Fix: return EINVAL if agent registration fails
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <bin/lttng-consumerd/health-consumerd.h>
34 #include <common/common.h>
35 #include <common/utils.h>
36 #include <common/compat/poll.h>
37 #include <common/index/index.h>
38 #include <common/kernel-ctl/kernel-ctl.h>
39 #include <common/sessiond-comm/relayd.h>
40 #include <common/sessiond-comm/sessiond-comm.h>
41 #include <common/kernel-consumer/kernel-consumer.h>
42 #include <common/relayd/relayd.h>
43 #include <common/ust-consumer/ust-consumer.h>
44 #include <common/consumer-timer.h>
45
46 #include "consumer.h"
47 #include "consumer-stream.h"
48 #include "consumer-testpoint.h"
49
50 struct lttng_consumer_global_data consumer_data = {
51 .stream_count = 0,
52 .need_update = 1,
53 .type = LTTNG_CONSUMER_UNKNOWN,
54 };
55
56 enum consumer_channel_action {
57 CONSUMER_CHANNEL_ADD,
58 CONSUMER_CHANNEL_DEL,
59 CONSUMER_CHANNEL_QUIT,
60 };
61
62 struct consumer_channel_msg {
63 enum consumer_channel_action action;
64 struct lttng_consumer_channel *chan; /* add */
65 uint64_t key; /* del */
66 };
67
68 /*
69 * Flag to inform the polling thread to quit when all fd hung up. Updated by
70 * the consumer_thread_receive_fds when it notices that all fds has hung up.
71 * Also updated by the signal handler (consumer_should_exit()). Read by the
72 * polling threads.
73 */
74 volatile int consumer_quit;
75
76 /*
77 * Global hash table containing respectively metadata and data streams. The
78 * stream element in this ht should only be updated by the metadata poll thread
79 * for the metadata and the data poll thread for the data.
80 */
81 static struct lttng_ht *metadata_ht;
82 static struct lttng_ht *data_ht;
83
84 /*
85 * Notify a thread lttng pipe to poll back again. This usually means that some
86 * global state has changed so we just send back the thread in a poll wait
87 * call.
88 */
89 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
90 {
91 struct lttng_consumer_stream *null_stream = NULL;
92
93 assert(pipe);
94
95 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
96 }
97
98 static void notify_health_quit_pipe(int *pipe)
99 {
100 ssize_t ret;
101
102 ret = lttng_write(pipe[1], "4", 1);
103 if (ret < 1) {
104 PERROR("write consumer health quit");
105 }
106 }
107
108 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
109 struct lttng_consumer_channel *chan,
110 uint64_t key,
111 enum consumer_channel_action action)
112 {
113 struct consumer_channel_msg msg;
114 ssize_t ret;
115
116 memset(&msg, 0, sizeof(msg));
117
118 msg.action = action;
119 msg.chan = chan;
120 msg.key = key;
121 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
122 if (ret < sizeof(msg)) {
123 PERROR("notify_channel_pipe write error");
124 }
125 }
126
127 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
128 uint64_t key)
129 {
130 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
131 }
132
133 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
134 struct lttng_consumer_channel **chan,
135 uint64_t *key,
136 enum consumer_channel_action *action)
137 {
138 struct consumer_channel_msg msg;
139 ssize_t ret;
140
141 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
142 if (ret < sizeof(msg)) {
143 ret = -1;
144 goto error;
145 }
146 *action = msg.action;
147 *chan = msg.chan;
148 *key = msg.key;
149 error:
150 return (int) ret;
151 }
152
153 /*
154 * Cleanup the stream list of a channel. Those streams are not yet globally
155 * visible
156 */
157 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
158 {
159 struct lttng_consumer_stream *stream, *stmp;
160
161 assert(channel);
162
163 /* Delete streams that might have been left in the stream list. */
164 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
165 send_node) {
166 cds_list_del(&stream->send_node);
167 /*
168 * Once a stream is added to this list, the buffers were created so we
169 * have a guarantee that this call will succeed. Setting the monitor
170 * mode to 0 so we don't lock nor try to delete the stream from the
171 * global hash table.
172 */
173 stream->monitor = 0;
174 consumer_stream_destroy(stream, NULL);
175 }
176 }
177
178 /*
179 * Find a stream. The consumer_data.lock must be locked during this
180 * call.
181 */
182 static struct lttng_consumer_stream *find_stream(uint64_t key,
183 struct lttng_ht *ht)
184 {
185 struct lttng_ht_iter iter;
186 struct lttng_ht_node_u64 *node;
187 struct lttng_consumer_stream *stream = NULL;
188
189 assert(ht);
190
191 /* -1ULL keys are lookup failures */
192 if (key == (uint64_t) -1ULL) {
193 return NULL;
194 }
195
196 rcu_read_lock();
197
198 lttng_ht_lookup(ht, &key, &iter);
199 node = lttng_ht_iter_get_node_u64(&iter);
200 if (node != NULL) {
201 stream = caa_container_of(node, struct lttng_consumer_stream, node);
202 }
203
204 rcu_read_unlock();
205
206 return stream;
207 }
208
209 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
210 {
211 struct lttng_consumer_stream *stream;
212
213 rcu_read_lock();
214 stream = find_stream(key, ht);
215 if (stream) {
216 stream->key = (uint64_t) -1ULL;
217 /*
218 * We don't want the lookup to match, but we still need
219 * to iterate on this stream when iterating over the hash table. Just
220 * change the node key.
221 */
222 stream->node.key = (uint64_t) -1ULL;
223 }
224 rcu_read_unlock();
225 }
226
227 /*
228 * Return a channel object for the given key.
229 *
230 * RCU read side lock MUST be acquired before calling this function and
231 * protects the channel ptr.
232 */
233 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
234 {
235 struct lttng_ht_iter iter;
236 struct lttng_ht_node_u64 *node;
237 struct lttng_consumer_channel *channel = NULL;
238
239 /* -1ULL keys are lookup failures */
240 if (key == (uint64_t) -1ULL) {
241 return NULL;
242 }
243
244 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
245 node = lttng_ht_iter_get_node_u64(&iter);
246 if (node != NULL) {
247 channel = caa_container_of(node, struct lttng_consumer_channel, node);
248 }
249
250 return channel;
251 }
252
253 /*
254 * There is a possibility that the consumer does not have enough time between
255 * the close of the channel on the session daemon and the cleanup in here thus
256 * once we have a channel add with an existing key, we know for sure that this
257 * channel will eventually get cleaned up by all streams being closed.
258 *
259 * This function just nullifies the already existing channel key.
260 */
261 static void steal_channel_key(uint64_t key)
262 {
263 struct lttng_consumer_channel *channel;
264
265 rcu_read_lock();
266 channel = consumer_find_channel(key);
267 if (channel) {
268 channel->key = (uint64_t) -1ULL;
269 /*
270 * We don't want the lookup to match, but we still need to iterate on
271 * this channel when iterating over the hash table. Just change the
272 * node key.
273 */
274 channel->node.key = (uint64_t) -1ULL;
275 }
276 rcu_read_unlock();
277 }
278
279 static void free_channel_rcu(struct rcu_head *head)
280 {
281 struct lttng_ht_node_u64 *node =
282 caa_container_of(head, struct lttng_ht_node_u64, head);
283 struct lttng_consumer_channel *channel =
284 caa_container_of(node, struct lttng_consumer_channel, node);
285
286 free(channel);
287 }
288
289 /*
290 * RCU protected relayd socket pair free.
291 */
292 static void free_relayd_rcu(struct rcu_head *head)
293 {
294 struct lttng_ht_node_u64 *node =
295 caa_container_of(head, struct lttng_ht_node_u64, head);
296 struct consumer_relayd_sock_pair *relayd =
297 caa_container_of(node, struct consumer_relayd_sock_pair, node);
298
299 /*
300 * Close all sockets. This is done in the call RCU since we don't want the
301 * socket fds to be reassigned thus potentially creating bad state of the
302 * relayd object.
303 *
304 * We do not have to lock the control socket mutex here since at this stage
305 * there is no one referencing to this relayd object.
306 */
307 (void) relayd_close(&relayd->control_sock);
308 (void) relayd_close(&relayd->data_sock);
309
310 free(relayd);
311 }
312
313 /*
314 * Destroy and free relayd socket pair object.
315 */
316 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
317 {
318 int ret;
319 struct lttng_ht_iter iter;
320
321 if (relayd == NULL) {
322 return;
323 }
324
325 DBG("Consumer destroy and close relayd socket pair");
326
327 iter.iter.node = &relayd->node.node;
328 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
329 if (ret != 0) {
330 /* We assume the relayd is being or is destroyed */
331 return;
332 }
333
334 /* RCU free() call */
335 call_rcu(&relayd->node.head, free_relayd_rcu);
336 }
337
338 /*
339 * Remove a channel from the global list protected by a mutex. This function is
340 * also responsible for freeing its data structures.
341 */
342 void consumer_del_channel(struct lttng_consumer_channel *channel)
343 {
344 int ret;
345 struct lttng_ht_iter iter;
346
347 DBG("Consumer delete channel key %" PRIu64, channel->key);
348
349 pthread_mutex_lock(&consumer_data.lock);
350 pthread_mutex_lock(&channel->lock);
351
352 /* Destroy streams that might have been left in the stream list. */
353 clean_channel_stream_list(channel);
354
355 if (channel->live_timer_enabled == 1) {
356 consumer_timer_live_stop(channel);
357 }
358
359 switch (consumer_data.type) {
360 case LTTNG_CONSUMER_KERNEL:
361 break;
362 case LTTNG_CONSUMER32_UST:
363 case LTTNG_CONSUMER64_UST:
364 lttng_ustconsumer_del_channel(channel);
365 break;
366 default:
367 ERR("Unknown consumer_data type");
368 assert(0);
369 goto end;
370 }
371
372 rcu_read_lock();
373 iter.iter.node = &channel->node.node;
374 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
375 assert(!ret);
376 rcu_read_unlock();
377
378 call_rcu(&channel->node.head, free_channel_rcu);
379 end:
380 pthread_mutex_unlock(&channel->lock);
381 pthread_mutex_unlock(&consumer_data.lock);
382 }
383
384 /*
385 * Iterate over the relayd hash table and destroy each element. Finally,
386 * destroy the whole hash table.
387 */
388 static void cleanup_relayd_ht(void)
389 {
390 struct lttng_ht_iter iter;
391 struct consumer_relayd_sock_pair *relayd;
392
393 rcu_read_lock();
394
395 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
396 node.node) {
397 consumer_destroy_relayd(relayd);
398 }
399
400 rcu_read_unlock();
401
402 lttng_ht_destroy(consumer_data.relayd_ht);
403 }
404
405 /*
406 * Update the end point status of all streams having the given network sequence
407 * index (relayd index).
408 *
409 * It's atomically set without having the stream mutex locked which is fine
410 * because we handle the write/read race with a pipe wakeup for each thread.
411 */
412 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
413 enum consumer_endpoint_status status)
414 {
415 struct lttng_ht_iter iter;
416 struct lttng_consumer_stream *stream;
417
418 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
419
420 rcu_read_lock();
421
422 /* Let's begin with metadata */
423 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
424 if (stream->net_seq_idx == net_seq_idx) {
425 uatomic_set(&stream->endpoint_status, status);
426 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
427 }
428 }
429
430 /* Follow up by the data streams */
431 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
432 if (stream->net_seq_idx == net_seq_idx) {
433 uatomic_set(&stream->endpoint_status, status);
434 DBG("Delete flag set to data stream %d", stream->wait_fd);
435 }
436 }
437 rcu_read_unlock();
438 }
439
440 /*
441 * Cleanup a relayd object by flagging every associated streams for deletion,
442 * destroying the object meaning removing it from the relayd hash table,
443 * closing the sockets and freeing the memory in a RCU call.
444 *
445 * If a local data context is available, notify the threads that the streams'
446 * state have changed.
447 */
448 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
449 struct lttng_consumer_local_data *ctx)
450 {
451 uint64_t netidx;
452
453 assert(relayd);
454
455 DBG("Cleaning up relayd sockets");
456
457 /* Save the net sequence index before destroying the object */
458 netidx = relayd->net_seq_idx;
459
460 /*
461 * Delete the relayd from the relayd hash table, close the sockets and free
462 * the object in a RCU call.
463 */
464 consumer_destroy_relayd(relayd);
465
466 /* Set inactive endpoint to all streams */
467 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
468
469 /*
470 * With a local data context, notify the threads that the streams' state
471 * have changed. The write() action on the pipe acts as an "implicit"
472 * memory barrier ordering the updates of the end point status from the
473 * read of this status which happens AFTER receiving this notify.
474 */
475 if (ctx) {
476 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
477 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
478 }
479 }
480
481 /*
482 * Flag a relayd socket pair for destruction. Destroy it if the refcount
483 * reaches zero.
484 *
485 * RCU read side lock MUST be aquired before calling this function.
486 */
487 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
488 {
489 assert(relayd);
490
491 /* Set destroy flag for this object */
492 uatomic_set(&relayd->destroy_flag, 1);
493
494 /* Destroy the relayd if refcount is 0 */
495 if (uatomic_read(&relayd->refcount) == 0) {
496 consumer_destroy_relayd(relayd);
497 }
498 }
499
500 /*
501 * Completly destroy stream from every visiable data structure and the given
502 * hash table if one.
503 *
504 * One this call returns, the stream object is not longer usable nor visible.
