Fix: only perform lttng_consumer_sync_trace_file() in local mode
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #define _LGPL_SOURCE
22 #include <assert.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <inttypes.h>
32 #include <signal.h>
33
34 #include <bin/lttng-consumerd/health-consumerd.h>
35 #include <common/common.h>
36 #include <common/utils.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer-timer.h>
47
48 #include "consumer.h"
49 #include "consumer-stream.h"
50 #include "consumer-testpoint.h"
51 #include "align.h"
52
53 struct lttng_consumer_global_data consumer_data = {
54 .stream_count = 0,
55 .need_update = 1,
56 .type = LTTNG_CONSUMER_UNKNOWN,
57 };
58
59 enum consumer_channel_action {
60 CONSUMER_CHANNEL_ADD,
61 CONSUMER_CHANNEL_DEL,
62 CONSUMER_CHANNEL_QUIT,
63 };
64
65 struct consumer_channel_msg {
66 enum consumer_channel_action action;
67 struct lttng_consumer_channel *chan; /* add */
68 uint64_t key; /* del */
69 };
70
71 /*
72 * Flag to inform the polling thread to quit when all fd hung up. Updated by
73 * the consumer_thread_receive_fds when it notices that all fds has hung up.
74 * Also updated by the signal handler (consumer_should_exit()). Read by the
75 * polling threads.
76 */
77 volatile int consumer_quit;
78
79 /*
80 * Global hash table containing respectively metadata and data streams. The
81 * stream element in this ht should only be updated by the metadata poll thread
82 * for the metadata and the data poll thread for the data.
83 */
84 static struct lttng_ht *metadata_ht;
85 static struct lttng_ht *data_ht;
86
87 /*
88 * Notify a thread lttng pipe to poll back again. This usually means that some
89 * global state has changed so we just send back the thread in a poll wait
90 * call.
91 */
92 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
93 {
94 struct lttng_consumer_stream *null_stream = NULL;
95
96 assert(pipe);
97
98 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
99 }
100
101 static void notify_health_quit_pipe(int *pipe)
102 {
103 ssize_t ret;
104
105 ret = lttng_write(pipe[1], "4", 1);
106 if (ret < 1) {
107 PERROR("write consumer health quit");
108 }
109 }
110
111 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
112 struct lttng_consumer_channel *chan,
113 uint64_t key,
114 enum consumer_channel_action action)
115 {
116 struct consumer_channel_msg msg;
117 ssize_t ret;
118
119 memset(&msg, 0, sizeof(msg));
120
121 msg.action = action;
122 msg.chan = chan;
123 msg.key = key;
124 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
125 if (ret < sizeof(msg)) {
126 PERROR("notify_channel_pipe write error");
127 }
128 }
129
130 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
131 uint64_t key)
132 {
133 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
134 }
135
136 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
137 struct lttng_consumer_channel **chan,
138 uint64_t *key,
139 enum consumer_channel_action *action)
140 {
141 struct consumer_channel_msg msg;
142 ssize_t ret;
143
144 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
145 if (ret < sizeof(msg)) {
146 ret = -1;
147 goto error;
148 }
149 *action = msg.action;
150 *chan = msg.chan;
151 *key = msg.key;
152 error:
153 return (int) ret;
154 }
155
156 /*
157 * Cleanup the stream list of a channel. Those streams are not yet globally
158 * visible
159 */
160 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
161 {
162 struct lttng_consumer_stream *stream, *stmp;
163
164 assert(channel);
165
166 /* Delete streams that might have been left in the stream list. */
167 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
168 send_node) {
169 cds_list_del(&stream->send_node);
170 /*
171 * Once a stream is added to this list, the buffers were created so we
172 * have a guarantee that this call will succeed. Setting the monitor
173 * mode to 0 so we don't lock nor try to delete the stream from the
174 * global hash table.
175 */
176 stream->monitor = 0;
177 consumer_stream_destroy(stream, NULL);
178 }
179 }
180
181 /*
182 * Find a stream. The consumer_data.lock must be locked during this
183 * call.
184 */
185 static struct lttng_consumer_stream *find_stream(uint64_t key,
186 struct lttng_ht *ht)
187 {
188 struct lttng_ht_iter iter;
189 struct lttng_ht_node_u64 *node;
190 struct lttng_consumer_stream *stream = NULL;
191
192 assert(ht);
193
194 /* -1ULL keys are lookup failures */
195 if (key == (uint64_t) -1ULL) {
196 return NULL;
197 }
198
199 rcu_read_lock();
200
201 lttng_ht_lookup(ht, &key, &iter);
202 node = lttng_ht_iter_get_node_u64(&iter);
203 if (node != NULL) {
204 stream = caa_container_of(node, struct lttng_consumer_stream, node);
205 }
206
207 rcu_read_unlock();
208
209 return stream;
210 }
211
212 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
213 {
214 struct lttng_consumer_stream *stream;
215
216 rcu_read_lock();
217 stream = find_stream(key, ht);
218 if (stream) {
219 stream->key = (uint64_t) -1ULL;
220 /*
221 * We don't want the lookup to match, but we still need
222 * to iterate on this stream when iterating over the hash table. Just
223 * change the node key.
224 */
225 stream->node.key = (uint64_t) -1ULL;
226 }
227 rcu_read_unlock();
228 }
229
230 /*
231 * Return a channel object for the given key.
232 *
233 * RCU read side lock MUST be acquired before calling this function and
234 * protects the channel ptr.
235 */
236 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
237 {
238 struct lttng_ht_iter iter;
239 struct lttng_ht_node_u64 *node;
240 struct lttng_consumer_channel *channel = NULL;
241
242 /* -1ULL keys are lookup failures */
243 if (key == (uint64_t) -1ULL) {
244 return NULL;
245 }
246
247 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
248 node = lttng_ht_iter_get_node_u64(&iter);
249 if (node != NULL) {
250 channel = caa_container_of(node, struct lttng_consumer_channel, node);
251 }
252
253 return channel;
254 }
255
256 /*
257 * There is a possibility that the consumer does not have enough time between
258 * the close of the channel on the session daemon and the cleanup in here thus
259 * once we have a channel add with an existing key, we know for sure that this
260 * channel will eventually get cleaned up by all streams being closed.
261 *
262 * This function just nullifies the already existing channel key.
263 */
264 static void steal_channel_key(uint64_t key)
265 {
266 struct lttng_consumer_channel *channel;
267
268 rcu_read_lock();
269 channel = consumer_find_channel(key);
270 if (channel) {
271 channel->key = (uint64_t) -1ULL;
272 /*
273 * We don't want the lookup to match, but we still need to iterate on
274 * this channel when iterating over the hash table. Just change the
275 * node key.
276 */
277 channel->node.key = (uint64_t) -1ULL;
278 }
279 rcu_read_unlock();
280 }
281
282 static void free_channel_rcu(struct rcu_head *head)
283 {
284 struct lttng_ht_node_u64 *node =
285 caa_container_of(head, struct lttng_ht_node_u64, head);
286 struct lttng_consumer_channel *channel =
287 caa_container_of(node, struct lttng_consumer_channel, node);
288
289 switch (consumer_data.type) {
290 case LTTNG_CONSUMER_KERNEL:
291 break;
292 case LTTNG_CONSUMER32_UST:
293 case LTTNG_CONSUMER64_UST:
294 lttng_ustconsumer_free_channel(channel);
295 break;
296 default:
297 ERR("Unknown consumer_data type");
298 abort();
299 }
300 free(channel);
301 }
302
303 /*
304 * RCU protected relayd socket pair free.
305 */
306 static void free_relayd_rcu(struct rcu_head *head)
307 {
308 struct lttng_ht_node_u64 *node =
309 caa_container_of(head, struct lttng_ht_node_u64, head);
310 struct consumer_relayd_sock_pair *relayd =
311 caa_container_of(node, struct consumer_relayd_sock_pair, node);
312
313 /*
314 * Close all sockets. This is done in the call RCU since we don't want the
315 * socket fds to be reassigned thus potentially creating bad state of the
316 * relayd object.
317 *
318 * We do not have to lock the control socket mutex here since at this stage
319 * there is no one referencing to this relayd object.
320 */
321 (void) relayd_close(&relayd->control_sock);
322 (void) relayd_close(&relayd->data_sock);
323
324 free(relayd);
325 }
326
327 /*
328 * Destroy and free relayd socket pair object.
329 */
330 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
331 {
332 int ret;
333 struct lttng_ht_iter iter;
334
335 if (relayd == NULL) {
336 return;
337 }
338
339 DBG("Consumer destroy and close relayd socket pair");
340
341 iter.iter.node = &relayd->node.node;
342 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
343 if (ret != 0) {
344 /* We assume the relayd is being or is destroyed */
345 return;
346 }
347
348 /* RCU free() call */
349 call_rcu(&relayd->node.head, free_relayd_rcu);
350 }
351
352 /*
353 * Remove a channel from the global list protected by a mutex. This function is
354 * also responsible for freeing its data structures.
355 */
356 void consumer_del_channel(struct lttng_consumer_channel *channel)
357 {
358 int ret;
359 struct lttng_ht_iter iter;
360
361 DBG("Consumer delete channel key %" PRIu64, channel->key);
362
363 pthread_mutex_lock(&consumer_data.lock);
364 pthread_mutex_lock(&channel->lock);
365
366 /* Destroy streams that might have been left in the stream list. */
367 clean_channel_stream_list(channel);
368
369 if (channel->live_timer_enabled == 1) {
370 consumer_timer_live_stop(channel);
371 }
372
373 switch (consumer_data.type) {
374 case LTTNG_CONSUMER_KERNEL:
375 break;
376 case LTTNG_CONSUMER32_UST:
377 case LTTNG_CONSUMER64_UST:
378 lttng_ustconsumer_del_channel(channel);
379 break;
380 default:
381 ERR("Unknown consumer_data type");
382 assert(0);
383 goto end;
384 }
385
386 rcu_read_lock();
387 iter.iter.node = &channel->node.node;
388 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
389 assert(!ret);
390 rcu_read_unlock();
391
392 call_rcu(&channel->node.head, free_channel_rcu);
393 end:
394 pthread_mutex_unlock(&channel->lock);
395 pthread_mutex_unlock(&consumer_data.lock);
396 }
397
398 /*
399 * Iterate over the relayd hash table and destroy each element. Finally,
400 * destroy the whole hash table.
401 */
402 static void cleanup_relayd_ht(void)
403 {
404 struct lttng_ht_iter iter;
405 struct consumer_relayd_sock_pair *relayd;
406
407 rcu_read_lock();
408
409 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
410 node.node) {
411 consumer_destroy_relayd(relayd);
412 }
413
414 rcu_read_unlock();
415
416 lttng_ht_destroy(consumer_data.relayd_ht);
417 }
418
419 /*
420 * Update the end point status of all streams having the given network sequence
421 * index (relayd index).
422 *
423 * It's atomically set without having the stream mutex locked which is fine
424 * because we handle the write/read race with a pipe wakeup for each thread.
425 */
426 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
427 enum consumer_endpoint_status status)
428 {
429 struct lttng_ht_iter iter;
430 struct lttng_consumer_stream *stream;
431
432 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
433
434 rcu_read_lock();
435
436 /* Let's begin with metadata */
437 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
438 if (stream->net_seq_idx == net_seq_idx) {
439 uatomic_set(&stream->endpoint_status, status);
440 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
441 }
442 }
443
444 /* Follow up by the data streams */
445 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
446 if (stream->net_seq_idx == net_seq_idx) {
447 uatomic_set(&stream->endpoint_status, status);
448 DBG("Delete flag set to data stream %d", stream->wait_fd);
449 }
450 }
451 rcu_read_unlock();
452 }
453
454 /*
455 * Cleanup a relayd object by flagging every associated streams for deletion,
456 * destroying the object meaning removing it from the relayd hash table,
457 * closing the sockets and freeing the memory in a RCU call.
458 *
459 * If a local data context is available, notify the threads that the streams'
460 * state have changed.
461 */
462 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
463 struct lttng_consumer_local_data *ctx)
464 {
465 uint64_t netidx;
466
467 assert(relayd);
468
469 DBG("Cleaning up relayd sockets");
470
471 /* Save the net sequence index before destroying the object */
472 netidx = relayd->net_seq_idx;
473
474 /*
475 * Delete the relayd from the relayd hash table, close the sockets and free
476 * the object in a RCU call.
477 */
478 consumer_destroy_relayd(relayd);
479
480 /* Set inactive endpoint to all streams */
481 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
482
483 /*
484 * With a local data context, notify the threads that the streams' state
485 * have changed. The write() action on the pipe acts as an "implicit"
486 * memory barrier ordering the updates of the end point status from the
487 * read of this status which happens AFTER receiving this notify.
488 */
489 if (ctx) {
490 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
491 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
492 }
493 }
494
495 /*
496 * Flag a relayd socket pair for destruction. Destroy it if the refcount
497 * reaches zero.
498 *
499 * RCU read side lock MUST be aquired before calling this function.
500 */
501 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
502 {
503 assert(relayd);
504
505 /* Set destroy flag for this object */
506 uatomic_set(&relayd->destroy_flag, 1);
507
508 /* Destroy the relayd if refcount is 0 */
509 if (uatomic_read(&relayd->refcount) == 0) {
510 consumer_destroy_relayd(relayd);
511 }
512 }
513
514 /*
515 * Completly destroy stream from every visiable data structure and the given
516 * hash table if one.
