event.name));
254 old_event.instrumentation = ev->instrumentation;
255 switch (ev->instrumentation) {
256 case LTTNG_KERNEL_KPROBE:
257 old_event.u.kprobe.addr = ev->u.kprobe.addr;
258 old_event.u.kprobe.offset = ev->u.kprobe.offset;
259 memcpy(old_event.u.kprobe.symbol_name,
260 ev->u.kprobe.symbol_name,
261 sizeof(old_event.u.kprobe.symbol_name));
262 break;
263 case LTTNG_KERNEL_KRETPROBE:
264 old_event.u.kretprobe.addr = ev->u.kretprobe.addr;
265 old_event.u.kretprobe.offset = ev->u.kretprobe.offset;
266 memcpy(old_event.u.kretprobe.symbol_name,
267 ev->u.kretprobe.symbol_name,
268 sizeof(old_event.u.kretprobe.symbol_name));
269 break;
270 case LTTNG_KERNEL_FUNCTION:
271 memcpy(old_event.u.ftrace.symbol_name,
272 ev->u.ftrace.symbol_name,
273 sizeof(old_event.u.ftrace.symbol_name));
274 break;
275 default:
276 break;
277 }
278
279 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_OLD_EVENT,
280 &old_event);
281 }
282 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_EVENT, ev);
283 }
284
285 int kernctl_add_context(int fd, struct lttng_kernel_context *ctx)
286 {
287 if (lttng_kernel_use_old_abi) {
288 struct lttng_kernel_old_context old_ctx;
289
290 memset(&old_ctx, 0, sizeof(old_ctx));
291 old_ctx.ctx = ctx->ctx;
292 /* only type that uses the union */
293 if (ctx->ctx == LTTNG_KERNEL_CONTEXT_PERF_CPU_COUNTER) {
294 old_ctx.u.perf_counter.type =
295 ctx->u.perf_counter.type;
296 old_ctx.u.perf_counter.config =
297 ctx->u.perf_counter.config;
298 memcpy(old_ctx.u.perf_counter.name,
299 ctx->u.perf_counter.name,
300 sizeof(old_ctx.u.perf_counter.name));
301 }
302 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_OLD_CONTEXT, &old_ctx);
303 }
304 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_CONTEXT, ctx);
305 }
306
307
308 /* Enable event, channel and session LTTNG_IOCTL_CHECK */
309 int kernctl_enable(int fd)
310 {
311 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_ENABLE,
312 LTTNG_KERNEL_ENABLE);
313 }
314
315 /* Disable event, channel and session LTTNG_IOCTL_CHECK */
316 int kernctl_disable(int fd)
317 {
318 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_DISABLE,
319 LTTNG_KERNEL_DISABLE);
320 }
321
322 int kernctl_start_session(int fd)
323 {
324 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_START,
325 LTTNG_KERNEL_SESSION_START);
326 }
327
328 int kernctl_stop_session(int fd)
329 {
330 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_SESSION_STOP,
331 LTTNG_KERNEL_SESSION_STOP);
332 }
333
334 int kernctl_filter(int fd, struct lttng_filter_bytecode *filter)
335 {
336 struct lttng_kernel_filter_bytecode *kb;
337 uint32_t len;
338 int ret;
339
340 /* Translate bytecode to kernel bytecode */
341 kb = zmalloc(sizeof(*kb) + filter->len);
342 if (!kb)
343 return -ENOMEM;
344 kb->len = len = filter->len;
345 kb->reloc_offset = filter->reloc_table_offset;
346 kb->seqnum = filter->seqnum;
347 memcpy(kb->data, filter->data, len);
348 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_FILTER, kb);
349 free(kb);
350 return ret;
351 }
352
353 int kernctl_tracepoint_list(int fd)
354 {
355 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_TRACEPOINT_LIST,
356 LTTNG_KERNEL_TRACEPOINT_LIST);
357 }
358
359 int kernctl_syscall_list(int fd)
360 {
361 return LTTNG_IOCTL_NO_CHECK(fd, LTTNG_KERNEL_SYSCALL_LIST);
362 }
363
364 int kernctl_tracer_version(int fd, struct lttng_kernel_tracer_version *v)
365 {
366 int ret;
367
368 if (lttng_kernel_use_old_abi == -1) {
369 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_TRACER_VERSION, v);
370 if (!ret) {
371 lttng_kernel_use_old_abi = 0;
372 goto end;
373 }
374 lttng_kernel_use_old_abi = 1;
375 }
376 if (lttng_kernel_use_old_abi) {
377 struct lttng_kernel_old_tracer_version old_v;
378
379 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_OLD_TRACER_VERSION, &old_v);
380 if (ret) {
381 goto end;
382 }
383 v->major = old_v.major;
384 v->minor = old_v.minor;
385 v->patchlevel = old_v.patchlevel;
386 } else {
387 ret = LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_TRACER_VERSION, v);
388 }
389
390 end:
391 return ret;
392 }
393
394 int kernctl_tracer_abi_version(int fd,
395 struct lttng_kernel_tracer_abi_version *v)
396 {
397 return LTTNG_IOCTL_CHECK(fd, LTTNG_KERNEL_TRACER_ABI_VERSION, v);
398 }
399
400 int kernctl_wait_quiescent(int fd)
401 {
402 return compat_ioctl_no_arg(fd, LTTNG_KERNEL_OLD_WAIT_QUIESCENT,
403 LTTNG_KERNEL_WAIT_QUIESCENT);
404 }
405
406 int kernctl_buffer_flush(int fd)
407 {
408 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_FLUSH);
409 }
410
411 int kernctl_buffer_flush_empty(int fd)
412 {
413 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_FLUSH_EMPTY);
414 }
415
416 /* returns the version of the metadata. */
417 int kernctl_get_metadata_version(int fd, uint64_t *version)
418 {
419 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_METADATA_VERSION, version);
420 }
421
422
423 /* Buffer operations */
424
425 /* For mmap mode, readable without "get" operation */
426
427 /* returns the length to mmap. */
428 int kernctl_get_mmap_len(int fd, unsigned long *len)
429 {
430 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_MMAP_LEN, len);
431 }
432
433 /* returns the maximum size for sub-buffers. */
434 int kernctl_get_max_subbuf_size(int fd, unsigned long *len)
435 {
436 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_MAX_SUBBUF_SIZE, len);
437 }
438
439 /*
440 * For mmap mode, operate on the current packet (between get/put or
441 * get_next/put_next).