505 */
506 void consumer_del_stream(struct lttng_consumer_stream *stream,
507 struct lttng_ht *ht)
508 {
509 consumer_stream_destroy(stream, ht);
510 }
511
512 /*
513 * XXX naming of del vs destroy is all mixed up.
514 */
515 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
516 {
517 consumer_stream_destroy(stream, data_ht);
518 }
519
520 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
521 {
522 consumer_stream_destroy(stream, metadata_ht);
523 }
524
525 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
526 uint64_t stream_key,
527 enum lttng_consumer_stream_state state,
528 const char *channel_name,
529 uid_t uid,
530 gid_t gid,
531 uint64_t relayd_id,
532 uint64_t session_id,
533 int cpu,
534 int *alloc_ret,
535 enum consumer_channel_type type,
536 unsigned int monitor)
537 {
538 int ret;
539 struct lttng_consumer_stream *stream;
540
541 stream = zmalloc(sizeof(*stream));
542 if (stream == NULL) {
543 PERROR("malloc struct lttng_consumer_stream");
544 ret = -ENOMEM;
545 goto end;
546 }
547
548 rcu_read_lock();
549
550 stream->key = stream_key;
551 stream->out_fd = -1;
552 stream->out_fd_offset = 0;
553 stream->output_written = 0;
554 stream->state = state;
555 stream->uid = uid;
556 stream->gid = gid;
557 stream->net_seq_idx = relayd_id;
558 stream->session_id = session_id;
559 stream->monitor = monitor;
560 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
561 stream->index_fd = -1;
562 pthread_mutex_init(&stream->lock, NULL);
563
564 /* If channel is the metadata, flag this stream as metadata. */
565 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
566 stream->metadata_flag = 1;
567 /* Metadata is flat out. */
568 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
569 /* Live rendez-vous point. */
570 pthread_cond_init(&stream->metadata_rdv, NULL);
571 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
572 } else {
573 /* Format stream name to <channel_name>_<cpu_number> */
574 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
575 channel_name, cpu);
576 if (ret < 0) {
577 PERROR("snprintf stream name");
578 goto error;
579 }
580 }
581
582 /* Key is always the wait_fd for streams. */
583 lttng_ht_node_init_u64(&stream->node, stream->key);
584
585 /* Init node per channel id key */
586 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
587
588 /* Init session id node with the stream session id */
589 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
590
591 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
592 " relayd_id %" PRIu64 ", session_id %" PRIu64,
593 stream->name, stream->key, channel_key,
594 stream->net_seq_idx, stream->session_id);
595
596 rcu_read_unlock();
597 return stream;
598
599 error:
600 rcu_read_unlock();
601 free(stream);
602 end:
603 if (alloc_ret) {
604 *alloc_ret = ret;
605 }
606 return NULL;
607 }
608
609 /*
610 * Add a stream to the global list protected by a mutex.
611 */
612 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
613 {
614 struct lttng_ht *ht = data_ht;
615 int ret = 0;
616
617 assert(stream);
618 assert(ht);
619
620 DBG3("Adding consumer stream %" PRIu64, stream->key);
621
622 pthread_mutex_lock(&consumer_data.lock);
623 pthread_mutex_lock(&stream->chan->lock);
624 pthread_mutex_lock(&stream->chan->timer_lock);
625 pthread_mutex_lock(&stream->lock);
626 rcu_read_lock();
627
628 /* Steal stream identifier to avoid having streams with the same key */
629 steal_stream_key(stream->key, ht);
630
631 lttng_ht_add_unique_u64(ht, &stream->node);
632
633 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
634 &stream->node_channel_id);
635
636 /*
637 * Add stream to the stream_list_ht of the consumer data. No need to steal
638 * the key since the HT does not use it and we allow to add redundant keys
639 * into this table.
640 */
641 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
642
643 /*
644 * When nb_init_stream_left reaches 0, we don't need to trigger any action
645 * in terms of destroying the associated channel, because the action that
646 * causes the count to become 0 also causes a stream to be added. The
647 * channel deletion will thus be triggered by the following removal of this
648 * stream.
649 */
650 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
651 /* Increment refcount before decrementing nb_init_stream_left */
652 cmm_smp_wmb();
653 uatomic_dec(&stream->chan->nb_init_stream_left);
654 }
655
656 /* Update consumer data once the node is inserted. */
657 consumer_data.stream_count++;
658 consumer_data.need_update = 1;
659
660 rcu_read_unlock();
661 pthread_mutex_unlock(&stream->lock);
662 pthread_mutex_unlock(&stream->chan->timer_lock);
663 pthread_mutex_unlock(&stream->chan->lock);
664 pthread_mutex_unlock(&consumer_data.lock);
665
666 return ret;
667 }
668
669 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
670 {
671 consumer_del_stream(stream, data_ht);
672 }
673
674 /*
675 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
676 * be acquired before calling this.
677 */
678 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
679 {
680 int ret = 0;
681 struct lttng_ht_node_u64 *node;
682 struct lttng_ht_iter iter;
683
684 assert(relayd);
685
686 lttng_ht_lookup(consumer_data.relayd_ht,
687 &relayd->net_seq_idx, &iter);
688 node = lttng_ht_iter_get_node_u64(&iter);
689 if (node != NULL) {
690 goto end;
691 }
692 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
693
694 end:
695 return ret;
696 }
697
698 /*
699 * Allocate and return a consumer relayd socket.
700 */
701 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
702 uint64_t net_seq_idx)
703 {
704 struct consumer_relayd_sock_pair *obj = NULL;
705
706 /* net sequence index of -1 is a failure */
707 if (net_seq_idx == (uint64_t) -1ULL) {
708 goto error;
709 }
710
711 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
712 if (obj == NULL) {
713 PERROR("zmalloc relayd sock");
714 goto error;
715 }
716
717 obj->net_seq_idx = net_seq_idx;
718 obj->refcount = 0;
719 obj->destroy_flag = 0;
720 obj->control_sock.sock.fd = -1;
721 obj->data_sock.sock.fd = -1;
722 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
723 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
724
725 error:
726 return obj;
727 }
728
729 /*
730 * Find a relayd socket pair in the global consumer data.
731 *
732 * Return the object if found else NULL.
733 * RCU read-side lock must be held across this call and while using the
734 * returned object.
735 */
736 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
737 {
738 struct lttng_ht_iter iter;
739 struct lttng_ht_node_u64 *node;
740 struct consumer_relayd_sock_pair *relayd = NULL;
741
742 /* Negative keys are lookup failures */
743 if (key == (uint64_t) -1ULL) {
744 goto error;
745 }
746
747 lttng_ht_lookup(consumer_data.relayd_ht, &key,
748 &iter);
749 node = lttng_ht_iter_get_node_u64(&iter);
750 if (node != NULL) {
751 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
752 }
753
754 error:
755 return relayd;
756 }
757
758 /*
759 * Find a relayd and send the stream
760 *
761 * Returns 0 on success, < 0 on error
762 */
763 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
764 char *path)
765 {
766 int ret = 0;
767 struct consumer_relayd_sock_pair *relayd;
768
769 assert(stream);
770 assert(stream->net_seq_idx != -1ULL);
771 assert(path);
772
773 /* The stream is not metadata. Get relayd reference if exists. */
774 rcu_read_lock();
775 relayd = consumer_find_relayd(stream->net_seq_idx);
776 if (relayd != NULL) {
777 /* Add stream on the relayd */
778 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
779 ret = relayd_add_stream(&relayd->control_sock, stream->name,
780 path, &stream->relayd_stream_id,
781 stream->chan->tracefile_size, stream->chan->tracefile_count);
782 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
783 if (ret < 0) {
784 goto end;
785 }
786
787 uatomic_inc(&relayd->refcount);
788 stream->sent_to_relayd = 1;
789 } else {
790 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
791 stream->key, stream->net_seq_idx);
792 ret = -1;
793 goto end;
794 }
795
796 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
797 stream->name, stream->key, stream->net_seq_idx);
798
799 end:
800 rcu_read_unlock();
801 return ret;
802 }
803
804 /*
805 * Find a relayd and send the streams sent message
806 *
807 * Returns 0 on success, < 0 on error
808 */
809 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
810 {
811 int ret = 0;
812 struct consumer_relayd_sock_pair *relayd;
813
814 assert(net_seq_idx != -1ULL);
815
816 /* The stream is not metadata. Get relayd reference if exists. */
817 rcu_read_lock();
818 relayd = consumer_find_relayd(net_seq_idx);
819 if (relayd != NULL) {
820 /* Add stream on the relayd */
821 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
822 ret = relayd_streams_sent(&relayd->control_sock);
823 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
824 if (ret < 0) {
825 goto end;
826 }
827 } else {
828 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
829 net_seq_idx);
830 ret = -1;
831 goto end;
832 }
833
834 ret = 0;
835 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
836
837 end:
838 rcu_read_unlock();
839 return ret;
840 }
841
842 /*
843 * Find a relayd and close the stream
844 */
845 void close_relayd_stream(struct lttng_consumer_stream *stream)
846 {
847 struct consumer_relayd_sock_pair *relayd;
848
849 /* The stream is not metadata. Get relayd reference if exists. */
850 rcu_read_lock();
851 relayd = consumer_find_relayd(stream->net_seq_idx);
852 if (relayd) {
853 consumer_stream_relayd_close(stream, relayd);
854 }
855 rcu_read_unlock();
856 }
857
858 /*
859 * Handle stream for relayd transmission if the stream applies for network
860 * streaming where the net sequence index is set.
861 *
862 * Return destination file descriptor or negative value on error.
863 */
864 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
865 size_t data_size, unsigned long padding,
866 struct consumer_relayd_sock_pair *relayd)
867 {
868 int outfd = -1, ret;
869 struct lttcomm_relayd_data_hdr data_hdr;
870
871 /* Safety net */
872 assert(stream);
873 assert(relayd);
874
875 /* Reset data header */
876 memset(&data_hdr, 0, sizeof(data_hdr));
877
878 if (stream->metadata_flag) {
879 /* Caller MUST acquire the relayd control socket lock */
880 ret = relayd_send_metadata(&relayd->control_sock, data_size);
881 if (ret < 0) {
882 goto error;
883 }
884
885 /* Metadata are always sent on the control socket. */
886 outfd = relayd->control_sock.sock.fd;
887 } else {
888 /* Set header with stream information */
889 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
890 data_hdr.data_size = htobe32(data_size);
891 data_hdr.padding_size = htobe32(padding);
892 /*
893 * Note that net_seq_num below is assigned with the *current* value of
894 * next_net_seq_num and only after that the next_net_seq_num will be
895 * increment. This is why when issuing a command on the relayd using
896 * this next value, 1 should always be substracted in order to compare
897 * the last seen sequence number on the relayd side to the last sent.
898 */
899 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
900 /* Other fields are zeroed previously */
901
902 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
903 sizeof(data_hdr));
904 if (ret < 0) {
905 goto error;
906 }
907
908 ++stream->next_net_seq_num;
909
910 /* Set to go on data socket */
911 outfd = relayd->data_sock.sock.fd;
912 }
913
914 error:
915 return outfd;
916 }
917
918 /*
919 * Allocate and return a new lttng_consumer_channel object using the given key
920 * to initialize the hash table node.
921 *
922 * On error, return NULL.
923 */
924 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
925 uint64_t session_id,
926 const char *pathname,
927 const char *name,
928 uid_t uid,
929 gid_t gid,
930 uint64_t relayd_id,
931 enum lttng_event_output output,
932 uint64_t tracefile_size,
933 uint64_t tracefile_count,
934 uint64_t session_id_per_pid,
935 unsigned int monitor,
936 unsigned int live_timer_interval)
937 {
938 struct lttng_consumer_channel *channel;
939
940 channel = zmalloc(sizeof(*channel));
941 if (channel == NULL) {
942 PERROR("malloc struct lttng_consumer_channel");
943 goto end;
944 }
945
946 channel->key = key;
947 channel->refcount = 0;
948 channel->session_id = session_id;
949 channel->session_id_per_pid = session_id_per_pid;
950 channel->uid = uid;
951 channel->gid = gid;
952 channel->relayd_id = relayd_id;
953 channel->tracefile_size = tracefile_size;
954 channel->tracefile_count = tracefile_count;
955 channel->monitor = monitor;
956 channel->live_timer_interval = live_timer_interval;
957 pthread_mutex_init(&channel->lock, NULL);
958 pthread_mutex_init(&channel->timer_lock, NULL);
959
960 switch (output) {
961 case LTTNG_EVENT_SPLICE:
962 channel->output = CONSUMER_CHANNEL_SPLICE;
963 break;
964 case LTTNG_EVENT_MMAP:
965 channel->output = CONSUMER_CHANNEL_MMAP;
966 break;
967 default:
968 assert(0);
969 free(channel);
970 channel = NULL;
971 goto end;
972 }
973
974 /*
975 * In monitor mode, the streams associated with the channel will be put in
976 * a special list ONLY owned by this channel. So, the refcount is set to 1
977 * here meaning that the channel itself has streams that are referenced.
978 *
979 * On a channel deletion, once the channel is no longer visible, the
980 * refcount is decremented and checked for a zero value to delete it. With
981 * streams in no monitor mode, it will now be safe to destroy the channel.