517 *
518 * One this call returns, the stream object is not longer usable nor visible.
519 */
520 void consumer_del_stream(struct lttng_consumer_stream *stream,
521 struct lttng_ht *ht)
522 {
523 consumer_stream_destroy(stream, ht);
524 }
525
526 /*
527 * XXX naming of del vs destroy is all mixed up.
528 */
529 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
530 {
531 consumer_stream_destroy(stream, data_ht);
532 }
533
534 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, metadata_ht);
537 }
538
539 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
540 uint64_t stream_key,
541 enum lttng_consumer_stream_state state,
542 const char *channel_name,
543 uid_t uid,
544 gid_t gid,
545 uint64_t relayd_id,
546 uint64_t session_id,
547 int cpu,
548 int *alloc_ret,
549 enum consumer_channel_type type,
550 unsigned int monitor)
551 {
552 int ret;
553 struct lttng_consumer_stream *stream;
554
555 stream = zmalloc(sizeof(*stream));
556 if (stream == NULL) {
557 PERROR("malloc struct lttng_consumer_stream");
558 ret = -ENOMEM;
559 goto end;
560 }
561
562 rcu_read_lock();
563
564 stream->key = stream_key;
565 stream->out_fd = -1;
566 stream->out_fd_offset = 0;
567 stream->output_written = 0;
568 stream->state = state;
569 stream->uid = uid;
570 stream->gid = gid;
571 stream->net_seq_idx = relayd_id;
572 stream->session_id = session_id;
573 stream->monitor = monitor;
574 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
575 stream->index_fd = -1;
576 pthread_mutex_init(&stream->lock, NULL);
577 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
578
579 /* If channel is the metadata, flag this stream as metadata. */
580 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
581 stream->metadata_flag = 1;
582 /* Metadata is flat out. */
583 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
584 /* Live rendez-vous point. */
585 pthread_cond_init(&stream->metadata_rdv, NULL);
586 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
607 " relayd_id %" PRIu64 ", session_id %" PRIu64,
608 stream->name, stream->key, channel_key,
609 stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
628 {
629 struct lttng_ht *ht = data_ht;
630 int ret = 0;
631
632 assert(stream);
633 assert(ht);
634
635 DBG3("Adding consumer stream %" PRIu64, stream->key);
636
637 pthread_mutex_lock(&consumer_data.lock);
638 pthread_mutex_lock(&stream->chan->lock);
639 pthread_mutex_lock(&stream->chan->timer_lock);
640 pthread_mutex_lock(&stream->lock);
641 rcu_read_lock();
642
643 /* Steal stream identifier to avoid having streams with the same key */
644 steal_stream_key(stream->key, ht);
645
646 lttng_ht_add_unique_u64(ht, &stream->node);
647
648 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
649 &stream->node_channel_id);
650
651 /*
652 * Add stream to the stream_list_ht of the consumer data. No need to steal
653 * the key since the HT does not use it and we allow to add redundant keys
654 * into this table.
655 */
656 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
657
658 /*
659 * When nb_init_stream_left reaches 0, we don't need to trigger any action
660 * in terms of destroying the associated channel, because the action that
661 * causes the count to become 0 also causes a stream to be added. The
662 * channel deletion will thus be triggered by the following removal of this
663 * stream.
664 */
665 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
666 /* Increment refcount before decrementing nb_init_stream_left */
667 cmm_smp_wmb();
668 uatomic_dec(&stream->chan->nb_init_stream_left);
669 }
670
671 /* Update consumer data once the node is inserted. */
672 consumer_data.stream_count++;
673 consumer_data.need_update = 1;
674
675 rcu_read_unlock();
676 pthread_mutex_unlock(&stream->lock);
677 pthread_mutex_unlock(&stream->chan->timer_lock);
678 pthread_mutex_unlock(&stream->chan->lock);
679 pthread_mutex_unlock(&consumer_data.lock);
680
681 return ret;
682 }
683
684 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
685 {
686 consumer_del_stream(stream, data_ht);
687 }
688
689 /*
690 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
691 * be acquired before calling this.
692 */
693 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
694 {
695 int ret = 0;
696 struct lttng_ht_node_u64 *node;
697 struct lttng_ht_iter iter;
698
699 assert(relayd);
700
701 lttng_ht_lookup(consumer_data.relayd_ht,
702 &relayd->net_seq_idx, &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 goto end;
706 }
707 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
708
709 end:
710 return ret;
711 }
712
713 /*
714 * Allocate and return a consumer relayd socket.
715 */
716 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
717 uint64_t net_seq_idx)
718 {
719 struct consumer_relayd_sock_pair *obj = NULL;
720
721 /* net sequence index of -1 is a failure */
722 if (net_seq_idx == (uint64_t) -1ULL) {
723 goto error;
724 }
725
726 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
727 if (obj == NULL) {
728 PERROR("zmalloc relayd sock");
729 goto error;
730 }
731
732 obj->net_seq_idx = net_seq_idx;
733 obj->refcount = 0;
734 obj->destroy_flag = 0;
735 obj->control_sock.sock.fd = -1;
736 obj->data_sock.sock.fd = -1;
737 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
738 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
739
740 error:
741 return obj;
742 }
743
744 /*
745 * Find a relayd socket pair in the global consumer data.
746 *
747 * Return the object if found else NULL.
748 * RCU read-side lock must be held across this call and while using the
749 * returned object.
750 */
751 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
752 {
753 struct lttng_ht_iter iter;
754 struct lttng_ht_node_u64 *node;
755 struct consumer_relayd_sock_pair *relayd = NULL;
756
757 /* Negative keys are lookup failures */
758 if (key == (uint64_t) -1ULL) {
759 goto error;
760 }
761
762 lttng_ht_lookup(consumer_data.relayd_ht, &key,
763 &iter);
764 node = lttng_ht_iter_get_node_u64(&iter);
765 if (node != NULL) {
766 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
767 }
768
769 error:
770 return relayd;
771 }
772
773 /*
774 * Find a relayd and send the stream
775 *
776 * Returns 0 on success, < 0 on error
777 */
778 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
779 char *path)
780 {
781 int ret = 0;
782 struct consumer_relayd_sock_pair *relayd;
783
784 assert(stream);
785 assert(stream->net_seq_idx != -1ULL);
786 assert(path);
787
788 /* The stream is not metadata. Get relayd reference if exists. */
789 rcu_read_lock();
790 relayd = consumer_find_relayd(stream->net_seq_idx);
791 if (relayd != NULL) {
792 /* Add stream on the relayd */
793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
794 ret = relayd_add_stream(&relayd->control_sock, stream->name,
795 path, &stream->relayd_stream_id,
796 stream->chan->tracefile_size, stream->chan->tracefile_count);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801
802 uatomic_inc(&relayd->refcount);
803 stream->sent_to_relayd = 1;
804 } else {
805 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
806 stream->key, stream->net_seq_idx);
807 ret = -1;
808 goto end;
809 }
810
811 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
812 stream->name, stream->key, stream->net_seq_idx);
813
814 end:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /*
820 * Find a relayd and send the streams sent message
821 *
822 * Returns 0 on success, < 0 on error
823 */
824 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
825 {
826 int ret = 0;
827 struct consumer_relayd_sock_pair *relayd;
828
829 assert(net_seq_idx != -1ULL);
830
831 /* The stream is not metadata. Get relayd reference if exists. */
832 rcu_read_lock();
833 relayd = consumer_find_relayd(net_seq_idx);
834 if (relayd != NULL) {
835 /* Add stream on the relayd */
836 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
837 ret = relayd_streams_sent(&relayd->control_sock);
838 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
839 if (ret < 0) {
840 goto end;
841 }
842 } else {
843 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
844 net_seq_idx);
845 ret = -1;
846 goto end;
847 }
848
849 ret = 0;
850 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
851
852 end:
853 rcu_read_unlock();
854 return ret;
855 }
856
857 /*
858 * Find a relayd and close the stream
859 */
860 void close_relayd_stream(struct lttng_consumer_stream *stream)
861 {
862 struct consumer_relayd_sock_pair *relayd;
863
864 /* The stream is not metadata. Get relayd reference if exists. */
865 rcu_read_lock();
866 relayd = consumer_find_relayd(stream->net_seq_idx);
867 if (relayd) {
868 consumer_stream_relayd_close(stream, relayd);
869 }
870 rcu_read_unlock();
871 }
872
873 /*
874 * Handle stream for relayd transmission if the stream applies for network
875 * streaming where the net sequence index is set.
876 *
877 * Return destination file descriptor or negative value on error.
878 */
879 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
880 size_t data_size, unsigned long padding,
881 struct consumer_relayd_sock_pair *relayd)
882 {
883 int outfd = -1, ret;
884 struct lttcomm_relayd_data_hdr data_hdr;
885
886 /* Safety net */
887 assert(stream);
888 assert(relayd);
889
890 /* Reset data header */
891 memset(&data_hdr, 0, sizeof(data_hdr));
892
893 if (stream->metadata_flag) {
894 /* Caller MUST acquire the relayd control socket lock */
895 ret = relayd_send_metadata(&relayd->control_sock, data_size);
896 if (ret < 0) {
897 goto error;
898 }
899
900 /* Metadata are always sent on the control socket. */
901 outfd = relayd->control_sock.sock.fd;
902 } else {
903 /* Set header with stream information */
904 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
905 data_hdr.data_size = htobe32(data_size);
906 data_hdr.padding_size = htobe32(padding);
907 /*
908 * Note that net_seq_num below is assigned with the *current* value of
909 * next_net_seq_num and only after that the next_net_seq_num will be
910 * increment. This is why when issuing a command on the relayd using
911 * this next value, 1 should always be substracted in order to compare
912 * the last seen sequence number on the relayd side to the last sent.
913 */
914 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
915 /* Other fields are zeroed previously */
916
917 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
918 sizeof(data_hdr));
919 if (ret < 0) {
920 goto error;
921 }
922
923 ++stream->next_net_seq_num;
924
925 /* Set to go on data socket */
926 outfd = relayd->data_sock.sock.fd;
927 }
928
929 error:
930 return outfd;
931 }
932
933 /*
934 * Allocate and return a new lttng_consumer_channel object using the given key
935 * to initialize the hash table node.
936 *
937 * On error, return NULL.
938 */
939 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
940 uint64_t session_id,
941 const char *pathname,
942 const char *name,
943 uid_t uid,
944 gid_t gid,
945 uint64_t relayd_id,
946 enum lttng_event_output output,
947 uint64_t tracefile_size,
948 uint64_t tracefile_count,
949 uint64_t session_id_per_pid,
950 unsigned int monitor,
951 unsigned int live_timer_interval,
952 const char *root_shm_path,
953 const char *shm_path)
954 {
955 struct lttng_consumer_channel *channel;
956
957 channel = zmalloc(sizeof(*channel));
958 if (channel == NULL) {
959 PERROR("malloc struct lttng_consumer_channel");
960 goto end;
961 }
962
963 channel->key = key;
964 channel->refcount = 0;
965 channel->session_id = session_id;
966 channel->session_id_per_pid = session_id_per_pid;
967 channel->uid = uid;
968 channel->gid = gid;
969 channel->relayd_id = relayd_id;
970 channel->tracefile_size = tracefile_size;
971 channel->tracefile_count = tracefile_count;
972 channel->monitor = monitor;
973 channel->live_timer_interval = live_timer_interval;
974 pthread_mutex_init(&channel->lock, NULL);
975 pthread_mutex_init(&channel->timer_lock, NULL);
976
977 switch (output) {
978 case LTTNG_EVENT_SPLICE:
979 channel->output = CONSUMER_CHANNEL_SPLICE;
980 break;
981 case LTTNG_EVENT_MMAP:
982 channel->output = CONSUMER_CHANNEL_MMAP;
983 break;
984 default:
985 assert(0);
986 free(channel);
987 channel = NULL;
988 goto end;
989 }
990
991 /*
992 * In monitor mode, the streams associated with the channel will be put in
993 * a special list ONLY owned by this channel. So, the refcount is set to 1
994 * here meaning that the channel itself has streams that are referenced.
995 *
996 * On a channel deletion, once the channel is no longer visible, the
997 * refcount is decremented and checked for a zero value to delete it. With
998 * streams in no monitor mode, it will now be safe to destroy the channel.
999 */
1000 if (!channel->monitor) {
1001 channel->refcount = 1;
1002 }
1003
1004 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1005 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1006
1007 strncpy(channel->name, name, sizeof(channel->name));
1008 channel->name[sizeof(channel->name) - 1] = '\0';
1009
1010 if (root_shm_path) {
1011 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1012 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1013 }
1014 if (shm_path) {
1015 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1016 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1017 }
1018
1019 lttng_ht_node_init_u64(&channel->node, channel->key);
1020
1021 channel->wait_fd = -1;
1022
1023 CDS_INIT_LIST_HEAD(&channel->streams.head);
1024
1025 DBG("Allocated channel (key %" PRIu64 ")", channel->key);
1026
1027 end:
1028 return channel;
1029 }
1030
1031 /*
1032 * Add a channel to the global list protected by a mutex.
1033 *
1034 * Always return 0 indicating success.
