a477832ef45a9d30914d1dff1473d1e119e4e1d4
[lttng-modules.git] / lib / ringbuffer / ring_buffer_frontend.c
1 /*
2 * ring_buffer_frontend.c
3 *
4 * Copyright (C) 2005-2012 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; only
9 * version 2.1 of the License.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *
21 * Ring buffer wait-free buffer synchronization. Producer-consumer and flight
22 * recorder (overwrite) modes. See thesis:
23 *
24 * Desnoyers, Mathieu (2009), "Low-Impact Operating System Tracing", Ph.D.
25 * dissertation, Ecole Polytechnique de Montreal.
26 * http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
27 *
28 * - Algorithm presentation in Chapter 5:
29 * "Lockless Multi-Core High-Throughput Buffering".
30 * - Algorithm formal verification in Section 8.6:
31 * "Formal verification of LTTng"
32 *
33 * Author:
34 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
35 *
36 * Inspired from LTT and RelayFS:
37 * Karim Yaghmour <karim@opersys.com>
38 * Tom Zanussi <zanussi@us.ibm.com>
39 * Bob Wisniewski <bob@watson.ibm.com>
40 * And from K42 :
41 * Bob Wisniewski <bob@watson.ibm.com>
42 *
43 * Buffer reader semantic :
44 *
45 * - get_subbuf_size
46 * while buffer is not finalized and empty
47 * - get_subbuf
48 * - if return value != 0, continue
49 * - splice one subbuffer worth of data to a pipe
50 * - splice the data from pipe to disk/network
51 * - put_subbuf
52 */
53
54 #include <linux/delay.h>
55 #include <linux/module.h>
56 #include <linux/percpu.h>
57
58 #include <wrapper/ringbuffer/config.h>
59 #include <wrapper/ringbuffer/backend.h>
60 #include <wrapper/ringbuffer/frontend.h>
61 #include <wrapper/ringbuffer/iterator.h>
62 #include <wrapper/ringbuffer/nohz.h>
63 #include <wrapper/atomic.h>
64 #include <wrapper/kref.h>
65 #include <wrapper/percpu-defs.h>
66 #include <wrapper/timer.h>
67
68 /*
69 * Internal structure representing offsets to use at a sub-buffer switch.
70 */
71 struct switch_offsets {
72 unsigned long begin, end, old;
73 size_t pre_header_padding, size;
74 unsigned int switch_new_start:1, switch_new_end:1, switch_old_start:1,
75 switch_old_end:1;
76 };
77
78 #ifdef CONFIG_NO_HZ
79 enum tick_nohz_val {
80 TICK_NOHZ_STOP,
81 TICK_NOHZ_FLUSH,
82 TICK_NOHZ_RESTART,
83 };
84
85 static ATOMIC_NOTIFIER_HEAD(tick_nohz_notifier);
86 #endif /* CONFIG_NO_HZ */
87
88 static DEFINE_PER_CPU(spinlock_t, ring_buffer_nohz_lock);
89
90 DEFINE_PER_CPU(unsigned int, lib_ring_buffer_nesting);
91 EXPORT_PER_CPU_SYMBOL(lib_ring_buffer_nesting);
92
93 static
94 void lib_ring_buffer_print_errors(struct channel *chan,
95 struct lib_ring_buffer *buf, int cpu);
96 static
97 void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
98 enum switch_mode mode);
99
100 static
101 int lib_ring_buffer_poll_deliver(const struct lib_ring_buffer_config *config,
102 struct lib_ring_buffer *buf,
103 struct channel *chan)
104 {
105 unsigned long consumed_old, consumed_idx, commit_count, write_offset;
106
107 consumed_old = atomic_long_read(&buf->consumed);
108 consumed_idx = subbuf_index(consumed_old, chan);
109 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
110 /*
111 * No memory barrier here, since we are only interested
112 * in a statistically correct polling result. The next poll will
113 * get the data is we are racing. The mb() that ensures correct
114 * memory order is in get_subbuf.
115 */
116 write_offset = v_read(config, &buf->offset);
117
118 /*
119 * Check that the subbuffer we are trying to consume has been
120 * already fully committed.
121 */
122
123 if (((commit_count - chan->backend.subbuf_size)
124 & chan->commit_count_mask)
125 - (buf_trunc(consumed_old, chan)
126 >> chan->backend.num_subbuf_order)
127 != 0)
128 return 0;
129
130 /*
131 * Check that we are not about to read the same subbuffer in
132 * which the writer head is.
133 */
134 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_old, chan)
135 == 0)
136 return 0;
137
138 return 1;
139 }
140
141 /*
142 * Must be called under cpu hotplug protection.
143 */
144 void lib_ring_buffer_free(struct lib_ring_buffer *buf)
145 {
146 struct channel *chan = buf->backend.chan;
147
148 lib_ring_buffer_print_errors(chan, buf, buf->backend.cpu);
149 kfree(buf->commit_hot);
150 kfree(buf->commit_cold);
151
152 lib_ring_buffer_backend_free(&buf->backend);
153 }
154
155 /**
156 * lib_ring_buffer_reset - Reset ring buffer to initial values.
157 * @buf: Ring buffer.
158 *
159 * Effectively empty the ring buffer. Should be called when the buffer is not
160 * used for writing. The ring buffer can be opened for reading, but the reader
161 * should not be using the iterator concurrently with reset. The previous
162 * current iterator record is reset.
163 */
164 void lib_ring_buffer_reset(struct lib_ring_buffer *buf)
165 {
166 struct channel *chan = buf->backend.chan;
167 const struct lib_ring_buffer_config *config = &chan->backend.config;
168 unsigned int i;
169
170 /*
171 * Reset iterator first. It will put the subbuffer if it currently holds
172 * it.
173 */
174 lib_ring_buffer_iterator_reset(buf);
175 v_set(config, &buf->offset, 0);
176 for (i = 0; i < chan->backend.num_subbuf; i++) {
177 v_set(config, &buf->commit_hot[i].cc, 0);
178 v_set(config, &buf->commit_hot[i].seq, 0);
179 v_set(config, &buf->commit_cold[i].cc_sb, 0);
180 }
181 atomic_long_set(&buf->consumed, 0);
182 atomic_set(&buf->record_disabled, 0);
183 v_set(config, &buf->last_tsc, 0);
184 lib_ring_buffer_backend_reset(&buf->backend);
185 /* Don't reset number of active readers */
186 v_set(config, &buf->records_lost_full, 0);
187 v_set(config, &buf->records_lost_wrap, 0);
188 v_set(config, &buf->records_lost_big, 0);
189 v_set(config, &buf->records_count, 0);
190 v_set(config, &buf->records_overrun, 0);
191 buf->finalized = 0;
192 }
193 EXPORT_SYMBOL_GPL(lib_ring_buffer_reset);
194
195 /**
196 * channel_reset - Reset channel to initial values.
197 * @chan: Channel.
198 *
199 * Effectively empty the channel. Should be called when the channel is not used
200 * for writing. The channel can be opened for reading, but the reader should not
201 * be using the iterator concurrently with reset. The previous current iterator
202 * record is reset.
203 */
204 void channel_reset(struct channel *chan)
205 {
206 /*
207 * Reset iterators first. Will put the subbuffer if held for reading.
208 */
209 channel_iterator_reset(chan);
210 atomic_set(&chan->record_disabled, 0);
211 /* Don't reset commit_count_mask, still valid */
212 channel_backend_reset(&chan->backend);
213 /* Don't reset switch/read timer interval */
214 /* Don't reset notifiers and notifier enable bits */
215 /* Don't reset reader reference count */
216 }
217 EXPORT_SYMBOL_GPL(channel_reset);
218
219 /*
220 * Must be called under cpu hotplug protection.
221 */
222 int lib_ring_buffer_create(struct lib_ring_buffer *buf,
223 struct channel_backend *chanb, int cpu)
224 {
225 const struct lib_ring_buffer_config *config = &chanb->config;
226 struct channel *chan = container_of(chanb, struct channel, backend);
227 void *priv = chanb->priv;
228 size_t subbuf_header_size;
229 u64 tsc;
230 int ret;
231
232 /* Test for cpu hotplug */
233 if (buf->backend.allocated)
234 return 0;
235
236 /*
237 * Paranoia: per cpu dynamic allocation is not officially documented as
238 * zeroing the memory, so let's do it here too, just in case.
239 */
240 memset(buf, 0, sizeof(*buf));
241
242 ret = lib_ring_buffer_backend_create(&buf->backend, &chan->backend, cpu);
243 if (ret)
244 return ret;
245
246 buf->commit_hot =
247 kzalloc_node(ALIGN(sizeof(*buf->commit_hot)
248 * chan->backend.num_subbuf,
249 1 << INTERNODE_CACHE_SHIFT),
250 GFP_KERNEL | __GFP_NOWARN,
251 cpu_to_node(max(cpu, 0)));
252 if (!buf->commit_hot) {
253 ret = -ENOMEM;
254 goto free_chanbuf;
255 }
256
257 buf->commit_cold =
258 kzalloc_node(ALIGN(sizeof(*buf->commit_cold)
259 * chan->backend.num_subbuf,
260 1 << INTERNODE_CACHE_SHIFT),
261 GFP_KERNEL | __GFP_NOWARN,
262 cpu_to_node(max(cpu, 0)));
263 if (!buf->commit_cold) {
264 ret = -ENOMEM;
265 goto free_commit;
266 }
267
268 init_waitqueue_head(&buf->read_wait);
269 init_waitqueue_head(&buf->write_wait);
270 raw_spin_lock_init(&buf->raw_tick_nohz_spinlock);
271
272 /*
273 * Write the subbuffer header for first subbuffer so we know the total
274 * duration of data gathering.
275 */
276 subbuf_header_size = config->cb.subbuffer_header_size();
277 v_set(config, &buf->offset, subbuf_header_size);
278 subbuffer_id_clear_noref(config, &buf->backend.buf_wsb[0].id);
279 tsc = config->cb.ring_buffer_clock_read(buf->backend.chan);
280 config->cb.buffer_begin(buf, tsc, 0);
281 v_add(config, subbuf_header_size, &buf->commit_hot[0].cc);
282
283 if (config->cb.buffer_create) {
284 ret = config->cb.buffer_create(buf, priv, cpu, chanb->name);
285 if (ret)
286 goto free_init;
287 }
288
289 /*
290 * Ensure the buffer is ready before setting it to allocated and setting
291 * the cpumask.
292 * Used for cpu hotplug vs cpumask iteration.