982 */
983 if (!channel->monitor) {
984 channel->refcount = 1;
985 }
986
987 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
988 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
989
990 strncpy(channel->name, name, sizeof(channel->name));
991 channel->name[sizeof(channel->name) - 1] = '\0';
992
993 lttng_ht_node_init_u64(&channel->node, channel->key);
994
995 channel->wait_fd = -1;
996
997 CDS_INIT_LIST_HEAD(&channel->streams.head);
998
999 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1000
1001 end:
1002 return channel;
1003 }
1004
1005 /*
1006 * Add a channel to the global list protected by a mutex.
1007 *
1008 * Always return 0 indicating success.
1009 */
1010 int consumer_add_channel(struct lttng_consumer_channel *channel,
1011 struct lttng_consumer_local_data *ctx)
1012 {
1013 pthread_mutex_lock(&consumer_data.lock);
1014 pthread_mutex_lock(&channel->lock);
1015 pthread_mutex_lock(&channel->timer_lock);
1016
1017 /*
1018 * This gives us a guarantee that the channel we are about to add to the
1019 * channel hash table will be unique. See this function comment on the why
1020 * we need to steel the channel key at this stage.
1021 */
1022 steal_channel_key(channel->key);
1023
1024 rcu_read_lock();
1025 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1026 rcu_read_unlock();
1027
1028 pthread_mutex_unlock(&channel->timer_lock);
1029 pthread_mutex_unlock(&channel->lock);
1030 pthread_mutex_unlock(&consumer_data.lock);
1031
1032 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1033 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1034 }
1035
1036 return 0;
1037 }
1038
1039 /*
1040 * Allocate the pollfd structure and the local view of the out fds to avoid
1041 * doing a lookup in the linked list and concurrency issues when writing is
1042 * needed. Called with consumer_data.lock held.
1043 *
1044 * Returns the number of fds in the structures.
1045 */
1046 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1047 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1048 struct lttng_ht *ht)
1049 {
1050 int i = 0;
1051 struct lttng_ht_iter iter;
1052 struct lttng_consumer_stream *stream;
1053
1054 assert(ctx);
1055 assert(ht);
1056 assert(pollfd);
1057 assert(local_stream);
1058
1059 DBG("Updating poll fd array");
1060 rcu_read_lock();
1061 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1062 /*
1063 * Only active streams with an active end point can be added to the
1064 * poll set and local stream storage of the thread.
1065 *
1066 * There is a potential race here for endpoint_status to be updated
1067 * just after the check. However, this is OK since the stream(s) will
1068 * be deleted once the thread is notified that the end point state has
1069 * changed where this function will be called back again.
1070 */
1071 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1072 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1073 continue;
1074 }
1075 /*
1076 * This clobbers way too much the debug output. Uncomment that if you
1077 * need it for debugging purposes.
1078 *
1079 * DBG("Active FD %d", stream->wait_fd);
1080 */
1081 (*pollfd)[i].fd = stream->wait_fd;
1082 (*pollfd)[i].events = POLLIN | POLLPRI;
1083 local_stream[i] = stream;
1084 i++;
1085 }
1086 rcu_read_unlock();
1087
1088 /*
1089 * Insert the consumer_data_pipe at the end of the array and don't
1090 * increment i so nb_fd is the number of real FD.
1091 */
1092 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1093 (*pollfd)[i].events = POLLIN | POLLPRI;
1094
1095 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1096 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1097 return i;
1098 }
1099
1100 /*
1101 * Poll on the should_quit pipe and the command socket return -1 on
1102 * error, 1 if should exit, 0 if data is available on the command socket
1103 */
1104 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1105 {
1106 int num_rdy;
1107
1108 restart:
1109 num_rdy = poll(consumer_sockpoll, 2, -1);
1110 if (num_rdy == -1) {
1111 /*
1112 * Restart interrupted system call.
1113 */
1114 if (errno == EINTR) {
1115 goto restart;
1116 }
1117 PERROR("Poll error");
1118 return -1;
1119 }
1120 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1121 DBG("consumer_should_quit wake up");
1122 return 1;
1123 }
1124 return 0;
1125 }
1126
1127 /*
1128 * Set the error socket.
1129 */
1130 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1131 int sock)
1132 {
1133 ctx->consumer_error_socket = sock;
1134 }
1135
1136 /*
1137 * Set the command socket path.
1138 */
1139 void lttng_consumer_set_command_sock_path(
1140 struct lttng_consumer_local_data *ctx, char *sock)
1141 {
1142 ctx->consumer_command_sock_path = sock;
1143 }
1144
1145 /*
1146 * Send return code to the session daemon.
1147 * If the socket is not defined, we return 0, it is not a fatal error
1148 */
1149 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1150 {
1151 if (ctx->consumer_error_socket > 0) {
1152 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1153 sizeof(enum lttcomm_sessiond_command));
1154 }
1155
1156 return 0;
1157 }
1158
1159 /*
1160 * Close all the tracefiles and stream fds and MUST be called when all
1161 * instances are destroyed i.e. when all threads were joined and are ended.
1162 */
1163 void lttng_consumer_cleanup(void)
1164 {
1165 struct lttng_ht_iter iter;
1166 struct lttng_consumer_channel *channel;
1167
1168 rcu_read_lock();
1169
1170 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1171 node.node) {
1172 consumer_del_channel(channel);
1173 }
1174
1175 rcu_read_unlock();
1176
1177 lttng_ht_destroy(consumer_data.channel_ht);
1178
1179 cleanup_relayd_ht();
1180
1181 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1182
1183 /*
1184 * This HT contains streams that are freed by either the metadata thread or
1185 * the data thread so we do *nothing* on the hash table and simply destroy
1186 * it.
1187 */
1188 lttng_ht_destroy(consumer_data.stream_list_ht);
1189 }
1190
1191 /*
1192 * Called from signal handler.
1193 */
1194 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1195 {
1196 ssize_t ret;
1197
1198 consumer_quit = 1;
1199 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1200 if (ret < 1) {
1201 PERROR("write consumer quit");
1202 }
1203
1204 DBG("Consumer flag that it should quit");
1205 }
1206
1207 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1208 off_t orig_offset)
1209 {
1210 int outfd = stream->out_fd;
1211
1212 /*
1213 * This does a blocking write-and-wait on any page that belongs to the
1214 * subbuffer prior to the one we just wrote.
1215 * Don't care about error values, as these are just hints and ways to
1216 * limit the amount of page cache used.
1217 */
1218 if (orig_offset < stream->max_sb_size) {
1219 return;
1220 }
1221 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1222 stream->max_sb_size,
1223 SYNC_FILE_RANGE_WAIT_BEFORE
1224 | SYNC_FILE_RANGE_WRITE
1225 | SYNC_FILE_RANGE_WAIT_AFTER);
1226 /*
1227 * Give hints to the kernel about how we access the file:
1228 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1229 * we write it.
1230 *
1231 * We need to call fadvise again after the file grows because the
1232 * kernel does not seem to apply fadvise to non-existing parts of the
1233 * file.
1234 *
1235 * Call fadvise _after_ having waited for the page writeback to
1236 * complete because the dirty page writeback semantic is not well
1237 * defined. So it can be expected to lead to lower throughput in
1238 * streaming.
1239 */
1240 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1241 stream->max_sb_size, POSIX_FADV_DONTNEED);
1242 }
1243
1244 /*
1245 * Initialise the necessary environnement :
1246 * - create a new context
1247 * - create the poll_pipe
1248 * - create the should_quit pipe (for signal handler)
1249 * - create the thread pipe (for splice)
1250 *
1251 * Takes a function pointer as argument, this function is called when data is
1252 * available on a buffer. This function is responsible to do the
1253 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1254 * buffer configuration and then kernctl_put_next_subbuf at the end.
1255 *
1256 * Returns a pointer to the new context or NULL on error.
1257 */
1258 struct lttng_consumer_local_data *lttng_consumer_create(
1259 enum lttng_consumer_type type,
1260 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1261 struct lttng_consumer_local_data *ctx),
1262 int (*recv_channel)(struct lttng_consumer_channel *channel),
1263 int (*recv_stream)(struct lttng_consumer_stream *stream),
1264 int (*update_stream)(uint64_t stream_key, uint32_t state))
1265 {
1266 int ret;
1267 struct lttng_consumer_local_data *ctx;
1268
1269 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1270 consumer_data.type == type);
1271 consumer_data.type = type;
1272
1273 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1274 if (ctx == NULL) {
1275 PERROR("allocating context");
1276 goto error;
1277 }
1278
1279 ctx->consumer_error_socket = -1;
1280 ctx->consumer_metadata_socket = -1;
1281 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1282 /* assign the callbacks */
1283 ctx->on_buffer_ready = buffer_ready;
1284 ctx->on_recv_channel = recv_channel;
1285 ctx->on_recv_stream = recv_stream;
1286 ctx->on_update_stream = update_stream;
1287
1288 ctx->consumer_data_pipe = lttng_pipe_open(0);
1289 if (!ctx->consumer_data_pipe) {
1290 goto error_poll_pipe;
1291 }
1292
1293 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1294 if (!ctx->consumer_wakeup_pipe) {
1295 goto error_wakeup_pipe;
1296 }
1297
1298 ret = pipe(ctx->consumer_should_quit);
1299 if (ret < 0) {
1300 PERROR("Error creating recv pipe");
1301 goto error_quit_pipe;
1302 }
1303
1304 ret = pipe(ctx->consumer_thread_pipe);
1305 if (ret < 0) {
1306 PERROR("Error creating thread pipe");
1307 goto error_thread_pipe;
1308 }
1309
1310 ret = pipe(ctx->consumer_channel_pipe);
1311 if (ret < 0) {
1312 PERROR("Error creating channel pipe");
1313 goto error_channel_pipe;
1314 }
1315
1316 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1317 if (!ctx->consumer_metadata_pipe) {
1318 goto error_metadata_pipe;
1319 }
1320
1321 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1322 if (ret < 0) {
1323 goto error_splice_pipe;
1324 }
1325
1326 return ctx;
1327
1328 error_splice_pipe:
1329 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1330 error_metadata_pipe:
1331 utils_close_pipe(ctx->consumer_channel_pipe);
1332 error_channel_pipe:
1333 utils_close_pipe(ctx->consumer_thread_pipe);
1334 error_thread_pipe:
1335 utils_close_pipe(ctx->consumer_should_quit);
1336 error_quit_pipe:
1337 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1338 error_wakeup_pipe:
1339 lttng_pipe_destroy(ctx->consumer_data_pipe);
1340 error_poll_pipe:
1341 free(ctx);
1342 error:
1343 return NULL;
1344 }
1345
1346 /*
1347 * Iterate over all streams of the hashtable and free them properly.
1348 */
1349 static void destroy_data_stream_ht(struct lttng_ht *ht)
1350 {
1351 struct lttng_ht_iter iter;
1352 struct lttng_consumer_stream *stream;
1353
1354 if (ht == NULL) {
1355 return;
1356 }
1357
1358 rcu_read_lock();
1359 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1360 /*
1361 * Ignore return value since we are currently cleaning up so any error
1362 * can't be handled.
1363 */
1364 (void) consumer_del_stream(stream, ht);
1365 }
1366 rcu_read_unlock();
1367
1368 lttng_ht_destroy(ht);
1369 }
1370
1371 /*
1372 * Iterate over all streams of the metadata hashtable and free them
1373 * properly.
1374 */
1375 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1376 {
1377 struct lttng_ht_iter iter;
1378 struct lttng_consumer_stream *stream;
1379
1380 if (ht == NULL) {
1381 return;
1382 }
1383
1384 rcu_read_lock();
1385 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1386 /*
1387 * Ignore return value since we are currently cleaning up so any error
1388 * can't be handled.
1389 */
1390 (void) consumer_del_metadata_stream(stream, ht);
1391 }
1392 rcu_read_unlock();
1393
1394 lttng_ht_destroy(ht);
1395 }
1396
1397 /*
1398 * Close all fds associated with the instance and free the context.
1399 */
1400 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1401 {
1402 int ret;
1403
1404 DBG("Consumer destroying it. Closing everything.");
1405
1406 if (!ctx) {
1407 return;
1408 }
1409
1410 destroy_data_stream_ht(data_ht);
1411 destroy_metadata_stream_ht(metadata_ht);
1412
1413 ret = close(ctx->consumer_error_socket);
1414 if (ret) {
1415 PERROR("close");
1416 }
1417 ret = close(ctx->consumer_metadata_socket);
1418 if (ret) {
1419 PERROR("close");
1420 }
1421 utils_close_pipe(ctx->consumer_thread_pipe);
1422 utils_close_pipe(ctx->consumer_channel_pipe);
1423 lttng_pipe_destroy(ctx->consumer_data_pipe);
1424 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1425 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1426 utils_close_pipe(ctx->consumer_should_quit);
1427 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1428
1429 unlink(ctx->consumer_command_sock_path);
1430 free(ctx);
1431 }
1432
1433 /*
1434 * Write the metadata stream id on the specified file descriptor.
1435 */
1436 static int write_relayd_metadata_id(int fd,
1437 struct lttng_consumer_stream *stream,
1438 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1439 {
1440 ssize_t ret;
1441 struct lttcomm_relayd_metadata_payload hdr;
1442
1443 hdr.stream_id = htobe64(stream->relayd_stream_id);
1444 hdr.padding_size = htobe32(padding);
1445 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1446 if (ret < sizeof(hdr)) {
1447 /*
1448 * This error means that the fd's end is closed so ignore the perror
1449 * not to clubber the error output since this can happen in a normal
1450 * code path.
