Fix: auto-resize hash table destroy deadlock
[urcu.git] / src / rculfhash.c
CommitLineData
5e28c532 1/*
abc490a1
MD
2 * rculfhash.c
3 *
1475579c 4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
abc490a1
MD
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
0dcf4847 7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
abc490a1
MD
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
5e28c532
MD
22 */
23
e753ff5a
MD
24/*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
1475579c 33 * Some specificities of this Lock-Free Resizable RCU Hash Table
e753ff5a
MD
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
1f67ba50
MD
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
e753ff5a
MD
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
1f67ba50
MD
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
e753ff5a
MD
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
1ee8f000 52 * - An index of bucket nodes is kept. These bucket nodes are the hash
1f67ba50
MD
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
1475579c
MD
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
4c42f1b8 64 * - Split-counters are used to keep track of the number of
1475579c 65 * nodes within the hash table for automatic resize triggering.
e753ff5a 66 * - Resize operation initiated by long chain detection is executed by a
d0ec0ed2 67 * worker thread, which keeps lock-freedom of add and remove.
e753ff5a
MD
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
5c4ca589
MD
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
1f67ba50 89 * linked-list (the start node is never removed) and that it does not
5c4ca589
MD
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
1f67ba50
MD
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
29e669f6
MD
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
1f67ba50
MD
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
5f177b1c 113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
93d46c39 114 *
7f949215 115 * Ordering Guarantees:
0f5543cb 116 *
7f949215
MD
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
67ecffc0 120 * cds_lfht_add_unique (failure).
7f949215
MD
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
0f5543cb 124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
7f949215
MD
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
0f5543cb 131 *
bf09adc7 132 * We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
7f949215
MD
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
0f5543cb 206 *
1ee8f000 207 * Bucket node tables:
93d46c39 208 *
1ee8f000
LJ
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
93d46c39
LJ
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
1ee8f000 220 * When growing/shrinking, we only focus on the last bucket node table
93d46c39
LJ
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
1ee8f000
LJ
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
93d46c39 226 *
1475579c 227 * A bit of ascii art explanation:
67ecffc0 228 *
1f67ba50
MD
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
67ecffc0 231 *
1475579c 232 * This shows the nodes for a small table ordered by reversed bits:
67ecffc0 233 *
1475579c
MD
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
67ecffc0
MD
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
1475579c 245 * reversed-bit order.
67ecffc0 246 *
1475579c
MD
247 * order bits reverse
248 * 0 0 000 000
0adc36a8
LJ
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
f6fdd688 251 * | | | 3 011 110 | <- |
1475579c
MD
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
e753ff5a
MD
256 */
257
2ed95849
MD
258#define _LGPL_SOURCE
259#include <stdlib.h>
e0ba718a
MD
260#include <errno.h>
261#include <assert.h>
262#include <stdio.h>
abc490a1 263#include <stdint.h>
f000907d 264#include <string.h>
125f41db 265#include <sched.h>
95747f9e 266#include <unistd.h>
e0ba718a 267
a47dd11c 268#include "compat-getcpu.h"
6cd23d47
MD
269#include <urcu/pointer.h>
270#include <urcu/call-rcu.h>
271#include <urcu/flavor.h>
a42cc659
MD
272#include <urcu/arch.h>
273#include <urcu/uatomic.h>
a42cc659 274#include <urcu/compiler.h>
abc490a1 275#include <urcu/rculfhash.h>
1a990de3 276#include <urcu/static/urcu-signal-nr.h>
5e28c532 277#include <stdio.h>
464a1ec9 278#include <pthread.h>
d0ec0ed2 279#include <signal.h>
308c0e2f 280#include "rculfhash-internal.h"
d0ec0ed2
MD
281#include "workqueue.h"
282#include "urcu-die.h"
83e334d0 283#include "urcu-utils.h"
01730852 284#include "compat-smp.h"
44395fb7 285
f8994aee 286/*
4c42f1b8 287 * Split-counters lazily update the global counter each 1024
f8994aee
MD
288 * addition/removal. It automatically keeps track of resize required.
289 * We use the bucket length as indicator for need to expand for small
ffa11a18 290 * tables and machines lacking per-cpu data support.
f8994aee
MD
291 */
292#define COUNT_COMMIT_ORDER 10
4ddbb355 293#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
6ea6bc67
MD
294#define CHAIN_LEN_TARGET 1
295#define CHAIN_LEN_RESIZE_THRESHOLD 3
2ed95849 296
cd95516d 297/*
76a73da8 298 * Define the minimum table size.
cd95516d 299 */
d0d8f9aa
LJ
300#define MIN_TABLE_ORDER 0
301#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
cd95516d 302
b7d619b0 303/*
1ee8f000 304 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
b7d619b0 305 */
6083a889
MD
306#define MIN_PARTITION_PER_THREAD_ORDER 12
307#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
b7d619b0 308
d95bd160
MD
309/*
310 * The removed flag needs to be updated atomically with the pointer.
48ed1c18 311 * It indicates that no node must attach to the node scheduled for
b198f0fd 312 * removal, and that node garbage collection must be performed.
1ee8f000 313 * The bucket flag does not require to be updated atomically with the
d95bd160 314 * pointer, but it is added as a pointer low bit flag to save space.
1f67ba50
MD
315 * The "removal owner" flag is used to detect which of the "del"
316 * operation that has set the "removed flag" gets to return the removed
317 * node to its caller. Note that the replace operation does not need to
318 * iteract with the "removal owner" flag, because it validates that
319 * the "removed" flag is not set before performing its cmpxchg.
d95bd160 320 */
d37166c6 321#define REMOVED_FLAG (1UL << 0)
1ee8f000 322#define BUCKET_FLAG (1UL << 1)
db00ccc3
MD
323#define REMOVAL_OWNER_FLAG (1UL << 2)
324#define FLAGS_MASK ((1UL << 3) - 1)
d37166c6 325
bb7b2f26 326/* Value of the end pointer. Should not interact with flags. */
f9c80341 327#define END_VALUE NULL
bb7b2f26 328
7f52427b
MD
329/*
330 * ht_items_count: Split-counters counting the number of node addition
331 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
332 * is set at hash table creation.
333 *
334 * These are free-running counters, never reset to zero. They count the
335 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
336 * operations to update the global counter. We choose a power-of-2 value
337 * for the trigger to deal with 32 or 64-bit overflow of the counter.
338 */
df44348d 339struct ht_items_count {
860d07e8 340 unsigned long add, del;
df44348d
MD
341} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
342
7f52427b 343/*
d0ec0ed2 344 * resize_work: Contains arguments passed to worker thread
7f52427b
MD
345 * responsible for performing lazy resize.
346 */
d0ec0ed2
MD
347struct resize_work {
348 struct urcu_work work;
14044b37 349 struct cds_lfht *ht;
abc490a1 350};
2ed95849 351
7f52427b
MD
352/*
353 * partition_resize_work: Contains arguments passed to worker threads
354 * executing the hash table resize on partitions of the hash table
355 * assigned to each processor's worker thread.
356 */
b7d619b0 357struct partition_resize_work {
1af6e26e 358 pthread_t thread_id;
b7d619b0
MD
359 struct cds_lfht *ht;
360 unsigned long i, start, len;
361 void (*fct)(struct cds_lfht *ht, unsigned long i,
362 unsigned long start, unsigned long len);
363};
364
d0ec0ed2 365static struct urcu_workqueue *cds_lfht_workqueue;
d0ec0ed2
MD
366
367/*
368 * Mutex ensuring mutual exclusion between workqueue initialization and
369 * fork handlers. cds_lfht_fork_mutex nests inside call_rcu_mutex.
370 */
371static pthread_mutex_t cds_lfht_fork_mutex = PTHREAD_MUTEX_INITIALIZER;
372
373static struct urcu_atfork cds_lfht_atfork;
374
375/*
376 * atfork handler nesting counters. Handle being registered to many urcu
377 * flavors, thus being possibly invoked more than once in the
378 * pthread_atfork list of callbacks.
379 */
380static int cds_lfht_workqueue_atfork_nesting;
381
19ec56ca 382static void __attribute__((destructor)) cds_lfht_exit(void);
d0ec0ed2 383static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor);
d0ec0ed2 384
d7c76f85
MD
385#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
386
387static
388void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht, struct cds_lfht_iter *iter)
389{
390 iter->lfht = ht;
391}
392
393#define cds_lfht_iter_debug_assert(...) assert(__VA_ARGS__)
394
395#else
396
397static
17a8f206
MJ
398void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht __attribute__((unused)),
399 struct cds_lfht_iter *iter __attribute__((unused)))
d7c76f85
MD
400{
401}
402
403#define cds_lfht_iter_debug_assert(...)
404
405#endif
406
abc490a1
MD
407/*
408 * Algorithm to reverse bits in a word by lookup table, extended to
409 * 64-bit words.
f9830efd 410 * Source:
abc490a1 411 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
f9830efd 412 * Originally from Public Domain.
abc490a1
MD
413 */
414
67ecffc0 415static const uint8_t BitReverseTable256[256] =
2ed95849 416{
abc490a1
MD
417#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
418#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
419#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
420 R6(0), R6(2), R6(1), R6(3)
421};
422#undef R2
423#undef R4
424#undef R6
2ed95849 425
abc490a1
MD
426static
427uint8_t bit_reverse_u8(uint8_t v)
428{
429 return BitReverseTable256[v];
430}
ab7d5fc6 431
95bc7fb9
MD
432#if (CAA_BITS_PER_LONG == 32)
433static
abc490a1
MD
434uint32_t bit_reverse_u32(uint32_t v)
435{
67ecffc0
MD
436 return ((uint32_t) bit_reverse_u8(v) << 24) |
437 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
438 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
abc490a1 439 ((uint32_t) bit_reverse_u8(v >> 24));
2ed95849 440}
95bc7fb9
MD
441#else
442static
abc490a1 443uint64_t bit_reverse_u64(uint64_t v)
2ed95849 444{
67ecffc0
MD
445 return ((uint64_t) bit_reverse_u8(v) << 56) |
446 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
abc490a1
MD
447 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
448 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
67ecffc0
MD
449 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
450 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
abc490a1
MD
451 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
452 ((uint64_t) bit_reverse_u8(v >> 56));
453}
95bc7fb9 454#endif
abc490a1
MD
455
456static
457unsigned long bit_reverse_ulong(unsigned long v)
458{
459#if (CAA_BITS_PER_LONG == 32)
460 return bit_reverse_u32(v);
461#else
462 return bit_reverse_u64(v);
463#endif
464}
465
f9830efd 466/*
24365af7
MD
467 * fls: returns the position of the most significant bit.