293 */
294 smp_wmb();
295 buf->backend.allocated = 1;
296
297 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
298 CHAN_WARN_ON(chan, cpumask_test_cpu(cpu,
299 chan->backend.cpumask));
300 cpumask_set_cpu(cpu, chan->backend.cpumask);
301 }
302
303 return 0;
304
305 /* Error handling */
306 free_init:
307 kfree(buf->commit_cold);
308 free_commit:
309 kfree(buf->commit_hot);
310 free_chanbuf:
311 lib_ring_buffer_backend_free(&buf->backend);
312 return ret;
313 }
314
315 static void switch_buffer_timer(unsigned long data)
316 {
317 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
318 struct channel *chan = buf->backend.chan;
319 const struct lib_ring_buffer_config *config = &chan->backend.config;
320
321 /*
322 * Only flush buffers periodically if readers are active.
323 */
324 if (atomic_long_read(&buf->active_readers))
325 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
326
327 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
328 lttng_mod_timer_pinned(&buf->switch_timer,
329 jiffies + chan->switch_timer_interval);
330 else
331 mod_timer(&buf->switch_timer,
332 jiffies + chan->switch_timer_interval);
333 }
334
335 /*
336 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
337 */
338 static void lib_ring_buffer_start_switch_timer(struct lib_ring_buffer *buf)
339 {
340 struct channel *chan = buf->backend.chan;
341 const struct lib_ring_buffer_config *config = &chan->backend.config;
342
343 if (!chan->switch_timer_interval || buf->switch_timer_enabled)
344 return;
345
346 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
347 lttng_init_timer_pinned(&buf->switch_timer);
348 else
349 init_timer(&buf->switch_timer);
350
351 buf->switch_timer.function = switch_buffer_timer;
352 buf->switch_timer.expires = jiffies + chan->switch_timer_interval;
353 buf->switch_timer.data = (unsigned long)buf;
354 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
355 add_timer_on(&buf->switch_timer, buf->backend.cpu);
356 else
357 add_timer(&buf->switch_timer);
358 buf->switch_timer_enabled = 1;
359 }
360
361 /*
362 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
363 */
364 static void lib_ring_buffer_stop_switch_timer(struct lib_ring_buffer *buf)
365 {
366 struct channel *chan = buf->backend.chan;
367
368 if (!chan->switch_timer_interval || !buf->switch_timer_enabled)
369 return;
370
371 del_timer_sync(&buf->switch_timer);
372 buf->switch_timer_enabled = 0;
373 }
374
375 /*
376 * Polling timer to check the channels for data.
377 */
378 static void read_buffer_timer(unsigned long data)
379 {
380 struct lib_ring_buffer *buf = (struct lib_ring_buffer *)data;
381 struct channel *chan = buf->backend.chan;
382 const struct lib_ring_buffer_config *config = &chan->backend.config;
383
384 CHAN_WARN_ON(chan, !buf->backend.allocated);
385
386 if (atomic_long_read(&buf->active_readers)
387 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
388 wake_up_interruptible(&buf->read_wait);
389 wake_up_interruptible(&chan->read_wait);
390 }
391
392 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
393 lttng_mod_timer_pinned(&buf->read_timer,
394 jiffies + chan->read_timer_interval);
395 else
396 mod_timer(&buf->read_timer,
397 jiffies + chan->read_timer_interval);
398 }
399
400 /*
401 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
402 */
403 static void lib_ring_buffer_start_read_timer(struct lib_ring_buffer *buf)
404 {
405 struct channel *chan = buf->backend.chan;
406 const struct lib_ring_buffer_config *config = &chan->backend.config;
407
408 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
409 || !chan->read_timer_interval
410 || buf->read_timer_enabled)
411 return;
412
413 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
414 lttng_init_timer_pinned(&buf->read_timer);
415 else
416 init_timer(&buf->read_timer);
417
418 buf->read_timer.function = read_buffer_timer;
419 buf->read_timer.expires = jiffies + chan->read_timer_interval;
420 buf->read_timer.data = (unsigned long)buf;
421
422 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
423 add_timer_on(&buf->read_timer, buf->backend.cpu);
424 else
425 add_timer(&buf->read_timer);
426 buf->read_timer_enabled = 1;
427 }
428
429 /*
430 * Called with ring_buffer_nohz_lock held for per-cpu buffers.
431 */
432 static void lib_ring_buffer_stop_read_timer(struct lib_ring_buffer *buf)
433 {
434 struct channel *chan = buf->backend.chan;
435 const struct lib_ring_buffer_config *config = &chan->backend.config;
436
437 if (config->wakeup != RING_BUFFER_WAKEUP_BY_TIMER
438 || !chan->read_timer_interval
439 || !buf->read_timer_enabled)
440 return;
441
442 del_timer_sync(&buf->read_timer);
443 /*
444 * do one more check to catch data that has been written in the last
445 * timer period.
446 */
447 if (lib_ring_buffer_poll_deliver(config, buf, chan)) {
448 wake_up_interruptible(&buf->read_wait);
449 wake_up_interruptible(&chan->read_wait);
450 }
451 buf->read_timer_enabled = 0;
452 }
453
454 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
455
456 enum cpuhp_state lttng_rb_hp_prepare;
457 enum cpuhp_state lttng_rb_hp_online;
458
459 void lttng_rb_set_hp_prepare(enum cpuhp_state val)
460 {
461 lttng_rb_hp_prepare = val;
462 }
463 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_prepare);
464
465 void lttng_rb_set_hp_online(enum cpuhp_state val)
466 {
467 lttng_rb_hp_online = val;
468 }
469 EXPORT_SYMBOL_GPL(lttng_rb_set_hp_online);
470
471 int lttng_cpuhp_rb_frontend_dead(unsigned int cpu,
472 struct lttng_cpuhp_node *node)
473 {
474 struct channel *chan = container_of(node, struct channel,
475 cpuhp_prepare);
476 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
477 const struct lib_ring_buffer_config *config = &chan->backend.config;
478
479 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
480
481 /*
482 * Performing a buffer switch on a remote CPU. Performed by
483 * the CPU responsible for doing the hotunplug after the target
484 * CPU stopped running completely. Ensures that all data
485 * from that remote CPU is flushed.
486 */
487 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
488 return 0;
489 }
490 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_dead);
491
492 int lttng_cpuhp_rb_frontend_online(unsigned int cpu,
493 struct lttng_cpuhp_node *node)
494 {
495 struct channel *chan = container_of(node, struct channel,
496 cpuhp_online);
497 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
498 const struct lib_ring_buffer_config *config = &chan->backend.config;
499
500 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
501
502 wake_up_interruptible(&chan->hp_wait);
503 lib_ring_buffer_start_switch_timer(buf);
504 lib_ring_buffer_start_read_timer(buf);
505 return 0;
506 }
507 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_online);
508
509 int lttng_cpuhp_rb_frontend_offline(unsigned int cpu,
510 struct lttng_cpuhp_node *node)
511 {
512 struct channel *chan = container_of(node, struct channel,
513 cpuhp_online);
514 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
515 const struct lib_ring_buffer_config *config = &chan->backend.config;
516
517 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
518
519 lib_ring_buffer_stop_switch_timer(buf);
520 lib_ring_buffer_stop_read_timer(buf);
521 return 0;
522 }
523 EXPORT_SYMBOL_GPL(lttng_cpuhp_rb_frontend_offline);
524
525 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
526
527 #ifdef CONFIG_HOTPLUG_CPU
528
529 /**
530 * lib_ring_buffer_cpu_hp_callback - CPU hotplug callback
531 * @nb: notifier block
532 * @action: hotplug action to take
533 * @hcpu: CPU number
534 *
535 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
536 */
537 static
538 int lib_ring_buffer_cpu_hp_callback(struct notifier_block *nb,
539 unsigned long action,
540 void *hcpu)
541 {
542 unsigned int cpu = (unsigned long)hcpu;
543 struct channel *chan = container_of(nb, struct channel,
544 cpu_hp_notifier);
545 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf, cpu);
546 const struct lib_ring_buffer_config *config = &chan->backend.config;
547
548 if (!chan->cpu_hp_enable)
549 return NOTIFY_DONE;
550
551 CHAN_WARN_ON(chan, config->alloc == RING_BUFFER_ALLOC_GLOBAL);
552
553 switch (action) {
554 case CPU_DOWN_FAILED:
555 case CPU_DOWN_FAILED_FROZEN:
556 case CPU_ONLINE:
557 case CPU_ONLINE_FROZEN:
558 wake_up_interruptible(&chan->hp_wait);
559 lib_ring_buffer_start_switch_timer(buf);
560 lib_ring_buffer_start_read_timer(buf);
561 return NOTIFY_OK;
562
563 case CPU_DOWN_PREPARE:
564 case CPU_DOWN_PREPARE_FROZEN:
565 lib_ring_buffer_stop_switch_timer(buf);
566 lib_ring_buffer_stop_read_timer(buf);
567 return NOTIFY_OK;
568
569 case CPU_DEAD:
570 case CPU_DEAD_FROZEN:
571 /*
572 * Performing a buffer switch on a remote CPU. Performed by
573 * the CPU responsible for doing the hotunplug after the target
574 * CPU stopped running completely. Ensures that all data
575 * from that remote CPU is flushed.
576 */
577 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
578 return NOTIFY_OK;
579
580 default:
581 return NOTIFY_DONE;
582 }
583 }
584
585 #endif
586
587 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
588
589 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
590 /*
591 * For per-cpu buffers, call the reader wakeups before switching the buffer, so
592 * that wake-up-tracing generated events are flushed before going idle (in
593 * tick_nohz). We test if the spinlock is locked to deal with the race where
594 * readers try to sample the ring buffer before we perform the switch. We let
595 * the readers retry in that case. If there is data in the buffer, the wake up
596 * is going to forbid the CPU running the reader thread from going idle.
597 */
598 static int notrace ring_buffer_tick_nohz_callback(struct notifier_block *nb,
599 unsigned long val,
600 void *data)
601 {
602 struct channel *chan = container_of(nb, struct channel,
603 tick_nohz_notifier);
604 const struct lib_ring_buffer_config *config = &chan->backend.config;
605 struct lib_ring_buffer *buf;
606 int cpu = smp_processor_id();
607
608 if (config->alloc != RING_BUFFER_ALLOC_PER_CPU) {
609 /*
610 * We don't support keeping the system idle with global buffers
611 * and streaming active. In order to do so, we would need to
612 * sample a non-nohz-cpumask racelessly with the nohz updates
613 * without adding synchronization overhead to nohz. Leave this
614 * use-case out for now.