1451 */
1452 if (errno != EPIPE) {
1453 PERROR("write metadata stream id");
1454 }
1455 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1456 /*
1457 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1458 * handle writting the missing part so report that as an error and
1459 * don't lie to the caller.
1460 */
1461 ret = -1;
1462 goto end;
1463 }
1464 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1465 stream->relayd_stream_id, padding);
1466
1467 end:
1468 return (int) ret;
1469 }
1470
1471 /*
1472 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1473 * core function for writing trace buffers to either the local filesystem or
1474 * the network.
1475 *
1476 * It must be called with the stream lock held.
1477 *
1478 * Careful review MUST be put if any changes occur!
1479 *
1480 * Returns the number of bytes written
1481 */
1482 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1483 struct lttng_consumer_local_data *ctx,
1484 struct lttng_consumer_stream *stream, unsigned long len,
1485 unsigned long padding,
1486 struct ctf_packet_index *index)
1487 {
1488 unsigned long mmap_offset;
1489 void *mmap_base;
1490 ssize_t ret = 0;
1491 off_t orig_offset = stream->out_fd_offset;
1492 /* Default is on the disk */
1493 int outfd = stream->out_fd;
1494 struct consumer_relayd_sock_pair *relayd = NULL;
1495 unsigned int relayd_hang_up = 0;
1496
1497 /* RCU lock for the relayd pointer */
1498 rcu_read_lock();
1499
1500 /* Flag that the current stream if set for network streaming. */
1501 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1502 relayd = consumer_find_relayd(stream->net_seq_idx);
1503 if (relayd == NULL) {
1504 ret = -EPIPE;
1505 goto end;
1506 }
1507 }
1508
1509 /* get the offset inside the fd to mmap */
1510 switch (consumer_data.type) {
1511 case LTTNG_CONSUMER_KERNEL:
1512 mmap_base = stream->mmap_base;
1513 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1514 if (ret < 0) {
1515 ret = -errno;
1516 PERROR("tracer ctl get_mmap_read_offset");
1517 goto end;
1518 }
1519 break;
1520 case LTTNG_CONSUMER32_UST:
1521 case LTTNG_CONSUMER64_UST:
1522 mmap_base = lttng_ustctl_get_mmap_base(stream);
1523 if (!mmap_base) {
1524 ERR("read mmap get mmap base for stream %s", stream->name);
1525 ret = -EPERM;
1526 goto end;
1527 }
1528 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1529 if (ret != 0) {
1530 PERROR("tracer ctl get_mmap_read_offset");
1531 ret = -EINVAL;
1532 goto end;
1533 }
1534 break;
1535 default:
1536 ERR("Unknown consumer_data type");
1537 assert(0);
1538 }
1539
1540 /* Handle stream on the relayd if the output is on the network */
1541 if (relayd) {
1542 unsigned long netlen = len;
1543
1544 /*
1545 * Lock the control socket for the complete duration of the function
1546 * since from this point on we will use the socket.
1547 */
1548 if (stream->metadata_flag) {
1549 /* Metadata requires the control socket. */
1550 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1551 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1552 }
1553
1554 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1555 if (ret < 0) {
1556 relayd_hang_up = 1;
1557 goto write_error;
1558 }
1559 /* Use the returned socket. */
1560 outfd = ret;
1561
1562 /* Write metadata stream id before payload */
1563 if (stream->metadata_flag) {
1564 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1565 if (ret < 0) {
1566 relayd_hang_up = 1;
1567 goto write_error;
1568 }
1569 }
1570 } else {
1571 /* No streaming, we have to set the len with the full padding */
1572 len += padding;
1573
1574 /*
1575 * Check if we need to change the tracefile before writing the packet.
1576 */
1577 if (stream->chan->tracefile_size > 0 &&
1578 (stream->tracefile_size_current + len) >
1579 stream->chan->tracefile_size) {
1580 ret = utils_rotate_stream_file(stream->chan->pathname,
1581 stream->name, stream->chan->tracefile_size,
1582 stream->chan->tracefile_count, stream->uid, stream->gid,
1583 stream->out_fd, &(stream->tracefile_count_current),
1584 &stream->out_fd);
1585 if (ret < 0) {
1586 ERR("Rotating output file");
1587 goto end;
1588 }
1589 outfd = stream->out_fd;
1590
1591 if (stream->index_fd >= 0) {
1592 ret = index_create_file(stream->chan->pathname,
1593 stream->name, stream->uid, stream->gid,
1594 stream->chan->tracefile_size,
1595 stream->tracefile_count_current);
1596 if (ret < 0) {
1597 goto end;
1598 }
1599 stream->index_fd = ret;
1600 }
1601
1602 /* Reset current size because we just perform a rotation. */
1603 stream->tracefile_size_current = 0;
1604 stream->out_fd_offset = 0;
1605 orig_offset = 0;
1606 }
1607 stream->tracefile_size_current += len;
1608 if (index) {
1609 index->offset = htobe64(stream->out_fd_offset);
1610 }
1611 }
1612
1613 /*
1614 * This call guarantee that len or less is returned. It's impossible to
1615 * receive a ret value that is bigger than len.
1616 */
1617 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1618 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1619 if (ret < 0 || ((size_t) ret != len)) {
1620 /*
1621 * Report error to caller if nothing was written else at least send the
1622 * amount written.
1623 */
1624 if (ret < 0) {
1625 ret = -errno;
1626 }
1627 relayd_hang_up = 1;
1628
1629 /* Socket operation failed. We consider the relayd dead */
1630 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1631 /*
1632 * This is possible if the fd is closed on the other side
1633 * (outfd) or any write problem. It can be verbose a bit for a
1634 * normal execution if for instance the relayd is stopped
1635 * abruptly. This can happen so set this to a DBG statement.
1636 */
1637 DBG("Consumer mmap write detected relayd hang up");
1638 } else {
1639 /* Unhandled error, print it and stop function right now. */
1640 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1641 }
1642 goto write_error;
1643 }
1644 stream->output_written += ret;
1645
1646 /* This call is useless on a socket so better save a syscall. */
1647 if (!relayd) {
1648 /* This won't block, but will start writeout asynchronously */
1649 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1650 SYNC_FILE_RANGE_WRITE);
1651 stream->out_fd_offset += len;
1652 }
1653 lttng_consumer_sync_trace_file(stream, orig_offset);
1654
1655 write_error:
1656 /*
1657 * This is a special case that the relayd has closed its socket. Let's
1658 * cleanup the relayd object and all associated streams.
1659 */
1660 if (relayd && relayd_hang_up) {
1661 cleanup_relayd(relayd, ctx);
1662 }
1663
1664 end:
1665 /* Unlock only if ctrl socket used */
1666 if (relayd && stream->metadata_flag) {
1667 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1668 }
1669
1670 rcu_read_unlock();
1671 return ret;
1672 }
1673
1674 /*
1675 * Splice the data from the ring buffer to the tracefile.
1676 *
1677 * It must be called with the stream lock held.
1678 *
1679 * Returns the number of bytes spliced.
1680 */
1681 ssize_t lttng_consumer_on_read_subbuffer_splice(
1682 struct lttng_consumer_local_data *ctx,
1683 struct lttng_consumer_stream *stream, unsigned long len,
1684 unsigned long padding,
1685 struct ctf_packet_index *index)
1686 {
1687 ssize_t ret = 0, written = 0, ret_splice = 0;
1688 loff_t offset = 0;
1689 off_t orig_offset = stream->out_fd_offset;
1690 int fd = stream->wait_fd;
1691 /* Default is on the disk */
1692 int outfd = stream->out_fd;
1693 struct consumer_relayd_sock_pair *relayd = NULL;
1694 int *splice_pipe;
1695 unsigned int relayd_hang_up = 0;
1696
1697 switch (consumer_data.type) {
1698 case LTTNG_CONSUMER_KERNEL:
1699 break;
1700 case LTTNG_CONSUMER32_UST:
1701 case LTTNG_CONSUMER64_UST:
1702 /* Not supported for user space tracing */
1703 return -ENOSYS;
1704 default:
1705 ERR("Unknown consumer_data type");
1706 assert(0);
1707 }
1708
1709 /* RCU lock for the relayd pointer */
1710 rcu_read_lock();
1711
1712 /* Flag that the current stream if set for network streaming. */
1713 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1714 relayd = consumer_find_relayd(stream->net_seq_idx);
1715 if (relayd == NULL) {
1716 written = -ret;
1717 goto end;
1718 }
1719 }
1720
1721 /*
1722 * Choose right pipe for splice. Metadata and trace data are handled by
1723 * different threads hence the use of two pipes in order not to race or
1724 * corrupt the written data.
1725 */
1726 if (stream->metadata_flag) {
1727 splice_pipe = ctx->consumer_splice_metadata_pipe;
1728 } else {
1729 splice_pipe = ctx->consumer_thread_pipe;
1730 }
1731
1732 /* Write metadata stream id before payload */
1733 if (relayd) {
1734 unsigned long total_len = len;
1735
1736 if (stream->metadata_flag) {
1737 /*
1738 * Lock the control socket for the complete duration of the function
1739 * since from this point on we will use the socket.
1740 */
1741 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1742
1743 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1744 padding);
1745 if (ret < 0) {
1746 written = ret;
1747 relayd_hang_up = 1;
1748 goto write_error;
1749 }
1750
1751 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1752 }
1753
1754 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1755 if (ret < 0) {
1756 written = ret;
1757 relayd_hang_up = 1;
1758 goto write_error;
1759 }
1760 /* Use the returned socket. */
1761 outfd = ret;
1762 } else {
1763 /* No streaming, we have to set the len with the full padding */
1764 len += padding;
1765
1766 /*
1767 * Check if we need to change the tracefile before writing the packet.
1768 */
1769 if (stream->chan->tracefile_size > 0 &&
1770 (stream->tracefile_size_current + len) >
1771 stream->chan->tracefile_size) {
1772 ret = utils_rotate_stream_file(stream->chan->pathname,
1773 stream->name, stream->chan->tracefile_size,
1774 stream->chan->tracefile_count, stream->uid, stream->gid,
1775 stream->out_fd, &(stream->tracefile_count_current),
1776 &stream->out_fd);
1777 if (ret < 0) {
1778 written = ret;
1779 ERR("Rotating output file");
1780 goto end;
1781 }
1782 outfd = stream->out_fd;
1783
1784 if (stream->index_fd >= 0) {
1785 ret = index_create_file(stream->chan->pathname,
1786 stream->name, stream->uid, stream->gid,
1787 stream->chan->tracefile_size,
1788 stream->tracefile_count_current);
1789 if (ret < 0) {
1790 written = ret;
1791 goto end;
1792 }
1793 stream->index_fd = ret;
1794 }
1795
1796 /* Reset current size because we just perform a rotation. */
1797 stream->tracefile_size_current = 0;
1798 stream->out_fd_offset = 0;
1799 orig_offset = 0;
1800 }
1801 stream->tracefile_size_current += len;
1802 index->offset = htobe64(stream->out_fd_offset);
1803 }
1804
1805 while (len > 0) {
1806 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1807 (unsigned long)offset, len, fd, splice_pipe[1]);
1808 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1809 SPLICE_F_MOVE | SPLICE_F_MORE);
1810 DBG("splice chan to pipe, ret %zd", ret_splice);
1811 if (ret_splice < 0) {
1812 ret = errno;
1813 written = -ret;
1814 PERROR("Error in relay splice");
1815 goto splice_error;
1816 }
1817
1818 /* Handle stream on the relayd if the output is on the network */
1819 if (relayd && stream->metadata_flag) {
1820 size_t metadata_payload_size =
1821 sizeof(struct lttcomm_relayd_metadata_payload);
1822
1823 /* Update counter to fit the spliced data */
1824 ret_splice += metadata_payload_size;
1825 len += metadata_payload_size;
1826 /*
1827 * We do this so the return value can match the len passed as
1828 * argument to this function.
1829 */
1830 written -= metadata_payload_size;
1831 }
1832
1833 /* Splice data out */
1834 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1835 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1836 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1837 if (ret_splice < 0) {
1838 ret = errno;
1839 written = -ret;
1840 relayd_hang_up = 1;
1841 goto write_error;
1842 } else if (ret_splice > len) {
1843 /*
1844 * We don't expect this code path to be executed but you never know
1845 * so this is an extra protection agains a buggy splice().
1846 */
1847 ret = errno;
1848 written += ret_splice;
1849 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1850 len);
1851 goto splice_error;
1852 } else {
1853 /* All good, update current len and continue. */
1854 len -= ret_splice;
1855 }
1856
1857 /* This call is useless on a socket so better save a syscall. */
1858 if (!relayd) {
1859 /* This won't block, but will start writeout asynchronously */
1860 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1861 SYNC_FILE_RANGE_WRITE);
1862 stream->out_fd_offset += ret_splice;
1863 }
1864 stream->output_written += ret_splice;
1865 written += ret_splice;
1866 }
1867 lttng_consumer_sync_trace_file(stream, orig_offset);
1868 goto end;
1869
1870 write_error:
1871 /*
1872 * This is a special case that the relayd has closed its socket. Let's
1873 * cleanup the relayd object and all associated streams.