468 * Returns 0 if no bit is set, else returns the position of the most
469 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
f9830efd 470 */
24365af7
MD
471#if defined(__i386) || defined(__x86_64)
472static inline
473unsigned int fls_u32(uint32_t x)
f9830efd 474{
24365af7
MD
475 int r;
476
e1789ce2 477 __asm__ ("bsrl %1,%0\n\t"
24365af7
MD
478 "jnz 1f\n\t"
479 "movl $-1,%0\n\t"
480 "1:\n\t"
481 : "=r" (r) : "rm" (x));
482 return r + 1;
483}
484#define HAS_FLS_U32
485#endif
486
487#if defined(__x86_64)
488static inline
489unsigned int fls_u64(uint64_t x)
490{
491 long r;
492
e1789ce2 493 __asm__ ("bsrq %1,%0\n\t"
24365af7
MD
494 "jnz 1f\n\t"
495 "movq $-1,%0\n\t"
496 "1:\n\t"
497 : "=r" (r) : "rm" (x));
498 return r + 1;
499}
500#define HAS_FLS_U64
501#endif
502
503#ifndef HAS_FLS_U64
504static __attribute__((unused))
505unsigned int fls_u64(uint64_t x)
506{
507 unsigned int r = 64;
508
509 if (!x)
510 return 0;
511
512 if (!(x & 0xFFFFFFFF00000000ULL)) {
513 x <<= 32;
514 r -= 32;
515 }
516 if (!(x & 0xFFFF000000000000ULL)) {
517 x <<= 16;
518 r -= 16;
519 }
520 if (!(x & 0xFF00000000000000ULL)) {
521 x <<= 8;
522 r -= 8;
523 }
524 if (!(x & 0xF000000000000000ULL)) {
525 x <<= 4;
526 r -= 4;
527 }
528 if (!(x & 0xC000000000000000ULL)) {
529 x <<= 2;
530 r -= 2;
531 }
532 if (!(x & 0x8000000000000000ULL)) {
533 x <<= 1;
534 r -= 1;
535 }
536 return r;
537}
538#endif
539
540#ifndef HAS_FLS_U32
541static __attribute__((unused))
542unsigned int fls_u32(uint32_t x)
543{
544 unsigned int r = 32;
f9830efd 545
24365af7
MD
546 if (!x)
547 return 0;
548 if (!(x & 0xFFFF0000U)) {
549 x <<= 16;
550 r -= 16;
551 }
552 if (!(x & 0xFF000000U)) {
553 x <<= 8;
554 r -= 8;
555 }
556 if (!(x & 0xF0000000U)) {
557 x <<= 4;
558 r -= 4;
559 }
560 if (!(x & 0xC0000000U)) {
561 x <<= 2;
562 r -= 2;
563 }
564 if (!(x & 0x80000000U)) {
565 x <<= 1;
566 r -= 1;
567 }
568 return r;
569}
570#endif
571
5bc6b66f 572unsigned int cds_lfht_fls_ulong(unsigned long x)
f9830efd 573{
6887cc5e 574#if (CAA_BITS_PER_LONG == 32)
24365af7
MD
575 return fls_u32(x);
576#else
577 return fls_u64(x);
578#endif
579}
f9830efd 580
920f8ef6
LJ
581/*
582 * Return the minimum order for which x <= (1UL << order).
583 * Return -1 if x is 0.
584 */
e3717dbc 585static
5bc6b66f 586int cds_lfht_get_count_order_u32(uint32_t x)
24365af7 587{
920f8ef6
LJ
588 if (!x)
589 return -1;
24365af7 590
920f8ef6 591 return fls_u32(x - 1);
24365af7
MD
592}
593
920f8ef6
LJ
594/*
595 * Return the minimum order for which x <= (1UL << order).
596 * Return -1 if x is 0.
597 */
5bc6b66f 598int cds_lfht_get_count_order_ulong(unsigned long x)
24365af7 599{
920f8ef6
LJ
600 if (!x)
601 return -1;
24365af7 602
5bc6b66f 603 return cds_lfht_fls_ulong(x - 1);
f9830efd
MD
604}
605
606static
ab65b890 607void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
f9830efd 608
f8994aee 609static
4105056a 610void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
f8994aee
MD
611 unsigned long count);
612
5ffcaeef
MD
613static void mutex_lock(pthread_mutex_t *mutex)
614{
615 int ret;
616
617#ifndef DISTRUST_SIGNALS_EXTREME
618 ret = pthread_mutex_lock(mutex);
619 if (ret)
620 urcu_die(ret);
621#else /* #ifndef DISTRUST_SIGNALS_EXTREME */
622 while ((ret = pthread_mutex_trylock(mutex)) != 0) {
623 if (ret != EBUSY && ret != EINTR)
624 urcu_die(ret);
625 if (CMM_LOAD_SHARED(URCU_TLS(rcu_reader).need_mb)) {
626 cmm_smp_mb();
627 _CMM_STORE_SHARED(URCU_TLS(rcu_reader).need_mb, 0);
628 cmm_smp_mb();
629 }
630 (void) poll(NULL, 0, 10);
631 }
632#endif /* #else #ifndef DISTRUST_SIGNALS_EXTREME */
633}
634
635static void mutex_unlock(pthread_mutex_t *mutex)
636{
637 int ret;
638
639 ret = pthread_mutex_unlock(mutex);
640 if (ret)
641 urcu_die(ret);
642}
643
df44348d 644static long nr_cpus_mask = -1;
4c42f1b8 645static long split_count_mask = -1;
e53ab1eb 646static int split_count_order = -1;
4c42f1b8
LJ
647
648static void ht_init_nr_cpus_mask(void)
649{
650 long maxcpus;
651
01730852 652 maxcpus = get_possible_cpus_array_len();
4c42f1b8
LJ
653 if (maxcpus <= 0) {
654 nr_cpus_mask = -2;
655 return;
656 }
657 /*
658 * round up number of CPUs to next power of two, so we
659 * can use & for modulo.
660 */
5bc6b66f 661 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
4c42f1b8
LJ
662 nr_cpus_mask = maxcpus - 1;
663}
df44348d
MD
664
665static
5afadd12 666void alloc_split_items_count(struct cds_lfht *ht)
df44348d 667{
4c42f1b8
LJ
668 if (nr_cpus_mask == -1) {
669 ht_init_nr_cpus_mask();
4ddbb355
LJ
670 if (nr_cpus_mask < 0)
671 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
672 else
673 split_count_mask = nr_cpus_mask;
e53ab1eb
MD
674 split_count_order =
675 cds_lfht_get_count_order_ulong(split_count_mask + 1);
df44348d 676 }
4c42f1b8 677
4ddbb355 678 assert(split_count_mask >= 0);
5afadd12
LJ
679
680 if (ht->flags & CDS_LFHT_ACCOUNTING) {
95bc7fb9
MD
681 ht->split_count = calloc(split_count_mask + 1,
682 sizeof(struct ht_items_count));
5afadd12
LJ
683 assert(ht->split_count);
684 } else {
685 ht->split_count = NULL;
686 }
df44348d
MD
687}
688
689static
5afadd12 690void free_split_items_count(struct cds_lfht *ht)
df44348d 691{
5afadd12 692 poison_free(ht->split_count);
df44348d
MD
693}
694
695static
14360f1c 696int ht_get_split_count_index(unsigned long hash)
df44348d
MD
697{
698 int cpu;
699
4c42f1b8 700 assert(split_count_mask >= 0);
a47dd11c 701 cpu = urcu_sched_getcpu();
8ed51e04 702 if (caa_unlikely(cpu < 0))
14360f1c 703 return hash & split_count_mask;
df44348d 704 else
4c42f1b8 705 return cpu & split_count_mask;
df44348d
MD
706}
707
708static
14360f1c 709void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 710{
83e334d0 711 unsigned long split_count, count;
4c42f1b8 712 int index;
df44348d 713
8ed51e04 714 if (caa_unlikely(!ht->split_count))
3171717f 715 return;
14360f1c 716 index = ht_get_split_count_index(hash);
4c42f1b8 717 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
314558bf
MD
718 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
719 return;
720 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
721
722 dbg_printf("add split count %lu\n", split_count);
723 count = uatomic_add_return(&ht->count,
724 1UL << COUNT_COMMIT_ORDER);
4c299dcb 725 if (caa_likely(count & (count - 1)))
314558bf
MD
726 return;
727 /* Only if global count is power of 2 */
728
729 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
730 return;
83e334d0 731 dbg_printf("add set global %lu\n", count);
314558bf
MD
732 cds_lfht_resize_lazy_count(ht, size,
733 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
734}
735
736static
14360f1c 737void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 738{
83e334d0 739 unsigned long split_count, count;
4c42f1b8 740 int index;
df44348d 741
8ed51e04 742 if (caa_unlikely(!ht->split_count))
3171717f 743 return;
14360f1c 744 index = ht_get_split_count_index(hash);
4c42f1b8 745 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
314558bf
MD
746 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
747 return;
748 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
749
750 dbg_printf("del split count %lu\n", split_count);
751 count = uatomic_add_return(&ht->count,
752 -(1UL << COUNT_COMMIT_ORDER));
4c299dcb 753 if (caa_likely(count & (count - 1)))
314558bf
MD
754 return;
755 /* Only if global count is power of 2 */
756
757 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
758 return;
ba9bda73 759 dbg_printf("del set global %lu\n", count);
314558bf
MD
760 /*
761 * Don't shrink table if the number of nodes is below a
762 * certain threshold.