615 */
616 return 0;
617 }
618
619 buf = channel_get_ring_buffer(config, chan, cpu);
620 switch (val) {
621 case TICK_NOHZ_FLUSH:
622 raw_spin_lock(&buf->raw_tick_nohz_spinlock);
623 if (config->wakeup == RING_BUFFER_WAKEUP_BY_TIMER
624 && chan->read_timer_interval
625 && atomic_long_read(&buf->active_readers)
626 && (lib_ring_buffer_poll_deliver(config, buf, chan)
627 || lib_ring_buffer_pending_data(config, buf, chan))) {
628 wake_up_interruptible(&buf->read_wait);
629 wake_up_interruptible(&chan->read_wait);
630 }
631 if (chan->switch_timer_interval)
632 lib_ring_buffer_switch_slow(buf, SWITCH_ACTIVE);
633 raw_spin_unlock(&buf->raw_tick_nohz_spinlock);
634 break;
635 case TICK_NOHZ_STOP:
636 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
637 lib_ring_buffer_stop_switch_timer(buf);
638 lib_ring_buffer_stop_read_timer(buf);
639 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
640 break;
641 case TICK_NOHZ_RESTART:
642 spin_lock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
643 lib_ring_buffer_start_read_timer(buf);
644 lib_ring_buffer_start_switch_timer(buf);
645 spin_unlock(lttng_this_cpu_ptr(&ring_buffer_nohz_lock));
646 break;
647 }
648
649 return 0;
650 }
651
652 void notrace lib_ring_buffer_tick_nohz_flush(void)
653 {
654 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_FLUSH,
655 NULL);
656 }
657
658 void notrace lib_ring_buffer_tick_nohz_stop(void)
659 {
660 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_STOP,
661 NULL);
662 }
663
664 void notrace lib_ring_buffer_tick_nohz_restart(void)
665 {
666 atomic_notifier_call_chain(&tick_nohz_notifier, TICK_NOHZ_RESTART,
667 NULL);
668 }
669 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
670
671 /*
672 * Holds CPU hotplug.
673 */
674 static void channel_unregister_notifiers(struct channel *chan)
675 {
676 const struct lib_ring_buffer_config *config = &chan->backend.config;
677
678 channel_iterator_unregister_notifiers(chan);
679 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
680 #ifdef CONFIG_NO_HZ
681 /*
682 * Remove the nohz notifier first, so we are certain we stop
683 * the timers.
684 */
685 atomic_notifier_chain_unregister(&tick_nohz_notifier,
686 &chan->tick_nohz_notifier);
687 /*
688 * ring_buffer_nohz_lock will not be needed below, because
689 * we just removed the notifiers, which were the only source of
690 * concurrency.
691 */
692 #endif /* CONFIG_NO_HZ */
693 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
694 {
695 int ret;
696
697 ret = cpuhp_state_remove_instance(lttng_rb_hp_online,
698 &chan->cpuhp_online.node);
699 WARN_ON(ret);
700 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
701 &chan->cpuhp_prepare.node);
702 WARN_ON(ret);
703 }
704 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
705 {
706 int cpu;
707
708 #ifdef CONFIG_HOTPLUG_CPU
709 get_online_cpus();
710 chan->cpu_hp_enable = 0;
711 for_each_online_cpu(cpu) {
712 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
713 cpu);
714 lib_ring_buffer_stop_switch_timer(buf);
715 lib_ring_buffer_stop_read_timer(buf);
716 }
717 put_online_cpus();
718 unregister_cpu_notifier(&chan->cpu_hp_notifier);
719 #else
720 for_each_possible_cpu(cpu) {
721 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
722 cpu);
723 lib_ring_buffer_stop_switch_timer(buf);
724 lib_ring_buffer_stop_read_timer(buf);
725 }
726 #endif
727 }
728 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
729 } else {
730 struct lib_ring_buffer *buf = chan->backend.buf;
731
732 lib_ring_buffer_stop_switch_timer(buf);
733 lib_ring_buffer_stop_read_timer(buf);
734 }
735 channel_backend_unregister_notifiers(&chan->backend);
736 }
737
738 static void lib_ring_buffer_set_quiescent(struct lib_ring_buffer *buf)
739 {
740 if (!buf->quiescent) {
741 buf->quiescent = true;
742 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
743 }
744 }
745
746 static void lib_ring_buffer_clear_quiescent(struct lib_ring_buffer *buf)
747 {
748 buf->quiescent = false;
749 }
750
751 void lib_ring_buffer_set_quiescent_channel(struct channel *chan)
752 {
753 int cpu;
754 const struct lib_ring_buffer_config *config = &chan->backend.config;
755
756 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
757 get_online_cpus();
758 for_each_channel_cpu(cpu, chan) {
759 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
760 cpu);
761
762 lib_ring_buffer_set_quiescent(buf);
763 }
764 put_online_cpus();
765 } else {
766 struct lib_ring_buffer *buf = chan->backend.buf;
767
768 lib_ring_buffer_set_quiescent(buf);
769 }
770 }
771 EXPORT_SYMBOL_GPL(lib_ring_buffer_set_quiescent_channel);
772
773 void lib_ring_buffer_clear_quiescent_channel(struct channel *chan)
774 {
775 int cpu;
776 const struct lib_ring_buffer_config *config = &chan->backend.config;
777
778 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
779 get_online_cpus();
780 for_each_channel_cpu(cpu, chan) {
781 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
782 cpu);
783
784 lib_ring_buffer_clear_quiescent(buf);
785 }
786 put_online_cpus();
787 } else {
788 struct lib_ring_buffer *buf = chan->backend.buf;
789
790 lib_ring_buffer_clear_quiescent(buf);
791 }
792 }
793 EXPORT_SYMBOL_GPL(lib_ring_buffer_clear_quiescent_channel);
794
795 static void channel_free(struct channel *chan)
796 {
797 if (chan->backend.release_priv_ops) {
798 chan->backend.release_priv_ops(chan->backend.priv_ops);
799 }
800 channel_iterator_free(chan);
801 channel_backend_free(&chan->backend);
802 kfree(chan);
803 }
804
805 /**
806 * channel_create - Create channel.
807 * @config: ring buffer instance configuration
808 * @name: name of the channel
809 * @priv: ring buffer client private data
810 * @buf_addr: pointer the the beginning of the preallocated buffer contiguous
811 * address mapping. It is used only by RING_BUFFER_STATIC
812 * configuration. It can be set to NULL for other backends.
813 * @subbuf_size: subbuffer size
814 * @num_subbuf: number of subbuffers
815 * @switch_timer_interval: Time interval (in us) to fill sub-buffers with
816 * padding to let readers get those sub-buffers.
817 * Used for live streaming.
818 * @read_timer_interval: Time interval (in us) to wake up pending readers.
819 *
820 * Holds cpu hotplug.
821 * Returns NULL on failure.
822 */
823 struct channel *channel_create(const struct lib_ring_buffer_config *config,
824 const char *name, void *priv, void *buf_addr,
825 size_t subbuf_size,
826 size_t num_subbuf, unsigned int switch_timer_interval,
827 unsigned int read_timer_interval)
828 {
829 int ret;
830 struct channel *chan;
831
832 if (lib_ring_buffer_check_config(config, switch_timer_interval,
833 read_timer_interval))
834 return NULL;
835
836 chan = kzalloc(sizeof(struct channel), GFP_KERNEL);
837 if (!chan)
838 return NULL;
839
840 ret = channel_backend_init(&chan->backend, name, config, priv,
841 subbuf_size, num_subbuf);
842 if (ret)
843 goto error;
844
845 ret = channel_iterator_init(chan);
846 if (ret)
847 goto error_free_backend;
848
849 chan->commit_count_mask = (~0UL >> chan->backend.num_subbuf_order);
850 chan->switch_timer_interval = usecs_to_jiffies(switch_timer_interval);
851 chan->read_timer_interval = usecs_to_jiffies(read_timer_interval);
852 kref_init(&chan->ref);
853 init_waitqueue_head(&chan->read_wait);
854 init_waitqueue_head(&chan->hp_wait);
855
856 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
857 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
858 chan->cpuhp_prepare.component = LTTNG_RING_BUFFER_FRONTEND;
859 ret = cpuhp_state_add_instance_nocalls(lttng_rb_hp_prepare,
860 &chan->cpuhp_prepare.node);
861 if (ret)
862 goto cpuhp_prepare_error;
863
864 chan->cpuhp_online.component = LTTNG_RING_BUFFER_FRONTEND;
865 ret = cpuhp_state_add_instance(lttng_rb_hp_online,
866 &chan->cpuhp_online.node);
867 if (ret)
868 goto cpuhp_online_error;
869 #else /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
870 {
871 int cpu;
872 /*
873 * In case of non-hotplug cpu, if the ring-buffer is allocated
874 * in early initcall, it will not be notified of secondary cpus.
875 * In that off case, we need to allocate for all possible cpus.
876 */
877 #ifdef CONFIG_HOTPLUG_CPU
878 chan->cpu_hp_notifier.notifier_call =
879 lib_ring_buffer_cpu_hp_callback;
880 chan->cpu_hp_notifier.priority = 6;
881 register_cpu_notifier(&chan->cpu_hp_notifier);
882
883 get_online_cpus();
884 for_each_online_cpu(cpu) {
885 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
886 cpu);
887 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
888 lib_ring_buffer_start_switch_timer(buf);
889 lib_ring_buffer_start_read_timer(buf);
890 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
891 }
892 chan->cpu_hp_enable = 1;
893 put_online_cpus();
894 #else
895 for_each_possible_cpu(cpu) {
896 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
897 cpu);
898 spin_lock(&per_cpu(ring_buffer_nohz_lock, cpu));
899 lib_ring_buffer_start_switch_timer(buf);
900 lib_ring_buffer_start_read_timer(buf);
901 spin_unlock(&per_cpu(ring_buffer_nohz_lock, cpu));
902 }
903 #endif
904 }
905 #endif /* #else #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
906
907 #if defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER)
908 /* Only benefit from NO_HZ idle with per-cpu buffers for now. */
909 chan->tick_nohz_notifier.notifier_call =
910 ring_buffer_tick_nohz_callback;
911 chan->tick_nohz_notifier.priority = ~0U;
912 atomic_notifier_chain_register(&tick_nohz_notifier,
913 &chan->tick_nohz_notifier);
914 #endif /* defined(CONFIG_NO_HZ) && defined(CONFIG_LIB_RING_BUFFER) */
915
916 } else {
917 struct lib_ring_buffer *buf = chan->backend.buf;
918
919 lib_ring_buffer_start_switch_timer(buf);
920 lib_ring_buffer_start_read_timer(buf);
921 }
922
923 return chan;
924
925 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0))
926 cpuhp_online_error:
927 ret = cpuhp_state_remove_instance_nocalls(lttng_rb_hp_prepare,
928 &chan->cpuhp_prepare.node);
929 WARN_ON(ret);
930 cpuhp_prepare_error:
931 #endif /* #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4,10,0)) */
932 error_free_backend:
933 channel_backend_free(&chan->backend);
934 error:
935 kfree(chan);
936 return NULL;
937 }
938 EXPORT_SYMBOL_GPL(channel_create);
939
940 static
941 void channel_release(struct kref *kref)
942 {
943 struct channel *chan = container_of(kref, struct channel, ref);
944 channel_free(chan);
945 }
946
947 /**
948 * channel_destroy - Finalize, wait for q.s. and destroy channel.