442 */
443
444 /* returns the offset of the subbuffer belonging to the mmap reader. */
445 int kernctl_get_mmap_read_offset(int fd, unsigned long *off)
446 {
447 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_MMAP_READ_OFFSET, off);
448 }
449
450 /* returns the size of the current sub-buffer, without padding (for mmap). */
451 int kernctl_get_subbuf_size(int fd, unsigned long *len)
452 {
453 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_SUBBUF_SIZE, len);
454 }
455
456 /* returns the size of the current sub-buffer, without padding (for mmap). */
457 int kernctl_get_padded_subbuf_size(int fd, unsigned long *len)
458 {
459 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_PADDED_SUBBUF_SIZE, len);
460 }
461
462 /* Get exclusive read access to the next sub-buffer that can be read. */
463 int kernctl_get_next_subbuf(int fd)
464 {
465 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_NEXT_SUBBUF);
466 }
467
468
469 /* Release exclusive sub-buffer access, move consumer forward. */
470 int kernctl_put_next_subbuf(int fd)
471 {
472 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_PUT_NEXT_SUBBUF);
473 }
474
475 /* snapshot */
476
477 /* Get a snapshot of the current ring buffer producer and consumer positions */
478 int kernctl_snapshot(int fd)
479 {
480 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_SNAPSHOT);
481 }
482
483 /*
484 * Get a snapshot of the current ring buffer producer and consumer positions,
485 * regardless of whether or not the two positions are contained within the
486 * same sub-buffer.
487 */
488 int kernctl_snapshot_sample_positions(int fd)
489 {
490 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_SNAPSHOT_SAMPLE_POSITIONS);
491 }
492
493 /* Get the consumer position (iteration start) */
494 int kernctl_snapshot_get_consumed(int fd, unsigned long *pos)
495 {
496 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_SNAPSHOT_GET_CONSUMED, pos);
497 }
498
499 /* Get the producer position (iteration end) */
500 int kernctl_snapshot_get_produced(int fd, unsigned long *pos)
501 {
502 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_SNAPSHOT_GET_PRODUCED, pos);
503 }
504
505 /* Get exclusive read access to the specified sub-buffer position */
506 int kernctl_get_subbuf(int fd, unsigned long *len)
507 {
508 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_GET_SUBBUF, len);
509 }
510
511 /* Release exclusive sub-buffer access */
512 int kernctl_put_subbuf(int fd)
513 {
514 return LTTNG_IOCTL_CHECK(fd, RING_BUFFER_PUT_SUBBUF);
515 }
516
517 /* Returns the timestamp begin of the current sub-buffer. */
518 int kernctl_get_timestamp_begin(int fd, uint64_t *timestamp_begin)
519 {
520 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_BEGIN,
521 timestamp_begin);
522 }
523
524 /* Returns the timestamp end of the current sub-buffer. */
525 int kernctl_get_timestamp_end(int fd, uint64_t *timestamp_end)
526 {
527 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_TIMESTAMP_END,
528 timestamp_end);
529 }
530
531 /* Returns the number of discarded events in the current sub-buffer. */
532 int kernctl_get_events_discarded(int fd, uint64_t *events_discarded)
533 {
534 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_EVENTS_DISCARDED,
535 events_discarded);
536 }
537
538 /* Returns the content size in the current sub-buffer. */
539 int kernctl_get_content_size(int fd, uint64_t *content_size)
540 {
541 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_CONTENT_SIZE,
542 content_size);
543 }
544
545 /* Returns the packet size in the current sub-buffer. */
546 int kernctl_get_packet_size(int fd, uint64_t *packet_size)
547 {
548 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_PACKET_SIZE,
549 packet_size);
550 }
551
552 /* Returns the stream id of the current sub-buffer. */
553 int kernctl_get_stream_id(int fd, uint64_t *stream_id)
554 {
555 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_STREAM_ID,
556 stream_id);
557 }
558
559 /* Returns the current timestamp. */
560 int kernctl_get_current_timestamp(int fd, uint64_t *ts)
561 {
562 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_CURRENT_TIMESTAMP,
563 ts);
564 }
565
566 /* Returns the packet sequence number of the current sub-buffer. */
567 int kernctl_get_sequence_number(int fd, uint64_t *seq)
568 {
569 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_GET_SEQ_NUM, seq);
570 }
571
572 /* Returns the stream instance id. */
573 int kernctl_get_instance_id(int fd, uint64_t *id)
574 {
575 return LTTNG_IOCTL_CHECK(fd, LTTNG_RING_BUFFER_INSTANCE_ID, id);
576 }
This page took 0.0839 seconds and 4 git commands to generate.