763 */
764 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
765 return;
766 cds_lfht_resize_lazy_count(ht, size,
767 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
768}
769
f9830efd 770static
4105056a 771void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
f9830efd 772{
f8994aee
MD
773 unsigned long count;
774
b8af5011
MD
775 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
776 return;
f8994aee
MD
777 count = uatomic_read(&ht->count);
778 /*
779 * Use bucket-local length for small table expand and for
780 * environments lacking per-cpu data support.
781 */
e53ab1eb 782 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
f8994aee 783 return;
24365af7 784 if (chain_len > 100)
f0c29ed7 785 dbg_printf("WARNING: large chain length: %u.\n",
24365af7 786 chain_len);
e53ab1eb
MD
787 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
788 int growth;
789
790 /*
791 * Ideal growth calculated based on chain length.
792 */
793 growth = cds_lfht_get_count_order_u32(chain_len
794 - (CHAIN_LEN_TARGET - 1));
795 if ((ht->flags & CDS_LFHT_ACCOUNTING)
796 && (size << growth)
797 >= (1UL << (COUNT_COMMIT_ORDER
798 + split_count_order))) {
799 /*
800 * If ideal growth expands the hash table size
801 * beyond the "small hash table" sizes, use the
802 * maximum small hash table size to attempt
803 * expanding the hash table. This only applies
804 * when node accounting is available, otherwise
805 * the chain length is used to expand the hash
806 * table in every case.
807 */
808 growth = COUNT_COMMIT_ORDER + split_count_order
809 - cds_lfht_get_count_order_ulong(size);
810 if (growth <= 0)
811 return;
812 }
813 cds_lfht_resize_lazy_grow(ht, size, growth);
814 }
f9830efd
MD
815}
816
abc490a1 817static
14044b37 818struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
abc490a1 819{
14044b37 820 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
abc490a1
MD
821}
822
823static
afa5940d 824int is_removed(const struct cds_lfht_node *node)
abc490a1 825{
d37166c6 826 return ((unsigned long) node) & REMOVED_FLAG;
abc490a1
MD
827}
828
f5596c94 829static
1ee8f000 830int is_bucket(struct cds_lfht_node *node)
f5596c94 831{
1ee8f000 832 return ((unsigned long) node) & BUCKET_FLAG;
f5596c94
MD
833}
834
835static
1ee8f000 836struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
f5596c94 837{
1ee8f000 838 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
f5596c94 839}
bb7b2f26 840
db00ccc3
MD
841static
842int is_removal_owner(struct cds_lfht_node *node)
843{
844 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
845}
846
847static
848struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
849{
850 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
851}
852
71bb3aca
MD
853static
854struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
855{
856 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
857}
858
bb7b2f26
MD
859static
860struct cds_lfht_node *get_end(void)
861{
862 return (struct cds_lfht_node *) END_VALUE;
863}
864
865static
866int is_end(struct cds_lfht_node *node)
867{
868 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
869}
870
abc490a1 871static
ab65b890
LJ
872unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
873 unsigned long v)
abc490a1
MD
874{
875 unsigned long old1, old2;
876
877 old1 = uatomic_read(ptr);
878 do {
879 old2 = old1;
880 if (old2 >= v)
f9830efd 881 return old2;
abc490a1 882 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
ab65b890 883 return old2;
abc490a1
MD
884}
885
48f1b16d
LJ
886static
887void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
888{
0b6aa001 889 return ht->mm->alloc_bucket_table(ht, order);
48f1b16d
LJ
890}
891
892/*
893 * cds_lfht_free_bucket_table() should be called with decreasing order.
894 * When cds_lfht_free_bucket_table(0) is called, it means the whole
895 * lfht is destroyed.
896 */
897static
898void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
899{
0b6aa001 900 return ht->mm->free_bucket_table(ht, order);
48f1b16d
LJ
901}
902
9d72a73f
LJ
903static inline
904struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
f4a9cc0b 905{
0b6aa001 906 return ht->bucket_at(ht, index);
f4a9cc0b
LJ
907}
908
9d72a73f
LJ
909static inline
910struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
911 unsigned long hash)
912{
913 assert(size > 0);
914 return bucket_at(ht, hash & (size - 1));
915}
916
273399de
MD
917/*
918 * Remove all logically deleted nodes from a bucket up to a certain node key.
919 */
920static
1ee8f000 921void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
273399de 922{
14044b37 923 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
273399de 924
1ee8f000
LJ
925 assert(!is_bucket(bucket));
926 assert(!is_removed(bucket));
2f943cd7 927 assert(!is_removal_owner(bucket));
1ee8f000 928 assert(!is_bucket(node));
c90201ac 929 assert(!is_removed(node));
2f943cd7 930 assert(!is_removal_owner(node));
273399de 931 for (;;) {
1ee8f000
LJ
932 iter_prev = bucket;
933 /* We can always skip the bucket node initially */
04db56f8 934 iter = rcu_dereference(iter_prev->next);
b4cb483f 935 assert(!is_removed(iter));
2f943cd7 936 assert(!is_removal_owner(iter));
04db56f8 937 assert(iter_prev->reverse_hash <= node->reverse_hash);
bd4db153 938 /*
1ee8f000 939 * We should never be called with bucket (start of chain)
bd4db153
MD
940 * and logically removed node (end of path compression
941 * marker) being the actual same node. This would be a
942 * bug in the algorithm implementation.
943 */
1ee8f000 944 assert(bucket != node);
273399de 945 for (;;) {
8ed51e04 946 if (caa_unlikely(is_end(iter)))
f9c80341 947 return;
04db56f8 948 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
f9c80341 949 return;
04db56f8 950 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 951 if (caa_likely(is_removed(next)))
273399de 952 break;
b453eae1 953 iter_prev = clear_flag(iter);
273399de
MD
954 iter = next;
955 }
b198f0fd 956 assert(!is_removed(iter));
2f943cd7 957 assert(!is_removal_owner(iter));
1ee8f000
LJ
958 if (is_bucket(iter))
959 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
960 else
961 new_next = clear_flag(next);
04db56f8 962 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de
MD
963 }
964}
965
9357c415
MD
966static
967int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
968 struct cds_lfht_node *old_node,
3fb86f26 969 struct cds_lfht_node *old_next,
9357c415
MD
970 struct cds_lfht_node *new_node)
971{
04db56f8 972 struct cds_lfht_node *bucket, *ret_next;
9357c415
MD
973
974 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
7801dadd 975 return -ENOENT;
9357c415
MD
976
977 assert(!is_removed(old_node));
2f943cd7 978 assert(!is_removal_owner(old_node));
1ee8f000 979 assert(!is_bucket(old_node));
9357c415 980 assert(!is_removed(new_node));
2f943cd7 981 assert(!is_removal_owner(new_node));
1ee8f000 982 assert(!is_bucket(new_node));
9357c415 983 assert(new_node != old_node);
3fb86f26 984 for (;;) {
9357c415 985 /* Insert after node to be replaced */
9357c415
MD
986 if (is_removed(old_next)) {
987 /*
988 * Too late, the old node has been removed under us
989 * between lookup and replace. Fail.
990 */
7801dadd 991 return -ENOENT;
9357c415 992 }
feda2722
LJ
993 assert(old_next == clear_flag(old_next));
994 assert(new_node != old_next);
71bb3aca
MD
995 /*
996 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
997 * flag. It is either set atomically at the same time
998 * (replace) or after (del).
999 */
1000 assert(!is_removal_owner(old_next));
feda2722 1001 new_node->next = old_next;
9357c415
MD
1002 /*
1003 * Here is the whole trick for lock-free replace: we add
1004 * the replacement node _after_ the node we want to
1005 * replace by atomically setting its next pointer at the
1006 * same time we set its removal flag. Given that
1007 * the lookups/get next use an iterator aware of the
1008 * next pointer, they will either skip the old node due
1009 * to the removal flag and see the new node, or use
1010 * the old node, but will not see the new one.
db00ccc3
MD
1011 * This is a replacement of a node with another node
1012 * that has the same value: we are therefore not
71bb3aca
MD
1013 * removing a value from the hash table. We set both the
1014 * REMOVED and REMOVAL_OWNER flags atomically so we own
1015 * the node after successful cmpxchg.
9357c415 1016 */
04db56f8 1017 ret_next = uatomic_cmpxchg(&old_node->next,
71bb3aca 1018 old_next, flag_removed_or_removal_owner(new_node));
3fb86f26 1019 if (ret_next == old_next)
7801dadd 1020 break; /* We performed the replacement. */
3fb86f26
LJ
1021 old_next = ret_next;
1022 }
9357c415 1023
9357c415
MD
1024 /*
1025 * Ensure that the old node is not visible to readers anymore:
1026 * lookup for the node, and remove it (along with any other
1027 * logically removed node) if found.
1028 */
04db56f8
LJ
1029 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
1030 _cds_lfht_gc_bucket(bucket, new_node);
7801dadd 1031
a85eff52 1032 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
7801dadd 1033 return 0;
9357c415
MD
1034}
1035
83beee94
MD
1036/*
1037 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
1038 * mode. A NULL unique_ret allows creation of duplicate keys.
1039 */
abc490a1 1040static
83beee94 1041void _cds_lfht_add(struct cds_lfht *ht,
91a75cc5 1042 unsigned long hash,
0422d92c 1043 cds_lfht_match_fct match,
996ff57c 1044 const void *key,
83beee94
MD
1045 unsigned long size,
1046 struct cds_lfht_node *node,
1047 struct cds_lfht_iter *unique_ret,
1ee8f000 1048 int bucket_flag)
abc490a1 1049{
14044b37 1050 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
960c9e4f 1051 *return_node;
04db56f8 1052 struct cds_lfht_node *bucket;
abc490a1 1053
1ee8f000 1054 assert(!is_bucket(node));
c90201ac 1055 assert(!is_removed(node));
2f943cd7 1056 assert(!is_removal_owner(node));
91a75cc5 1057 bucket = lookup_bucket(ht, size, hash);
abc490a1 1058 for (;;) {
adc0de68 1059 uint32_t chain_len = 0;
abc490a1 1060
11519af6
MD
1061 /*
1062 * iter_prev points to the non-removed node prior to the
1063 * insert location.