949 * @chan: channel to destroy
950 *
951 * Holds cpu hotplug.
952 * Call "destroy" callback, finalize channels, and then decrement the
953 * channel reference count. Note that when readers have completed data
954 * consumption of finalized channels, get_subbuf() will return -ENODATA.
955 * They should release their handle at that point. Returns the private
956 * data pointer.
957 */
958 void *channel_destroy(struct channel *chan)
959 {
960 int cpu;
961 const struct lib_ring_buffer_config *config = &chan->backend.config;
962 void *priv;
963
964 channel_unregister_notifiers(chan);
965
966 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
967 /*
968 * No need to hold cpu hotplug, because all notifiers have been
969 * unregistered.
970 */
971 for_each_channel_cpu(cpu, chan) {
972 struct lib_ring_buffer *buf = per_cpu_ptr(chan->backend.buf,
973 cpu);
974
975 if (config->cb.buffer_finalize)
976 config->cb.buffer_finalize(buf,
977 chan->backend.priv,
978 cpu);
979 if (buf->backend.allocated)
980 lib_ring_buffer_set_quiescent(buf);
981 /*
982 * Perform flush before writing to finalized.
983 */
984 smp_wmb();
985 ACCESS_ONCE(buf->finalized) = 1;
986 wake_up_interruptible(&buf->read_wait);
987 }
988 } else {
989 struct lib_ring_buffer *buf = chan->backend.buf;
990
991 if (config->cb.buffer_finalize)
992 config->cb.buffer_finalize(buf, chan->backend.priv, -1);
993 if (buf->backend.allocated)
994 lib_ring_buffer_set_quiescent(buf);
995 /*
996 * Perform flush before writing to finalized.
997 */
998 smp_wmb();
999 ACCESS_ONCE(buf->finalized) = 1;
1000 wake_up_interruptible(&buf->read_wait);
1001 }
1002 ACCESS_ONCE(chan->finalized) = 1;
1003 wake_up_interruptible(&chan->hp_wait);
1004 wake_up_interruptible(&chan->read_wait);
1005 priv = chan->backend.priv;
1006 kref_put(&chan->ref, channel_release);
1007 return priv;
1008 }
1009 EXPORT_SYMBOL_GPL(channel_destroy);
1010
1011 struct lib_ring_buffer *channel_get_ring_buffer(
1012 const struct lib_ring_buffer_config *config,
1013 struct channel *chan, int cpu)
1014 {
1015 if (config->alloc == RING_BUFFER_ALLOC_GLOBAL)
1016 return chan->backend.buf;
1017 else
1018 return per_cpu_ptr(chan->backend.buf, cpu);
1019 }
1020 EXPORT_SYMBOL_GPL(channel_get_ring_buffer);
1021
1022 int lib_ring_buffer_open_read(struct lib_ring_buffer *buf)
1023 {
1024 struct channel *chan = buf->backend.chan;
1025
1026 if (!atomic_long_add_unless(&buf->active_readers, 1, 1))
1027 return -EBUSY;
1028 if (!lttng_kref_get(&chan->ref)) {
1029 atomic_long_dec(&buf->active_readers);
1030 return -EOVERFLOW;
1031 }
1032 lttng_smp_mb__after_atomic();
1033 return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(lib_ring_buffer_open_read);
1036
1037 void lib_ring_buffer_release_read(struct lib_ring_buffer *buf)
1038 {
1039 struct channel *chan = buf->backend.chan;
1040
1041 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1042 lttng_smp_mb__before_atomic();
1043 atomic_long_dec(&buf->active_readers);
1044 kref_put(&chan->ref, channel_release);
1045 }
1046 EXPORT_SYMBOL_GPL(lib_ring_buffer_release_read);
1047
1048 /*
1049 * Promote compiler barrier to a smp_mb().
1050 * For the specific ring buffer case, this IPI call should be removed if the
1051 * architecture does not reorder writes. This should eventually be provided by
1052 * a separate architecture-specific infrastructure.
1053 */
1054 static void remote_mb(void *info)
1055 {
1056 smp_mb();
1057 }
1058
1059 /**
1060 * lib_ring_buffer_snapshot - save subbuffer position snapshot (for read)
1061 * @buf: ring buffer
1062 * @consumed: consumed count indicating the position where to read
1063 * @produced: produced count, indicates position when to stop reading
1064 *
1065 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1066 * data to read at consumed position, or 0 if the get operation succeeds.
1067 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1068 */
1069
1070 int lib_ring_buffer_snapshot(struct lib_ring_buffer *buf,
1071 unsigned long *consumed, unsigned long *produced)
1072 {
1073 struct channel *chan = buf->backend.chan;
1074 const struct lib_ring_buffer_config *config = &chan->backend.config;
1075 unsigned long consumed_cur, write_offset;
1076 int finalized;
1077
1078 retry:
1079 finalized = ACCESS_ONCE(buf->finalized);
1080 /*
1081 * Read finalized before counters.
1082 */
1083 smp_rmb();
1084 consumed_cur = atomic_long_read(&buf->consumed);
1085 /*
1086 * No need to issue a memory barrier between consumed count read and
1087 * write offset read, because consumed count can only change
1088 * concurrently in overwrite mode, and we keep a sequence counter
1089 * identifier derived from the write offset to check we are getting
1090 * the same sub-buffer we are expecting (the sub-buffers are atomically
1091 * "tagged" upon writes, tags are checked upon read).
1092 */
1093 write_offset = v_read(config, &buf->offset);
1094
1095 /*
1096 * Check that we are not about to read the same subbuffer in
1097 * which the writer head is.
1098 */
1099 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed_cur, chan)
1100 == 0)
1101 goto nodata;
1102
1103 *consumed = consumed_cur;
1104 *produced = subbuf_trunc(write_offset, chan);
1105
1106 return 0;
1107
1108 nodata:
1109 /*
1110 * The memory barriers __wait_event()/wake_up_interruptible() take care
1111 * of "raw_spin_is_locked" memory ordering.
1112 */
1113 if (finalized)
1114 return -ENODATA;
1115 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1116 goto retry;
1117 else
1118 return -EAGAIN;
1119 }
1120 EXPORT_SYMBOL_GPL(lib_ring_buffer_snapshot);
1121
1122 /**
1123 * Performs the same function as lib_ring_buffer_snapshot(), but the positions
1124 * are saved regardless of whether the consumed and produced positions are
1125 * in the same subbuffer.
1126 * @buf: ring buffer
1127 * @consumed: consumed byte count indicating the last position read
1128 * @produced: produced byte count indicating the last position written
1129 *
1130 * This function is meant to provide information on the exact producer and
1131 * consumer positions without regard for the "snapshot" feature.
1132 */
1133 int lib_ring_buffer_snapshot_sample_positions(struct lib_ring_buffer *buf,
1134 unsigned long *consumed, unsigned long *produced)
1135 {
1136 struct channel *chan = buf->backend.chan;
1137 const struct lib_ring_buffer_config *config = &chan->backend.config;
1138
1139 smp_rmb();
1140 *consumed = atomic_long_read(&buf->consumed);
1141 /*
1142 * No need to issue a memory barrier between consumed count read and
1143 * write offset read, because consumed count can only change
1144 * concurrently in overwrite mode, and we keep a sequence counter
1145 * identifier derived from the write offset to check we are getting
1146 * the same sub-buffer we are expecting (the sub-buffers are atomically
1147 * "tagged" upon writes, tags are checked upon read).
1148 */
1149 *produced = v_read(config, &buf->offset);
1150 return 0;
1151 }
1152
1153 /**
1154 * lib_ring_buffer_put_snapshot - move consumed counter forward
1155 *
1156 * Should only be called from consumer context.
1157 * @buf: ring buffer
1158 * @consumed_new: new consumed count value
1159 */
1160 void lib_ring_buffer_move_consumer(struct lib_ring_buffer *buf,
1161 unsigned long consumed_new)
1162 {
1163 struct lib_ring_buffer_backend *bufb = &buf->backend;
1164 struct channel *chan = bufb->chan;
1165 unsigned long consumed;
1166
1167 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1168
1169 /*
1170 * Only push the consumed value forward.
1171 * If the consumed cmpxchg fails, this is because we have been pushed by
1172 * the writer in flight recorder mode.
1173 */
1174 consumed = atomic_long_read(&buf->consumed);
1175 while ((long) consumed - (long) consumed_new < 0)
1176 consumed = atomic_long_cmpxchg(&buf->consumed, consumed,
1177 consumed_new);
1178 /* Wake-up the metadata producer */
1179 wake_up_interruptible(&buf->write_wait);
1180 }
1181 EXPORT_SYMBOL_GPL(lib_ring_buffer_move_consumer);
1182
1183 /**
1184 * lib_ring_buffer_get_subbuf - get exclusive access to subbuffer for reading
1185 * @buf: ring buffer
1186 * @consumed: consumed count indicating the position where to read
1187 *
1188 * Returns -ENODATA if buffer is finalized, -EAGAIN if there is currently no
1189 * data to read at consumed position, or 0 if the get operation succeeds.
1190 * Busy-loop trying to get data if the tick_nohz sequence lock is held.
1191 */
1192 int lib_ring_buffer_get_subbuf(struct lib_ring_buffer *buf,
1193 unsigned long consumed)
1194 {
1195 struct channel *chan = buf->backend.chan;
1196 const struct lib_ring_buffer_config *config = &chan->backend.config;
1197 unsigned long consumed_cur, consumed_idx, commit_count, write_offset;
1198 int ret;
1199 int finalized;
1200
1201 if (buf->get_subbuf) {
1202 /*
1203 * Reader is trying to get a subbuffer twice.
1204 */
1205 CHAN_WARN_ON(chan, 1);
1206 return -EBUSY;
1207 }
1208 retry:
1209 finalized = ACCESS_ONCE(buf->finalized);
1210 /*
1211 * Read finalized before counters.
1212 */
1213 smp_rmb();
1214 consumed_cur = atomic_long_read(&buf->consumed);
1215 consumed_idx = subbuf_index(consumed, chan);
1216 commit_count = v_read(config, &buf->commit_cold[consumed_idx].cc_sb);
1217 /*
1218 * Make sure we read the commit count before reading the buffer
1219 * data and the write offset. Correct consumed offset ordering
1220 * wrt commit count is insured by the use of cmpxchg to update
1221 * the consumed offset.