1035 */
1036 int consumer_add_channel(struct lttng_consumer_channel *channel,
1037 struct lttng_consumer_local_data *ctx)
1038 {
1039 pthread_mutex_lock(&consumer_data.lock);
1040 pthread_mutex_lock(&channel->lock);
1041 pthread_mutex_lock(&channel->timer_lock);
1042
1043 /*
1044 * This gives us a guarantee that the channel we are about to add to the
1045 * channel hash table will be unique. See this function comment on the why
1046 * we need to steel the channel key at this stage.
1047 */
1048 steal_channel_key(channel->key);
1049
1050 rcu_read_lock();
1051 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1052 rcu_read_unlock();
1053
1054 pthread_mutex_unlock(&channel->timer_lock);
1055 pthread_mutex_unlock(&channel->lock);
1056 pthread_mutex_unlock(&consumer_data.lock);
1057
1058 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1059 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1060 }
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Allocate the pollfd structure and the local view of the out fds to avoid
1067 * doing a lookup in the linked list and concurrency issues when writing is
1068 * needed. Called with consumer_data.lock held.
1069 *
1070 * Returns the number of fds in the structures.
1071 */
1072 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1073 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1074 struct lttng_ht *ht)
1075 {
1076 int i = 0;
1077 struct lttng_ht_iter iter;
1078 struct lttng_consumer_stream *stream;
1079
1080 assert(ctx);
1081 assert(ht);
1082 assert(pollfd);
1083 assert(local_stream);
1084
1085 DBG("Updating poll fd array");
1086 rcu_read_lock();
1087 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1088 /*
1089 * Only active streams with an active end point can be added to the
1090 * poll set and local stream storage of the thread.
1091 *
1092 * There is a potential race here for endpoint_status to be updated
1093 * just after the check. However, this is OK since the stream(s) will
1094 * be deleted once the thread is notified that the end point state has
1095 * changed where this function will be called back again.
1096 */
1097 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1098 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1099 continue;
1100 }
1101 /*
1102 * This clobbers way too much the debug output. Uncomment that if you
1103 * need it for debugging purposes.
1104 *
1105 * DBG("Active FD %d", stream->wait_fd);
1106 */
1107 (*pollfd)[i].fd = stream->wait_fd;
1108 (*pollfd)[i].events = POLLIN | POLLPRI;
1109 local_stream[i] = stream;
1110 i++;
1111 }
1112 rcu_read_unlock();
1113
1114 /*
1115 * Insert the consumer_data_pipe at the end of the array and don't
1116 * increment i so nb_fd is the number of real FD.
1117 */
1118 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1119 (*pollfd)[i].events = POLLIN | POLLPRI;
1120
1121 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1122 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1123 return i;
1124 }
1125
1126 /*
1127 * Poll on the should_quit pipe and the command socket return -1 on
1128 * error, 1 if should exit, 0 if data is available on the command socket
1129 */
1130 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1131 {
1132 int num_rdy;
1133
1134 restart:
1135 num_rdy = poll(consumer_sockpoll, 2, -1);
1136 if (num_rdy == -1) {
1137 /*
1138 * Restart interrupted system call.
1139 */
1140 if (errno == EINTR) {
1141 goto restart;
1142 }
1143 PERROR("Poll error");
1144 return -1;
1145 }
1146 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1147 DBG("consumer_should_quit wake up");
1148 return 1;
1149 }
1150 return 0;
1151 }
1152
1153 /*
1154 * Set the error socket.
1155 */
1156 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1157 int sock)
1158 {
1159 ctx->consumer_error_socket = sock;
1160 }
1161
1162 /*
1163 * Set the command socket path.
1164 */
1165 void lttng_consumer_set_command_sock_path(
1166 struct lttng_consumer_local_data *ctx, char *sock)
1167 {
1168 ctx->consumer_command_sock_path = sock;
1169 }
1170
1171 /*
1172 * Send return code to the session daemon.
1173 * If the socket is not defined, we return 0, it is not a fatal error
1174 */
1175 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1176 {
1177 if (ctx->consumer_error_socket > 0) {
1178 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1179 sizeof(enum lttcomm_sessiond_command));
1180 }
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Close all the tracefiles and stream fds and MUST be called when all
1187 * instances are destroyed i.e. when all threads were joined and are ended.
1188 */
1189 void lttng_consumer_cleanup(void)
1190 {
1191 struct lttng_ht_iter iter;
1192 struct lttng_consumer_channel *channel;
1193
1194 rcu_read_lock();
1195
1196 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1197 node.node) {
1198 consumer_del_channel(channel);
1199 }
1200
1201 rcu_read_unlock();
1202
1203 lttng_ht_destroy(consumer_data.channel_ht);
1204
1205 cleanup_relayd_ht();
1206
1207 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1208
1209 /*
1210 * This HT contains streams that are freed by either the metadata thread or
1211 * the data thread so we do *nothing* on the hash table and simply destroy
1212 * it.
1213 */
1214 lttng_ht_destroy(consumer_data.stream_list_ht);
1215 }
1216
1217 /*
1218 * Called from signal handler.
1219 */
1220 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1221 {
1222 ssize_t ret;
1223
1224 consumer_quit = 1;
1225 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1226 if (ret < 1) {
1227 PERROR("write consumer quit");
1228 }
1229
1230 DBG("Consumer flag that it should quit");
1231 }
1232
1233 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1234 off_t orig_offset)
1235 {
1236 int ret;
1237 int outfd = stream->out_fd;
1238
1239 /*
1240 * This does a blocking write-and-wait on any page that belongs to the
1241 * subbuffer prior to the one we just wrote.
1242 * Don't care about error values, as these are just hints and ways to
1243 * limit the amount of page cache used.
1244 */
1245 if (orig_offset < stream->max_sb_size) {
1246 return;
1247 }
1248 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1249 stream->max_sb_size,
1250 SYNC_FILE_RANGE_WAIT_BEFORE
1251 | SYNC_FILE_RANGE_WRITE
1252 | SYNC_FILE_RANGE_WAIT_AFTER);
1253 /*
1254 * Give hints to the kernel about how we access the file:
1255 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1256 * we write it.
1257 *
1258 * We need to call fadvise again after the file grows because the
1259 * kernel does not seem to apply fadvise to non-existing parts of the
1260 * file.
1261 *
1262 * Call fadvise _after_ having waited for the page writeback to
1263 * complete because the dirty page writeback semantic is not well
1264 * defined. So it can be expected to lead to lower throughput in
1265 * streaming.
1266 */
1267 ret = posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1268 stream->max_sb_size, POSIX_FADV_DONTNEED);
1269 if (ret && ret != -ENOSYS) {
1270 errno = ret;
1271 PERROR("posix_fadvise on fd %i", outfd);
1272 }
1273 }
1274
1275 /*
1276 * Initialise the necessary environnement :
1277 * - create a new context
1278 * - create the poll_pipe
1279 * - create the should_quit pipe (for signal handler)
1280 * - create the thread pipe (for splice)
1281 *
1282 * Takes a function pointer as argument, this function is called when data is
1283 * available on a buffer. This function is responsible to do the
1284 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1285 * buffer configuration and then kernctl_put_next_subbuf at the end.
1286 *
1287 * Returns a pointer to the new context or NULL on error.
1288 */
1289 struct lttng_consumer_local_data *lttng_consumer_create(
1290 enum lttng_consumer_type type,
1291 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1292 struct lttng_consumer_local_data *ctx),
1293 int (*recv_channel)(struct lttng_consumer_channel *channel),
1294 int (*recv_stream)(struct lttng_consumer_stream *stream),
1295 int (*update_stream)(uint64_t stream_key, uint32_t state))
1296 {
1297 int ret;
1298 struct lttng_consumer_local_data *ctx;
1299
1300 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1301 consumer_data.type == type);
1302 consumer_data.type = type;
1303
1304 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1305 if (ctx == NULL) {
1306 PERROR("allocating context");
1307 goto error;
1308 }
1309
1310 ctx->consumer_error_socket = -1;
1311 ctx->consumer_metadata_socket = -1;
1312 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1313 /* assign the callbacks */
1314 ctx->on_buffer_ready = buffer_ready;
1315 ctx->on_recv_channel = recv_channel;
1316 ctx->on_recv_stream = recv_stream;
1317 ctx->on_update_stream = update_stream;
1318
1319 ctx->consumer_data_pipe = lttng_pipe_open(0);
1320 if (!ctx->consumer_data_pipe) {
1321 goto error_poll_pipe;
1322 }
1323
1324 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1325 if (!ctx->consumer_wakeup_pipe) {
1326 goto error_wakeup_pipe;
1327 }
1328
1329 ret = pipe(ctx->consumer_should_quit);
1330 if (ret < 0) {
1331 PERROR("Error creating recv pipe");
1332 goto error_quit_pipe;
1333 }
1334
1335 ret = pipe(ctx->consumer_channel_pipe);
1336 if (ret < 0) {
1337 PERROR("Error creating channel pipe");
1338 goto error_channel_pipe;
1339 }
1340
1341 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1342 if (!ctx->consumer_metadata_pipe) {
1343 goto error_metadata_pipe;
1344 }
1345
1346 return ctx;
1347
1348 error_metadata_pipe:
1349 utils_close_pipe(ctx->consumer_channel_pipe);
1350 error_channel_pipe:
1351 utils_close_pipe(ctx->consumer_should_quit);
1352 error_quit_pipe:
1353 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1354 error_wakeup_pipe:
1355 lttng_pipe_destroy(ctx->consumer_data_pipe);
1356 error_poll_pipe:
1357 free(ctx);
1358 error:
1359 return NULL;
1360 }
1361
1362 /*
1363 * Iterate over all streams of the hashtable and free them properly.
1364 */
1365 static void destroy_data_stream_ht(struct lttng_ht *ht)
1366 {
1367 struct lttng_ht_iter iter;
1368 struct lttng_consumer_stream *stream;
1369
1370 if (ht == NULL) {
1371 return;
1372 }
1373
1374 rcu_read_lock();
1375 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1376 /*
1377 * Ignore return value since we are currently cleaning up so any error
1378 * can't be handled.
1379 */
1380 (void) consumer_del_stream(stream, ht);
1381 }
1382 rcu_read_unlock();
1383
1384 lttng_ht_destroy(ht);
1385 }
1386
1387 /*
1388 * Iterate over all streams of the metadata hashtable and free them
1389 * properly.
1390 */
1391 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1392 {
1393 struct lttng_ht_iter iter;
1394 struct lttng_consumer_stream *stream;
1395
1396 if (ht == NULL) {
1397 return;
1398 }
1399
1400 rcu_read_lock();
1401 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1402 /*
1403 * Ignore return value since we are currently cleaning up so any error
1404 * can't be handled.
1405 */
1406 (void) consumer_del_metadata_stream(stream, ht);
1407 }
1408 rcu_read_unlock();
1409
1410 lttng_ht_destroy(ht);
1411 }
1412
1413 /*
1414 * Close all fds associated with the instance and free the context.
1415 */
1416 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1417 {
1418 int ret;
1419
1420 DBG("Consumer destroying it. Closing everything.");
1421
1422 if (!ctx) {
1423 return;
1424 }
1425
1426 destroy_data_stream_ht(data_ht);
1427 destroy_metadata_stream_ht(metadata_ht);
1428
1429 ret = close(ctx->consumer_error_socket);
1430 if (ret) {
1431 PERROR("close");
1432 }
1433 ret = close(ctx->consumer_metadata_socket);
1434 if (ret) {
1435 PERROR("close");
1436 }
1437 utils_close_pipe(ctx->consumer_channel_pipe);
1438 lttng_pipe_destroy(ctx->consumer_data_pipe);
1439 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1440 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1441 utils_close_pipe(ctx->consumer_should_quit);
1442
1443 unlink(ctx->consumer_command_sock_path);
1444 free(ctx);
1445 }
1446
1447 /*
1448 * Write the metadata stream id on the specified file descriptor.
1449 */
1450 static int write_relayd_metadata_id(int fd,
1451 struct lttng_consumer_stream *stream,
1452 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1453 {
1454 ssize_t ret;
1455 struct lttcomm_relayd_metadata_payload hdr;
1456
1457 hdr.stream_id = htobe64(stream->relayd_stream_id);
1458 hdr.padding_size = htobe32(padding);
1459 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1460 if (ret < sizeof(hdr)) {
1461 /*
1462 * This error means that the fd's end is closed so ignore the PERROR
1463 * not to clubber the error output since this can happen in a normal
1464 * code path.
1465 */
1466 if (errno != EPIPE) {
1467 PERROR("write metadata stream id");
1468 }
1469 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1470 /*
1471 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1472 * handle writting the missing part so report that as an error and
1473 * don't lie to the caller.
1474 */
1475 ret = -1;
1476 goto end;
1477 }
1478 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1479 stream->relayd_stream_id, padding);
1480
1481 end:
1482 return (int) ret;
1483 }
1484
1485 /*
1486 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1487 * core function for writing trace buffers to either the local filesystem or
1488 * the network.
1489 *
1490 * It must be called with the stream lock held.
1491 *
1492 * Careful review MUST be put if any changes occur!