11519af6 1064 */
04db56f8 1065 iter_prev = bucket;
1ee8f000 1066 /* We can always skip the bucket node initially */
04db56f8
LJ
1067 iter = rcu_dereference(iter_prev->next);
1068 assert(iter_prev->reverse_hash <= node->reverse_hash);
abc490a1 1069 for (;;) {
8ed51e04 1070 if (caa_unlikely(is_end(iter)))
273399de 1071 goto insert;
04db56f8 1072 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
273399de 1073 goto insert;
238cc06e 1074
1ee8f000
LJ
1075 /* bucket node is the first node of the identical-hash-value chain */
1076 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
194fdbd1 1077 goto insert;
238cc06e 1078
04db56f8 1079 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 1080 if (caa_unlikely(is_removed(next)))
9dba85be 1081 goto gc_node;
238cc06e
LJ
1082
1083 /* uniquely add */
83beee94 1084 if (unique_ret
1ee8f000 1085 && !is_bucket(next)
04db56f8 1086 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
d7c76f85
MD
1087 struct cds_lfht_iter d_iter = {
1088 .node = node,
1089 .next = iter,
1090#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
1091 .lfht = ht,
1092#endif
1093 };
238cc06e
LJ
1094
1095 /*
1096 * uniquely adding inserts the node as the first
1097 * node of the identical-hash-value node chain.
1098 *
1099 * This semantic ensures no duplicated keys
1100 * should ever be observable in the table
1f67ba50
MD
1101 * (including traversing the table node by
1102 * node by forward iterations)
238cc06e 1103 */
04db56f8 1104 cds_lfht_next_duplicate(ht, match, key, &d_iter);
238cc06e
LJ
1105 if (!d_iter.node)
1106 goto insert;
1107
1108 *unique_ret = d_iter;
83beee94 1109 return;
48ed1c18 1110 }
238cc06e 1111
11519af6 1112 /* Only account for identical reverse hash once */
04db56f8 1113 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1ee8f000 1114 && !is_bucket(next))
4105056a 1115 check_resize(ht, size, ++chain_len);
11519af6 1116 iter_prev = clear_flag(iter);
273399de 1117 iter = next;
abc490a1 1118 }
48ed1c18 1119
273399de 1120 insert:
7ec59d3b 1121 assert(node != clear_flag(iter));
11519af6 1122 assert(!is_removed(iter_prev));
2f943cd7 1123 assert(!is_removal_owner(iter_prev));
c90201ac 1124 assert(!is_removed(iter));
2f943cd7 1125 assert(!is_removal_owner(iter));
f000907d 1126 assert(iter_prev != node);
1ee8f000 1127 if (!bucket_flag)
04db56f8 1128 node->next = clear_flag(iter);
f9c80341 1129 else
1ee8f000
LJ
1130 node->next = flag_bucket(clear_flag(iter));
1131 if (is_bucket(iter))
1132 new_node = flag_bucket(node);
f5596c94
MD
1133 else
1134 new_node = node;
04db56f8 1135 if (uatomic_cmpxchg(&iter_prev->next, iter,
48ed1c18 1136 new_node) != iter) {
273399de 1137 continue; /* retry */
48ed1c18 1138 } else {
83beee94 1139 return_node = node;
960c9e4f 1140 goto end;
48ed1c18
MD
1141 }
1142
9dba85be
MD
1143 gc_node:
1144 assert(!is_removed(iter));
2f943cd7 1145 assert(!is_removal_owner(iter));
1ee8f000
LJ
1146 if (is_bucket(iter))
1147 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
1148 else
1149 new_next = clear_flag(next);
04db56f8 1150 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de 1151 /* retry */
464a1ec9 1152 }
9357c415 1153end:
83beee94
MD
1154 if (unique_ret) {
1155 unique_ret->node = return_node;
1156 /* unique_ret->next left unset, never used. */
1157 }
abc490a1 1158}
464a1ec9 1159
abc490a1 1160static
860d07e8 1161int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
b65ec430 1162 struct cds_lfht_node *node)
abc490a1 1163{
db00ccc3 1164 struct cds_lfht_node *bucket, *next;
5e28c532 1165
9357c415 1166 if (!node) /* Return -ENOENT if asked to delete NULL node */
743f9143 1167 return -ENOENT;
9357c415 1168
7ec59d3b 1169 /* logically delete the node */
1ee8f000 1170 assert(!is_bucket(node));
c90201ac 1171 assert(!is_removed(node));
db00ccc3 1172 assert(!is_removal_owner(node));
48ed1c18 1173
db00ccc3
MD
1174 /*
1175 * We are first checking if the node had previously been
1176 * logically removed (this check is not atomic with setting the
1177 * logical removal flag). Return -ENOENT if the node had
1178 * previously been removed.
1179 */
a85eff52 1180 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
db00ccc3
MD
1181 if (caa_unlikely(is_removed(next)))
1182 return -ENOENT;
b65ec430 1183 assert(!is_bucket(next));
196f4fab
MD
1184 /*
1185 * The del operation semantic guarantees a full memory barrier
1186 * before the uatomic_or atomic commit of the deletion flag.
1187 */
1188 cmm_smp_mb__before_uatomic_or();
db00ccc3
MD
1189 /*
1190 * We set the REMOVED_FLAG unconditionally. Note that there may
1191 * be more than one concurrent thread setting this flag.
1192 * Knowing which wins the race will be known after the garbage
1193 * collection phase, stay tuned!
1194 */
1195 uatomic_or(&node->next, REMOVED_FLAG);
7ec59d3b 1196 /* We performed the (logical) deletion. */
7ec59d3b
MD
1197
1198 /*
1199 * Ensure that the node is not visible to readers anymore: lookup for
273399de
MD
1200 * the node, and remove it (along with any other logically removed node)
1201 * if found.
11519af6 1202 */
04db56f8
LJ
1203 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1204 _cds_lfht_gc_bucket(bucket, node);
743f9143 1205
a85eff52 1206 assert(is_removed(CMM_LOAD_SHARED(node->next)));
db00ccc3
MD
1207 /*
1208 * Last phase: atomically exchange node->next with a version
1209 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1210 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1211 * the node and win the removal race.
1212 * It is interesting to note that all "add" paths are forbidden
1213 * to change the next pointer starting from the point where the
1214 * REMOVED_FLAG is set, so here using a read, followed by a
1215 * xchg() suffice to guarantee that the xchg() will ever only
1216 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1217 * was already set).
1218 */
1219 if (!is_removal_owner(uatomic_xchg(&node->next,
1220 flag_removal_owner(node->next))))
1221 return 0;
1222 else
1223 return -ENOENT;
abc490a1 1224}
2ed95849 1225
b7d619b0
MD
1226static
1227void *partition_resize_thread(void *arg)
1228{
1229 struct partition_resize_work *work = arg;
1230
7b17c13e 1231 work->ht->flavor->register_thread();
b7d619b0 1232 work->fct(work->ht, work->i, work->start, work->len);
7b17c13e 1233 work->ht->flavor->unregister_thread();
b7d619b0
MD
1234 return NULL;
1235}
1236
1237static
1238void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1239 unsigned long len,
1240 void (*fct)(struct cds_lfht *ht, unsigned long i,
1241 unsigned long start, unsigned long len))
1242{
e54ec2f5 1243 unsigned long partition_len, start = 0;
b7d619b0 1244 struct partition_resize_work *work;
83e334d0
MJ
1245 int ret;
1246 unsigned long thread, nr_threads;
b7d619b0 1247
d7f3ba4c
EW
1248 assert(nr_cpus_mask != -1);
1249 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1250 goto fallback;
1251
6083a889
MD
1252 /*
1253 * Note: nr_cpus_mask + 1 is always power of 2.
1254 * We spawn just the number of threads we need to satisfy the minimum
1255 * partition size, up to the number of CPUs in the system.
1256 */
91452a6a 1257 if (nr_cpus_mask > 0) {
83e334d0 1258 nr_threads = min_t(unsigned long, nr_cpus_mask + 1,
91452a6a
MD
1259 len >> MIN_PARTITION_PER_THREAD_ORDER);
1260 } else {
1261 nr_threads = 1;
1262 }
5bc6b66f 1263 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
6083a889 1264 work = calloc(nr_threads, sizeof(*work));
7c75d498
EW
1265 if (!work) {
1266 dbg_printf("error allocating for resize, single-threading\n");
1267 goto fallback;
1268 }
6083a889
MD
1269 for (thread = 0; thread < nr_threads; thread++) {
1270 work[thread].ht = ht;
1271 work[thread].i = i;
1272 work[thread].len = partition_len;
1273 work[thread].start = thread * partition_len;
1274 work[thread].fct = fct;
19ec56ca
MD
1275 ret = pthread_create(&(work[thread].thread_id),
1276 ht->caller_resize_attr ? &ht->resize_attr : NULL,
6083a889 1277 partition_resize_thread, &work[thread]);
e54ec2f5
EW
1278 if (ret == EAGAIN) {
1279 /*
1280 * Out of resources: wait and join the threads
1281 * we've created, then handle leftovers.
1282 */
1283 dbg_printf("error spawning for resize, single-threading\n");
1284 start = work[thread].start;
1285 len -= start;
1286 nr_threads = thread;
1287 break;
1288 }
b7d619b0
MD
1289 assert(!ret);
1290 }
6083a889 1291 for (thread = 0; thread < nr_threads; thread++) {
1af6e26e 1292 ret = pthread_join(work[thread].thread_id, NULL);
b7d619b0
MD
1293 assert(!ret);
1294 }
1295 free(work);
e54ec2f5
EW
1296
1297 /*
1298 * A pthread_create failure above will either lead in us having
1299 * no threads to join or starting at a non-zero offset,
1300 * fallback to single thread processing of leftovers.