1222 * smp_call_function_single can fail if the remote CPU is offline,
1223 * this is OK because then there is no wmb to execute there.
1224 * If our thread is executing on the same CPU as the on the buffers
1225 * belongs to, we don't have to synchronize it at all. If we are
1226 * migrated, the scheduler will take care of the memory barriers.
1227 * Normally, smp_call_function_single() should ensure program order when
1228 * executing the remote function, which implies that it surrounds the
1229 * function execution with :
1230 * smp_mb()
1231 * send IPI
1232 * csd_lock_wait
1233 * recv IPI
1234 * smp_mb()
1235 * exec. function
1236 * smp_mb()
1237 * csd unlock
1238 * smp_mb()
1239 *
1240 * However, smp_call_function_single() does not seem to clearly execute
1241 * such barriers. It depends on spinlock semantic to provide the barrier
1242 * before executing the IPI and, when busy-looping, csd_lock_wait only
1243 * executes smp_mb() when it has to wait for the other CPU.
1244 *
1245 * I don't trust this code. Therefore, let's add the smp_mb() sequence
1246 * required ourself, even if duplicated. It has no performance impact
1247 * anyway.
1248 *
1249 * smp_mb() is needed because smp_rmb() and smp_wmb() only order read vs
1250 * read and write vs write. They do not ensure core synchronization. We
1251 * really have to ensure total order between the 3 barriers running on
1252 * the 2 CPUs.
1253 */
1254 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1255 if (config->sync == RING_BUFFER_SYNC_PER_CPU
1256 && config->alloc == RING_BUFFER_ALLOC_PER_CPU) {
1257 if (raw_smp_processor_id() != buf->backend.cpu) {
1258 /* Total order with IPI handler smp_mb() */
1259 smp_mb();
1260 smp_call_function_single(buf->backend.cpu,
1261 remote_mb, NULL, 1);
1262 /* Total order with IPI handler smp_mb() */
1263 smp_mb();
1264 }
1265 } else {
1266 /* Total order with IPI handler smp_mb() */
1267 smp_mb();
1268 smp_call_function(remote_mb, NULL, 1);
1269 /* Total order with IPI handler smp_mb() */
1270 smp_mb();
1271 }
1272 } else {
1273 /*
1274 * Local rmb to match the remote wmb to read the commit count
1275 * before the buffer data and the write offset.
1276 */
1277 smp_rmb();
1278 }
1279
1280 write_offset = v_read(config, &buf->offset);
1281
1282 /*
1283 * Check that the buffer we are getting is after or at consumed_cur
1284 * position.
1285 */
1286 if ((long) subbuf_trunc(consumed, chan)
1287 - (long) subbuf_trunc(consumed_cur, chan) < 0)
1288 goto nodata;
1289
1290 /*
1291 * Check that the subbuffer we are trying to consume has been
1292 * already fully committed.
1293 */
1294 if (((commit_count - chan->backend.subbuf_size)
1295 & chan->commit_count_mask)
1296 - (buf_trunc(consumed, chan)
1297 >> chan->backend.num_subbuf_order)
1298 != 0)
1299 goto nodata;
1300
1301 /*
1302 * Check that we are not about to read the same subbuffer in
1303 * which the writer head is.
1304 */
1305 if (subbuf_trunc(write_offset, chan) - subbuf_trunc(consumed, chan)
1306 == 0)
1307 goto nodata;
1308
1309 /*
1310 * Failure to get the subbuffer causes a busy-loop retry without going
1311 * to a wait queue. These are caused by short-lived race windows where
1312 * the writer is getting access to a subbuffer we were trying to get
1313 * access to. Also checks that the "consumed" buffer count we are
1314 * looking for matches the one contained in the subbuffer id.
1315 */
1316 ret = update_read_sb_index(config, &buf->backend, &chan->backend,
1317 consumed_idx, buf_trunc_val(consumed, chan));
1318 if (ret)
1319 goto retry;
1320 subbuffer_id_clear_noref(config, &buf->backend.buf_rsb.id);
1321
1322 buf->get_subbuf_consumed = consumed;
1323 buf->get_subbuf = 1;
1324
1325 return 0;
1326
1327 nodata:
1328 /*
1329 * The memory barriers __wait_event()/wake_up_interruptible() take care
1330 * of "raw_spin_is_locked" memory ordering.
1331 */
1332 if (finalized)
1333 return -ENODATA;
1334 else if (raw_spin_is_locked(&buf->raw_tick_nohz_spinlock))
1335 goto retry;
1336 else
1337 return -EAGAIN;
1338 }
1339 EXPORT_SYMBOL_GPL(lib_ring_buffer_get_subbuf);
1340
1341 /**
1342 * lib_ring_buffer_put_subbuf - release exclusive subbuffer access
1343 * @buf: ring buffer
1344 */
1345 void lib_ring_buffer_put_subbuf(struct lib_ring_buffer *buf)
1346 {
1347 struct lib_ring_buffer_backend *bufb = &buf->backend;
1348 struct channel *chan = bufb->chan;
1349 const struct lib_ring_buffer_config *config = &chan->backend.config;
1350 unsigned long read_sb_bindex, consumed_idx, consumed;
1351
1352 CHAN_WARN_ON(chan, atomic_long_read(&buf->active_readers) != 1);
1353
1354 if (!buf->get_subbuf) {
1355 /*
1356 * Reader puts a subbuffer it did not get.
1357 */
1358 CHAN_WARN_ON(chan, 1);
1359 return;
1360 }
1361 consumed = buf->get_subbuf_consumed;
1362 buf->get_subbuf = 0;
1363
1364 /*
1365 * Clear the records_unread counter. (overruns counter)
1366 * Can still be non-zero if a file reader simply grabbed the data
1367 * without using iterators.
1368 * Can be below zero if an iterator is used on a snapshot more than
1369 * once.
1370 */
1371 read_sb_bindex = subbuffer_id_get_index(config, bufb->buf_rsb.id);
1372 v_add(config, v_read(config,
1373 &bufb->array[read_sb_bindex]->records_unread),
1374 &bufb->records_read);
1375 v_set(config, &bufb->array[read_sb_bindex]->records_unread, 0);
1376 CHAN_WARN_ON(chan, config->mode == RING_BUFFER_OVERWRITE
1377 && subbuffer_id_is_noref(config, bufb->buf_rsb.id));
1378 subbuffer_id_set_noref(config, &bufb->buf_rsb.id);
1379
1380 /*
1381 * Exchange the reader subbuffer with the one we put in its place in the
1382 * writer subbuffer table. Expect the original consumed count. If
1383 * update_read_sb_index fails, this is because the writer updated the
1384 * subbuffer concurrently. We should therefore keep the subbuffer we
1385 * currently have: it has become invalid to try reading this sub-buffer
1386 * consumed count value anyway.
1387 */
1388 consumed_idx = subbuf_index(consumed, chan);
1389 update_read_sb_index(config, &buf->backend, &chan->backend,
1390 consumed_idx, buf_trunc_val(consumed, chan));
1391 /*
1392 * update_read_sb_index return value ignored. Don't exchange sub-buffer
1393 * if the writer concurrently updated it.
1394 */
1395 }
1396 EXPORT_SYMBOL_GPL(lib_ring_buffer_put_subbuf);
1397
1398 /*
1399 * cons_offset is an iterator on all subbuffer offsets between the reader
1400 * position and the writer position. (inclusive)
1401 */
1402 static
1403 void lib_ring_buffer_print_subbuffer_errors(struct lib_ring_buffer *buf,
1404 struct channel *chan,
1405 unsigned long cons_offset,
1406 int cpu)
1407 {
1408 const struct lib_ring_buffer_config *config = &chan->backend.config;
1409 unsigned long cons_idx, commit_count, commit_count_sb;
1410
1411 cons_idx = subbuf_index(cons_offset, chan);
1412 commit_count = v_read(config, &buf->commit_hot[cons_idx].cc);
1413 commit_count_sb = v_read(config, &buf->commit_cold[cons_idx].cc_sb);
1414
1415 if (subbuf_offset(commit_count, chan) != 0)
1416 printk(KERN_WARNING
1417 "ring buffer %s, cpu %d: "
1418 "commit count in subbuffer %lu,\n"
1419 "expecting multiples of %lu bytes\n"
1420 " [ %lu bytes committed, %lu bytes reader-visible ]\n",
1421 chan->backend.name, cpu, cons_idx,
1422 chan->backend.subbuf_size,
1423 commit_count, commit_count_sb);
1424
1425 printk(KERN_DEBUG "ring buffer: %s, cpu %d: %lu bytes committed\n",
1426 chan->backend.name, cpu, commit_count);
1427 }
1428
1429 static
1430 void lib_ring_buffer_print_buffer_errors(struct lib_ring_buffer *buf,
1431 struct channel *chan,
1432 void *priv, int cpu)
1433 {
1434 const struct lib_ring_buffer_config *config = &chan->backend.config;
1435 unsigned long write_offset, cons_offset;
1436
1437 /*
1438 * No need to order commit_count, write_offset and cons_offset reads
1439 * because we execute at teardown when no more writer nor reader
1440 * references are left.
1441 */
1442 write_offset = v_read(config, &buf->offset);
1443 cons_offset = atomic_long_read(&buf->consumed);
1444 if (write_offset != cons_offset)
1445 printk(KERN_DEBUG
1446 "ring buffer %s, cpu %d: "
1447 "non-consumed data\n"
1448 " [ %lu bytes written, %lu bytes read ]\n",
1449 chan->backend.name, cpu, write_offset, cons_offset);
1450
1451 for (cons_offset = atomic_long_read(&buf->consumed);
1452 (long) (subbuf_trunc((unsigned long) v_read(config, &buf->offset),
1453 chan)
1454 - cons_offset) > 0;
1455 cons_offset = subbuf_align(cons_offset, chan))
1456 lib_ring_buffer_print_subbuffer_errors(buf, chan, cons_offset,
1457 cpu);
1458 }
1459
1460 static
1461 void lib_ring_buffer_print_errors(struct channel *chan,
1462 struct lib_ring_buffer *buf, int cpu)
1463 {
1464 const struct lib_ring_buffer_config *config = &chan->backend.config;
1465 void *priv = chan->backend.priv;
1466
1467 if (!strcmp(chan->backend.name, "relay-metadata")) {
1468 printk(KERN_DEBUG "ring buffer %s: %lu records written, "
1469 "%lu records overrun\n",
1470 chan->backend.name,
1471 v_read(config, &buf->records_count),
1472 v_read(config, &buf->records_overrun));
1473 } else {
1474 printk(KERN_DEBUG "ring buffer %s, cpu %d: %lu records written, "
1475 "%lu records overrun\n",
1476 chan->backend.name, cpu,
1477 v_read(config, &buf->records_count),
1478 v_read(config, &buf->records_overrun));
1479
1480 if (v_read(config, &buf->records_lost_full)
1481 || v_read(config, &buf->records_lost_wrap)
1482 || v_read(config, &buf->records_lost_big))
1483 printk(KERN_WARNING
1484 "ring buffer %s, cpu %d: records were lost. Caused by:\n"
1485 " [ %lu buffer full, %lu nest buffer wrap-around, "
1486 "%lu event too big ]\n",
1487 chan->backend.name, cpu,
1488 v_read(config, &buf->records_lost_full),
1489 v_read(config, &buf->records_lost_wrap),
1490 v_read(config, &buf->records_lost_big));
1491 }
1492 lib_ring_buffer_print_buffer_errors(buf, chan, priv, cpu);
1493 }
1494
1495 /*
1496 * lib_ring_buffer_switch_old_start: Populate old subbuffer header.