1493 *
1494 * Returns the number of bytes written
1495 */
1496 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1497 struct lttng_consumer_local_data *ctx,
1498 struct lttng_consumer_stream *stream, unsigned long len,
1499 unsigned long padding,
1500 struct ctf_packet_index *index)
1501 {
1502 unsigned long mmap_offset;
1503 void *mmap_base;
1504 ssize_t ret = 0;
1505 off_t orig_offset = stream->out_fd_offset;
1506 /* Default is on the disk */
1507 int outfd = stream->out_fd;
1508 struct consumer_relayd_sock_pair *relayd = NULL;
1509 unsigned int relayd_hang_up = 0;
1510
1511 /* RCU lock for the relayd pointer */
1512 rcu_read_lock();
1513
1514 /* Flag that the current stream if set for network streaming. */
1515 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1516 relayd = consumer_find_relayd(stream->net_seq_idx);
1517 if (relayd == NULL) {
1518 ret = -EPIPE;
1519 goto end;
1520 }
1521 }
1522
1523 /* get the offset inside the fd to mmap */
1524 switch (consumer_data.type) {
1525 case LTTNG_CONSUMER_KERNEL:
1526 mmap_base = stream->mmap_base;
1527 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1528 if (ret < 0) {
1529 ret = -errno;
1530 PERROR("tracer ctl get_mmap_read_offset");
1531 goto end;
1532 }
1533 break;
1534 case LTTNG_CONSUMER32_UST:
1535 case LTTNG_CONSUMER64_UST:
1536 mmap_base = lttng_ustctl_get_mmap_base(stream);
1537 if (!mmap_base) {
1538 ERR("read mmap get mmap base for stream %s", stream->name);
1539 ret = -EPERM;
1540 goto end;
1541 }
1542 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1543 if (ret != 0) {
1544 PERROR("tracer ctl get_mmap_read_offset");
1545 ret = -EINVAL;
1546 goto end;
1547 }
1548 break;
1549 default:
1550 ERR("Unknown consumer_data type");
1551 assert(0);
1552 }
1553
1554 /* Handle stream on the relayd if the output is on the network */
1555 if (relayd) {
1556 unsigned long netlen = len;
1557
1558 /*
1559 * Lock the control socket for the complete duration of the function
1560 * since from this point on we will use the socket.
1561 */
1562 if (stream->metadata_flag) {
1563 /* Metadata requires the control socket. */
1564 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1565 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1566 }
1567
1568 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1569 if (ret < 0) {
1570 relayd_hang_up = 1;
1571 goto write_error;
1572 }
1573 /* Use the returned socket. */
1574 outfd = ret;
1575
1576 /* Write metadata stream id before payload */
1577 if (stream->metadata_flag) {
1578 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1579 if (ret < 0) {
1580 relayd_hang_up = 1;
1581 goto write_error;
1582 }
1583 }
1584 } else {
1585 /* No streaming, we have to set the len with the full padding */
1586 len += padding;
1587
1588 /*
1589 * Check if we need to change the tracefile before writing the packet.
1590 */
1591 if (stream->chan->tracefile_size > 0 &&
1592 (stream->tracefile_size_current + len) >
1593 stream->chan->tracefile_size) {
1594 ret = utils_rotate_stream_file(stream->chan->pathname,
1595 stream->name, stream->chan->tracefile_size,
1596 stream->chan->tracefile_count, stream->uid, stream->gid,
1597 stream->out_fd, &(stream->tracefile_count_current),
1598 &stream->out_fd);
1599 if (ret < 0) {
1600 ERR("Rotating output file");
1601 goto end;
1602 }
1603 outfd = stream->out_fd;
1604
1605 if (stream->index_fd >= 0) {
1606 ret = close(stream->index_fd);
1607 if (ret < 0) {
1608 PERROR("Closing index");
1609 goto end;
1610 }
1611 stream->index_fd = -1;
1612 ret = index_create_file(stream->chan->pathname,
1613 stream->name, stream->uid, stream->gid,
1614 stream->chan->tracefile_size,
1615 stream->tracefile_count_current);
1616 if (ret < 0) {
1617 goto end;
1618 }
1619 stream->index_fd = ret;
1620 }
1621
1622 /* Reset current size because we just perform a rotation. */
1623 stream->tracefile_size_current = 0;
1624 stream->out_fd_offset = 0;
1625 orig_offset = 0;
1626 }
1627 stream->tracefile_size_current += len;
1628 if (index) {
1629 index->offset = htobe64(stream->out_fd_offset);
1630 }
1631 }
1632
1633 /*
1634 * This call guarantee that len or less is returned. It's impossible to
1635 * receive a ret value that is bigger than len.
1636 */
1637 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1638 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1639 if (ret < 0 || ((size_t) ret != len)) {
1640 /*
1641 * Report error to caller if nothing was written else at least send the
1642 * amount written.
1643 */
1644 if (ret < 0) {
1645 ret = -errno;
1646 }
1647 relayd_hang_up = 1;
1648
1649 /* Socket operation failed. We consider the relayd dead */
1650 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1651 /*
1652 * This is possible if the fd is closed on the other side
1653 * (outfd) or any write problem. It can be verbose a bit for a
1654 * normal execution if for instance the relayd is stopped
1655 * abruptly. This can happen so set this to a DBG statement.
1656 */
1657 DBG("Consumer mmap write detected relayd hang up");
1658 } else {
1659 /* Unhandled error, print it and stop function right now. */
1660 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1661 }
1662 goto write_error;
1663 }
1664 stream->output_written += ret;
1665
1666 /* This call is useless on a socket so better save a syscall. */
1667 if (!relayd) {
1668 /* This won't block, but will start writeout asynchronously */
1669 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1670 SYNC_FILE_RANGE_WRITE);
1671 stream->out_fd_offset += len;
1672 lttng_consumer_sync_trace_file(stream, orig_offset);
1673 }
1674
1675 write_error:
1676 /*
1677 * This is a special case that the relayd has closed its socket. Let's
1678 * cleanup the relayd object and all associated streams.
1679 */
1680 if (relayd && relayd_hang_up) {
1681 cleanup_relayd(relayd, ctx);
1682 }
1683
1684 end:
1685 /* Unlock only if ctrl socket used */
1686 if (relayd && stream->metadata_flag) {
1687 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1688 }
1689
1690 rcu_read_unlock();
1691 return ret;
1692 }
1693
1694 /*
1695 * Splice the data from the ring buffer to the tracefile.
1696 *
1697 * It must be called with the stream lock held.
1698 *
1699 * Returns the number of bytes spliced.
1700 */
1701 ssize_t lttng_consumer_on_read_subbuffer_splice(
1702 struct lttng_consumer_local_data *ctx,
1703 struct lttng_consumer_stream *stream, unsigned long len,
1704 unsigned long padding,
1705 struct ctf_packet_index *index)
1706 {
1707 ssize_t ret = 0, written = 0, ret_splice = 0;
1708 loff_t offset = 0;
1709 off_t orig_offset = stream->out_fd_offset;
1710 int fd = stream->wait_fd;
1711 /* Default is on the disk */
1712 int outfd = stream->out_fd;
1713 struct consumer_relayd_sock_pair *relayd = NULL;
1714 int *splice_pipe;
1715 unsigned int relayd_hang_up = 0;
1716
1717 switch (consumer_data.type) {
1718 case LTTNG_CONSUMER_KERNEL:
1719 break;
1720 case LTTNG_CONSUMER32_UST:
1721 case LTTNG_CONSUMER64_UST:
1722 /* Not supported for user space tracing */
1723 return -ENOSYS;
1724 default:
1725 ERR("Unknown consumer_data type");
1726 assert(0);
1727 }
1728
1729 /* RCU lock for the relayd pointer */
1730 rcu_read_lock();
1731
1732 /* Flag that the current stream if set for network streaming. */
1733 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1734 relayd = consumer_find_relayd(stream->net_seq_idx);
1735 if (relayd == NULL) {
1736 written = -ret;
1737 goto end;
1738 }
1739 }
1740 splice_pipe = stream->splice_pipe;
1741
1742 /* Write metadata stream id before payload */
1743 if (relayd) {
1744 unsigned long total_len = len;
1745
1746 if (stream->metadata_flag) {
1747 /*
1748 * Lock the control socket for the complete duration of the function
1749 * since from this point on we will use the socket.
1750 */
1751 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1752
1753 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1754 padding);
1755 if (ret < 0) {
1756 written = ret;
1757 relayd_hang_up = 1;
1758 goto write_error;
1759 }
1760
1761 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1762 }
1763
1764 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1765 if (ret < 0) {
1766 written = ret;
1767 relayd_hang_up = 1;
1768 goto write_error;
1769 }
1770 /* Use the returned socket. */
1771 outfd = ret;
1772 } else {
1773 /* No streaming, we have to set the len with the full padding */
1774 len += padding;
1775
1776 /*
1777 * Check if we need to change the tracefile before writing the packet.
1778 */
1779 if (stream->chan->tracefile_size > 0 &&
1780 (stream->tracefile_size_current + len) >
1781 stream->chan->tracefile_size) {
1782 ret = utils_rotate_stream_file(stream->chan->pathname,
1783 stream->name, stream->chan->tracefile_size,
1784 stream->chan->tracefile_count, stream->uid, stream->gid,
1785 stream->out_fd, &(stream->tracefile_count_current),
1786 &stream->out_fd);
1787 if (ret < 0) {
1788 written = ret;
1789 ERR("Rotating output file");
1790 goto end;
1791 }
1792 outfd = stream->out_fd;
1793
1794 if (stream->index_fd >= 0) {
1795 ret = close(stream->index_fd);
1796 if (ret < 0) {
1797 PERROR("Closing index");
1798 goto end;
1799 }
1800 stream->index_fd = -1;
1801 ret = index_create_file(stream->chan->pathname,
1802 stream->name, stream->uid, stream->gid,
1803 stream->chan->tracefile_size,
1804 stream->tracefile_count_current);
1805 if (ret < 0) {
1806 written = ret;
1807 goto end;
1808 }
1809 stream->index_fd = ret;
1810 }
1811
1812 /* Reset current size because we just perform a rotation. */
1813 stream->tracefile_size_current = 0;
1814 stream->out_fd_offset = 0;
1815 orig_offset = 0;
1816 }
1817 stream->tracefile_size_current += len;
1818 index->offset = htobe64(stream->out_fd_offset);
1819 }
1820
1821 while (len > 0) {
1822 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1823 (unsigned long)offset, len, fd, splice_pipe[1]);
1824 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1825 SPLICE_F_MOVE | SPLICE_F_MORE);
1826 DBG("splice chan to pipe, ret %zd", ret_splice);
1827 if (ret_splice < 0) {
1828 ret = errno;
1829 written = -ret;
1830 PERROR("Error in relay splice");
1831 goto splice_error;
1832 }
1833
1834 /* Handle stream on the relayd if the output is on the network */
1835 if (relayd && stream->metadata_flag) {
1836 size_t metadata_payload_size =
1837 sizeof(struct lttcomm_relayd_metadata_payload);
1838
1839 /* Update counter to fit the spliced data */
1840 ret_splice += metadata_payload_size;
1841 len += metadata_payload_size;
1842 /*
1843 * We do this so the return value can match the len passed as
1844 * argument to this function.
1845 */
1846 written -= metadata_payload_size;
1847 }
1848
1849 /* Splice data out */
1850 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1851 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1852 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1853 outfd, ret_splice);
1854 if (ret_splice < 0) {
1855 ret = errno;
1856 written = -ret;
1857 relayd_hang_up = 1;
1858 goto write_error;
1859 } else if (ret_splice > len) {
1860 /*
1861 * We don't expect this code path to be executed but you never know
1862 * so this is an extra protection agains a buggy splice().
1863 */
1864 ret = errno;
1865 written += ret_splice;
1866 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1867 len);
1868 goto splice_error;
1869 } else {
1870 /* All good, update current len and continue. */
1871 len -= ret_splice;
1872 }
1873
1874 /* This call is useless on a socket so better save a syscall. */
1875 if (!relayd) {
1876 /* This won't block, but will start writeout asynchronously */
1877 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1878 SYNC_FILE_RANGE_WRITE);
1879 stream->out_fd_offset += ret_splice;
1880 }
1881 stream->output_written += ret_splice;
1882 written += ret_splice;
1883 }
1884 if (!relayd) {
1885 lttng_consumer_sync_trace_file(stream, orig_offset);
1886 }
1887 goto end;
1888
1889 write_error:
1890 /*
1891 * This is a special case that the relayd has closed its socket. Let's
1892 * cleanup the relayd object and all associated streams.