1301 */
1302 if (start == 0 && nr_threads > 0)
1303 return;
7c75d498 1304fallback:
e54ec2f5 1305 fct(ht, i, start, len);
b7d619b0
MD
1306}
1307
e8de508e
MD
1308/*
1309 * Holding RCU read lock to protect _cds_lfht_add against memory
d0ec0ed2 1310 * reclaim that could be performed by other worker threads (ABA
e8de508e 1311 * problem).
9ee0fc9a 1312 *
b7d619b0 1313 * When we reach a certain length, we can split this population phase over
9ee0fc9a
MD
1314 * many worker threads, based on the number of CPUs available in the system.
1315 * This should therefore take care of not having the expand lagging behind too
1316 * many concurrent insertion threads by using the scheduler's ability to
1ee8f000 1317 * schedule bucket node population fairly with insertions.
e8de508e 1318 */
4105056a 1319static
b7d619b0
MD
1320void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1321 unsigned long start, unsigned long len)
4105056a 1322{
9d72a73f 1323 unsigned long j, size = 1UL << (i - 1);
4105056a 1324
d0d8f9aa 1325 assert(i > MIN_TABLE_ORDER);
7b17c13e 1326 ht->flavor->read_lock();
9d72a73f
LJ
1327 for (j = size + start; j < size + start + len; j++) {
1328 struct cds_lfht_node *new_node = bucket_at(ht, j);
1329
1330 assert(j >= size && j < (size << 1));
1331 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1332 i, j, j);
1333 new_node->reverse_hash = bit_reverse_ulong(j);
91a75cc5 1334 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
4105056a 1335 }
7b17c13e 1336 ht->flavor->read_unlock();
b7d619b0
MD
1337}
1338
1339static
1340void init_table_populate(struct cds_lfht *ht, unsigned long i,
1341 unsigned long len)
1342{
b7d619b0 1343 partition_resize_helper(ht, i, len, init_table_populate_partition);
4105056a
MD
1344}
1345
abc490a1 1346static
4105056a 1347void init_table(struct cds_lfht *ht,
93d46c39 1348 unsigned long first_order, unsigned long last_order)
24365af7 1349{
93d46c39 1350 unsigned long i;
24365af7 1351
93d46c39
LJ
1352 dbg_printf("init table: first_order %lu last_order %lu\n",
1353 first_order, last_order);
d0d8f9aa 1354 assert(first_order > MIN_TABLE_ORDER);
93d46c39 1355 for (i = first_order; i <= last_order; i++) {
4105056a 1356 unsigned long len;
24365af7 1357
4f6e90b7 1358 len = 1UL << (i - 1);
f0c29ed7 1359 dbg_printf("init order %lu len: %lu\n", i, len);
4d676753
MD
1360
1361 /* Stop expand if the resize target changes under us */
7b3893e4 1362 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
4d676753
MD
1363 break;
1364
48f1b16d 1365 cds_lfht_alloc_bucket_table(ht, i);
4105056a 1366
4105056a 1367 /*
1ee8f000
LJ
1368 * Set all bucket nodes reverse hash values for a level and
1369 * link all bucket nodes into the table.
4105056a 1370 */
dc1da8f6 1371 init_table_populate(ht, i, len);
4105056a 1372
f9c80341
MD
1373 /*
1374 * Update table size.
1375 */
1376 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1377 CMM_STORE_SHARED(ht->size, 1UL << i);
f9c80341 1378
4f6e90b7 1379 dbg_printf("init new size: %lu\n", 1UL << i);
4105056a
MD
1380 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1381 break;
1382 }
1383}
1384
e8de508e
MD
1385/*
1386 * Holding RCU read lock to protect _cds_lfht_remove against memory
d0ec0ed2 1387 * reclaim that could be performed by other worker threads (ABA
e8de508e
MD
1388 * problem).
1389 * For a single level, we logically remove and garbage collect each node.
1390 *
1391 * As a design choice, we perform logical removal and garbage collection on a
1392 * node-per-node basis to simplify this algorithm. We also assume keeping good
1393 * cache locality of the operation would overweight possible performance gain
1394 * that could be achieved by batching garbage collection for multiple levels.
1395 * However, this would have to be justified by benchmarks.
1396 *
1397 * Concurrent removal and add operations are helping us perform garbage
1398 * collection of logically removed nodes. We guarantee that all logically
d0ec0ed2
MD
1399 * removed nodes have been garbage-collected (unlinked) before work
1400 * enqueue is invoked to free a hole level of bucket nodes (after a
1401 * grace period).
e8de508e 1402 *
1f67ba50
MD
1403 * Logical removal and garbage collection can therefore be done in batch
1404 * or on a node-per-node basis, as long as the guarantee above holds.
9ee0fc9a 1405 *
b7d619b0
MD
1406 * When we reach a certain length, we can split this removal over many worker
1407 * threads, based on the number of CPUs available in the system. This should
1408 * take care of not letting resize process lag behind too many concurrent
9ee0fc9a 1409 * updater threads actively inserting into the hash table.
e8de508e 1410 */
4105056a 1411static
b7d619b0
MD
1412void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1413 unsigned long start, unsigned long len)
4105056a 1414{
9d72a73f 1415 unsigned long j, size = 1UL << (i - 1);
4105056a 1416
d0d8f9aa 1417 assert(i > MIN_TABLE_ORDER);
7b17c13e 1418 ht->flavor->read_lock();
9d72a73f 1419 for (j = size + start; j < size + start + len; j++) {
2e2ce1e9
LJ
1420 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1421 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
9d72a73f
LJ
1422
1423 assert(j >= size && j < (size << 1));
1424 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1425 i, j, j);
2e2ce1e9
LJ
1426 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1427 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1428 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
abc490a1 1429 }
7b17c13e 1430 ht->flavor->read_unlock();
b7d619b0
MD
1431}
1432
1433static
1434void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1435{
b7d619b0 1436 partition_resize_helper(ht, i, len, remove_table_partition);
2ed95849
MD
1437}
1438
61adb337
MD
1439/*
1440 * fini_table() is never called for first_order == 0, which is why
1441 * free_by_rcu_order == 0 can be used as criterion to know if free must
1442 * be called.
1443 */
1475579c 1444static
4105056a 1445void fini_table(struct cds_lfht *ht,
93d46c39 1446 unsigned long first_order, unsigned long last_order)
1475579c 1447{
83e334d0 1448 unsigned long free_by_rcu_order = 0, i;
1475579c 1449
93d46c39
LJ
1450 dbg_printf("fini table: first_order %lu last_order %lu\n",
1451 first_order, last_order);
d0d8f9aa 1452 assert(first_order > MIN_TABLE_ORDER);
93d46c39 1453 for (i = last_order; i >= first_order; i--) {
4105056a 1454 unsigned long len;
1475579c 1455
4f6e90b7 1456 len = 1UL << (i - 1);
e15df1cc 1457 dbg_printf("fini order %ld len: %lu\n", i, len);
4105056a 1458
4d676753 1459 /* Stop shrink if the resize target changes under us */
7b3893e4 1460 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
4d676753
MD
1461 break;
1462
1463 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1464 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
4d676753
MD
1465
1466 /*
1467 * We need to wait for all add operations to reach Q.S. (and
1468 * thus use the new table for lookups) before we can start
1ee8f000 1469 * releasing the old bucket nodes. Otherwise their lookup will
4d676753
MD
1470 * return a logically removed node as insert position.
1471 */
7b17c13e 1472 ht->flavor->update_synchronize_rcu();
48f1b16d
LJ
1473 if (free_by_rcu_order)
1474 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
4d676753 1475
21263e21 1476 /*
1ee8f000
LJ
1477 * Set "removed" flag in bucket nodes about to be removed.
1478 * Unlink all now-logically-removed bucket node pointers.
4105056a
MD
1479 * Concurrent add/remove operation are helping us doing
1480 * the gc.
21263e21 1481 */
4105056a
MD
1482 remove_table(ht, i, len);
1483
48f1b16d 1484 free_by_rcu_order = i;
4105056a
MD
1485
1486 dbg_printf("fini new size: %lu\n", 1UL << i);
1475579c
MD
1487 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1488 break;
1489 }
0d14ceb2 1490
48f1b16d 1491 if (free_by_rcu_order) {
7b17c13e 1492 ht->flavor->update_synchronize_rcu();
48f1b16d 1493 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
0d14ceb2 1494 }
1475579c
MD
1495}
1496
83e334d0
MJ
1497/*
1498 * Never called with size < 1.
1499 */
ff0d69de 1500static
1ee8f000 1501void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
ff0d69de 1502{
04db56f8 1503 struct cds_lfht_node *prev, *node;
9d72a73f 1504 unsigned long order, len, i;
83e334d0 1505 int bucket_order;
ff0d69de 1506
48f1b16d 1507 cds_lfht_alloc_bucket_table(ht, 0);
ff0d69de 1508
9d72a73f
LJ
1509 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1510 node = bucket_at(ht, 0);
1511 node->next = flag_bucket(get_end());
1512 node->reverse_hash = 0;
ff0d69de 1513
83e334d0
MJ
1514 bucket_order = cds_lfht_get_count_order_ulong(size);
1515 assert(bucket_order >= 0);
1516
1517 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
ff0d69de 1518 len = 1UL << (order - 1);
48f1b16d 1519 cds_lfht_alloc_bucket_table(ht, order);
ff0d69de 1520
9d72a73f
LJ
1521 for (i = 0; i < len; i++) {
1522 /*
1523 * Now, we are trying to init the node with the
1524 * hash=(len+i) (which is also a bucket with the
1525 * index=(len+i)) and insert it into the hash table,
1526 * so this node has to be inserted after the bucket
1527 * with the index=(len+i)&(len-1)=i. And because there
1528 * is no other non-bucket node nor bucket node with
1529 * larger index/hash inserted, so the bucket node
1530 * being inserted should be inserted directly linked
1531 * after the bucket node with index=i.