1874 */
1875 if (relayd && relayd_hang_up) {
1876 cleanup_relayd(relayd, ctx);
1877 /* Skip splice error so the consumer does not fail */
1878 goto end;
1879 }
1880
1881 splice_error:
1882 /* send the appropriate error description to sessiond */
1883 switch (ret) {
1884 case EINVAL:
1885 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1886 break;
1887 case ENOMEM:
1888 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1889 break;
1890 case ESPIPE:
1891 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1892 break;
1893 }
1894
1895 end:
1896 if (relayd && stream->metadata_flag) {
1897 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1898 }
1899
1900 rcu_read_unlock();
1901 return written;
1902 }
1903
1904 /*
1905 * Take a snapshot for a specific fd
1906 *
1907 * Returns 0 on success, < 0 on error
1908 */
1909 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1910 {
1911 switch (consumer_data.type) {
1912 case LTTNG_CONSUMER_KERNEL:
1913 return lttng_kconsumer_take_snapshot(stream);
1914 case LTTNG_CONSUMER32_UST:
1915 case LTTNG_CONSUMER64_UST:
1916 return lttng_ustconsumer_take_snapshot(stream);
1917 default:
1918 ERR("Unknown consumer_data type");
1919 assert(0);
1920 return -ENOSYS;
1921 }
1922 }
1923
1924 /*
1925 * Get the produced position
1926 *
1927 * Returns 0 on success, < 0 on error
1928 */
1929 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1930 unsigned long *pos)
1931 {
1932 switch (consumer_data.type) {
1933 case LTTNG_CONSUMER_KERNEL:
1934 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1935 case LTTNG_CONSUMER32_UST:
1936 case LTTNG_CONSUMER64_UST:
1937 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1938 default:
1939 ERR("Unknown consumer_data type");
1940 assert(0);
1941 return -ENOSYS;
1942 }
1943 }
1944
1945 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1946 int sock, struct pollfd *consumer_sockpoll)
1947 {
1948 switch (consumer_data.type) {
1949 case LTTNG_CONSUMER_KERNEL:
1950 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1951 case LTTNG_CONSUMER32_UST:
1952 case LTTNG_CONSUMER64_UST:
1953 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1954 default:
1955 ERR("Unknown consumer_data type");
1956 assert(0);
1957 return -ENOSYS;
1958 }
1959 }
1960
1961 void lttng_consumer_close_all_metadata(void)
1962 {
1963 switch (consumer_data.type) {
1964 case LTTNG_CONSUMER_KERNEL:
1965 /*
1966 * The Kernel consumer has a different metadata scheme so we don't
1967 * close anything because the stream will be closed by the session
1968 * daemon.
1969 */
1970 break;
1971 case LTTNG_CONSUMER32_UST:
1972 case LTTNG_CONSUMER64_UST:
1973 /*
1974 * Close all metadata streams. The metadata hash table is passed and
1975 * this call iterates over it by closing all wakeup fd. This is safe
1976 * because at this point we are sure that the metadata producer is
1977 * either dead or blocked.
1978 */
1979 lttng_ustconsumer_close_all_metadata(metadata_ht);
1980 break;
1981 default:
1982 ERR("Unknown consumer_data type");
1983 assert(0);
1984 }
1985 }
1986
1987 /*
1988 * Clean up a metadata stream and free its memory.
1989 */
1990 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1991 struct lttng_ht *ht)
1992 {
1993 struct lttng_consumer_channel *free_chan = NULL;
1994
1995 assert(stream);
1996 /*
1997 * This call should NEVER receive regular stream. It must always be
1998 * metadata stream and this is crucial for data structure synchronization.
1999 */
2000 assert(stream->metadata_flag);
2001
2002 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2003
2004 pthread_mutex_lock(&consumer_data.lock);
2005 pthread_mutex_lock(&stream->chan->lock);
2006 pthread_mutex_lock(&stream->lock);
2007
2008 /* Remove any reference to that stream. */
2009 consumer_stream_delete(stream, ht);
2010
2011 /* Close down everything including the relayd if one. */
2012 consumer_stream_close(stream);
2013 /* Destroy tracer buffers of the stream. */
2014 consumer_stream_destroy_buffers(stream);
2015
2016 /* Atomically decrement channel refcount since other threads can use it. */
2017 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2018 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2019 /* Go for channel deletion! */
2020 free_chan = stream->chan;
2021 }
2022
2023 /*
2024 * Nullify the stream reference so it is not used after deletion. The
2025 * channel lock MUST be acquired before being able to check for a NULL
2026 * pointer value.
2027 */
2028 stream->chan->metadata_stream = NULL;
2029
2030 pthread_mutex_unlock(&stream->lock);
2031 pthread_mutex_unlock(&stream->chan->lock);
2032 pthread_mutex_unlock(&consumer_data.lock);
2033
2034 if (free_chan) {
2035 consumer_del_channel(free_chan);
2036 }
2037
2038 consumer_stream_free(stream);
2039 }
2040
2041 /*
2042 * Action done with the metadata stream when adding it to the consumer internal
2043 * data structures to handle it.
2044 */
2045 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2046 {
2047 struct lttng_ht *ht = metadata_ht;
2048 int ret = 0;
2049 struct lttng_ht_iter iter;
2050 struct lttng_ht_node_u64 *node;
2051
2052 assert(stream);
2053 assert(ht);
2054
2055 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2056
2057 pthread_mutex_lock(&consumer_data.lock);
2058 pthread_mutex_lock(&stream->chan->lock);
2059 pthread_mutex_lock(&stream->chan->timer_lock);
2060 pthread_mutex_lock(&stream->lock);
2061
2062 /*
2063 * From here, refcounts are updated so be _careful_ when returning an error
2064 * after this point.
2065 */
2066
2067 rcu_read_lock();
2068
2069 /*
2070 * Lookup the stream just to make sure it does not exist in our internal
2071 * state. This should NEVER happen.
2072 */
2073 lttng_ht_lookup(ht, &stream->key, &iter);
2074 node = lttng_ht_iter_get_node_u64(&iter);
2075 assert(!node);
2076
2077 /*
2078 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2079 * in terms of destroying the associated channel, because the action that
2080 * causes the count to become 0 also causes a stream to be added. The
2081 * channel deletion will thus be triggered by the following removal of this
2082 * stream.
2083 */
2084 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2085 /* Increment refcount before decrementing nb_init_stream_left */
2086 cmm_smp_wmb();
2087 uatomic_dec(&stream->chan->nb_init_stream_left);
2088 }
2089
2090 lttng_ht_add_unique_u64(ht, &stream->node);
2091
2092 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2093 &stream->node_channel_id);
2094
2095 /*
2096 * Add stream to the stream_list_ht of the consumer data. No need to steal
2097 * the key since the HT does not use it and we allow to add redundant keys
2098 * into this table.
2099 */
2100 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2101
2102 rcu_read_unlock();
2103
2104 pthread_mutex_unlock(&stream->lock);
2105 pthread_mutex_unlock(&stream->chan->lock);
2106 pthread_mutex_unlock(&stream->chan->timer_lock);
2107 pthread_mutex_unlock(&consumer_data.lock);
2108 return ret;
2109 }
2110
2111 /*
2112 * Delete data stream that are flagged for deletion (endpoint_status).
2113 */
2114 static void validate_endpoint_status_data_stream(void)
2115 {
2116 struct lttng_ht_iter iter;
2117 struct lttng_consumer_stream *stream;
2118
2119 DBG("Consumer delete flagged data stream");
2120
2121 rcu_read_lock();
2122 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2123 /* Validate delete flag of the stream */
2124 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2125 continue;
2126 }
2127 /* Delete it right now */
2128 consumer_del_stream(stream, data_ht);
2129 }
2130 rcu_read_unlock();
2131 }
2132
2133 /*
2134 * Delete metadata stream that are flagged for deletion (endpoint_status).
2135 */
2136 static void validate_endpoint_status_metadata_stream(
2137 struct lttng_poll_event *pollset)
2138 {
2139 struct lttng_ht_iter iter;
2140 struct lttng_consumer_stream *stream;
2141
2142 DBG("Consumer delete flagged metadata stream");
2143
2144 assert(pollset);
2145
2146 rcu_read_lock();
2147 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2148 /* Validate delete flag of the stream */
2149 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2150 continue;
2151 }
2152 /*
2153 * Remove from pollset so the metadata thread can continue without
2154 * blocking on a deleted stream.
2155 */
2156 lttng_poll_del(pollset, stream->wait_fd);
2157
2158 /* Delete it right now */
2159 consumer_del_metadata_stream(stream, metadata_ht);
2160 }
2161 rcu_read_unlock();
2162 }
2163
2164 /*
2165 * Thread polls on metadata file descriptor and write them on disk or on the
2166 * network.
2167 */
2168 void *consumer_thread_metadata_poll(void *data)
2169 {
2170 int ret, i, pollfd, err = -1;
2171 uint32_t revents, nb_fd;
2172 struct lttng_consumer_stream *stream = NULL;
2173 struct lttng_ht_iter iter;
2174 struct lttng_ht_node_u64 *node;
2175 struct lttng_poll_event events;
2176 struct lttng_consumer_local_data *ctx = data;
2177 ssize_t len;
2178
2179 rcu_register_thread();
2180
2181 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2182
2183 if (testpoint(consumerd_thread_metadata)) {
2184 goto error_testpoint;
2185 }
2186
2187 health_code_update();
2188
2189 DBG("Thread metadata poll started");
2190
2191 /* Size is set to 1 for the consumer_metadata pipe */
2192 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2193 if (ret < 0) {
2194 ERR("Poll set creation failed");
2195 goto end_poll;
2196 }
2197
2198 ret = lttng_poll_add(&events,
2199 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2200 if (ret < 0) {
2201 goto end;
2202 }
2203
2204 /* Main loop */
2205 DBG("Metadata main loop started");
2206
2207 while (1) {
2208 health_code_update();
2209
2210 /* Only the metadata pipe is set */
2211 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2212 err = 0; /* All is OK */
2213 goto end;
2214 }
2215
2216 restart:
2217 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2218 health_poll_entry();
2219 ret = lttng_poll_wait(&events, -1);
2220 health_poll_exit();
2221 DBG("Metadata event catched in thread");
2222 if (ret < 0) {
2223 if (errno == EINTR) {
2224 ERR("Poll EINTR catched");
2225 goto restart;
2226 }
2227 goto error;
2228 }
2229
2230 nb_fd = ret;
2231
2232 /* From here, the event is a metadata wait fd */
2233 for (i = 0; i < nb_fd; i++) {
2234 health_code_update();
2235
2236 revents = LTTNG_POLL_GETEV(&events, i);
2237 pollfd = LTTNG_POLL_GETFD(&events, i);
2238
2239 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2240 if (revents & (LPOLLERR | LPOLLHUP )) {
2241 DBG("Metadata thread pipe hung up");
2242 /*
2243 * Remove the pipe from the poll set and continue the loop
2244 * since their might be data to consume.
2245 */
2246 lttng_poll_del(&events,
2247 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2248 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2249 continue;
2250 } else if (revents & LPOLLIN) {
2251 ssize_t pipe_len;
2252
2253 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2254 &stream, sizeof(stream));
2255 if (pipe_len < sizeof(stream)) {
2256 PERROR("read metadata stream");
2257 /*
2258 * Continue here to handle the rest of the streams.
2259 */
2260 continue;
2261 }
2262
2263 /* A NULL stream means that the state has changed. */
2264 if (stream == NULL) {
2265 /* Check for deleted streams. */
2266 validate_endpoint_status_metadata_stream(&events);
2267 goto restart;
2268 }
2269
2270 DBG("Adding metadata stream %d to poll set",
2271 stream->wait_fd);
2272
2273 /* Add metadata stream to the global poll events list */
2274 lttng_poll_add(&events, stream->wait_fd,
2275 LPOLLIN | LPOLLPRI | LPOLLHUP);
2276 }
2277
2278 /* Handle other stream */
2279 continue;
2280 }
2281
2282 rcu_read_lock();
2283 {
2284 uint64_t tmp_id = (uint64_t) pollfd;
2285
2286 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2287 }
2288 node = lttng_ht_iter_get_node_u64(&iter);
2289 assert(node);
2290
2291 stream = caa_container_of(node, struct lttng_consumer_stream,
2292 node);
2293
2294 /* Check for error event */
2295 if (revents & (LPOLLERR | LPOLLHUP)) {
2296 DBG("Metadata fd %d is hup|err.", pollfd);
2297 if (!stream->hangup_flush_done
2298 && (consumer_data.type == LTTNG_CONSUMER32_UST
2299 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2300 DBG("Attempting to flush and consume the UST buffers");
2301 lttng_ustconsumer_on_stream_hangup(stream);
2302
2303 /* We just flushed the stream now read it. */
2304 do {
2305 health_code_update();
2306
2307 len = ctx->on_buffer_ready(stream, ctx);
2308 /*
2309 * We don't check the return value here since if we get
2310 * a negative len, it means an error occured thus we
2311 * simply remove it from the poll set and free the
2312 * stream.
2313 */
2314 } while (len > 0);
2315 }
2316
2317 lttng_poll_del(&events, stream->wait_fd);
2318 /*
2319 * This call update the channel states, closes file descriptors
2320 * and securely free the stream.
2321 */
2322 consumer_del_metadata_stream(stream, metadata_ht);
2323 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2324 /* Get the data out of the metadata file descriptor */
2325 DBG("Metadata available on fd %d", pollfd);
2326 assert(stream->wait_fd == pollfd);
2327
2328 do {
2329 health_code_update();
2330
2331 len = ctx->on_buffer_ready(stream, ctx);
2332 /*
2333 * We don't check the return value here since if we get
2334 * a negative len, it means an error occured thus we
2335 * simply remove it from the poll set and free the
2336 * stream.