1893 */
1894 if (relayd && relayd_hang_up) {
1895 cleanup_relayd(relayd, ctx);
1896 /* Skip splice error so the consumer does not fail */
1897 goto end;
1898 }
1899
1900 splice_error:
1901 /* send the appropriate error description to sessiond */
1902 switch (ret) {
1903 case EINVAL:
1904 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1905 break;
1906 case ENOMEM:
1907 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1908 break;
1909 case ESPIPE:
1910 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1911 break;
1912 }
1913
1914 end:
1915 if (relayd && stream->metadata_flag) {
1916 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1917 }
1918
1919 rcu_read_unlock();
1920 return written;
1921 }
1922
1923 /*
1924 * Take a snapshot for a specific fd
1925 *
1926 * Returns 0 on success, < 0 on error
1927 */
1928 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1929 {
1930 switch (consumer_data.type) {
1931 case LTTNG_CONSUMER_KERNEL:
1932 return lttng_kconsumer_take_snapshot(stream);
1933 case LTTNG_CONSUMER32_UST:
1934 case LTTNG_CONSUMER64_UST:
1935 return lttng_ustconsumer_take_snapshot(stream);
1936 default:
1937 ERR("Unknown consumer_data type");
1938 assert(0);
1939 return -ENOSYS;
1940 }
1941 }
1942
1943 /*
1944 * Get the produced position
1945 *
1946 * Returns 0 on success, < 0 on error
1947 */
1948 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1949 unsigned long *pos)
1950 {
1951 switch (consumer_data.type) {
1952 case LTTNG_CONSUMER_KERNEL:
1953 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1954 case LTTNG_CONSUMER32_UST:
1955 case LTTNG_CONSUMER64_UST:
1956 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1957 default:
1958 ERR("Unknown consumer_data type");
1959 assert(0);
1960 return -ENOSYS;
1961 }
1962 }
1963
1964 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1965 int sock, struct pollfd *consumer_sockpoll)
1966 {
1967 switch (consumer_data.type) {
1968 case LTTNG_CONSUMER_KERNEL:
1969 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1970 case LTTNG_CONSUMER32_UST:
1971 case LTTNG_CONSUMER64_UST:
1972 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1973 default:
1974 ERR("Unknown consumer_data type");
1975 assert(0);
1976 return -ENOSYS;
1977 }
1978 }
1979
1980 void lttng_consumer_close_all_metadata(void)
1981 {
1982 switch (consumer_data.type) {
1983 case LTTNG_CONSUMER_KERNEL:
1984 /*
1985 * The Kernel consumer has a different metadata scheme so we don't
1986 * close anything because the stream will be closed by the session
1987 * daemon.
1988 */
1989 break;
1990 case LTTNG_CONSUMER32_UST:
1991 case LTTNG_CONSUMER64_UST:
1992 /*
1993 * Close all metadata streams. The metadata hash table is passed and
1994 * this call iterates over it by closing all wakeup fd. This is safe
1995 * because at this point we are sure that the metadata producer is
1996 * either dead or blocked.
1997 */
1998 lttng_ustconsumer_close_all_metadata(metadata_ht);
1999 break;
2000 default:
2001 ERR("Unknown consumer_data type");
2002 assert(0);
2003 }
2004 }
2005
2006 /*
2007 * Clean up a metadata stream and free its memory.
2008 */
2009 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
2010 struct lttng_ht *ht)
2011 {
2012 struct lttng_consumer_channel *free_chan = NULL;
2013
2014 assert(stream);
2015 /*
2016 * This call should NEVER receive regular stream. It must always be
2017 * metadata stream and this is crucial for data structure synchronization.
2018 */
2019 assert(stream->metadata_flag);
2020
2021 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2022
2023 pthread_mutex_lock(&consumer_data.lock);
2024 pthread_mutex_lock(&stream->chan->lock);
2025 pthread_mutex_lock(&stream->lock);
2026
2027 /* Remove any reference to that stream. */
2028 consumer_stream_delete(stream, ht);
2029
2030 /* Close down everything including the relayd if one. */
2031 consumer_stream_close(stream);
2032 /* Destroy tracer buffers of the stream. */
2033 consumer_stream_destroy_buffers(stream);
2034
2035 /* Atomically decrement channel refcount since other threads can use it. */
2036 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2037 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2038 /* Go for channel deletion! */
2039 free_chan = stream->chan;
2040 }
2041
2042 /*
2043 * Nullify the stream reference so it is not used after deletion. The
2044 * channel lock MUST be acquired before being able to check for a NULL
2045 * pointer value.
2046 */
2047 stream->chan->metadata_stream = NULL;
2048
2049 pthread_mutex_unlock(&stream->lock);
2050 pthread_mutex_unlock(&stream->chan->lock);
2051 pthread_mutex_unlock(&consumer_data.lock);
2052
2053 if (free_chan) {
2054 consumer_del_channel(free_chan);
2055 }
2056
2057 consumer_stream_free(stream);
2058 }
2059
2060 /*
2061 * Action done with the metadata stream when adding it to the consumer internal
2062 * data structures to handle it.
2063 */
2064 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2065 {
2066 struct lttng_ht *ht = metadata_ht;
2067 int ret = 0;
2068 struct lttng_ht_iter iter;
2069 struct lttng_ht_node_u64 *node;
2070
2071 assert(stream);
2072 assert(ht);
2073
2074 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2075
2076 pthread_mutex_lock(&consumer_data.lock);
2077 pthread_mutex_lock(&stream->chan->lock);
2078 pthread_mutex_lock(&stream->chan->timer_lock);
2079 pthread_mutex_lock(&stream->lock);
2080
2081 /*
2082 * From here, refcounts are updated so be _careful_ when returning an error
2083 * after this point.
2084 */
2085
2086 rcu_read_lock();
2087
2088 /*
2089 * Lookup the stream just to make sure it does not exist in our internal
2090 * state. This should NEVER happen.
2091 */
2092 lttng_ht_lookup(ht, &stream->key, &iter);
2093 node = lttng_ht_iter_get_node_u64(&iter);
2094 assert(!node);
2095
2096 /*
2097 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2098 * in terms of destroying the associated channel, because the action that
2099 * causes the count to become 0 also causes a stream to be added. The
2100 * channel deletion will thus be triggered by the following removal of this
2101 * stream.
2102 */
2103 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2104 /* Increment refcount before decrementing nb_init_stream_left */
2105 cmm_smp_wmb();
2106 uatomic_dec(&stream->chan->nb_init_stream_left);
2107 }
2108
2109 lttng_ht_add_unique_u64(ht, &stream->node);
2110
2111 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2112 &stream->node_channel_id);
2113
2114 /*
2115 * Add stream to the stream_list_ht of the consumer data. No need to steal
2116 * the key since the HT does not use it and we allow to add redundant keys
2117 * into this table.
2118 */
2119 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2120
2121 rcu_read_unlock();
2122
2123 pthread_mutex_unlock(&stream->lock);
2124 pthread_mutex_unlock(&stream->chan->lock);
2125 pthread_mutex_unlock(&stream->chan->timer_lock);
2126 pthread_mutex_unlock(&consumer_data.lock);
2127 return ret;
2128 }
2129
2130 /*
2131 * Delete data stream that are flagged for deletion (endpoint_status).
2132 */
2133 static void validate_endpoint_status_data_stream(void)
2134 {
2135 struct lttng_ht_iter iter;
2136 struct lttng_consumer_stream *stream;
2137
2138 DBG("Consumer delete flagged data stream");
2139
2140 rcu_read_lock();
2141 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2142 /* Validate delete flag of the stream */
2143 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2144 continue;
2145 }
2146 /* Delete it right now */
2147 consumer_del_stream(stream, data_ht);
2148 }
2149 rcu_read_unlock();
2150 }
2151
2152 /*
2153 * Delete metadata stream that are flagged for deletion (endpoint_status).
2154 */
2155 static void validate_endpoint_status_metadata_stream(
2156 struct lttng_poll_event *pollset)
2157 {
2158 struct lttng_ht_iter iter;
2159 struct lttng_consumer_stream *stream;
2160
2161 DBG("Consumer delete flagged metadata stream");
2162
2163 assert(pollset);
2164
2165 rcu_read_lock();
2166 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2167 /* Validate delete flag of the stream */
2168 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2169 continue;
2170 }
2171 /*
2172 * Remove from pollset so the metadata thread can continue without
2173 * blocking on a deleted stream.
2174 */
2175 lttng_poll_del(pollset, stream->wait_fd);
2176
2177 /* Delete it right now */
2178 consumer_del_metadata_stream(stream, metadata_ht);
2179 }
2180 rcu_read_unlock();
2181 }
2182
2183 /*
2184 * Thread polls on metadata file descriptor and write them on disk or on the
2185 * network.
2186 */
2187 void *consumer_thread_metadata_poll(void *data)
2188 {
2189 int ret, i, pollfd, err = -1;
2190 uint32_t revents, nb_fd;
2191 struct lttng_consumer_stream *stream = NULL;
2192 struct lttng_ht_iter iter;
2193 struct lttng_ht_node_u64 *node;
2194 struct lttng_poll_event events;
2195 struct lttng_consumer_local_data *ctx = data;
2196 ssize_t len;
2197
2198 rcu_register_thread();
2199
2200 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2201
2202 if (testpoint(consumerd_thread_metadata)) {
2203 goto error_testpoint;
2204 }
2205
2206 health_code_update();
2207
2208 DBG("Thread metadata poll started");
2209
2210 /* Size is set to 1 for the consumer_metadata pipe */
2211 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2212 if (ret < 0) {
2213 ERR("Poll set creation failed");
2214 goto end_poll;
2215 }
2216
2217 ret = lttng_poll_add(&events,
2218 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2219 if (ret < 0) {
2220 goto end;
2221 }
2222
2223 /* Main loop */
2224 DBG("Metadata main loop started");
2225
2226 while (1) {
2227 restart:
2228 health_code_update();
2229 health_poll_entry();
2230 DBG("Metadata poll wait");
2231 ret = lttng_poll_wait(&events, -1);
2232 DBG("Metadata poll return from wait with %d fd(s)",
2233 LTTNG_POLL_GETNB(&events));
2234 health_poll_exit();
2235 DBG("Metadata event caught in thread");
2236 if (ret < 0) {
2237 if (errno == EINTR) {
2238 ERR("Poll EINTR caught");
2239 goto restart;
2240 }
2241 if (LTTNG_POLL_GETNB(&events) == 0) {
2242 err = 0; /* All is OK */
2243 }
2244 goto end;
2245 }
2246
2247 nb_fd = ret;
2248
2249 /* From here, the event is a metadata wait fd */
2250 for (i = 0; i < nb_fd; i++) {
2251 health_code_update();
2252
2253 revents = LTTNG_POLL_GETEV(&events, i);
2254 pollfd = LTTNG_POLL_GETFD(&events, i);
2255
2256 if (!revents) {
2257 /* No activity for this FD (poll implementation). */
2258 continue;
2259 }
2260
2261 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2262 if (revents & LPOLLIN) {
2263 ssize_t pipe_len;
2264
2265 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2266 &stream, sizeof(stream));
2267 if (pipe_len < sizeof(stream)) {
2268 if (pipe_len < 0) {
2269 PERROR("read metadata stream");
2270 }
2271 /*
2272 * Remove the pipe from the poll set and continue the loop
2273 * since their might be data to consume.
2274 */
2275 lttng_poll_del(&events,
2276 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2277 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2278 continue;
2279 }
2280
2281 /* A NULL stream means that the state has changed. */
2282 if (stream == NULL) {
2283 /* Check for deleted streams. */
2284 validate_endpoint_status_metadata_stream(&events);
2285 goto restart;
2286 }
2287
2288 DBG("Adding metadata stream %d to poll set",
2289 stream->wait_fd);
2290
2291 /* Add metadata stream to the global poll events list */
2292 lttng_poll_add(&events, stream->wait_fd,
2293 LPOLLIN | LPOLLPRI | LPOLLHUP);
2294 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2295 DBG("Metadata thread pipe hung up");
2296 /*
2297 * Remove the pipe from the poll set and continue the loop
2298 * since their might be data to consume.
2299 */
2300 lttng_poll_del(&events,
2301 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2302 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2303 continue;
2304 } else {
2305 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2306 goto end;
2307 }
2308
2309 /* Handle other stream */
2310 continue;
2311 }
2312
2313 rcu_read_lock();
2314 {
2315 uint64_t tmp_id = (uint64_t) pollfd;
2316
2317 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2318 }
2319 node = lttng_ht_iter_get_node_u64(&iter);
2320 assert(node);
2321
2322 stream = caa_container_of(node, struct lttng_consumer_stream,
2323 node);
2324
2325 if (revents & (LPOLLIN | LPOLLPRI)) {
2326 /* Get the data out of the metadata file descriptor */
2327 DBG("Metadata available on fd %d", pollfd);
2328 assert(stream->wait_fd == pollfd);
2329
2330 do {
2331 health_code_update();
2332
2333 len = ctx->on_buffer_ready(stream, ctx);
2334 /*
2335 * We don't check the return value here since if we get
2336 * a negative len, it means an error occured thus we
2337 * simply remove it from the poll set and free the
2338 * stream.
2339 */
2340 } while (len > 0);
2341
2342 /* It's ok to have an unavailable sub-buffer */
2343 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2344 /* Clean up stream from consumer and free it. */
2345 lttng_poll_del(&events, stream->wait_fd);
2346 consumer_del_metadata_stream(stream, metadata_ht);
2347 }
2348 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2349 DBG("Metadata fd %d is hup|err.", pollfd);
2350 if (!stream->hangup_flush_done
2351 && (consumer_data.type == LTTNG_CONSUMER32_UST
2352 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2353 DBG("Attempting to flush and consume the UST buffers");
2354 lttng_ustconsumer_on_stream_hangup(stream);
2355
2356 /* We just flushed the stream now read it. */
2357 do {
2358 health_code_update();
2359
2360 len = ctx->on_buffer_ready(stream, ctx);
2361 /*
2362 * We don't check the return value here since if we get
2363 * a negative len, it means an error occured thus we
2364 * simply remove it from the poll set and free the
2365 * stream.