1497 *
1498 * Only executed by SWITCH_FLUSH, which can be issued while tracing is active
1499 * or at buffer finalization (destroy).
1500 */
1501 static
1502 void lib_ring_buffer_switch_old_start(struct lib_ring_buffer *buf,
1503 struct channel *chan,
1504 struct switch_offsets *offsets,
1505 u64 tsc)
1506 {
1507 const struct lib_ring_buffer_config *config = &chan->backend.config;
1508 unsigned long oldidx = subbuf_index(offsets->old, chan);
1509 unsigned long commit_count;
1510 struct commit_counters_hot *cc_hot;
1511
1512 config->cb.buffer_begin(buf, tsc, oldidx);
1513
1514 /*
1515 * Order all writes to buffer before the commit count update that will
1516 * determine that the subbuffer is full.
1517 */
1518 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1519 /*
1520 * Must write slot data before incrementing commit count. This
1521 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1522 * by get_subbuf().
1523 */
1524 barrier();
1525 } else
1526 smp_wmb();
1527 cc_hot = &buf->commit_hot[oldidx];
1528 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1529 commit_count = v_read(config, &cc_hot->cc);
1530 /* Check if the written buffer has to be delivered */
1531 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old,
1532 commit_count, oldidx, tsc);
1533 lib_ring_buffer_write_commit_counter(config, buf, chan,
1534 offsets->old + config->cb.subbuffer_header_size(),
1535 commit_count, cc_hot);
1536 }
1537
1538 /*
1539 * lib_ring_buffer_switch_old_end: switch old subbuffer
1540 *
1541 * Note : offset_old should never be 0 here. It is ok, because we never perform
1542 * buffer switch on an empty subbuffer in SWITCH_ACTIVE mode. The caller
1543 * increments the offset_old value when doing a SWITCH_FLUSH on an empty
1544 * subbuffer.
1545 */
1546 static
1547 void lib_ring_buffer_switch_old_end(struct lib_ring_buffer *buf,
1548 struct channel *chan,
1549 struct switch_offsets *offsets,
1550 u64 tsc)
1551 {
1552 const struct lib_ring_buffer_config *config = &chan->backend.config;
1553 unsigned long oldidx = subbuf_index(offsets->old - 1, chan);
1554 unsigned long commit_count, padding_size, data_size;
1555 struct commit_counters_hot *cc_hot;
1556
1557 data_size = subbuf_offset(offsets->old - 1, chan) + 1;
1558 padding_size = chan->backend.subbuf_size - data_size;
1559 subbuffer_set_data_size(config, &buf->backend, oldidx, data_size);
1560
1561 /*
1562 * Order all writes to buffer before the commit count update that will
1563 * determine that the subbuffer is full.
1564 */
1565 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1566 /*
1567 * Must write slot data before incrementing commit count. This
1568 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1569 * by get_subbuf().
1570 */
1571 barrier();
1572 } else
1573 smp_wmb();
1574 cc_hot = &buf->commit_hot[oldidx];
1575 v_add(config, padding_size, &cc_hot->cc);
1576 commit_count = v_read(config, &cc_hot->cc);
1577 lib_ring_buffer_check_deliver(config, buf, chan, offsets->old - 1,
1578 commit_count, oldidx, tsc);
1579 lib_ring_buffer_write_commit_counter(config, buf, chan,
1580 offsets->old + padding_size, commit_count,
1581 cc_hot);
1582 }
1583
1584 /*
1585 * lib_ring_buffer_switch_new_start: Populate new subbuffer.
1586 *
1587 * This code can be executed unordered : writers may already have written to the
1588 * sub-buffer before this code gets executed, caution. The commit makes sure
1589 * that this code is executed before the deliver of this sub-buffer.
1590 */
1591 static
1592 void lib_ring_buffer_switch_new_start(struct lib_ring_buffer *buf,
1593 struct channel *chan,
1594 struct switch_offsets *offsets,
1595 u64 tsc)
1596 {
1597 const struct lib_ring_buffer_config *config = &chan->backend.config;
1598 unsigned long beginidx = subbuf_index(offsets->begin, chan);
1599 unsigned long commit_count;
1600 struct commit_counters_hot *cc_hot;
1601
1602 config->cb.buffer_begin(buf, tsc, beginidx);
1603
1604 /*
1605 * Order all writes to buffer before the commit count update that will
1606 * determine that the subbuffer is full.
1607 */
1608 if (config->ipi == RING_BUFFER_IPI_BARRIER) {
1609 /*
1610 * Must write slot data before incrementing commit count. This
1611 * compiler barrier is upgraded into a smp_mb() by the IPI sent
1612 * by get_subbuf().
1613 */
1614 barrier();
1615 } else
1616 smp_wmb();
1617 cc_hot = &buf->commit_hot[beginidx];
1618 v_add(config, config->cb.subbuffer_header_size(), &cc_hot->cc);
1619 commit_count = v_read(config, &cc_hot->cc);
1620 /* Check if the written buffer has to be delivered */
1621 lib_ring_buffer_check_deliver(config, buf, chan, offsets->begin,
1622 commit_count, beginidx, tsc);
1623 lib_ring_buffer_write_commit_counter(config, buf, chan,
1624 offsets->begin + config->cb.subbuffer_header_size(),
1625 commit_count, cc_hot);
1626 }
1627
1628 /*
1629 * lib_ring_buffer_switch_new_end: finish switching current subbuffer
1630 *
1631 * Calls subbuffer_set_data_size() to set the data size of the current
1632 * sub-buffer. We do not need to perform check_deliver nor commit here,
1633 * since this task will be done by the "commit" of the event for which
1634 * we are currently doing the space reservation.
1635 */
1636 static
1637 void lib_ring_buffer_switch_new_end(struct lib_ring_buffer *buf,
1638 struct channel *chan,
1639 struct switch_offsets *offsets,
1640 u64 tsc)
1641 {
1642 const struct lib_ring_buffer_config *config = &chan->backend.config;
1643 unsigned long endidx, data_size;
1644
1645 endidx = subbuf_index(offsets->end - 1, chan);
1646 data_size = subbuf_offset(offsets->end - 1, chan) + 1;
1647 subbuffer_set_data_size(config, &buf->backend, endidx, data_size);
1648 }
1649
1650 /*
1651 * Returns :
1652 * 0 if ok
1653 * !0 if execution must be aborted.
1654 */
1655 static
1656 int lib_ring_buffer_try_switch_slow(enum switch_mode mode,
1657 struct lib_ring_buffer *buf,
1658 struct channel *chan,
1659 struct switch_offsets *offsets,
1660 u64 *tsc)
1661 {
1662 const struct lib_ring_buffer_config *config = &chan->backend.config;
1663 unsigned long off, reserve_commit_diff;
1664
1665 offsets->begin = v_read(config, &buf->offset);
1666 offsets->old = offsets->begin;
1667 offsets->switch_old_start = 0;
1668 off = subbuf_offset(offsets->begin, chan);
1669
1670 *tsc = config->cb.ring_buffer_clock_read(chan);
1671
1672 /*
1673 * Ensure we flush the header of an empty subbuffer when doing the
1674 * finalize (SWITCH_FLUSH). This ensures that we end up knowing the
1675 * total data gathering duration even if there were no records saved
1676 * after the last buffer switch.
1677 * In SWITCH_ACTIVE mode, switch the buffer when it contains events.
1678 * SWITCH_ACTIVE only flushes the current subbuffer, dealing with end of
1679 * subbuffer header as appropriate.
1680 * The next record that reserves space will be responsible for
1681 * populating the following subbuffer header. We choose not to populate
1682 * the next subbuffer header here because we want to be able to use
1683 * SWITCH_ACTIVE for periodical buffer flush and CPU tick_nohz stop
1684 * buffer flush, which must guarantee that all the buffer content
1685 * (records and header timestamps) are visible to the reader. This is
1686 * required for quiescence guarantees for the fusion merge.
1687 */
1688 if (mode != SWITCH_FLUSH && !off)
1689 return -1; /* we do not have to switch : buffer is empty */
1690
1691 if (unlikely(off == 0)) {
1692 unsigned long sb_index, commit_count;
1693
1694 /*
1695 * We are performing a SWITCH_FLUSH. There may be concurrent
1696 * writes into the buffer if e.g. invoked while performing a
1697 * snapshot on an active trace.
1698 *
1699 * If the client does not save any header information (sub-buffer
1700 * header size == 0), don't switch empty subbuffer on finalize,
1701 * because it is invalid to deliver a completely empty
1702 * subbuffer.
1703 */
1704 if (!config->cb.subbuffer_header_size())
1705 return -1;
1706
1707 /* Test new buffer integrity */
1708 sb_index = subbuf_index(offsets->begin, chan);
1709 commit_count = v_read(config,
1710 &buf->commit_cold[sb_index].cc_sb);
1711 reserve_commit_diff =
1712 (buf_trunc(offsets->begin, chan)
1713 >> chan->backend.num_subbuf_order)
1714 - (commit_count & chan->commit_count_mask);
1715 if (likely(reserve_commit_diff == 0)) {
1716 /* Next subbuffer not being written to. */
1717 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1718 subbuf_trunc(offsets->begin, chan)
1719 - subbuf_trunc((unsigned long)
1720 atomic_long_read(&buf->consumed), chan)
1721 >= chan->backend.buf_size)) {
1722 /*
1723 * We do not overwrite non consumed buffers
1724 * and we are full : don't switch.
1725 */
1726 return -1;
1727 } else {
1728 /*
1729 * Next subbuffer not being written to, and we
1730 * are either in overwrite mode or the buffer is
1731 * not full. It's safe to write in this new
1732 * subbuffer.
1733 */
1734 }
1735 } else {
1736 /*
1737 * Next subbuffer reserve offset does not match the
1738 * commit offset. Don't perform switch in
1739 * producer-consumer and overwrite mode. Caused by
1740 * either a writer OOPS or too many nested writes over a
1741 * reserve/commit pair.