1532 */
1533 prev = bucket_at(ht, i);
1534 node = bucket_at(ht, len + i);
ff0d69de 1535
1ee8f000 1536 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
9d72a73f
LJ
1537 order, len + i, len + i);
1538 node->reverse_hash = bit_reverse_ulong(len + i);
1539
1540 /* insert after prev */
1541 assert(is_bucket(prev->next));
ff0d69de 1542 node->next = prev->next;
1ee8f000 1543 prev->next = flag_bucket(node);
ff0d69de
LJ
1544 }
1545 }
1546}
1547
99ab1528
MJ
1548#if (CAA_BITS_PER_LONG > 32)
1549/*
1550 * For 64-bit architectures, with max number of buckets small enough not to
1551 * use the entire 64-bit memory mapping space (and allowing a fair number of
1552 * hash table instances), use the mmap allocator, which is faster. Otherwise,
1553 * fallback to the order allocator.
1554 */
1555static
1556const struct cds_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1557{
1558 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
1559 return &cds_lfht_mm_mmap;
1560 else
1561 return &cds_lfht_mm_order;
1562}
1563#else
1564/*
1565 * For 32-bit architectures, use the order allocator.
1566 */
1567static
17a8f206
MJ
1568const struct cds_lfht_mm_type *get_mm_type(
1569 unsigned long max_nr_buckets __attribute__((unused)))
99ab1528
MJ
1570{
1571 return &cds_lfht_mm_order;
1572}
1573#endif
1574
0422d92c 1575struct cds_lfht *_cds_lfht_new(unsigned long init_size,
0722081a 1576 unsigned long min_nr_alloc_buckets,
747d725c 1577 unsigned long max_nr_buckets,
b8af5011 1578 int flags,
0b6aa001 1579 const struct cds_lfht_mm_type *mm,
7b17c13e 1580 const struct rcu_flavor_struct *flavor,
b7d619b0 1581 pthread_attr_t *attr)
abc490a1 1582{
14044b37 1583 struct cds_lfht *ht;
24365af7 1584 unsigned long order;
abc490a1 1585
0722081a
LJ
1586 /* min_nr_alloc_buckets must be power of two */
1587 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
5488222b 1588 return NULL;
747d725c 1589
8129be4e 1590 /* init_size must be power of two */
5488222b 1591 if (!init_size || (init_size & (init_size - 1)))
8129be4e 1592 return NULL;
747d725c 1593
c1888f3a
MD
1594 /*
1595 * Memory management plugin default.
1596 */
99ab1528
MJ
1597 if (!mm)
1598 mm = get_mm_type(max_nr_buckets);
c1888f3a 1599
0b6aa001
LJ
1600 /* max_nr_buckets == 0 for order based mm means infinite */
1601 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
747d725c
LJ
1602 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1603
1604 /* max_nr_buckets must be power of two */
1605 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1606 return NULL;
1607
d0ec0ed2
MD
1608 if (flags & CDS_LFHT_AUTO_RESIZE)
1609 cds_lfht_init_worker(flavor);
1610
0722081a 1611 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
d0d8f9aa 1612 init_size = max(init_size, MIN_TABLE_SIZE);
747d725c
LJ
1613 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1614 init_size = min(init_size, max_nr_buckets);
0b6aa001
LJ
1615
1616 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
b7d619b0 1617 assert(ht);
0b6aa001
LJ
1618 assert(ht->mm == mm);
1619 assert(ht->bucket_at == mm->bucket_at);
1620
b5d6b20f 1621 ht->flags = flags;
7b17c13e 1622 ht->flavor = flavor;
19ec56ca
MD
1623 ht->caller_resize_attr = attr;
1624 if (attr)
1625 ht->resize_attr = *attr;
5afadd12 1626 alloc_split_items_count(ht);
abc490a1
MD
1627 /* this mutex should not nest in read-side C.S. */
1628 pthread_mutex_init(&ht->resize_mutex, NULL);
5bc6b66f 1629 order = cds_lfht_get_count_order_ulong(init_size);
7b3893e4 1630 ht->resize_target = 1UL << order;
1ee8f000 1631 cds_lfht_create_bucket(ht, 1UL << order);
7b3893e4 1632 ht->size = 1UL << order;
abc490a1
MD
1633 return ht;
1634}
1635
6f554439 1636void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
996ff57c 1637 cds_lfht_match_fct match, const void *key,
6f554439 1638 struct cds_lfht_iter *iter)
2ed95849 1639{
04db56f8 1640 struct cds_lfht_node *node, *next, *bucket;
0422d92c 1641 unsigned long reverse_hash, size;
2ed95849 1642
d7c76f85
MD
1643 cds_lfht_iter_debug_set_ht(ht, iter);
1644
abc490a1 1645 reverse_hash = bit_reverse_ulong(hash);
464a1ec9 1646
7b3893e4 1647 size = rcu_dereference(ht->size);
04db56f8 1648 bucket = lookup_bucket(ht, size, hash);
1ee8f000 1649 /* We can always skip the bucket node initially */
04db56f8 1650 node = rcu_dereference(bucket->next);
bb7b2f26 1651 node = clear_flag(node);
2ed95849 1652 for (;;) {
8ed51e04 1653 if (caa_unlikely(is_end(node))) {
96ad1112 1654 node = next = NULL;
abc490a1 1655 break;
bb7b2f26 1656 }
04db56f8 1657 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1658 node = next = NULL;
abc490a1 1659 break;
2ed95849 1660 }
04db56f8 1661 next = rcu_dereference(node->next);
7f52427b 1662 assert(node == clear_flag(node));
8ed51e04 1663 if (caa_likely(!is_removed(next))
1ee8f000 1664 && !is_bucket(next)
04db56f8 1665 && node->reverse_hash == reverse_hash
0422d92c 1666 && caa_likely(match(node, key))) {
273399de 1667 break;
2ed95849 1668 }
1b81fe1a 1669 node = clear_flag(next);
2ed95849 1670 }
a85eff52 1671 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1672 iter->node = node;
1673 iter->next = next;
abc490a1 1674}
e0ba718a 1675
17a8f206
MJ
1676void cds_lfht_next_duplicate(struct cds_lfht *ht __attribute__((unused)),
1677 cds_lfht_match_fct match,
996ff57c 1678 const void *key, struct cds_lfht_iter *iter)
a481e5ff 1679{
adc0de68 1680 struct cds_lfht_node *node, *next;
a481e5ff 1681 unsigned long reverse_hash;
a481e5ff 1682
d7c76f85 1683 cds_lfht_iter_debug_assert(ht == iter->lfht);
adc0de68 1684 node = iter->node;
04db56f8 1685 reverse_hash = node->reverse_hash;
adc0de68 1686 next = iter->next;
a481e5ff
MD
1687 node = clear_flag(next);
1688
1689 for (;;) {
8ed51e04 1690 if (caa_unlikely(is_end(node))) {
96ad1112 1691 node = next = NULL;
a481e5ff 1692 break;
bb7b2f26 1693 }
04db56f8 1694 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1695 node = next = NULL;
a481e5ff
MD
1696 break;
1697 }
04db56f8 1698 next = rcu_dereference(node->next);
8ed51e04 1699 if (caa_likely(!is_removed(next))
1ee8f000 1700 && !is_bucket(next)
04db56f8 1701 && caa_likely(match(node, key))) {
a481e5ff
MD
1702 break;
1703 }
1704 node = clear_flag(next);
1705 }
a85eff52 1706 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1707 iter->node = node;
1708 iter->next = next;
a481e5ff
MD
1709}
1710
17a8f206
MJ
1711void cds_lfht_next(struct cds_lfht *ht __attribute__((unused)),
1712 struct cds_lfht_iter *iter)
4e9b9fbf
MD
1713{
1714 struct cds_lfht_node *node, *next;
1715
d7c76f85 1716 cds_lfht_iter_debug_assert(ht == iter->lfht);
853395e1 1717 node = clear_flag(iter->next);
4e9b9fbf 1718 for (;;) {
8ed51e04 1719 if (caa_unlikely(is_end(node))) {
4e9b9fbf
MD
1720 node = next = NULL;
1721 break;
1722 }
04db56f8 1723 next = rcu_dereference(node->next);
8ed51e04 1724 if (caa_likely(!is_removed(next))
1ee8f000 1725 && !is_bucket(next)) {
4e9b9fbf
MD
1726 break;
1727 }
1728 node = clear_flag(next);
1729 }
a85eff52 1730 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
4e9b9fbf
MD
1731 iter->node = node;
1732 iter->next = next;
1733}
1734
1735void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1736{
d7c76f85 1737 cds_lfht_iter_debug_set_ht(ht, iter);
4e9b9fbf 1738 /*
1ee8f000 1739 * Get next after first bucket node. The first bucket node is the
4e9b9fbf
MD
1740 * first node of the linked list.