2366 */
2367 } while (len > 0);
2368 }
2369
2370 lttng_poll_del(&events, stream->wait_fd);
2371 /*
2372 * This call update the channel states, closes file descriptors
2373 * and securely free the stream.
2374 */
2375 consumer_del_metadata_stream(stream, metadata_ht);
2376 } else {
2377 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2378 rcu_read_unlock();
2379 goto end;
2380 }
2381 /* Release RCU lock for the stream looked up */
2382 rcu_read_unlock();
2383 }
2384 }
2385
2386 /* All is OK */
2387 err = 0;
2388 end:
2389 DBG("Metadata poll thread exiting");
2390
2391 lttng_poll_clean(&events);
2392 end_poll:
2393 error_testpoint:
2394 if (err) {
2395 health_error();
2396 ERR("Health error occurred in %s", __func__);
2397 }
2398 health_unregister(health_consumerd);
2399 rcu_unregister_thread();
2400 return NULL;
2401 }
2402
2403 /*
2404 * This thread polls the fds in the set to consume the data and write
2405 * it to tracefile if necessary.
2406 */
2407 void *consumer_thread_data_poll(void *data)
2408 {
2409 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2410 struct pollfd *pollfd = NULL;
2411 /* local view of the streams */
2412 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2413 /* local view of consumer_data.fds_count */
2414 int nb_fd = 0;
2415 struct lttng_consumer_local_data *ctx = data;
2416 ssize_t len;
2417
2418 rcu_register_thread();
2419
2420 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2421
2422 if (testpoint(consumerd_thread_data)) {
2423 goto error_testpoint;
2424 }
2425
2426 health_code_update();
2427
2428 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2429 if (local_stream == NULL) {
2430 PERROR("local_stream malloc");
2431 goto end;
2432 }
2433
2434 while (1) {
2435 health_code_update();
2436
2437 high_prio = 0;
2438 num_hup = 0;
2439
2440 /*
2441 * the fds set has been updated, we need to update our
2442 * local array as well
2443 */
2444 pthread_mutex_lock(&consumer_data.lock);
2445 if (consumer_data.need_update) {
2446 free(pollfd);
2447 pollfd = NULL;
2448
2449 free(local_stream);
2450 local_stream = NULL;
2451
2452 /*
2453 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2454 * wake up pipe.
2455 */
2456 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2457 if (pollfd == NULL) {
2458 PERROR("pollfd malloc");
2459 pthread_mutex_unlock(&consumer_data.lock);
2460 goto end;
2461 }
2462
2463 local_stream = zmalloc((consumer_data.stream_count + 2) *
2464 sizeof(struct lttng_consumer_stream *));
2465 if (local_stream == NULL) {
2466 PERROR("local_stream malloc");
2467 pthread_mutex_unlock(&consumer_data.lock);
2468 goto end;
2469 }
2470 ret = update_poll_array(ctx, &pollfd, local_stream,
2471 data_ht);
2472 if (ret < 0) {
2473 ERR("Error in allocating pollfd or local_outfds");
2474 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2475 pthread_mutex_unlock(&consumer_data.lock);
2476 goto end;
2477 }
2478 nb_fd = ret;
2479 consumer_data.need_update = 0;
2480 }
2481 pthread_mutex_unlock(&consumer_data.lock);
2482
2483 /* No FDs and consumer_quit, consumer_cleanup the thread */
2484 if (nb_fd == 0 && consumer_quit == 1) {
2485 err = 0; /* All is OK */
2486 goto end;
2487 }
2488 /* poll on the array of fds */
2489 restart:
2490 DBG("polling on %d fd", nb_fd + 2);
2491 health_poll_entry();
2492 num_rdy = poll(pollfd, nb_fd + 2, -1);
2493 health_poll_exit();
2494 DBG("poll num_rdy : %d", num_rdy);
2495 if (num_rdy == -1) {
2496 /*
2497 * Restart interrupted system call.
2498 */
2499 if (errno == EINTR) {
2500 goto restart;
2501 }
2502 PERROR("Poll error");
2503 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2504 goto end;
2505 } else if (num_rdy == 0) {
2506 DBG("Polling thread timed out");
2507 goto end;
2508 }
2509
2510 /*
2511 * If the consumer_data_pipe triggered poll go directly to the
2512 * beginning of the loop to update the array. We want to prioritize
2513 * array update over low-priority reads.
2514 */
2515 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2516 ssize_t pipe_readlen;
2517
2518 DBG("consumer_data_pipe wake up");
2519 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2520 &new_stream, sizeof(new_stream));
2521 if (pipe_readlen < sizeof(new_stream)) {
2522 PERROR("Consumer data pipe");
2523 /* Continue so we can at least handle the current stream(s). */
2524 continue;
2525 }
2526
2527 /*
2528 * If the stream is NULL, just ignore it. It's also possible that
2529 * the sessiond poll thread changed the consumer_quit state and is
2530 * waking us up to test it.
2531 */
2532 if (new_stream == NULL) {
2533 validate_endpoint_status_data_stream();
2534 continue;
2535 }
2536
2537 /* Continue to update the local streams and handle prio ones */
2538 continue;
2539 }
2540
2541 /* Handle wakeup pipe. */
2542 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2543 char dummy;
2544 ssize_t pipe_readlen;
2545
2546 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2547 sizeof(dummy));
2548 if (pipe_readlen < 0) {
2549 PERROR("Consumer data wakeup pipe");
2550 }
2551 /* We've been awakened to handle stream(s). */
2552 ctx->has_wakeup = 0;
2553 }
2554
2555 /* Take care of high priority channels first. */
2556 for (i = 0; i < nb_fd; i++) {
2557 health_code_update();
2558
2559 if (local_stream[i] == NULL) {
2560 continue;
2561 }
2562 if (pollfd[i].revents & POLLPRI) {
2563 DBG("Urgent read on fd %d", pollfd[i].fd);
2564 high_prio = 1;
2565 len = ctx->on_buffer_ready(local_stream[i], ctx);
2566 /* it's ok to have an unavailable sub-buffer */
2567 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2568 /* Clean the stream and free it. */
2569 consumer_del_stream(local_stream[i], data_ht);
2570 local_stream[i] = NULL;
2571 } else if (len > 0) {
2572 local_stream[i]->data_read = 1;
2573 }
2574 }
2575 }
2576
2577 /*
2578 * If we read high prio channel in this loop, try again
2579 * for more high prio data.
2580 */
2581 if (high_prio) {
2582 continue;
2583 }
2584
2585 /* Take care of low priority channels. */
2586 for (i = 0; i < nb_fd; i++) {
2587 health_code_update();
2588
2589 if (local_stream[i] == NULL) {
2590 continue;
2591 }
2592 if ((pollfd[i].revents & POLLIN) ||
2593 local_stream[i]->hangup_flush_done ||
2594 local_stream[i]->has_data) {
2595 DBG("Normal read on fd %d", pollfd[i].fd);
2596 len = ctx->on_buffer_ready(local_stream[i], ctx);
2597 /* it's ok to have an unavailable sub-buffer */
2598 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2599 /* Clean the stream and free it. */
2600 consumer_del_stream(local_stream[i], data_ht);
2601 local_stream[i] = NULL;
2602 } else if (len > 0) {
2603 local_stream[i]->data_read = 1;
2604 }
2605 }
2606 }
2607
2608 /* Handle hangup and errors */
2609 for (i = 0; i < nb_fd; i++) {
2610 health_code_update();
2611
2612 if (local_stream[i] == NULL) {
2613 continue;
2614 }
2615 if (!local_stream[i]->hangup_flush_done
2616 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2617 && (consumer_data.type == LTTNG_CONSUMER32_UST
2618 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2619 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2620 pollfd[i].fd);
2621 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2622 /* Attempt read again, for the data we just flushed. */
2623 local_stream[i]->data_read = 1;
2624 }
2625 /*
2626 * If the poll flag is HUP/ERR/NVAL and we have
2627 * read no data in this pass, we can remove the
2628 * stream from its hash table.
2629 */
2630 if ((pollfd[i].revents & POLLHUP)) {
2631 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2632 if (!local_stream[i]->data_read) {
2633 consumer_del_stream(local_stream[i], data_ht);
2634 local_stream[i] = NULL;
2635 num_hup++;
2636 }
2637 } else if (pollfd[i].revents & POLLERR) {
2638 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2639 if (!local_stream[i]->data_read) {
2640 consumer_del_stream(local_stream[i], data_ht);
2641 local_stream[i] = NULL;
2642 num_hup++;
2643 }
2644 } else if (pollfd[i].revents & POLLNVAL) {
2645 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2646 if (!local_stream[i]->data_read) {
2647 consumer_del_stream(local_stream[i], data_ht);
2648 local_stream[i] = NULL;
2649 num_hup++;
2650 }
2651 }
2652 if (local_stream[i] != NULL) {
2653 local_stream[i]->data_read = 0;
2654 }
2655 }
2656 }
2657 /* All is OK */
2658 err = 0;
2659 end:
2660 DBG("polling thread exiting");
2661 free(pollfd);
2662 free(local_stream);
2663
2664 /*
2665 * Close the write side of the pipe so epoll_wait() in
2666 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2667 * read side of the pipe. If we close them both, epoll_wait strangely does
2668 * not return and could create a endless wait period if the pipe is the
2669 * only tracked fd in the poll set. The thread will take care of closing
2670 * the read side.
2671 */
2672 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2673
2674 error_testpoint:
2675 if (err) {
2676 health_error();
2677 ERR("Health error occurred in %s", __func__);
2678 }
2679 health_unregister(health_consumerd);
2680
2681 rcu_unregister_thread();
2682 return NULL;
2683 }
2684
2685 /*
2686 * Close wake-up end of each stream belonging to the channel. This will
2687 * allow the poll() on the stream read-side to detect when the
2688 * write-side (application) finally closes them.
2689 */
2690 static
2691 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2692 {
2693 struct lttng_ht *ht;
2694 struct lttng_consumer_stream *stream;
2695 struct lttng_ht_iter iter;
2696
2697 ht = consumer_data.stream_per_chan_id_ht;
2698
2699 rcu_read_lock();
2700 cds_lfht_for_each_entry_duplicate(ht->ht,
2701 ht->hash_fct(&channel->key, lttng_ht_seed),
2702 ht->match_fct, &channel->key,
2703 &iter.iter, stream, node_channel_id.node) {
2704 /*
2705 * Protect against teardown with mutex.
2706 */
2707 pthread_mutex_lock(&stream->lock);
2708 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2709 goto next;
2710 }
2711 switch (consumer_data.type) {
2712 case LTTNG_CONSUMER_KERNEL:
2713 break;
2714 case LTTNG_CONSUMER32_UST:
2715 case LTTNG_CONSUMER64_UST:
2716 if (stream->metadata_flag) {
2717 /* Safe and protected by the stream lock. */
2718 lttng_ustconsumer_close_metadata(stream->chan);
2719 } else {
2720 /*
2721 * Note: a mutex is taken internally within
2722 * liblttng-ust-ctl to protect timer wakeup_fd
2723 * use from concurrent close.
2724 */
2725 lttng_ustconsumer_close_stream_wakeup(stream);
2726 }
2727 break;
2728 default:
2729 ERR("Unknown consumer_data type");
2730 assert(0);
2731 }
2732 next:
2733 pthread_mutex_unlock(&stream->lock);
2734 }
2735 rcu_read_unlock();
2736 }
2737
2738 static void destroy_channel_ht(struct lttng_ht *ht)
2739 {
2740 struct lttng_ht_iter iter;
2741 struct lttng_consumer_channel *channel;
2742 int ret;
2743
2744 if (ht == NULL) {
2745 return;
2746 }
2747
2748 rcu_read_lock();
2749 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2750 ret = lttng_ht_del(ht, &iter);
2751 assert(ret != 0);
2752 }
2753 rcu_read_unlock();
2754
2755 lttng_ht_destroy(ht);
2756 }
2757
2758 /*
2759 * This thread polls the channel fds to detect when they are being
2760 * closed. It closes all related streams if the channel is detected as
2761 * closed. It is currently only used as a shim layer for UST because the
2762 * consumerd needs to keep the per-stream wakeup end of pipes open for
2763 * periodical flush.