2337 */
2338 } while (len > 0);
2339
2340 /* It's ok to have an unavailable sub-buffer */
2341 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2342 /* Clean up stream from consumer and free it. */
2343 lttng_poll_del(&events, stream->wait_fd);
2344 consumer_del_metadata_stream(stream, metadata_ht);
2345 }
2346 }
2347
2348 /* Release RCU lock for the stream looked up */
2349 rcu_read_unlock();
2350 }
2351 }
2352
2353 /* All is OK */
2354 err = 0;
2355 error:
2356 end:
2357 DBG("Metadata poll thread exiting");
2358
2359 lttng_poll_clean(&events);
2360 end_poll:
2361 error_testpoint:
2362 if (err) {
2363 health_error();
2364 ERR("Health error occurred in %s", __func__);
2365 }
2366 health_unregister(health_consumerd);
2367 rcu_unregister_thread();
2368 return NULL;
2369 }
2370
2371 /*
2372 * This thread polls the fds in the set to consume the data and write
2373 * it to tracefile if necessary.
2374 */
2375 void *consumer_thread_data_poll(void *data)
2376 {
2377 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2378 struct pollfd *pollfd = NULL;
2379 /* local view of the streams */
2380 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2381 /* local view of consumer_data.fds_count */
2382 int nb_fd = 0;
2383 struct lttng_consumer_local_data *ctx = data;
2384 ssize_t len;
2385
2386 rcu_register_thread();
2387
2388 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2389
2390 if (testpoint(consumerd_thread_data)) {
2391 goto error_testpoint;
2392 }
2393
2394 health_code_update();
2395
2396 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2397 if (local_stream == NULL) {
2398 PERROR("local_stream malloc");
2399 goto end;
2400 }
2401
2402 while (1) {
2403 health_code_update();
2404
2405 high_prio = 0;
2406 num_hup = 0;
2407
2408 /*
2409 * the fds set has been updated, we need to update our
2410 * local array as well
2411 */
2412 pthread_mutex_lock(&consumer_data.lock);
2413 if (consumer_data.need_update) {
2414 free(pollfd);
2415 pollfd = NULL;
2416
2417 free(local_stream);
2418 local_stream = NULL;
2419
2420 /*
2421 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2422 * wake up pipe.
2423 */
2424 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2425 if (pollfd == NULL) {
2426 PERROR("pollfd malloc");
2427 pthread_mutex_unlock(&consumer_data.lock);
2428 goto end;
2429 }
2430
2431 local_stream = zmalloc((consumer_data.stream_count + 2) *
2432 sizeof(struct lttng_consumer_stream *));
2433 if (local_stream == NULL) {
2434 PERROR("local_stream malloc");
2435 pthread_mutex_unlock(&consumer_data.lock);
2436 goto end;
2437 }
2438 ret = update_poll_array(ctx, &pollfd, local_stream,
2439 data_ht);
2440 if (ret < 0) {
2441 ERR("Error in allocating pollfd or local_outfds");
2442 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2443 pthread_mutex_unlock(&consumer_data.lock);
2444 goto end;
2445 }
2446 nb_fd = ret;
2447 consumer_data.need_update = 0;
2448 }
2449 pthread_mutex_unlock(&consumer_data.lock);
2450
2451 /* No FDs and consumer_quit, consumer_cleanup the thread */
2452 if (nb_fd == 0 && consumer_quit == 1) {
2453 err = 0; /* All is OK */
2454 goto end;
2455 }
2456 /* poll on the array of fds */
2457 restart:
2458 DBG("polling on %d fd", nb_fd + 2);
2459 health_poll_entry();
2460 num_rdy = poll(pollfd, nb_fd + 2, -1);
2461 health_poll_exit();
2462 DBG("poll num_rdy : %d", num_rdy);
2463 if (num_rdy == -1) {
2464 /*
2465 * Restart interrupted system call.
2466 */
2467 if (errno == EINTR) {
2468 goto restart;
2469 }
2470 PERROR("Poll error");
2471 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2472 goto end;
2473 } else if (num_rdy == 0) {
2474 DBG("Polling thread timed out");
2475 goto end;
2476 }
2477
2478 /*
2479 * If the consumer_data_pipe triggered poll go directly to the
2480 * beginning of the loop to update the array. We want to prioritize
2481 * array update over low-priority reads.
2482 */
2483 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2484 ssize_t pipe_readlen;
2485
2486 DBG("consumer_data_pipe wake up");
2487 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2488 &new_stream, sizeof(new_stream));
2489 if (pipe_readlen < sizeof(new_stream)) {
2490 PERROR("Consumer data pipe");
2491 /* Continue so we can at least handle the current stream(s). */
2492 continue;
2493 }
2494
2495 /*
2496 * If the stream is NULL, just ignore it. It's also possible that
2497 * the sessiond poll thread changed the consumer_quit state and is
2498 * waking us up to test it.
2499 */
2500 if (new_stream == NULL) {
2501 validate_endpoint_status_data_stream();
2502 continue;
2503 }
2504
2505 /* Continue to update the local streams and handle prio ones */
2506 continue;
2507 }
2508
2509 /* Handle wakeup pipe. */
2510 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2511 char dummy;
2512 ssize_t pipe_readlen;
2513
2514 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2515 sizeof(dummy));
2516 if (pipe_readlen < 0) {
2517 PERROR("Consumer data wakeup pipe");
2518 }
2519 /* We've been awakened to handle stream(s). */
2520 ctx->has_wakeup = 0;
2521 }
2522
2523 /* Take care of high priority channels first. */
2524 for (i = 0; i < nb_fd; i++) {
2525 health_code_update();
2526
2527 if (local_stream[i] == NULL) {
2528 continue;
2529 }
2530 if (pollfd[i].revents & POLLPRI) {
2531 DBG("Urgent read on fd %d", pollfd[i].fd);
2532 high_prio = 1;
2533 len = ctx->on_buffer_ready(local_stream[i], ctx);
2534 /* it's ok to have an unavailable sub-buffer */
2535 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2536 /* Clean the stream and free it. */
2537 consumer_del_stream(local_stream[i], data_ht);
2538 local_stream[i] = NULL;
2539 } else if (len > 0) {
2540 local_stream[i]->data_read = 1;
2541 }
2542 }
2543 }
2544
2545 /*
2546 * If we read high prio channel in this loop, try again
2547 * for more high prio data.
2548 */
2549 if (high_prio) {
2550 continue;
2551 }
2552
2553 /* Take care of low priority channels. */
2554 for (i = 0; i < nb_fd; i++) {
2555 health_code_update();
2556
2557 if (local_stream[i] == NULL) {
2558 continue;
2559 }
2560 if ((pollfd[i].revents & POLLIN) ||
2561 local_stream[i]->hangup_flush_done ||
2562 local_stream[i]->has_data) {
2563 DBG("Normal read on fd %d", pollfd[i].fd);
2564 len = ctx->on_buffer_ready(local_stream[i], ctx);
2565 /* it's ok to have an unavailable sub-buffer */
2566 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2567 /* Clean the stream and free it. */
2568 consumer_del_stream(local_stream[i], data_ht);
2569 local_stream[i] = NULL;
2570 } else if (len > 0) {
2571 local_stream[i]->data_read = 1;
2572 }
2573 }
2574 }
2575
2576 /* Handle hangup and errors */
2577 for (i = 0; i < nb_fd; i++) {
2578 health_code_update();
2579
2580 if (local_stream[i] == NULL) {
2581 continue;
2582 }
2583 if (!local_stream[i]->hangup_flush_done
2584 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2585 && (consumer_data.type == LTTNG_CONSUMER32_UST
2586 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2587 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2588 pollfd[i].fd);
2589 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2590 /* Attempt read again, for the data we just flushed. */
2591 local_stream[i]->data_read = 1;
2592 }
2593 /*
2594 * If the poll flag is HUP/ERR/NVAL and we have
2595 * read no data in this pass, we can remove the
2596 * stream from its hash table.
2597 */
2598 if ((pollfd[i].revents & POLLHUP)) {
2599 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2600 if (!local_stream[i]->data_read) {
2601 consumer_del_stream(local_stream[i], data_ht);
2602 local_stream[i] = NULL;
2603 num_hup++;
2604 }
2605 } else if (pollfd[i].revents & POLLERR) {
2606 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2607 if (!local_stream[i]->data_read) {
2608 consumer_del_stream(local_stream[i], data_ht);
2609 local_stream[i] = NULL;
2610 num_hup++;
2611 }
2612 } else if (pollfd[i].revents & POLLNVAL) {
2613 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2614 if (!local_stream[i]->data_read) {
2615 consumer_del_stream(local_stream[i], data_ht);
2616 local_stream[i] = NULL;
2617 num_hup++;
2618 }
2619 }
2620 if (local_stream[i] != NULL) {
2621 local_stream[i]->data_read = 0;
2622 }
2623 }
2624 }
2625 /* All is OK */
2626 err = 0;
2627 end:
2628 DBG("polling thread exiting");
2629 free(pollfd);
2630 free(local_stream);
2631
2632 /*
2633 * Close the write side of the pipe so epoll_wait() in
2634 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2635 * read side of the pipe. If we close them both, epoll_wait strangely does
2636 * not return and could create a endless wait period if the pipe is the
2637 * only tracked fd in the poll set. The thread will take care of closing
2638 * the read side.
2639 */
2640 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2641
2642 error_testpoint:
2643 if (err) {
2644 health_error();
2645 ERR("Health error occurred in %s", __func__);
2646 }
2647 health_unregister(health_consumerd);
2648
2649 rcu_unregister_thread();
2650 return NULL;
2651 }
2652
2653 /*
2654 * Close wake-up end of each stream belonging to the channel. This will
2655 * allow the poll() on the stream read-side to detect when the
2656 * write-side (application) finally closes them.
2657 */
2658 static
2659 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2660 {
2661 struct lttng_ht *ht;
2662 struct lttng_consumer_stream *stream;
2663 struct lttng_ht_iter iter;
2664
2665 ht = consumer_data.stream_per_chan_id_ht;
2666
2667 rcu_read_lock();
2668 cds_lfht_for_each_entry_duplicate(ht->ht,
2669 ht->hash_fct(&channel->key, lttng_ht_seed),
2670 ht->match_fct, &channel->key,
2671 &iter.iter, stream, node_channel_id.node) {
2672 /*
2673 * Protect against teardown with mutex.
2674 */
2675 pthread_mutex_lock(&stream->lock);
2676 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2677 goto next;
2678 }
2679 switch (consumer_data.type) {
2680 case LTTNG_CONSUMER_KERNEL:
2681 break;
2682 case LTTNG_CONSUMER32_UST:
2683 case LTTNG_CONSUMER64_UST:
2684 if (stream->metadata_flag) {
2685 /* Safe and protected by the stream lock. */
2686 lttng_ustconsumer_close_metadata(stream->chan);
2687 } else {
2688 /*
2689 * Note: a mutex is taken internally within
2690 * liblttng-ust-ctl to protect timer wakeup_fd
2691 * use from concurrent close.
2692 */
2693 lttng_ustconsumer_close_stream_wakeup(stream);
2694 }
2695 break;
2696 default:
2697 ERR("Unknown consumer_data type");
2698 assert(0);
2699 }
2700 next:
2701 pthread_mutex_unlock(&stream->lock);
2702 }
2703 rcu_read_unlock();
2704 }
2705
2706 static void destroy_channel_ht(struct lttng_ht *ht)
2707 {
2708 struct lttng_ht_iter iter;
2709 struct lttng_consumer_channel *channel;
2710 int ret;
2711
2712 if (ht == NULL) {
2713 return;
2714 }
2715
2716 rcu_read_lock();
2717 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2718 ret = lttng_ht_del(ht, &iter);
2719 assert(ret != 0);
2720 }
2721 rcu_read_unlock();
2722
2723 lttng_ht_destroy(ht);
2724 }
2725
2726 /*
2727 * This thread polls the channel fds to detect when they are being
2728 * closed. It closes all related streams if the channel is detected as
2729 * closed. It is currently only used as a shim layer for UST because the
2730 * consumerd needs to keep the per-stream wakeup end of pipes open for
2731 * periodical flush.