1741 */
9d72a73f 1742 iter->next = bucket_at(ht, 0)->next;
4e9b9fbf
MD
1743 cds_lfht_next(ht, iter);
1744}
1745
0422d92c
MD
1746void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1747 struct cds_lfht_node *node)
abc490a1 1748{
0422d92c 1749 unsigned long size;
ab7d5fc6 1750
709bacf9 1751 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1752 size = rcu_dereference(ht->size);
91a75cc5 1753 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
14360f1c 1754 ht_count_add(ht, size, hash);
3eca1b8c
MD
1755}
1756
14044b37 1757struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
6f554439 1758 unsigned long hash,
0422d92c 1759 cds_lfht_match_fct match,
996ff57c 1760 const void *key,
48ed1c18 1761 struct cds_lfht_node *node)
3eca1b8c 1762{
0422d92c 1763 unsigned long size;
83beee94 1764 struct cds_lfht_iter iter;
3eca1b8c 1765
709bacf9 1766 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1767 size = rcu_dereference(ht->size);
91a75cc5 1768 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1769 if (iter.node == node)
14360f1c 1770 ht_count_add(ht, size, hash);
83beee94 1771 return iter.node;
2ed95849
MD
1772}
1773
9357c415 1774struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
6f554439 1775 unsigned long hash,
0422d92c 1776 cds_lfht_match_fct match,
996ff57c 1777 const void *key,
48ed1c18
MD
1778 struct cds_lfht_node *node)
1779{
0422d92c 1780 unsigned long size;
83beee94 1781 struct cds_lfht_iter iter;
48ed1c18 1782
709bacf9 1783 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1784 size = rcu_dereference(ht->size);
83beee94 1785 for (;;) {
91a75cc5 1786 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1787 if (iter.node == node) {
14360f1c 1788 ht_count_add(ht, size, hash);
83beee94
MD
1789 return NULL;
1790 }
1791
1792 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1793 return iter.node;
1794 }
48ed1c18
MD
1795}
1796
2e79c445
MD
1797int cds_lfht_replace(struct cds_lfht *ht,
1798 struct cds_lfht_iter *old_iter,
1799 unsigned long hash,
1800 cds_lfht_match_fct match,
1801 const void *key,
9357c415
MD
1802 struct cds_lfht_node *new_node)
1803{
1804 unsigned long size;
1805
709bacf9 1806 new_node->reverse_hash = bit_reverse_ulong(hash);
2e79c445
MD
1807 if (!old_iter->node)
1808 return -ENOENT;
1809 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1810 return -EINVAL;
1811 if (caa_unlikely(!match(old_iter->node, key)))
1812 return -EINVAL;
7b3893e4 1813 size = rcu_dereference(ht->size);
9357c415
MD
1814 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1815 new_node);
1816}
1817
bc8c3c74 1818int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
2ed95849 1819{
95bc7fb9 1820 unsigned long size;
df44348d 1821 int ret;
abc490a1 1822
7b3893e4 1823 size = rcu_dereference(ht->size);
bc8c3c74 1824 ret = _cds_lfht_del(ht, size, node);
14360f1c 1825 if (!ret) {
95bc7fb9
MD
1826 unsigned long hash;
1827
bc8c3c74 1828 hash = bit_reverse_ulong(node->reverse_hash);
14360f1c
LJ
1829 ht_count_del(ht, size, hash);
1830 }
df44348d 1831 return ret;
2ed95849 1832}
ab7d5fc6 1833
afa5940d 1834int cds_lfht_is_node_deleted(const struct cds_lfht_node *node)
df55172a 1835{
a85eff52 1836 return is_removed(CMM_LOAD_SHARED(node->next));
df55172a
MD
1837}
1838
19ec56ca
MD
1839static
1840bool cds_lfht_is_empty(struct cds_lfht *ht)
1841{
1842 struct cds_lfht_node *node, *next;
1843 bool empty = true;
1844 bool was_online;
1845
1846 was_online = ht->flavor->read_ongoing();
1847 if (!was_online) {
1848 ht->flavor->thread_online();
1849 ht->flavor->read_lock();
1850 }
1851 /* Check that the table is empty */
1852 node = bucket_at(ht, 0);
1853 do {
1854 next = rcu_dereference(node->next);
1855 if (!is_bucket(next)) {
1856 empty = false;
1857 break;
1858 }
1859 node = clear_flag(next);
1860 } while (!is_end(node));
1861 if (!was_online) {
1862 ht->flavor->read_unlock();
1863 ht->flavor->thread_offline();
1864 }
1865 return empty;
1866}
1867
abc490a1 1868static
1ee8f000 1869int cds_lfht_delete_bucket(struct cds_lfht *ht)
674f7a69 1870{
14044b37 1871 struct cds_lfht_node *node;
4105056a 1872 unsigned long order, i, size;
674f7a69 1873
abc490a1 1874 /* Check that the table is empty */
9d72a73f 1875 node = bucket_at(ht, 0);
abc490a1 1876 do {
04db56f8 1877 node = clear_flag(node)->next;
1ee8f000 1878 if (!is_bucket(node))
abc490a1 1879 return -EPERM;
273399de 1880 assert(!is_removed(node));
2f943cd7 1881 assert(!is_removal_owner(node));
bb7b2f26 1882 } while (!is_end(node));
4105056a
MD
1883 /*
1884 * size accessed without rcu_dereference because hash table is
1885 * being destroyed.
1886 */
7b3893e4 1887 size = ht->size;
1f67ba50 1888 /* Internal sanity check: all nodes left should be buckets */
48f1b16d
LJ
1889 for (i = 0; i < size; i++) {
1890 node = bucket_at(ht, i);
1891 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1892 i, i, bit_reverse_ulong(node->reverse_hash));
1893 assert(is_bucket(node->next));
1894 }
24365af7 1895
5bc6b66f 1896 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
48f1b16d 1897 cds_lfht_free_bucket_table(ht, order);
5488222b 1898
abc490a1 1899 return 0;
674f7a69
MD
1900}
1901
19ec56ca
MD
1902static
1903void do_auto_resize_destroy_cb(struct urcu_work *work)
1904{
1905 struct cds_lfht *ht = caa_container_of(work, struct cds_lfht, destroy_work);
1906 int ret;
1907
1908 ht->flavor->register_thread();
1909 ret = cds_lfht_delete_bucket(ht);
1910 if (ret)
1911 urcu_die(ret);
1912 free_split_items_count(ht);
1913 ret = pthread_mutex_destroy(&ht->resize_mutex);
1914 if (ret)
1915 urcu_die(ret);
1916 ht->flavor->unregister_thread();
1917 poison_free(ht);
1918}
1919
674f7a69
MD
1920/*
1921 * Should only be called when no more concurrent readers nor writers can
1922 * possibly access the table.
1923 */
b7d619b0 1924int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
674f7a69 1925{
d0ec0ed2
MD
1926 int ret;
1927
1928 if (ht->flags & CDS_LFHT_AUTO_RESIZE) {
19ec56ca
MD
1929 /*
1930 * Perform error-checking for emptiness before queuing
1931 * work, so we can return error to the caller. This runs
1932 * concurrently with ongoing resize.
1933 */
1934 if (!cds_lfht_is_empty(ht))
1935 return -EPERM;
d0ec0ed2
MD
1936 /* Cancel ongoing resize operations. */
1937 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
19ec56ca
MD
1938 if (attr) {
1939 *attr = ht->caller_resize_attr;
1940 ht->caller_resize_attr = NULL;
1941 }
1942 /*
1943 * Queue destroy work after prior queued resize
1944 * operations. Given there are no concurrent writers
1945 * accessing the hash table at this point, no resize
1946 * operations can be queued after this destroy work.
1947 */
1948 urcu_workqueue_queue_work(cds_lfht_workqueue,
1949 &ht->destroy_work, do_auto_resize_destroy_cb);
1950 return 0;
10e68472 1951 }
1ee8f000 1952 ret = cds_lfht_delete_bucket(ht);
abc490a1
MD
1953 if (ret)
1954 return ret;
5afadd12 1955 free_split_items_count(ht);
b7d619b0 1956 if (attr)
19ec56ca 1957 *attr = ht->caller_resize_attr;
59629f09
MD
1958 ret = pthread_mutex_destroy(&ht->resize_mutex);
1959 if (ret)
1960 ret = -EBUSY;
98808fb1 1961 poison_free(ht);
5e28c532 1962 return ret;
674f7a69
MD
1963}
1964
14044b37 1965void cds_lfht_count_nodes(struct cds_lfht *ht,
d933dd0e 1966 long *approx_before,
273399de 1967 unsigned long *count,
d933dd0e 1968 long *approx_after)
273399de 1969{
14044b37 1970 struct cds_lfht_node *node, *next;
caf3653d 1971 unsigned long nr_bucket = 0, nr_removed = 0;
273399de 1972
7ed7682f 1973 *approx_before = 0;
5afadd12 1974 if (ht->split_count) {
973e5e1b
MD
1975 int i;
1976
4c42f1b8
LJ
1977 for (i = 0; i < split_count_mask + 1; i++) {
1978 *approx_before += uatomic_read(&ht->split_count[i].add);
1979 *approx_before -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
1980 }
1981 }
1982
273399de 1983 *count = 0;
273399de 1984
1ee8f000 1985 /* Count non-bucket nodes in the table */
9d72a73f 1986 node = bucket_at(ht, 0);
273399de 1987 do {
04db56f8 1988 next = rcu_dereference(node->next);
b198f0fd 1989 if (is_removed(next)) {
1ee8f000 1990 if (!is_bucket(next))
caf3653d 1991 (nr_removed)++;
973e5e1b 1992 else
1ee8f000
LJ
1993 (nr_bucket)++;
1994 } else if (!is_bucket(next))
273399de 1995 (*count)++;
24365af7 1996 else
1ee8f000 1997 (nr_bucket)++;
273399de 1998 node = clear_flag(next);
bb7b2f26 1999 } while (!is_end(node));
caf3653d 2000 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1ee8f000 2001 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
7ed7682f 2002 *approx_after = 0;
5afadd12 2003 if (ht->split_count) {
973e5e1b
MD
2004 int i;
2005
4c42f1b8
LJ
2006 for (i = 0; i < split_count_mask + 1; i++) {
2007 *approx_after += uatomic_read(&ht->split_count[i].add);
2008 *approx_after -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
2009 }
2010 }
273399de
MD
2011}
2012
1475579c 2013/* called with resize mutex held */
abc490a1 2014static
4105056a 2015void _do_cds_lfht_grow(struct cds_lfht *ht,
1475579c 2016 unsigned long old_size, unsigned long new_size)
abc490a1 2017{
1475579c 2018 unsigned long old_order, new_order;
1475579c 2019
5bc6b66f
MD
2020 old_order = cds_lfht_get_count_order_ulong(old_size);
2021 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
2022 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2023 old_size, old_order, new_size, new_order);
1475579c 2024 assert(new_size > old_size);
93d46c39 2025 init_table(ht, old_order + 1, new_order);
abc490a1
MD
2026}
2027
2028/* called with resize mutex held */
2029static
4105056a 2030void _do_cds_lfht_shrink(struct cds_lfht *ht,
1475579c 2031 unsigned long old_size, unsigned long new_size)
464a1ec9 2032{
1475579c 2033 unsigned long old_order, new_order;
464a1ec9 2034
d0d8f9aa 2035 new_size = max(new_size, MIN_TABLE_SIZE);
5bc6b66f
MD
2036 old_order = cds_lfht_get_count_order_ulong(old_size);
2037 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
2038 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2039 old_size, old_order, new_size, new_order);
1475579c 2040 assert(new_size < old_size);
1475579c 2041
1ee8f000 2042 /* Remove and unlink all bucket nodes to remove. */
93d46c39 2043 fini_table(ht, new_order + 1, old_order);
464a1ec9
MD
2044}
2045
1475579c
MD
2046
2047/* called with resize mutex held */
2048static
2049void _do_cds_lfht_resize(struct cds_lfht *ht)
2050{
2051 unsigned long new_size, old_size;
4105056a
MD
2052
2053 /*
2054 * Resize table, re-do if the target size has changed under us.