2764 */
2765 void *consumer_thread_channel_poll(void *data)
2766 {
2767 int ret, i, pollfd, err = -1;
2768 uint32_t revents, nb_fd;
2769 struct lttng_consumer_channel *chan = NULL;
2770 struct lttng_ht_iter iter;
2771 struct lttng_ht_node_u64 *node;
2772 struct lttng_poll_event events;
2773 struct lttng_consumer_local_data *ctx = data;
2774 struct lttng_ht *channel_ht;
2775
2776 rcu_register_thread();
2777
2778 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2779
2780 if (testpoint(consumerd_thread_channel)) {
2781 goto error_testpoint;
2782 }
2783
2784 health_code_update();
2785
2786 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2787 if (!channel_ht) {
2788 /* ENOMEM at this point. Better to bail out. */
2789 goto end_ht;
2790 }
2791
2792 DBG("Thread channel poll started");
2793
2794 /* Size is set to 1 for the consumer_channel pipe */
2795 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2796 if (ret < 0) {
2797 ERR("Poll set creation failed");
2798 goto end_poll;
2799 }
2800
2801 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2802 if (ret < 0) {
2803 goto end;
2804 }
2805
2806 /* Main loop */
2807 DBG("Channel main loop started");
2808
2809 while (1) {
2810 restart:
2811 health_code_update();
2812 DBG("Channel poll wait");
2813 health_poll_entry();
2814 ret = lttng_poll_wait(&events, -1);
2815 DBG("Channel poll return from wait with %d fd(s)",
2816 LTTNG_POLL_GETNB(&events));
2817 health_poll_exit();
2818 DBG("Channel event caught in thread");
2819 if (ret < 0) {
2820 if (errno == EINTR) {
2821 ERR("Poll EINTR caught");
2822 goto restart;
2823 }
2824 if (LTTNG_POLL_GETNB(&events) == 0) {
2825 err = 0; /* All is OK */
2826 }
2827 goto end;
2828 }
2829
2830 nb_fd = ret;
2831
2832 /* From here, the event is a channel wait fd */
2833 for (i = 0; i < nb_fd; i++) {
2834 health_code_update();
2835
2836 revents = LTTNG_POLL_GETEV(&events, i);
2837 pollfd = LTTNG_POLL_GETFD(&events, i);
2838
2839 if (!revents) {
2840 /* No activity for this FD (poll implementation). */
2841 continue;
2842 }
2843
2844 if (pollfd == ctx->consumer_channel_pipe[0]) {
2845 if (revents & LPOLLIN) {
2846 enum consumer_channel_action action;
2847 uint64_t key;
2848
2849 ret = read_channel_pipe(ctx, &chan, &key, &action);
2850 if (ret <= 0) {
2851 if (ret < 0) {
2852 ERR("Error reading channel pipe");
2853 }
2854 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2855 continue;
2856 }
2857
2858 switch (action) {
2859 case CONSUMER_CHANNEL_ADD:
2860 DBG("Adding channel %d to poll set",
2861 chan->wait_fd);
2862
2863 lttng_ht_node_init_u64(&chan->wait_fd_node,
2864 chan->wait_fd);
2865 rcu_read_lock();
2866 lttng_ht_add_unique_u64(channel_ht,
2867 &chan->wait_fd_node);
2868 rcu_read_unlock();
2869 /* Add channel to the global poll events list */
2870 lttng_poll_add(&events, chan->wait_fd,
2871 LPOLLERR | LPOLLHUP);
2872 break;
2873 case CONSUMER_CHANNEL_DEL:
2874 {
2875 /*
2876 * This command should never be called if the channel
2877 * has streams monitored by either the data or metadata
2878 * thread. The consumer only notify this thread with a
2879 * channel del. command if it receives a destroy
2880 * channel command from the session daemon that send it
2881 * if a command prior to the GET_CHANNEL failed.
2882 */
2883
2884 rcu_read_lock();
2885 chan = consumer_find_channel(key);
2886 if (!chan) {
2887 rcu_read_unlock();
2888 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2889 break;
2890 }
2891 lttng_poll_del(&events, chan->wait_fd);
2892 iter.iter.node = &chan->wait_fd_node.node;
2893 ret = lttng_ht_del(channel_ht, &iter);
2894 assert(ret == 0);
2895
2896 switch (consumer_data.type) {
2897 case LTTNG_CONSUMER_KERNEL:
2898 break;
2899 case LTTNG_CONSUMER32_UST:
2900 case LTTNG_CONSUMER64_UST:
2901 health_code_update();
2902 /* Destroy streams that might have been left in the stream list. */
2903 clean_channel_stream_list(chan);
2904 break;
2905 default:
2906 ERR("Unknown consumer_data type");
2907 assert(0);
2908 }
2909
2910 /*
2911 * Release our own refcount. Force channel deletion even if
2912 * streams were not initialized.
2913 */
2914 if (!uatomic_sub_return(&chan->refcount, 1)) {
2915 consumer_del_channel(chan);
2916 }
2917 rcu_read_unlock();
2918 goto restart;
2919 }
2920 case CONSUMER_CHANNEL_QUIT:
2921 /*
2922 * Remove the pipe from the poll set and continue the loop
2923 * since their might be data to consume.
2924 */
2925 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2926 continue;
2927 default:
2928 ERR("Unknown action");
2929 break;
2930 }
2931 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2932 DBG("Channel thread pipe hung up");
2933 /*
2934 * Remove the pipe from the poll set and continue the loop
2935 * since their might be data to consume.
2936 */
2937 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2938 continue;
2939 } else {
2940 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2941 goto end;
2942 }
2943
2944 /* Handle other stream */
2945 continue;
2946 }
2947
2948 rcu_read_lock();
2949 {
2950 uint64_t tmp_id = (uint64_t) pollfd;
2951
2952 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2953 }
2954 node = lttng_ht_iter_get_node_u64(&iter);
2955 assert(node);
2956
2957 chan = caa_container_of(node, struct lttng_consumer_channel,
2958 wait_fd_node);
2959
2960 /* Check for error event */
2961 if (revents & (LPOLLERR | LPOLLHUP)) {
2962 DBG("Channel fd %d is hup|err.", pollfd);
2963
2964 lttng_poll_del(&events, chan->wait_fd);
2965 ret = lttng_ht_del(channel_ht, &iter);
2966 assert(ret == 0);
2967
2968 /*
2969 * This will close the wait fd for each stream associated to
2970 * this channel AND monitored by the data/metadata thread thus
2971 * will be clean by the right thread.
2972 */
2973 consumer_close_channel_streams(chan);
2974
2975 /* Release our own refcount */
2976 if (!uatomic_sub_return(&chan->refcount, 1)
2977 && !uatomic_read(&chan->nb_init_stream_left)) {
2978 consumer_del_channel(chan);
2979 }
2980 } else {
2981 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2982 rcu_read_unlock();
2983 goto end;
2984 }
2985
2986 /* Release RCU lock for the channel looked up */
2987 rcu_read_unlock();
2988 }
2989 }
2990
2991 /* All is OK */
2992 err = 0;
2993 end:
2994 lttng_poll_clean(&events);
2995 end_poll:
2996 destroy_channel_ht(channel_ht);
2997 end_ht:
2998 error_testpoint:
2999 DBG("Channel poll thread exiting");
3000 if (err) {
3001 health_error();
3002 ERR("Health error occurred in %s", __func__);
3003 }
3004 health_unregister(health_consumerd);
3005 rcu_unregister_thread();
3006 return NULL;
3007 }
3008
3009 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
3010 struct pollfd *sockpoll, int client_socket)
3011 {
3012 int ret;
3013
3014 assert(ctx);
3015 assert(sockpoll);
3016
3017 ret = lttng_consumer_poll_socket(sockpoll);
3018 if (ret) {
3019 goto error;
3020 }
3021 DBG("Metadata connection on client_socket");
3022
3023 /* Blocking call, waiting for transmission */
3024 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3025 if (ctx->consumer_metadata_socket < 0) {
3026 WARN("On accept metadata");
3027 ret = -1;
3028 goto error;
3029 }
3030 ret = 0;
3031
3032 error:
3033 return ret;
3034 }
3035
3036 /*
3037 * This thread listens on the consumerd socket and receives the file
3038 * descriptors from the session daemon.
3039 */
3040 void *consumer_thread_sessiond_poll(void *data)
3041 {
3042 int sock = -1, client_socket, ret, err = -1;
3043 /*
3044 * structure to poll for incoming data on communication socket avoids
3045 * making blocking sockets.
3046 */
3047 struct pollfd consumer_sockpoll[2];
3048 struct lttng_consumer_local_data *ctx = data;
3049
3050 rcu_register_thread();
3051
3052 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3053
3054 if (testpoint(consumerd_thread_sessiond)) {
3055 goto error_testpoint;
3056 }
3057
3058 health_code_update();
3059
3060 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3061 unlink(ctx->consumer_command_sock_path);
3062 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3063 if (client_socket < 0) {
3064 ERR("Cannot create command socket");
3065 goto end;
3066 }
3067
3068 ret = lttcomm_listen_unix_sock(client_socket);
3069 if (ret < 0) {
3070 goto end;
3071 }
3072
3073 DBG("Sending ready command to lttng-sessiond");
3074 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3075 /* return < 0 on error, but == 0 is not fatal */
3076 if (ret < 0) {
3077 ERR("Error sending ready command to lttng-sessiond");
3078 goto end;
3079 }
3080
3081 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3082 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3083 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3084 consumer_sockpoll[1].fd = client_socket;
3085 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3086
3087 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3088 if (ret) {
3089 if (ret > 0) {
3090 /* should exit */
3091 err = 0;
3092 }
3093 goto end;
3094 }
3095 DBG("Connection on client_socket");
3096
3097 /* Blocking call, waiting for transmission */
3098 sock = lttcomm_accept_unix_sock(client_socket);
3099 if (sock < 0) {
3100 WARN("On accept");
3101 goto end;
3102 }
3103
3104 /*
3105 * Setup metadata socket which is the second socket connection on the
3106 * command unix socket.
3107 */
3108 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3109 if (ret) {
3110 if (ret > 0) {
3111 /* should exit */
3112 err = 0;
3113 }
3114 goto end;
3115 }
3116
3117 /* This socket is not useful anymore. */
3118 ret = close(client_socket);
3119 if (ret < 0) {
3120 PERROR("close client_socket");
3121 }
3122 client_socket = -1;
3123
3124 /* update the polling structure to poll on the established socket */
3125 consumer_sockpoll[1].fd = sock;
3126 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3127
3128 while (1) {
3129 health_code_update();
3130
3131 health_poll_entry();
3132 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3133 health_poll_exit();
3134 if (ret) {
3135 if (ret > 0) {
3136 /* should exit */
3137 err = 0;
3138 }
3139 goto end;
3140 }
3141 DBG("Incoming command on sock");
3142 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3143 if (ret <= 0) {
3144 /*
3145 * This could simply be a session daemon quitting. Don't output
3146 * ERR() here.
3147 */
3148 DBG("Communication interrupted on command socket");
3149 err = 0;
3150 goto end;
3151 }
3152 if (consumer_quit) {
3153 DBG("consumer_thread_receive_fds received quit from signal");
3154 err = 0; /* All is OK */
3155 goto end;
3156 }
3157 DBG("received command on sock");
3158 }
3159 /* All is OK */
3160 err = 0;
3161
3162 end:
3163 DBG("Consumer thread sessiond poll exiting");
3164
3165 /*
3166 * Close metadata streams since the producer is the session daemon which
3167 * just died.
3168 *
3169 * NOTE: for now, this only applies to the UST tracer.
3170 */
3171 lttng_consumer_close_all_metadata();
3172
3173 /*
3174 * when all fds have hung up, the polling thread
3175 * can exit cleanly
3176 */
3177 consumer_quit = 1;
3178
3179 /*
3180 * Notify the data poll thread to poll back again and test the
3181 * consumer_quit state that we just set so to quit gracefully.
3182 */
3183 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3184
3185 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3186
3187 notify_health_quit_pipe(health_quit_pipe);
3188
3189 /* Cleaning up possibly open sockets. */
3190 if (sock >= 0) {
3191 ret = close(sock);
3192 if (ret < 0) {
3193 PERROR("close sock sessiond poll");
3194 }
3195 }
3196 if (client_socket >= 0) {
3197 ret = close(client_socket);
3198 if (ret < 0) {
3199 PERROR("close client_socket sessiond poll");
3200 }
3201 }
3202
3203 error_testpoint:
3204 if (err) {
3205 health_error();
3206 ERR("Health error occurred in %s", __func__);
3207 }
3208 health_unregister(health_consumerd);
3209
3210 rcu_unregister_thread();
3211 return NULL;
3212 }
3213
3214 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3215 struct lttng_consumer_local_data *ctx)
3216 {
3217 ssize_t ret;
3218
3219 pthread_mutex_lock(&stream->lock);
3220 if (stream->metadata_flag) {
3221 pthread_mutex_lock(&stream->metadata_rdv_lock);
3222 }
3223
3224 switch (consumer_data.type) {
3225 case LTTNG_CONSUMER_KERNEL:
3226 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3227 break;
3228 case LTTNG_CONSUMER32_UST:
3229 case LTTNG_CONSUMER64_UST:
3230 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3231 break;
3232 default:
3233 ERR("Unknown consumer_data type");
3234 assert(0);
3235 ret = -ENOSYS;
3236 break;
3237 }
3238
3239 if (stream->metadata_flag) {
3240 pthread_cond_broadcast(&stream->metadata_rdv);
3241 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3242 }
3243 pthread_mutex_unlock(&stream->lock);
3244 return ret;
3245 }
3246
3247 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3248 {
3249 switch (consumer_data.type) {
3250 case LTTNG_CONSUMER_KERNEL:
3251 return lttng_kconsumer_on_recv_stream(stream);
3252 case LTTNG_CONSUMER32_UST:
3253 case LTTNG_CONSUMER64_UST:
3254 return lttng_ustconsumer_on_recv_stream(stream);
3255 default:
3256 ERR("Unknown consumer_data type");
3257 assert(0);
3258 return -ENOSYS;
3259 }
3260 }
3261
3262 /*
3263 * Allocate and set consumer data hash tables.