2732 */
2733 void *consumer_thread_channel_poll(void *data)
2734 {
2735 int ret, i, pollfd, err = -1;
2736 uint32_t revents, nb_fd;
2737 struct lttng_consumer_channel *chan = NULL;
2738 struct lttng_ht_iter iter;
2739 struct lttng_ht_node_u64 *node;
2740 struct lttng_poll_event events;
2741 struct lttng_consumer_local_data *ctx = data;
2742 struct lttng_ht *channel_ht;
2743
2744 rcu_register_thread();
2745
2746 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2747
2748 if (testpoint(consumerd_thread_channel)) {
2749 goto error_testpoint;
2750 }
2751
2752 health_code_update();
2753
2754 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2755 if (!channel_ht) {
2756 /* ENOMEM at this point. Better to bail out. */
2757 goto end_ht;
2758 }
2759
2760 DBG("Thread channel poll started");
2761
2762 /* Size is set to 1 for the consumer_channel pipe */
2763 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2764 if (ret < 0) {
2765 ERR("Poll set creation failed");
2766 goto end_poll;
2767 }
2768
2769 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2770 if (ret < 0) {
2771 goto end;
2772 }
2773
2774 /* Main loop */
2775 DBG("Channel main loop started");
2776
2777 while (1) {
2778 health_code_update();
2779
2780 /* Only the channel pipe is set */
2781 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2782 err = 0; /* All is OK */
2783 goto end;
2784 }
2785
2786 restart:
2787 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2788 health_poll_entry();
2789 ret = lttng_poll_wait(&events, -1);
2790 health_poll_exit();
2791 DBG("Channel event catched in thread");
2792 if (ret < 0) {
2793 if (errno == EINTR) {
2794 ERR("Poll EINTR catched");
2795 goto restart;
2796 }
2797 goto end;
2798 }
2799
2800 nb_fd = ret;
2801
2802 /* From here, the event is a channel wait fd */
2803 for (i = 0; i < nb_fd; i++) {
2804 health_code_update();
2805
2806 revents = LTTNG_POLL_GETEV(&events, i);
2807 pollfd = LTTNG_POLL_GETFD(&events, i);
2808
2809 /* Just don't waste time if no returned events for the fd */
2810 if (!revents) {
2811 continue;
2812 }
2813 if (pollfd == ctx->consumer_channel_pipe[0]) {
2814 if (revents & (LPOLLERR | LPOLLHUP)) {
2815 DBG("Channel thread pipe hung up");
2816 /*
2817 * Remove the pipe from the poll set and continue the loop
2818 * since their might be data to consume.
2819 */
2820 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2821 continue;
2822 } else if (revents & LPOLLIN) {
2823 enum consumer_channel_action action;
2824 uint64_t key;
2825
2826 ret = read_channel_pipe(ctx, &chan, &key, &action);
2827 if (ret <= 0) {
2828 ERR("Error reading channel pipe");
2829 continue;
2830 }
2831
2832 switch (action) {
2833 case CONSUMER_CHANNEL_ADD:
2834 DBG("Adding channel %d to poll set",
2835 chan->wait_fd);
2836
2837 lttng_ht_node_init_u64(&chan->wait_fd_node,
2838 chan->wait_fd);
2839 rcu_read_lock();
2840 lttng_ht_add_unique_u64(channel_ht,
2841 &chan->wait_fd_node);
2842 rcu_read_unlock();
2843 /* Add channel to the global poll events list */
2844 lttng_poll_add(&events, chan->wait_fd,
2845 LPOLLIN | LPOLLPRI);
2846 break;
2847 case CONSUMER_CHANNEL_DEL:
2848 {
2849 /*
2850 * This command should never be called if the channel
2851 * has streams monitored by either the data or metadata
2852 * thread. The consumer only notify this thread with a
2853 * channel del. command if it receives a destroy
2854 * channel command from the session daemon that send it
2855 * if a command prior to the GET_CHANNEL failed.
2856 */
2857
2858 rcu_read_lock();
2859 chan = consumer_find_channel(key);
2860 if (!chan) {
2861 rcu_read_unlock();
2862 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2863 break;
2864 }
2865 lttng_poll_del(&events, chan->wait_fd);
2866 iter.iter.node = &chan->wait_fd_node.node;
2867 ret = lttng_ht_del(channel_ht, &iter);
2868 assert(ret == 0);
2869
2870 switch (consumer_data.type) {
2871 case LTTNG_CONSUMER_KERNEL:
2872 break;
2873 case LTTNG_CONSUMER32_UST:
2874 case LTTNG_CONSUMER64_UST:
2875 health_code_update();
2876 /* Destroy streams that might have been left in the stream list. */
2877 clean_channel_stream_list(chan);
2878 break;
2879 default:
2880 ERR("Unknown consumer_data type");
2881 assert(0);
2882 }
2883
2884 /*
2885 * Release our own refcount. Force channel deletion even if
2886 * streams were not initialized.
2887 */
2888 if (!uatomic_sub_return(&chan->refcount, 1)) {
2889 consumer_del_channel(chan);
2890 }
2891 rcu_read_unlock();
2892 goto restart;
2893 }
2894 case CONSUMER_CHANNEL_QUIT:
2895 /*
2896 * Remove the pipe from the poll set and continue the loop
2897 * since their might be data to consume.
2898 */
2899 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2900 continue;
2901 default:
2902 ERR("Unknown action");
2903 break;
2904 }
2905 }
2906
2907 /* Handle other stream */
2908 continue;
2909 }
2910
2911 rcu_read_lock();
2912 {
2913 uint64_t tmp_id = (uint64_t) pollfd;
2914
2915 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2916 }
2917 node = lttng_ht_iter_get_node_u64(&iter);
2918 assert(node);
2919
2920 chan = caa_container_of(node, struct lttng_consumer_channel,
2921 wait_fd_node);
2922
2923 /* Check for error event */
2924 if (revents & (LPOLLERR | LPOLLHUP)) {
2925 DBG("Channel fd %d is hup|err.", pollfd);
2926
2927 lttng_poll_del(&events, chan->wait_fd);
2928 ret = lttng_ht_del(channel_ht, &iter);
2929 assert(ret == 0);
2930
2931 /*
2932 * This will close the wait fd for each stream associated to
2933 * this channel AND monitored by the data/metadata thread thus
2934 * will be clean by the right thread.
2935 */
2936 consumer_close_channel_streams(chan);
2937
2938 /* Release our own refcount */
2939 if (!uatomic_sub_return(&chan->refcount, 1)
2940 && !uatomic_read(&chan->nb_init_stream_left)) {
2941 consumer_del_channel(chan);
2942 }
2943 }
2944
2945 /* Release RCU lock for the channel looked up */
2946 rcu_read_unlock();
2947 }
2948 }
2949
2950 /* All is OK */
2951 err = 0;
2952 end:
2953 lttng_poll_clean(&events);
2954 end_poll:
2955 destroy_channel_ht(channel_ht);
2956 end_ht:
2957 error_testpoint:
2958 DBG("Channel poll thread exiting");
2959 if (err) {
2960 health_error();
2961 ERR("Health error occurred in %s", __func__);
2962 }
2963 health_unregister(health_consumerd);
2964 rcu_unregister_thread();
2965 return NULL;
2966 }
2967
2968 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2969 struct pollfd *sockpoll, int client_socket)
2970 {
2971 int ret;
2972
2973 assert(ctx);
2974 assert(sockpoll);
2975
2976 ret = lttng_consumer_poll_socket(sockpoll);
2977 if (ret) {
2978 goto error;
2979 }
2980 DBG("Metadata connection on client_socket");
2981
2982 /* Blocking call, waiting for transmission */
2983 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2984 if (ctx->consumer_metadata_socket < 0) {
2985 WARN("On accept metadata");
2986 ret = -1;
2987 goto error;
2988 }
2989 ret = 0;
2990
2991 error:
2992 return ret;
2993 }
2994
2995 /*
2996 * This thread listens on the consumerd socket and receives the file
2997 * descriptors from the session daemon.
2998 */
2999 void *consumer_thread_sessiond_poll(void *data)
3000 {
3001 int sock = -1, client_socket, ret, err = -1;
3002 /*
3003 * structure to poll for incoming data on communication socket avoids
3004 * making blocking sockets.
3005 */
3006 struct pollfd consumer_sockpoll[2];
3007 struct lttng_consumer_local_data *ctx = data;
3008
3009 rcu_register_thread();
3010
3011 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3012
3013 if (testpoint(consumerd_thread_sessiond)) {
3014 goto error_testpoint;
3015 }
3016
3017 health_code_update();
3018
3019 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3020 unlink(ctx->consumer_command_sock_path);
3021 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3022 if (client_socket < 0) {
3023 ERR("Cannot create command socket");
3024 goto end;
3025 }
3026
3027 ret = lttcomm_listen_unix_sock(client_socket);
3028 if (ret < 0) {
3029 goto end;
3030 }
3031
3032 DBG("Sending ready command to lttng-sessiond");
3033 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3034 /* return < 0 on error, but == 0 is not fatal */
3035 if (ret < 0) {
3036 ERR("Error sending ready command to lttng-sessiond");
3037 goto end;
3038 }
3039
3040 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3041 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3042 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3043 consumer_sockpoll[1].fd = client_socket;
3044 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3045
3046 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3047 if (ret) {
3048 if (ret > 0) {
3049 /* should exit */
3050 err = 0;
3051 }
3052 goto end;
3053 }
3054 DBG("Connection on client_socket");
3055
3056 /* Blocking call, waiting for transmission */
3057 sock = lttcomm_accept_unix_sock(client_socket);
3058 if (sock < 0) {
3059 WARN("On accept");
3060 goto end;
3061 }
3062
3063 /*
3064 * Setup metadata socket which is the second socket connection on the
3065 * command unix socket.
3066 */
3067 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3068 if (ret) {
3069 if (ret > 0) {
3070 /* should exit */
3071 err = 0;
3072 }
3073 goto end;
3074 }
3075
3076 /* This socket is not useful anymore. */
3077 ret = close(client_socket);
3078 if (ret < 0) {
3079 PERROR("close client_socket");
3080 }
3081 client_socket = -1;
3082
3083 /* update the polling structure to poll on the established socket */
3084 consumer_sockpoll[1].fd = sock;
3085 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3086
3087 while (1) {
3088 health_code_update();
3089
3090 health_poll_entry();
3091 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3092 health_poll_exit();
3093 if (ret) {
3094 if (ret > 0) {
3095 /* should exit */
3096 err = 0;
3097 }
3098 goto end;
3099 }
3100 DBG("Incoming command on sock");
3101 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3102 if (ret <= 0) {
3103 /*
3104 * This could simply be a session daemon quitting. Don't output
3105 * ERR() here.
3106 */
3107 DBG("Communication interrupted on command socket");
3108 err = 0;
3109 goto end;
3110 }
3111 if (consumer_quit) {
3112 DBG("consumer_thread_receive_fds received quit from signal");
3113 err = 0; /* All is OK */
3114 goto end;
3115 }
3116 DBG("received command on sock");
3117 }
3118 /* All is OK */
3119 err = 0;
3120
3121 end:
3122 DBG("Consumer thread sessiond poll exiting");
3123
3124 /*
3125 * Close metadata streams since the producer is the session daemon which
3126 * just died.
3127 *
3128 * NOTE: for now, this only applies to the UST tracer.
3129 */
3130 lttng_consumer_close_all_metadata();
3131
3132 /*
3133 * when all fds have hung up, the polling thread
3134 * can exit cleanly
3135 */
3136 consumer_quit = 1;
3137
3138 /*
3139 * Notify the data poll thread to poll back again and test the
3140 * consumer_quit state that we just set so to quit gracefully.
3141 */
3142 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3143
3144 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3145
3146 notify_health_quit_pipe(health_quit_pipe);
3147
3148 /* Cleaning up possibly open sockets. */
3149 if (sock >= 0) {
3150 ret = close(sock);
3151 if (ret < 0) {
3152 PERROR("close sock sessiond poll");
3153 }
3154 }
3155 if (client_socket >= 0) {
3156 ret = close(client_socket);
3157 if (ret < 0) {
3158 PERROR("close client_socket sessiond poll");
3159 }
3160 }
3161
3162 error_testpoint:
3163 if (err) {
3164 health_error();
3165 ERR("Health error occurred in %s", __func__);
3166 }
3167 health_unregister(health_consumerd);
3168
3169 rcu_unregister_thread();
3170 return NULL;
3171 }
3172
3173 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3174 struct lttng_consumer_local_data *ctx)
3175 {
3176 ssize_t ret;
3177
3178 pthread_mutex_lock(&stream->lock);
3179 if (stream->metadata_flag) {
3180 pthread_mutex_lock(&stream->metadata_rdv_lock);
3181 }
3182
3183 switch (consumer_data.type) {
3184 case LTTNG_CONSUMER_KERNEL:
3185 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3186 break;
3187 case LTTNG_CONSUMER32_UST:
3188 case LTTNG_CONSUMER64_UST:
3189 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3190 break;
3191 default:
3192 ERR("Unknown consumer_data type");
3193 assert(0);
3194 ret = -ENOSYS;
3195 break;
3196 }
3197
3198 if (stream->metadata_flag) {
3199 pthread_cond_broadcast(&stream->metadata_rdv);
3200 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3201 }
3202 pthread_mutex_unlock(&stream->lock);
3203 return ret;
3204 }
3205
3206 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3207 {
3208 switch (consumer_data.type) {
3209 case LTTNG_CONSUMER_KERNEL:
3210 return lttng_kconsumer_on_recv_stream(stream);
3211 case LTTNG_CONSUMER32_UST:
3212 case LTTNG_CONSUMER64_UST:
3213 return lttng_ustconsumer_on_recv_stream(stream);
3214 default:
3215 ERR("Unknown consumer_data type");
3216 assert(0);
3217 return -ENOSYS;
3218 }
3219 }
3220
3221 /*
3222 * Allocate and set consumer data hash tables.
3223 */
3224 int lttng_consumer_init(void)
3225 {
3226 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3227 if (!consumer_data.channel_ht) {
3228 goto error;
3229 }
3230
3231 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3232 if (!consumer_data.relayd_ht) {
3233 goto error;
3234 }
3235
3236 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3237 if (!consumer_data.stream_list_ht) {
3238 goto error;
3239 }
3240
3241 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3242 if (!consumer_data.stream_per_chan_id_ht) {
3243 goto error;
3244 }
3245
3246 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3247 if (!data_ht) {
3248 goto error;
3249 }
3250
3251 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3252 if (!metadata_ht) {
3253 goto error;
3254 }
3255
3256 return 0;
3257
3258 error:
3259 return -1;
3260 }
3261
3262 /*
3263 * Process the ADD_RELAYD command receive by a consumer.