1742 */
1743 return -1;
1744 }
1745
1746 /*
1747 * Need to write the subbuffer start header on finalize.
1748 */
1749 offsets->switch_old_start = 1;
1750 }
1751 offsets->begin = subbuf_align(offsets->begin, chan);
1752 /* Note: old points to the next subbuf at offset 0 */
1753 offsets->end = offsets->begin;
1754 return 0;
1755 }
1756
1757 /*
1758 * Force a sub-buffer switch. This operation is completely reentrant : can be
1759 * called while tracing is active with absolutely no lock held.
1760 *
1761 * Note, however, that as a v_cmpxchg is used for some atomic
1762 * operations, this function must be called from the CPU which owns the buffer
1763 * for a ACTIVE flush.
1764 */
1765 void lib_ring_buffer_switch_slow(struct lib_ring_buffer *buf, enum switch_mode mode)
1766 {
1767 struct channel *chan = buf->backend.chan;
1768 const struct lib_ring_buffer_config *config = &chan->backend.config;
1769 struct switch_offsets offsets;
1770 unsigned long oldidx;
1771 u64 tsc;
1772
1773 offsets.size = 0;
1774
1775 /*
1776 * Perform retryable operations.
1777 */
1778 do {
1779 if (lib_ring_buffer_try_switch_slow(mode, buf, chan, &offsets,
1780 &tsc))
1781 return; /* Switch not needed */
1782 } while (v_cmpxchg(config, &buf->offset, offsets.old, offsets.end)
1783 != offsets.old);
1784
1785 /*
1786 * Atomically update last_tsc. This update races against concurrent
1787 * atomic updates, but the race will always cause supplementary full TSC
1788 * records, never the opposite (missing a full TSC record when it would
1789 * be needed).
1790 */
1791 save_last_tsc(config, buf, tsc);
1792
1793 /*
1794 * Push the reader if necessary
1795 */
1796 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.old);
1797
1798 oldidx = subbuf_index(offsets.old, chan);
1799 lib_ring_buffer_clear_noref(config, &buf->backend, oldidx);
1800
1801 /*
1802 * May need to populate header start on SWITCH_FLUSH.
1803 */
1804 if (offsets.switch_old_start) {
1805 lib_ring_buffer_switch_old_start(buf, chan, &offsets, tsc);
1806 offsets.old += config->cb.subbuffer_header_size();
1807 }
1808
1809 /*
1810 * Switch old subbuffer.
1811 */
1812 lib_ring_buffer_switch_old_end(buf, chan, &offsets, tsc);
1813 }
1814 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_slow);
1815
1816 struct switch_param {
1817 struct lib_ring_buffer *buf;
1818 enum switch_mode mode;
1819 };
1820
1821 static void remote_switch(void *info)
1822 {
1823 struct switch_param *param = info;
1824 struct lib_ring_buffer *buf = param->buf;
1825
1826 lib_ring_buffer_switch_slow(buf, param->mode);
1827 }
1828
1829 static void _lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf,
1830 enum switch_mode mode)
1831 {
1832 struct channel *chan = buf->backend.chan;
1833 const struct lib_ring_buffer_config *config = &chan->backend.config;
1834 int ret;
1835 struct switch_param param;
1836
1837 /*
1838 * With global synchronization we don't need to use the IPI scheme.
1839 */
1840 if (config->sync == RING_BUFFER_SYNC_GLOBAL) {
1841 lib_ring_buffer_switch_slow(buf, mode);
1842 return;
1843 }
1844
1845 /*
1846 * Taking lock on CPU hotplug to ensure two things: first, that the
1847 * target cpu is not taken concurrently offline while we are within
1848 * smp_call_function_single() (I don't trust that get_cpu() on the
1849 * _local_ CPU actually inhibit CPU hotplug for the _remote_ CPU (to be
1850 * confirmed)). Secondly, if it happens that the CPU is not online, our
1851 * own call to lib_ring_buffer_switch_slow() needs to be protected from
1852 * CPU hotplug handlers, which can also perform a remote subbuffer
1853 * switch.
1854 */
1855 get_online_cpus();
1856 param.buf = buf;
1857 param.mode = mode;
1858 ret = smp_call_function_single(buf->backend.cpu,
1859 remote_switch, &param, 1);
1860 if (ret) {
1861 /* Remote CPU is offline, do it ourself. */
1862 lib_ring_buffer_switch_slow(buf, mode);
1863 }
1864 put_online_cpus();
1865 }
1866
1867 void lib_ring_buffer_switch_remote(struct lib_ring_buffer *buf)
1868 {
1869 _lib_ring_buffer_switch_remote(buf, SWITCH_ACTIVE);
1870 }
1871 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote);
1872
1873 /* Switch sub-buffer even if current sub-buffer is empty. */
1874 void lib_ring_buffer_switch_remote_empty(struct lib_ring_buffer *buf)
1875 {
1876 _lib_ring_buffer_switch_remote(buf, SWITCH_FLUSH);
1877 }
1878 EXPORT_SYMBOL_GPL(lib_ring_buffer_switch_remote_empty);
1879
1880 /*
1881 * Returns :
1882 * 0 if ok
1883 * -ENOSPC if event size is too large for packet.
1884 * -ENOBUFS if there is currently not enough space in buffer for the event.
1885 * -EIO if data cannot be written into the buffer for any other reason.
1886 */
1887 static
1888 int lib_ring_buffer_try_reserve_slow(struct lib_ring_buffer *buf,
1889 struct channel *chan,
1890 struct switch_offsets *offsets,
1891 struct lib_ring_buffer_ctx *ctx)
1892 {
1893 const struct lib_ring_buffer_config *config = &chan->backend.config;
1894 unsigned long reserve_commit_diff, offset_cmp;
1895
1896 retry:
1897 offsets->begin = offset_cmp = v_read(config, &buf->offset);
1898 offsets->old = offsets->begin;
1899 offsets->switch_new_start = 0;
1900 offsets->switch_new_end = 0;
1901 offsets->switch_old_end = 0;
1902 offsets->pre_header_padding = 0;
1903
1904 ctx->tsc = config->cb.ring_buffer_clock_read(chan);
1905 if ((int64_t) ctx->tsc == -EIO)
1906 return -EIO;
1907
1908 if (last_tsc_overflow(config, buf, ctx->tsc))
1909 ctx->rflags |= RING_BUFFER_RFLAG_FULL_TSC;
1910
1911 if (unlikely(subbuf_offset(offsets->begin, ctx->chan) == 0)) {
1912 offsets->switch_new_start = 1; /* For offsets->begin */
1913 } else {
1914 offsets->size = config->cb.record_header_size(config, chan,
1915 offsets->begin,
1916 &offsets->pre_header_padding,
1917 ctx);
1918 offsets->size +=
1919 lib_ring_buffer_align(offsets->begin + offsets->size,
1920 ctx->largest_align)
1921 + ctx->data_size;
1922 if (unlikely(subbuf_offset(offsets->begin, chan) +
1923 offsets->size > chan->backend.subbuf_size)) {
1924 offsets->switch_old_end = 1; /* For offsets->old */
1925 offsets->switch_new_start = 1; /* For offsets->begin */
1926 }
1927 }
1928 if (unlikely(offsets->switch_new_start)) {
1929 unsigned long sb_index, commit_count;
1930
1931 /*
1932 * We are typically not filling the previous buffer completely.
1933 */
1934 if (likely(offsets->switch_old_end))
1935 offsets->begin = subbuf_align(offsets->begin, chan);
1936 offsets->begin = offsets->begin
1937 + config->cb.subbuffer_header_size();
1938 /* Test new buffer integrity */
1939 sb_index = subbuf_index(offsets->begin, chan);
1940 /*
1941 * Read buf->offset before buf->commit_cold[sb_index].cc_sb.
1942 * lib_ring_buffer_check_deliver() has the matching
1943 * memory barriers required around commit_cold cc_sb
1944 * updates to ensure reserve and commit counter updates
1945 * are not seen reordered when updated by another CPU.
1946 */
1947 smp_rmb();
1948 commit_count = v_read(config,
1949 &buf->commit_cold[sb_index].cc_sb);
1950 /* Read buf->commit_cold[sb_index].cc_sb before buf->offset. */
1951 smp_rmb();
1952 if (unlikely(offset_cmp != v_read(config, &buf->offset))) {
1953 /*
1954 * The reserve counter have been concurrently updated
1955 * while we read the commit counter. This means the
1956 * commit counter we read might not match buf->offset
1957 * due to concurrent update. We therefore need to retry.
1958 */
1959 goto retry;
1960 }
1961 reserve_commit_diff =
1962 (buf_trunc(offsets->begin, chan)
1963 >> chan->backend.num_subbuf_order)
1964 - (commit_count & chan->commit_count_mask);
1965 if (likely(reserve_commit_diff == 0)) {
1966 /* Next subbuffer not being written to. */
1967 if (unlikely(config->mode != RING_BUFFER_OVERWRITE &&
1968 subbuf_trunc(offsets->begin, chan)
1969 - subbuf_trunc((unsigned long)
1970 atomic_long_read(&buf->consumed), chan)
1971 >= chan->backend.buf_size)) {
1972 /*
1973 * We do not overwrite non consumed buffers
1974 * and we are full : record is lost.
1975 */
1976 v_inc(config, &buf->records_lost_full);
1977 return -ENOBUFS;
1978 } else {
1979 /*
1980 * Next subbuffer not being written to, and we
1981 * are either in overwrite mode or the buffer is
1982 * not full. It's safe to write in this new
1983 * subbuffer.
1984 */
1985 }
1986 } else {
1987 /*
1988 * Next subbuffer reserve offset does not match the
1989 * commit offset, and this did not involve update to the
1990 * reserve counter. Drop record in producer-consumer and
1991 * overwrite mode. Caused by either a writer OOPS or
1992 * too many nested writes over a reserve/commit pair.
1993 */
1994 v_inc(config, &buf->records_lost_wrap);
1995 return -EIO;
1996 }
1997 offsets->size =
1998 config->cb.record_header_size(config, chan,
1999 offsets->begin,
2000 &offsets->pre_header_padding,
2001 ctx);
2002 offsets->size +=
2003 lib_ring_buffer_align(offsets->begin + offsets->size,
2004 ctx->largest_align)
2005 + ctx->data_size;
2006 if (unlikely(subbuf_offset(offsets->begin, chan)
2007 + offsets->size > chan->backend.subbuf_size)) {
2008 /*
2009 * Record too big for subbuffers, report error, don't
2010 * complete the sub-buffer switch.