3264 */
3265 int lttng_consumer_init(void)
3266 {
3267 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3268 if (!consumer_data.channel_ht) {
3269 goto error;
3270 }
3271
3272 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3273 if (!consumer_data.relayd_ht) {
3274 goto error;
3275 }
3276
3277 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3278 if (!consumer_data.stream_list_ht) {
3279 goto error;
3280 }
3281
3282 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3283 if (!consumer_data.stream_per_chan_id_ht) {
3284 goto error;
3285 }
3286
3287 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3288 if (!data_ht) {
3289 goto error;
3290 }
3291
3292 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3293 if (!metadata_ht) {
3294 goto error;
3295 }
3296
3297 return 0;
3298
3299 error:
3300 return -1;
3301 }
3302
3303 /*
3304 * Process the ADD_RELAYD command receive by a consumer.
3305 *
3306 * This will create a relayd socket pair and add it to the relayd hash table.
3307 * The caller MUST acquire a RCU read side lock before calling it.
3308 */
3309 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3310 struct lttng_consumer_local_data *ctx, int sock,
3311 struct pollfd *consumer_sockpoll,
3312 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3313 uint64_t relayd_session_id)
3314 {
3315 int fd = -1, ret = -1, relayd_created = 0;
3316 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3317 struct consumer_relayd_sock_pair *relayd = NULL;
3318
3319 assert(ctx);
3320 assert(relayd_sock);
3321
3322 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3323
3324 /* Get relayd reference if exists. */
3325 relayd = consumer_find_relayd(net_seq_idx);
3326 if (relayd == NULL) {
3327 assert(sock_type == LTTNG_STREAM_CONTROL);
3328 /* Not found. Allocate one. */
3329 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3330 if (relayd == NULL) {
3331 ret = -ENOMEM;
3332 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3333 goto error;
3334 } else {
3335 relayd->sessiond_session_id = sessiond_id;
3336 relayd_created = 1;
3337 }
3338
3339 /*
3340 * This code path MUST continue to the consumer send status message to
3341 * we can notify the session daemon and continue our work without
3342 * killing everything.
3343 */
3344 } else {
3345 /*
3346 * relayd key should never be found for control socket.
3347 */
3348 assert(sock_type != LTTNG_STREAM_CONTROL);
3349 }
3350
3351 /* First send a status message before receiving the fds. */
3352 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3353 if (ret < 0) {
3354 /* Somehow, the session daemon is not responding anymore. */
3355 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3356 goto error_nosignal;
3357 }
3358
3359 /* Poll on consumer socket. */
3360 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3361 if (ret) {
3362 /* Needing to exit in the middle of a command: error. */
3363 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3364 ret = -EINTR;
3365 goto error_nosignal;
3366 }
3367
3368 /* Get relayd socket from session daemon */
3369 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3370 if (ret != sizeof(fd)) {
3371 ret = -1;
3372 fd = -1; /* Just in case it gets set with an invalid value. */
3373
3374 /*
3375 * Failing to receive FDs might indicate a major problem such as
3376 * reaching a fd limit during the receive where the kernel returns a
3377 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3378 * don't take any chances and stop everything.
3379 *
3380 * XXX: Feature request #558 will fix that and avoid this possible
3381 * issue when reaching the fd limit.
3382 */
3383 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3384 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3385 goto error;
3386 }
3387
3388 /* Copy socket information and received FD */
3389 switch (sock_type) {
3390 case LTTNG_STREAM_CONTROL:
3391 /* Copy received lttcomm socket */
3392 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3393 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3394 /* Handle create_sock error. */
3395 if (ret < 0) {
3396 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3397 goto error;
3398 }
3399 /*
3400 * Close the socket created internally by
3401 * lttcomm_create_sock, so we can replace it by the one
3402 * received from sessiond.
3403 */
3404 if (close(relayd->control_sock.sock.fd)) {
3405 PERROR("close");
3406 }
3407
3408 /* Assign new file descriptor */
3409 relayd->control_sock.sock.fd = fd;
3410 fd = -1; /* For error path */
3411 /* Assign version values. */
3412 relayd->control_sock.major = relayd_sock->major;
3413 relayd->control_sock.minor = relayd_sock->minor;
3414
3415 relayd->relayd_session_id = relayd_session_id;
3416
3417 break;
3418 case LTTNG_STREAM_DATA:
3419 /* Copy received lttcomm socket */
3420 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3421 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3422 /* Handle create_sock error. */
3423 if (ret < 0) {
3424 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3425 goto error;
3426 }
3427 /*
3428 * Close the socket created internally by
3429 * lttcomm_create_sock, so we can replace it by the one
3430 * received from sessiond.
3431 */
3432 if (close(relayd->data_sock.sock.fd)) {
3433 PERROR("close");
3434 }
3435
3436 /* Assign new file descriptor */
3437 relayd->data_sock.sock.fd = fd;
3438 fd = -1; /* for eventual error paths */
3439 /* Assign version values. */
3440 relayd->data_sock.major = relayd_sock->major;
3441 relayd->data_sock.minor = relayd_sock->minor;
3442 break;
3443 default:
3444 ERR("Unknown relayd socket type (%d)", sock_type);
3445 ret = -1;
3446 ret_code = LTTCOMM_CONSUMERD_FATAL;
3447 goto error;
3448 }
3449
3450 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3451 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3452 relayd->net_seq_idx, fd);
3453
3454 /* We successfully added the socket. Send status back. */
3455 ret = consumer_send_status_msg(sock, ret_code);
3456 if (ret < 0) {
3457 /* Somehow, the session daemon is not responding anymore. */
3458 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3459 goto error_nosignal;
3460 }
3461
3462 /*
3463 * Add relayd socket pair to consumer data hashtable. If object already
3464 * exists or on error, the function gracefully returns.
3465 */
3466 add_relayd(relayd);
3467
3468 /* All good! */
3469 return 0;
3470
3471 error:
3472 if (consumer_send_status_msg(sock, ret_code) < 0) {
3473 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3474 }
3475
3476 error_nosignal:
3477 /* Close received socket if valid. */
3478 if (fd >= 0) {
3479 if (close(fd)) {
3480 PERROR("close received socket");
3481 }
3482 }
3483
3484 if (relayd_created) {
3485 free(relayd);
3486 }
3487
3488 return ret;
3489 }
3490
3491 /*
3492 * Try to lock the stream mutex.
3493 *
3494 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3495 */
3496 static int stream_try_lock(struct lttng_consumer_stream *stream)
3497 {
3498 int ret;
3499
3500 assert(stream);
3501
3502 /*
3503 * Try to lock the stream mutex. On failure, we know that the stream is
3504 * being used else where hence there is data still being extracted.
3505 */
3506 ret = pthread_mutex_trylock(&stream->lock);
3507 if (ret) {
3508 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3509 ret = 0;
3510 goto end;
3511 }
3512
3513 ret = 1;
3514
3515 end:
3516 return ret;
3517 }
3518
3519 /*
3520 * Search for a relayd associated to the session id and return the reference.
3521 *
3522 * A rcu read side lock MUST be acquire before calling this function and locked
3523 * until the relayd object is no longer necessary.
3524 */
3525 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3526 {
3527 struct lttng_ht_iter iter;
3528 struct consumer_relayd_sock_pair *relayd = NULL;
3529
3530 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3531 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3532 node.node) {
3533 /*
3534 * Check by sessiond id which is unique here where the relayd session
3535 * id might not be when having multiple relayd.
3536 */
3537 if (relayd->sessiond_session_id == id) {
3538 /* Found the relayd. There can be only one per id. */
3539 goto found;
3540 }
3541 }
3542
3543 return NULL;
3544
3545 found:
3546 return relayd;
3547 }
3548
3549 /*
3550 * Check if for a given session id there is still data needed to be extract
3551 * from the buffers.
3552 *
3553 * Return 1 if data is pending or else 0 meaning ready to be read.
3554 */
3555 int consumer_data_pending(uint64_t id)
3556 {
3557 int ret;
3558 struct lttng_ht_iter iter;
3559 struct lttng_ht *ht;
3560 struct lttng_consumer_stream *stream;
3561 struct consumer_relayd_sock_pair *relayd = NULL;
3562 int (*data_pending)(struct lttng_consumer_stream *);
3563
3564 DBG("Consumer data pending command on session id %" PRIu64, id);
3565
3566 rcu_read_lock();
3567 pthread_mutex_lock(&consumer_data.lock);
3568
3569 switch (consumer_data.type) {
3570 case LTTNG_CONSUMER_KERNEL:
3571 data_pending = lttng_kconsumer_data_pending;
3572 break;
3573 case LTTNG_CONSUMER32_UST:
3574 case LTTNG_CONSUMER64_UST:
3575 data_pending = lttng_ustconsumer_data_pending;
3576 break;
3577 default:
3578 ERR("Unknown consumer data type");
3579 assert(0);
3580 }
3581
3582 /* Ease our life a bit */
3583 ht = consumer_data.stream_list_ht;
3584
3585 relayd = find_relayd_by_session_id(id);
3586 if (relayd) {
3587 /* Send init command for data pending. */
3588 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3589 ret = relayd_begin_data_pending(&relayd->control_sock,
3590 relayd->relayd_session_id);
3591 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3592 if (ret < 0) {
3593 /* Communication error thus the relayd so no data pending. */
3594 goto data_not_pending;
3595 }
3596 }
3597
3598 cds_lfht_for_each_entry_duplicate(ht->ht,
3599 ht->hash_fct(&id, lttng_ht_seed),
3600 ht->match_fct, &id,
3601 &iter.iter, stream, node_session_id.node) {
3602 /* If this call fails, the stream is being used hence data pending. */
3603 ret = stream_try_lock(stream);
3604 if (!ret) {
3605 goto data_pending;
3606 }
3607
3608 /*
3609 * A removed node from the hash table indicates that the stream has
3610 * been deleted thus having a guarantee that the buffers are closed
3611 * on the consumer side. However, data can still be transmitted
3612 * over the network so don't skip the relayd check.
3613 */
3614 ret = cds_lfht_is_node_deleted(&stream->node.node);
3615 if (!ret) {
3616 /* Check the stream if there is data in the buffers. */
3617 ret = data_pending(stream);
3618 if (ret == 1) {
3619 pthread_mutex_unlock(&stream->lock);
3620 goto data_pending;
3621 }
3622 }
3623
3624 /* Relayd check */
3625 if (relayd) {
3626 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3627 if (stream->metadata_flag) {
3628 ret = relayd_quiescent_control(&relayd->control_sock,
3629 stream->relayd_stream_id);
3630 } else {
3631 ret = relayd_data_pending(&relayd->control_sock,
3632 stream->relayd_stream_id,
3633 stream->next_net_seq_num - 1);
3634 }
3635 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3636 if (ret == 1) {
3637 pthread_mutex_unlock(&stream->lock);
3638 goto data_pending;
3639 }
3640 }
3641 pthread_mutex_unlock(&stream->lock);
3642 }
3643
3644 if (relayd) {
3645 unsigned int is_data_inflight = 0;
3646
3647 /* Send init command for data pending. */
3648 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3649 ret = relayd_end_data_pending(&relayd->control_sock,
3650 relayd->relayd_session_id, &is_data_inflight);
3651 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3652 if (ret < 0) {
3653 goto data_not_pending;
3654 }
3655 if (is_data_inflight) {
3656 goto data_pending;
3657 }
3658 }
3659
3660 /*
3661 * Finding _no_ node in the hash table and no inflight data means that the
3662 * stream(s) have been removed thus data is guaranteed to be available for
3663 * analysis from the trace files.
3664 */
3665
3666 data_not_pending:
3667 /* Data is available to be read by a viewer. */
3668 pthread_mutex_unlock(&consumer_data.lock);
3669 rcu_read_unlock();
3670 return 0;
3671
3672 data_pending:
3673 /* Data is still being extracted from buffers. */
3674 pthread_mutex_unlock(&consumer_data.lock);
3675 rcu_read_unlock();
3676 return 1;
3677 }
3678
3679 /*
3680 * Send a ret code status message to the sessiond daemon.
3681 *
3682 * Return the sendmsg() return value.
3683 */
3684 int consumer_send_status_msg(int sock, int ret_code)
3685 {
3686 struct lttcomm_consumer_status_msg msg;
3687
3688 memset(&msg, 0, sizeof(msg));
3689 msg.ret_code = ret_code;
3690
3691 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3692 }
3693
3694 /*
3695 * Send a channel status message to the sessiond daemon.
3696 *
3697 * Return the sendmsg() return value.
3698 */
3699 int consumer_send_status_channel(int sock,
3700 struct lttng_consumer_channel *channel)
3701 {
3702 struct lttcomm_consumer_status_channel msg;
3703
3704 assert(sock >= 0);
3705
3706 memset(&msg, 0, sizeof(msg));
3707 if (!channel) {
3708 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3709 } else {
3710 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3711 msg.key = channel->key;
3712 msg.stream_count = channel->streams.count;
3713 }
3714
3715 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3716 }
3717
3718 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3719 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3720 uint64_t max_sb_size)
3721 {
3722 unsigned long start_pos;
3723
3724 if (!nb_packets_per_stream) {
3725 return consumed_pos; /* Grab everything */
3726 }
3727 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3728 start_pos -= max_sb_size * nb_packets_per_stream;
3729 if ((long) (start_pos - consumed_pos) < 0) {
3730 return consumed_pos; /* Grab everything */
3731 }
3732 return start_pos;
3733 }
This page took 0.106699 seconds and 4 git commands to generate.