2055 */
2056 do {
d2be3620
MD
2057 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
2058 break;
7b3893e4
LJ
2059 ht->resize_initiated = 1;
2060 old_size = ht->size;
2061 new_size = CMM_LOAD_SHARED(ht->resize_target);
4105056a
MD
2062 if (old_size < new_size)
2063 _do_cds_lfht_grow(ht, old_size, new_size);
2064 else if (old_size > new_size)
2065 _do_cds_lfht_shrink(ht, old_size, new_size);
7b3893e4 2066 ht->resize_initiated = 0;
4105056a
MD
2067 /* write resize_initiated before read resize_target */
2068 cmm_smp_mb();
7b3893e4 2069 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1475579c
MD
2070}
2071
abc490a1 2072static
ab65b890 2073unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 2074{
7b3893e4 2075 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
464a1ec9
MD
2076}
2077
1475579c 2078static
4105056a 2079void resize_target_update_count(struct cds_lfht *ht,
b8af5011 2080 unsigned long count)
1475579c 2081{
d0d8f9aa 2082 count = max(count, MIN_TABLE_SIZE);
747d725c 2083 count = min(count, ht->max_nr_buckets);
7b3893e4 2084 uatomic_set(&ht->resize_target, count);
1475579c
MD
2085}
2086
2087void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 2088{
10e68472
MD
2089 resize_target_update_count(ht, new_size);
2090 CMM_STORE_SHARED(ht->resize_initiated, 1);
5ffcaeef 2091 mutex_lock(&ht->resize_mutex);
1475579c 2092 _do_cds_lfht_resize(ht);
5ffcaeef 2093 mutex_unlock(&ht->resize_mutex);
abc490a1 2094}
464a1ec9 2095
abc490a1 2096static
d0ec0ed2 2097void do_resize_cb(struct urcu_work *work)
abc490a1 2098{
d0ec0ed2
MD
2099 struct resize_work *resize_work =
2100 caa_container_of(work, struct resize_work, work);
2101 struct cds_lfht *ht = resize_work->ht;
abc490a1 2102
d0ec0ed2 2103 ht->flavor->register_thread();
5ffcaeef 2104 mutex_lock(&ht->resize_mutex);
14044b37 2105 _do_cds_lfht_resize(ht);
5ffcaeef 2106 mutex_unlock(&ht->resize_mutex);
d0ec0ed2 2107 ht->flavor->unregister_thread();
98808fb1 2108 poison_free(work);
464a1ec9
MD
2109}
2110
abc490a1 2111static
f1f119ee 2112void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
ab7d5fc6 2113{
d0ec0ed2 2114 struct resize_work *work;
abc490a1 2115
4105056a
MD
2116 /* Store resize_target before read resize_initiated */
2117 cmm_smp_mb();
7b3893e4 2118 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
ed35e6d8 2119 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
59290e9d 2120 return;
ed35e6d8 2121 }
f9830efd 2122 work = malloc(sizeof(*work));
741f378e
MD
2123 if (work == NULL) {
2124 dbg_printf("error allocating resize work, bailing out\n");
741f378e
MD
2125 return;
2126 }
f9830efd 2127 work->ht = ht;
d0ec0ed2
MD
2128 urcu_workqueue_queue_work(cds_lfht_workqueue,
2129 &work->work, do_resize_cb);
7b3893e4 2130 CMM_STORE_SHARED(ht->resize_initiated, 1);
f9830efd 2131 }
ab7d5fc6 2132}
3171717f 2133
f1f119ee
LJ
2134static
2135void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2136{
2137 unsigned long target_size = size << growth;
2138
747d725c 2139 target_size = min(target_size, ht->max_nr_buckets);
f1f119ee
LJ
2140 if (resize_target_grow(ht, target_size) >= target_size)
2141 return;
2142
2143 __cds_lfht_resize_lazy_launch(ht);
2144}
2145
89bb121d
LJ
2146/*
2147 * We favor grow operations over shrink. A shrink operation never occurs
2148 * if a grow operation is queued for lazy execution. A grow operation
2149 * cancels any pending shrink lazy execution.
2150 */
3171717f 2151static
4105056a 2152void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
3171717f
MD
2153 unsigned long count)
2154{
b8af5011
MD
2155 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2156 return;
d0d8f9aa 2157 count = max(count, MIN_TABLE_SIZE);
747d725c 2158 count = min(count, ht->max_nr_buckets);
89bb121d
LJ
2159 if (count == size)
2160 return; /* Already the right size, no resize needed */
2161 if (count > size) { /* lazy grow */
2162 if (resize_target_grow(ht, count) >= count)
2163 return;
2164 } else { /* lazy shrink */
2165 for (;;) {
2166 unsigned long s;
2167
7b3893e4 2168 s = uatomic_cmpxchg(&ht->resize_target, size, count);
89bb121d
LJ
2169 if (s == size)
2170 break; /* no resize needed */
2171 if (s > size)
2172 return; /* growing is/(was just) in progress */
2173 if (s <= count)
2174 return; /* some other thread do shrink */
2175 size = s;
2176 }
2177 }
f1f119ee 2178 __cds_lfht_resize_lazy_launch(ht);
3171717f 2179}
d0ec0ed2 2180
17a8f206 2181static void cds_lfht_before_fork(void *priv __attribute__((unused)))
d0ec0ed2
MD
2182{
2183 if (cds_lfht_workqueue_atfork_nesting++)
2184 return;
2185 mutex_lock(&cds_lfht_fork_mutex);
2186 if (!cds_lfht_workqueue)
2187 return;
2188 urcu_workqueue_pause_worker(cds_lfht_workqueue);
2189}
2190
17a8f206 2191static void cds_lfht_after_fork_parent(void *priv __attribute__((unused)))
d0ec0ed2
MD
2192{
2193 if (--cds_lfht_workqueue_atfork_nesting)
2194 return;
2195 if (!cds_lfht_workqueue)
2196 goto end;
2197 urcu_workqueue_resume_worker(cds_lfht_workqueue);
2198end:
2199 mutex_unlock(&cds_lfht_fork_mutex);
2200}
2201
17a8f206 2202static void cds_lfht_after_fork_child(void *priv __attribute__((unused)))
d0ec0ed2
MD
2203{
2204 if (--cds_lfht_workqueue_atfork_nesting)
2205 return;
2206 if (!cds_lfht_workqueue)
2207 goto end;
2208 urcu_workqueue_create_worker(cds_lfht_workqueue);
2209end:
2210 mutex_unlock(&cds_lfht_fork_mutex);
2211}
2212
2213static struct urcu_atfork cds_lfht_atfork = {
2214 .before_fork = cds_lfht_before_fork,
2215 .after_fork_parent = cds_lfht_after_fork_parent,
2216 .after_fork_child = cds_lfht_after_fork_child,
2217};
2218
1a990de3 2219/*
2220 * Block all signals for the workqueue worker thread to ensure we don't
2221 * disturb the application. The SIGRCU signal needs to be unblocked for
2222 * the urcu-signal flavor.
2223 */
17a8f206
MJ
2224static void cds_lfht_worker_init(
2225 struct urcu_workqueue *workqueue __attribute__((unused)),
2226 void *priv __attribute__((unused)))
d0ec0ed2
MD
2227{
2228 int ret;
2229 sigset_t mask;
2230
d0ec0ed2
MD
2231 ret = sigfillset(&mask);
2232 if (ret)
2233 urcu_die(errno);
1a990de3 2234 ret = sigdelset(&mask, SIGRCU);
2235 if (ret)
9fd30396 2236 urcu_die(errno);
1a990de3 2237 ret = pthread_sigmask(SIG_SETMASK, &mask, NULL);
d0ec0ed2
MD
2238 if (ret)
2239 urcu_die(ret);
2240}
2241
2242static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor)
2243{
2244 flavor->register_rculfhash_atfork(&cds_lfht_atfork);
2245
2246 mutex_lock(&cds_lfht_fork_mutex);
19ec56ca
MD
2247 if (!cds_lfht_workqueue)
2248 cds_lfht_workqueue = urcu_workqueue_create(0, -1, NULL,
2249 NULL, cds_lfht_worker_init, NULL, NULL, NULL, NULL, NULL);
d0ec0ed2
MD
2250 mutex_unlock(&cds_lfht_fork_mutex);
2251}
2252
19ec56ca 2253static void cds_lfht_exit(void)
d0ec0ed2
MD
2254{
2255 mutex_lock(&cds_lfht_fork_mutex);
19ec56ca
MD
2256 if (cds_lfht_workqueue) {
2257 urcu_workqueue_flush_queued_work(cds_lfht_workqueue);
2258 urcu_workqueue_destroy(cds_lfht_workqueue);
2259 cds_lfht_workqueue = NULL;
2260 }
d0ec0ed2 2261 mutex_unlock(&cds_lfht_fork_mutex);
d0ec0ed2 2262}
This page took 0.249671 seconds and 4 git commands to generate.