2011 */
2012 v_inc(config, &buf->records_lost_big);
2013 return -ENOSPC;
2014 } else {
2015 /*
2016 * We just made a successful buffer switch and the
2017 * record fits in the new subbuffer. Let's write.
2018 */
2019 }
2020 } else {
2021 /*
2022 * Record fits in the current buffer and we are not on a switch
2023 * boundary. It's safe to write.
2024 */
2025 }
2026 offsets->end = offsets->begin + offsets->size;
2027
2028 if (unlikely(subbuf_offset(offsets->end, chan) == 0)) {
2029 /*
2030 * The offset_end will fall at the very beginning of the next
2031 * subbuffer.
2032 */
2033 offsets->switch_new_end = 1; /* For offsets->begin */
2034 }
2035 return 0;
2036 }
2037
2038 static struct lib_ring_buffer *get_current_buf(struct channel *chan, int cpu)
2039 {
2040 const struct lib_ring_buffer_config *config = &chan->backend.config;
2041
2042 if (config->alloc == RING_BUFFER_ALLOC_PER_CPU)
2043 return per_cpu_ptr(chan->backend.buf, cpu);
2044 else
2045 return chan->backend.buf;
2046 }
2047
2048 void lib_ring_buffer_lost_event_too_big(struct channel *chan)
2049 {
2050 const struct lib_ring_buffer_config *config = &chan->backend.config;
2051 struct lib_ring_buffer *buf = get_current_buf(chan, smp_processor_id());
2052
2053 v_inc(config, &buf->records_lost_big);
2054 }
2055 EXPORT_SYMBOL_GPL(lib_ring_buffer_lost_event_too_big);
2056
2057 /**
2058 * lib_ring_buffer_reserve_slow - Atomic slot reservation in a buffer.
2059 * @ctx: ring buffer context.
2060 *
2061 * Return : -NOBUFS if not enough space, -ENOSPC if event size too large,
2062 * -EIO for other errors, else returns 0.
2063 * It will take care of sub-buffer switching.
2064 */
2065 int lib_ring_buffer_reserve_slow(struct lib_ring_buffer_ctx *ctx)
2066 {
2067 struct channel *chan = ctx->chan;
2068 const struct lib_ring_buffer_config *config = &chan->backend.config;
2069 struct lib_ring_buffer *buf;
2070 struct switch_offsets offsets;
2071 int ret;
2072
2073 ctx->buf = buf = get_current_buf(chan, ctx->cpu);
2074 offsets.size = 0;
2075
2076 do {
2077 ret = lib_ring_buffer_try_reserve_slow(buf, chan, &offsets,
2078 ctx);
2079 if (unlikely(ret))
2080 return ret;
2081 } while (unlikely(v_cmpxchg(config, &buf->offset, offsets.old,
2082 offsets.end)
2083 != offsets.old));
2084
2085 /*
2086 * Atomically update last_tsc. This update races against concurrent
2087 * atomic updates, but the race will always cause supplementary full TSC
2088 * records, never the opposite (missing a full TSC record when it would
2089 * be needed).
2090 */
2091 save_last_tsc(config, buf, ctx->tsc);
2092
2093 /*
2094 * Push the reader if necessary
2095 */
2096 lib_ring_buffer_reserve_push_reader(buf, chan, offsets.end - 1);
2097
2098 /*
2099 * Clear noref flag for this subbuffer.
2100 */
2101 lib_ring_buffer_clear_noref(config, &buf->backend,
2102 subbuf_index(offsets.end - 1, chan));
2103
2104 /*
2105 * Switch old subbuffer if needed.
2106 */
2107 if (unlikely(offsets.switch_old_end)) {
2108 lib_ring_buffer_clear_noref(config, &buf->backend,
2109 subbuf_index(offsets.old - 1, chan));
2110 lib_ring_buffer_switch_old_end(buf, chan, &offsets, ctx->tsc);
2111 }
2112
2113 /*
2114 * Populate new subbuffer.
2115 */
2116 if (unlikely(offsets.switch_new_start))
2117 lib_ring_buffer_switch_new_start(buf, chan, &offsets, ctx->tsc);
2118
2119 if (unlikely(offsets.switch_new_end))
2120 lib_ring_buffer_switch_new_end(buf, chan, &offsets, ctx->tsc);
2121
2122 ctx->slot_size = offsets.size;
2123 ctx->pre_offset = offsets.begin;
2124 ctx->buf_offset = offsets.begin + offsets.pre_header_padding;
2125 return 0;
2126 }
2127 EXPORT_SYMBOL_GPL(lib_ring_buffer_reserve_slow);
2128
2129 static
2130 void lib_ring_buffer_vmcore_check_deliver(const struct lib_ring_buffer_config *config,
2131 struct lib_ring_buffer *buf,
2132 unsigned long commit_count,
2133 unsigned long idx)
2134 {
2135 if (config->oops == RING_BUFFER_OOPS_CONSISTENCY)
2136 v_set(config, &buf->commit_hot[idx].seq, commit_count);
2137 }
2138
2139 /*
2140 * The ring buffer can count events recorded and overwritten per buffer,
2141 * but it is disabled by default due to its performance overhead.
2142 */
2143 #ifdef LTTNG_RING_BUFFER_COUNT_EVENTS
2144 static
2145 void deliver_count_events(const struct lib_ring_buffer_config *config,
2146 struct lib_ring_buffer *buf,
2147 unsigned long idx)
2148 {
2149 v_add(config, subbuffer_get_records_count(config,
2150 &buf->backend, idx),
2151 &buf->records_count);
2152 v_add(config, subbuffer_count_records_overrun(config,
2153 &buf->backend, idx),
2154 &buf->records_overrun);
2155 }
2156 #else /* LTTNG_RING_BUFFER_COUNT_EVENTS */
2157 static
2158 void deliver_count_events(const struct lib_ring_buffer_config *config,
2159 struct lib_ring_buffer *buf,
2160 unsigned long idx)
2161 {
2162 }
2163 #endif /* #else LTTNG_RING_BUFFER_COUNT_EVENTS */
2164
2165
2166 void lib_ring_buffer_check_deliver_slow(const struct lib_ring_buffer_config *config,
2167 struct lib_ring_buffer *buf,
2168 struct channel *chan,
2169 unsigned long offset,
2170 unsigned long commit_count,
2171 unsigned long idx,
2172 u64 tsc)
2173 {
2174 unsigned long old_commit_count = commit_count
2175 - chan->backend.subbuf_size;
2176
2177 /*
2178 * If we succeeded at updating cc_sb below, we are the subbuffer
2179 * writer delivering the subbuffer. Deals with concurrent
2180 * updates of the "cc" value without adding a add_return atomic
2181 * operation to the fast path.
2182 *
2183 * We are doing the delivery in two steps:
2184 * - First, we cmpxchg() cc_sb to the new value
2185 * old_commit_count + 1. This ensures that we are the only
2186 * subbuffer user successfully filling the subbuffer, but we
2187 * do _not_ set the cc_sb value to "commit_count" yet.
2188 * Therefore, other writers that would wrap around the ring
2189 * buffer and try to start writing to our subbuffer would
2190 * have to drop records, because it would appear as
2191 * non-filled.
2192 * We therefore have exclusive access to the subbuffer control
2193 * structures. This mutual exclusion with other writers is
2194 * crucially important to perform record overruns count in
2195 * flight recorder mode locklessly.
2196 * - When we are ready to release the subbuffer (either for
2197 * reading or for overrun by other writers), we simply set the
2198 * cc_sb value to "commit_count" and perform delivery.
2199 *
2200 * The subbuffer size is least 2 bytes (minimum size: 1 page).
2201 * This guarantees that old_commit_count + 1 != commit_count.
2202 */
2203
2204 /*
2205 * Order prior updates to reserve count prior to the
2206 * commit_cold cc_sb update.
2207 */
2208 smp_wmb();
2209 if (likely(v_cmpxchg(config, &buf->commit_cold[idx].cc_sb,
2210 old_commit_count, old_commit_count + 1)
2211 == old_commit_count)) {
2212 /*
2213 * Start of exclusive subbuffer access. We are
2214 * guaranteed to be the last writer in this subbuffer
2215 * and any other writer trying to access this subbuffer
2216 * in this state is required to drop records.
2217 */
2218 deliver_count_events(config, buf, idx);
2219 config->cb.buffer_end(buf, tsc, idx,
2220 lib_ring_buffer_get_data_size(config,
2221 buf,
2222 idx));
2223
2224 /*
2225 * Increment the packet counter while we have exclusive
2226 * access.
2227 */
2228 subbuffer_inc_packet_count(config, &buf->backend, idx);
2229
2230 /*
2231 * Set noref flag and offset for this subbuffer id.
2232 * Contains a memory barrier that ensures counter stores
2233 * are ordered before set noref and offset.
2234 */
2235 lib_ring_buffer_set_noref_offset(config, &buf->backend, idx,
2236 buf_trunc_val(offset, chan));
2237
2238 /*
2239 * Order set_noref and record counter updates before the
2240 * end of subbuffer exclusive access. Orders with
2241 * respect to writers coming into the subbuffer after
2242 * wrap around, and also order wrt concurrent readers.
2243 */
2244 smp_mb();
2245 /* End of exclusive subbuffer access */
2246 v_set(config, &buf->commit_cold[idx].cc_sb,
2247 commit_count);
2248 /*
2249 * Order later updates to reserve count after
2250 * the commit_cold cc_sb update.
2251 */
2252 smp_wmb();
2253 lib_ring_buffer_vmcore_check_deliver(config, buf,
2254 commit_count, idx);
2255
2256 /*
2257 * RING_BUFFER_WAKEUP_BY_WRITER wakeup is not lock-free.
2258 */
2259 if (config->wakeup == RING_BUFFER_WAKEUP_BY_WRITER
2260 && atomic_long_read(&buf->active_readers)
2261 && lib_ring_buffer_poll_deliver(config, buf, chan)) {
2262 wake_up_interruptible(&buf->read_wait);
2263 wake_up_interruptible(&chan->read_wait);
2264 }
2265
2266 }
2267 }
2268 EXPORT_SYMBOL_GPL(lib_ring_buffer_check_deliver_slow);
2269
2270 int __init init_lib_ring_buffer_frontend(void)
2271 {
2272 int cpu;
2273
2274 for_each_possible_cpu(cpu)
2275 spin_lock_init(&per_cpu(ring_buffer_nohz_lock, cpu));
2276 return 0;
2277 }
2278
2279 module_init(init_lib_ring_buffer_frontend);
2280
2281 void __exit exit_lib_ring_buffer_frontend(void)
2282 {
2283 }
2284
2285 module_exit(exit_lib_ring_buffer_frontend);
This page took 0.116746 seconds and 3 git commands to generate.