3264 *
3265 * This will create a relayd socket pair and add it to the relayd hash table.
3266 * The caller MUST acquire a RCU read side lock before calling it.
3267 */
3268 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3269 struct lttng_consumer_local_data *ctx, int sock,
3270 struct pollfd *consumer_sockpoll,
3271 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3272 uint64_t relayd_session_id)
3273 {
3274 int fd = -1, ret = -1, relayd_created = 0;
3275 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3276 struct consumer_relayd_sock_pair *relayd = NULL;
3277
3278 assert(ctx);
3279 assert(relayd_sock);
3280
3281 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3282
3283 /* Get relayd reference if exists. */
3284 relayd = consumer_find_relayd(net_seq_idx);
3285 if (relayd == NULL) {
3286 assert(sock_type == LTTNG_STREAM_CONTROL);
3287 /* Not found. Allocate one. */
3288 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3289 if (relayd == NULL) {
3290 ret = -ENOMEM;
3291 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3292 goto error;
3293 } else {
3294 relayd->sessiond_session_id = sessiond_id;
3295 relayd_created = 1;
3296 }
3297
3298 /*
3299 * This code path MUST continue to the consumer send status message to
3300 * we can notify the session daemon and continue our work without
3301 * killing everything.
3302 */
3303 } else {
3304 /*
3305 * relayd key should never be found for control socket.
3306 */
3307 assert(sock_type != LTTNG_STREAM_CONTROL);
3308 }
3309
3310 /* First send a status message before receiving the fds. */
3311 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3312 if (ret < 0) {
3313 /* Somehow, the session daemon is not responding anymore. */
3314 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3315 goto error_nosignal;
3316 }
3317
3318 /* Poll on consumer socket. */
3319 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3320 if (ret) {
3321 /* Needing to exit in the middle of a command: error. */
3322 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3323 ret = -EINTR;
3324 goto error_nosignal;
3325 }
3326
3327 /* Get relayd socket from session daemon */
3328 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3329 if (ret != sizeof(fd)) {
3330 ret = -1;
3331 fd = -1; /* Just in case it gets set with an invalid value. */
3332
3333 /*
3334 * Failing to receive FDs might indicate a major problem such as
3335 * reaching a fd limit during the receive where the kernel returns a
3336 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3337 * don't take any chances and stop everything.
3338 *
3339 * XXX: Feature request #558 will fix that and avoid this possible
3340 * issue when reaching the fd limit.
3341 */
3342 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3343 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3344 goto error;
3345 }
3346
3347 /* Copy socket information and received FD */
3348 switch (sock_type) {
3349 case LTTNG_STREAM_CONTROL:
3350 /* Copy received lttcomm socket */
3351 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3352 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3353 /* Handle create_sock error. */
3354 if (ret < 0) {
3355 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3356 goto error;
3357 }
3358 /*
3359 * Close the socket created internally by
3360 * lttcomm_create_sock, so we can replace it by the one
3361 * received from sessiond.
3362 */
3363 if (close(relayd->control_sock.sock.fd)) {
3364 PERROR("close");
3365 }
3366
3367 /* Assign new file descriptor */
3368 relayd->control_sock.sock.fd = fd;
3369 fd = -1; /* For error path */
3370 /* Assign version values. */
3371 relayd->control_sock.major = relayd_sock->major;
3372 relayd->control_sock.minor = relayd_sock->minor;
3373
3374 relayd->relayd_session_id = relayd_session_id;
3375
3376 break;
3377 case LTTNG_STREAM_DATA:
3378 /* Copy received lttcomm socket */
3379 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3380 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3381 /* Handle create_sock error. */
3382 if (ret < 0) {
3383 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3384 goto error;
3385 }
3386 /*
3387 * Close the socket created internally by
3388 * lttcomm_create_sock, so we can replace it by the one
3389 * received from sessiond.
3390 */
3391 if (close(relayd->data_sock.sock.fd)) {
3392 PERROR("close");
3393 }
3394
3395 /* Assign new file descriptor */
3396 relayd->data_sock.sock.fd = fd;
3397 fd = -1; /* for eventual error paths */
3398 /* Assign version values. */
3399 relayd->data_sock.major = relayd_sock->major;
3400 relayd->data_sock.minor = relayd_sock->minor;
3401 break;
3402 default:
3403 ERR("Unknown relayd socket type (%d)", sock_type);
3404 ret = -1;
3405 ret_code = LTTCOMM_CONSUMERD_FATAL;
3406 goto error;
3407 }
3408
3409 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3410 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3411 relayd->net_seq_idx, fd);
3412
3413 /* We successfully added the socket. Send status back. */
3414 ret = consumer_send_status_msg(sock, ret_code);
3415 if (ret < 0) {
3416 /* Somehow, the session daemon is not responding anymore. */
3417 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3418 goto error_nosignal;
3419 }
3420
3421 /*
3422 * Add relayd socket pair to consumer data hashtable. If object already
3423 * exists or on error, the function gracefully returns.
3424 */
3425 add_relayd(relayd);
3426
3427 /* All good! */
3428 return 0;
3429
3430 error:
3431 if (consumer_send_status_msg(sock, ret_code) < 0) {
3432 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3433 }
3434
3435 error_nosignal:
3436 /* Close received socket if valid. */
3437 if (fd >= 0) {
3438 if (close(fd)) {
3439 PERROR("close received socket");
3440 }
3441 }
3442
3443 if (relayd_created) {
3444 free(relayd);
3445 }
3446
3447 return ret;
3448 }
3449
3450 /*
3451 * Try to lock the stream mutex.
3452 *
3453 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3454 */
3455 static int stream_try_lock(struct lttng_consumer_stream *stream)
3456 {
3457 int ret;
3458
3459 assert(stream);
3460
3461 /*
3462 * Try to lock the stream mutex. On failure, we know that the stream is
3463 * being used else where hence there is data still being extracted.
3464 */
3465 ret = pthread_mutex_trylock(&stream->lock);
3466 if (ret) {
3467 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3468 ret = 0;
3469 goto end;
3470 }
3471
3472 ret = 1;
3473
3474 end:
3475 return ret;
3476 }
3477
3478 /*
3479 * Search for a relayd associated to the session id and return the reference.
3480 *
3481 * A rcu read side lock MUST be acquire before calling this function and locked
3482 * until the relayd object is no longer necessary.
3483 */
3484 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3485 {
3486 struct lttng_ht_iter iter;
3487 struct consumer_relayd_sock_pair *relayd = NULL;
3488
3489 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3490 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3491 node.node) {
3492 /*
3493 * Check by sessiond id which is unique here where the relayd session
3494 * id might not be when having multiple relayd.
3495 */
3496 if (relayd->sessiond_session_id == id) {
3497 /* Found the relayd. There can be only one per id. */
3498 goto found;
3499 }
3500 }
3501
3502 return NULL;
3503
3504 found:
3505 return relayd;
3506 }
3507
3508 /*
3509 * Check if for a given session id there is still data needed to be extract
3510 * from the buffers.
3511 *
3512 * Return 1 if data is pending or else 0 meaning ready to be read.
3513 */
3514 int consumer_data_pending(uint64_t id)
3515 {
3516 int ret;
3517 struct lttng_ht_iter iter;
3518 struct lttng_ht *ht;
3519 struct lttng_consumer_stream *stream;
3520 struct consumer_relayd_sock_pair *relayd = NULL;
3521 int (*data_pending)(struct lttng_consumer_stream *);
3522
3523 DBG("Consumer data pending command on session id %" PRIu64, id);
3524
3525 rcu_read_lock();
3526 pthread_mutex_lock(&consumer_data.lock);
3527
3528 switch (consumer_data.type) {
3529 case LTTNG_CONSUMER_KERNEL:
3530 data_pending = lttng_kconsumer_data_pending;
3531 break;
3532 case LTTNG_CONSUMER32_UST:
3533 case LTTNG_CONSUMER64_UST:
3534 data_pending = lttng_ustconsumer_data_pending;
3535 break;
3536 default:
3537 ERR("Unknown consumer data type");
3538 assert(0);
3539 }
3540
3541 /* Ease our life a bit */
3542 ht = consumer_data.stream_list_ht;
3543
3544 relayd = find_relayd_by_session_id(id);
3545 if (relayd) {
3546 /* Send init command for data pending. */
3547 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3548 ret = relayd_begin_data_pending(&relayd->control_sock,
3549 relayd->relayd_session_id);
3550 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3551 if (ret < 0) {
3552 /* Communication error thus the relayd so no data pending. */
3553 goto data_not_pending;
3554 }
3555 }
3556
3557 cds_lfht_for_each_entry_duplicate(ht->ht,
3558 ht->hash_fct(&id, lttng_ht_seed),
3559 ht->match_fct, &id,
3560 &iter.iter, stream, node_session_id.node) {
3561 /* If this call fails, the stream is being used hence data pending. */
3562 ret = stream_try_lock(stream);
3563 if (!ret) {
3564 goto data_pending;
3565 }
3566
3567 /*
3568 * A removed node from the hash table indicates that the stream has
3569 * been deleted thus having a guarantee that the buffers are closed
3570 * on the consumer side. However, data can still be transmitted
3571 * over the network so don't skip the relayd check.
3572 */
3573 ret = cds_lfht_is_node_deleted(&stream->node.node);
3574 if (!ret) {
3575 /*
3576 * An empty output file is not valid. We need at least one packet
3577 * generated per stream, even if it contains no event, so it
3578 * contains at least one packet header.
3579 */
3580 if (stream->output_written == 0) {
3581 pthread_mutex_unlock(&stream->lock);
3582 goto data_pending;
3583 }
3584 /* Check the stream if there is data in the buffers. */
3585 ret = data_pending(stream);
3586 if (ret == 1) {
3587 pthread_mutex_unlock(&stream->lock);
3588 goto data_pending;
3589 }
3590 }
3591
3592 /* Relayd check */
3593 if (relayd) {
3594 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3595 if (stream->metadata_flag) {
3596 ret = relayd_quiescent_control(&relayd->control_sock,
3597 stream->relayd_stream_id);
3598 } else {
3599 ret = relayd_data_pending(&relayd->control_sock,
3600 stream->relayd_stream_id,
3601 stream->next_net_seq_num - 1);
3602 }
3603 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3604 if (ret == 1) {
3605 pthread_mutex_unlock(&stream->lock);
3606 goto data_pending;
3607 }
3608 }
3609 pthread_mutex_unlock(&stream->lock);
3610 }
3611
3612 if (relayd) {
3613 unsigned int is_data_inflight = 0;
3614
3615 /* Send init command for data pending. */
3616 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3617 ret = relayd_end_data_pending(&relayd->control_sock,
3618 relayd->relayd_session_id, &is_data_inflight);
3619 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3620 if (ret < 0) {
3621 goto data_not_pending;
3622 }
3623 if (is_data_inflight) {
3624 goto data_pending;
3625 }
3626 }
3627
3628 /*
3629 * Finding _no_ node in the hash table and no inflight data means that the
3630 * stream(s) have been removed thus data is guaranteed to be available for
3631 * analysis from the trace files.
3632 */
3633
3634 data_not_pending:
3635 /* Data is available to be read by a viewer. */
3636 pthread_mutex_unlock(&consumer_data.lock);
3637 rcu_read_unlock();
3638 return 0;
3639
3640 data_pending:
3641 /* Data is still being extracted from buffers. */
3642 pthread_mutex_unlock(&consumer_data.lock);
3643 rcu_read_unlock();
3644 return 1;
3645 }
3646
3647 /*
3648 * Send a ret code status message to the sessiond daemon.
3649 *
3650 * Return the sendmsg() return value.
3651 */
3652 int consumer_send_status_msg(int sock, int ret_code)
3653 {
3654 struct lttcomm_consumer_status_msg msg;
3655
3656 memset(&msg, 0, sizeof(msg));
3657 msg.ret_code = ret_code;
3658
3659 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3660 }
3661
3662 /*
3663 * Send a channel status message to the sessiond daemon.
3664 *
3665 * Return the sendmsg() return value.
3666 */
3667 int consumer_send_status_channel(int sock,
3668 struct lttng_consumer_channel *channel)
3669 {
3670 struct lttcomm_consumer_status_channel msg;
3671
3672 assert(sock >= 0);
3673
3674 memset(&msg, 0, sizeof(msg));
3675 if (!channel) {
3676 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3677 } else {
3678 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3679 msg.key = channel->key;
3680 msg.stream_count = channel->streams.count;
3681 }
3682
3683 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3684 }
3685
3686 /*
3687 * Using a maximum stream size with the produced and consumed position of a
3688 * stream, computes the new consumed position to be as close as possible to the
3689 * maximum possible stream size.
3690 *
3691 * If maximum stream size is lower than the possible buffer size (produced -
3692 * consumed), the consumed_pos given is returned untouched else the new value
3693 * is returned.
3694 */
3695 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3696 unsigned long produced_pos, uint64_t max_stream_size)
3697 {
3698 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3699 /* Offset from the produced position to get the latest buffers. */
3700 return produced_pos - max_stream_size;
3701 }
3702
3703 return consumed_pos;
3704 }
This page took 0.108406 seconds and 4 git commands to generate.